1
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
3
|
Chisholm KM, Bohling SD, Tsuchiya KD, Paulson VA. A Malignant Mimicker: Features of Kikuchi-Fujimoto Disease in the Pediatric Population. Pediatr Dev Pathol 2022; 25:538-547. [PMID: 35583198 DOI: 10.1177/10935266221103882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Kikuchi-Fujimoto disease (KFD) is a rare, benign, and self-limited disease that presents with cervical lymphadenopathy and systemic symptoms. Histologic evaluation is often necessary to differentiate KFD from other entities. METHODS Electronic medical records and diagnostic material were reviewed for 14 children diagnosed with KFD and 6 children diagnosed with infectious mononucleosis (IM) from 2013-2021. Four cases of KFD were further characterized using targeted DNA-based next-generation sequencing. RESULTS Systemic symptoms were present in 86% (n = 12/14) of KFD patients, the most common being fever. Laboratory values worrisome for malignancy included cytopenia(s) (n = 9/12), elevated ESR and/or CRP (n = 9/12), elevated ferritin (n = 7/7), and elevated LDH (n = 7/10). Histologically, lymph nodes showed characteristic necrotic foci without neutrophils surrounded by MPO+ "crescentic" histiocytes. Immunoblasts and CD123+ plasmacytoid dendritic cells (pDCs) were also increased surrounding the necrosis. IM lymph nodes showed similar features when necrosis was present but increases in pDCs were patchy and rare neutrophils were seen in the necrotic foci. Molecular analysis of 4 KFD cases did not identify pathogenic variants. CONCLUSION While the signs/symptoms of KFD are worrisome, there are pathologic features that help differentiate it from potential mimics. We did not identify characteristic molecular features to aid in the work-up of these cases.
Collapse
Affiliation(s)
- Karen M Chisholm
- Department of Laboratories, 7274Seattle Children's Hospital, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, 7284University of Washington, Seattle, WA, USA
| | - Sandra D Bohling
- Department of Laboratories, 7274Seattle Children's Hospital, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, 7284University of Washington, Seattle, WA, USA
| | - Karen D Tsuchiya
- Department of Laboratory Medicine and Pathology, 7284University of Washington, Seattle, WA, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, 7284University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
5
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
6
|
Stutte S, Ishikawa-Ankerhold H, Lynch L, Eickhoff S, Nasiscionyte S, Guo C, van den Heuvel D, Setzensack D, Colonna M, Maier-Begandt D, Weckbach L, Brocker T, Schulz C, Walzog B, von Andrian U. High-Fat Diet Rapidly Modifies Trafficking, Phenotype, and Function of Plasmacytoid Dendritic Cells in Adipose Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1445-1455. [PMID: 35181637 PMCID: PMC8919350 DOI: 10.4049/jimmunol.2100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) display an increased abundance in visceral adipose tissue (VAT) of humans with obesity. In the current study, we set out to decipher the molecular mechanisms of their recruitment to VAT and the functional relevance of this process. We observed increased pDC numbers in murine blood, liver, spleen, and VAT after feeding a high-fat diet (HFD) for 3 wk when compared with a standard diet. pDCs were enriched in fat-associated lymphoid clusters representing highly specific lymphoid regions within VAT. HFD led to an enlargement of fat-associated lymphoid clusters with an increased density and migratory speed of pDCs as shown by intravital multiphoton microscopy. For their recruitment into VAT, pDCs employed P-selectin with E-selectin and L-selectin being only critical in response to HFD, indicating that the molecular cues underlying pDC trafficking were dependent on the nutritional state. Subsequent recruitment steps required α4β1 and α4β7 integrins and engagement of CCR7. Application of fingolimod (FTY720) abrogated egress of pDCs from VAT, indicating the involvement of sphingosine-1-phosphate in this process. Furthermore, HFD altered pDC functions by promoting their activation and type 1 IFN expression. Blocking pDC infiltration into VAT prevented weight gain and improved glucose tolerance during HFD. In summary, a HFD fundamentally alters pDC biology by promoting their trafficking, retention, and activation in VAT, which in turn seems to regulate metabolism.
Collapse
Affiliation(s)
- Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany;
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Hellen Ishikawa-Ankerhold
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lydia Lynch
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Simona Nasiscionyte
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chenglong Guo
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dominic van den Heuvel
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Setzensack
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St. Louis, MO; and
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ludwig Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich von Andrian
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| |
Collapse
|
7
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
8
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
10
|
Adachi A, Honda T, Dainichi T, Egawa G, Yamamoto Y, Nomura T, Nakajima S, Otsuka A, Maekawa M, Mano N, Koyanagi N, Kawaguchi Y, Ohteki T, Nagasawa T, Ikuta K, Kitoh A, Kabashima K. Prolonged high-intensity exercise induces fluctuating immune responses to herpes simplex virus infection via glucocorticoids. J Allergy Clin Immunol 2021; 148:1575-1588.e7. [PMID: 33965431 DOI: 10.1016/j.jaci.2021.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epidemiologic studies have yielded conflicting results regarding the influence of a single bout of prolonged high-intensity exercise on viral infection. OBJECTIVE We sought to learn whether prolonged high-intensity exercise either exacerbates or ameliorates herpes simplex virus type 2 (HSV-2) infection according to the interval between virus exposure and exercise. METHODS Mice were intravaginally infected with HSV-2 and exposed to run on the treadmill. RESULTS Prolonged high-intensity exercise 17 hours after infection impaired the clearance of HSV-2, while exercise 8 hours after infection enhanced the clearance of HSV-2. These impaired or enhanced immune responses were related to a transient decrease or increase in the number of blood-circulating plasmacytoid dendritic cells. Exercise-induced glucocorticoids transiently decreased the number of circulating plasmacytoid dendritic cells by facilitating their homing to the bone marrow via the CXCL12-CXCR4 axis, which led to their subsequent increase in the blood. CONCLUSION A single bout of prolonged high-intensity exercise can be either deleterious or beneficial to antiviral immunity.
Collapse
Affiliation(s)
- Akimasa Adachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Yamamoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, the Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Technology and Research (A∗STAR), Biopolis, Singapore.
| |
Collapse
|
11
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Skin injury is the most common clinical manifestation of SLE and is disfiguring, difficult to treat, and incompletely understood. We provide an overview of recently published articles covering the immunopathogenesis of skin injury in SLE. RECENT FINDINGS Skin of SLE has an inherent susceptibility to apoptosis, the cause of which may be multifactorial. Chronic IFN overexpression leads to barrier disruption, infiltration of inflammatory cells, cytokine production, and release of autoantigens and autoantibody production that result in skin injury. Ultraviolet light is the most important CLE trigger and amplifies this process leading to skin inflammation and potentially systemic disease flares. SUMMARY The pathogenesis of skin injury in CLE is complex but recent studies highlight the importance of mechanisms driving dysregulated epidermal cell death likely influenced by genetic risk factors, environmental triggers (UV light), and cytotoxic cells and cellular signaling.
Collapse
Affiliation(s)
- Grace A. Hile
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, 48109, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Pinto A, Rega A, Crother TR, Sorrentino R. Plasmacytoid dendritic cells and their therapeutic activity in cancer. Oncoimmunology 2021; 1:726-734. [PMID: 22934264 PMCID: PMC3429576 DOI: 10.4161/onci.20171] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the last decade several studies provided evidence that plasmacytoid dendritic cells (pDCs) infiltrate human neoplasms with poor prognosis. However, the role of tumor-associated pDCs remains controversial. Various studies indicate that pDCs play an immuno-suppressive role and facilitate tumor progression in both animal models and humans. In contrast, others found that the presence of activated tumor-associated pDCs results in tumor regression in mice. Given these findings, understanding pDC function in tumor biology is an important necessity and may pave the way for novel therapeutic strategies to fight malignancies.
Collapse
Affiliation(s)
- Aldo Pinto
- Pharmaceutical and Biomedical Sciences Department (FARMABIOMED); University of Salerno; Fisciano, Italy
| | | | | | | |
Collapse
|
14
|
Zhou X, Yan J, Lu Q, Zhou H, Fan L. The pathogenesis of cutaneous lupus erythematosus: The aberrant distribution and function of different cell types in skin lesions. Scand J Immunol 2020; 93:e12933. [PMID: 32654170 DOI: 10.1111/sji.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease with a broad range of cutaneous manifestations. In skin lesions of CLE, keratinocytes primarily undergo apoptosis. Interferon-κ(IFN-κ) is belonged to type I interferons (type I IFNs) and is selectively produced by keratinocytes. Recently, keratinocytes selectively produced IFN-κ is identified to be a key to trigger type I interferon responses in CLE. Other immune cells such as plasmacytoid dendritic cells (pDCs) are identified to be relevant origin of type I interferons (type I IFNs) which are central to the development of CLE lesions and responsible for mediating Th1 cell activity. Other types of cells such as neutrophils, B cells and Th17 cells also are involved in the development of this disease. The close interaction of those cells composes a comprehensive and complicated network in CLE. In this review, we discussed the aberrant distribution and function of different cells types involved in this disease and will offer a new direction for research and therapy in the near future.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jinli Yan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lan Fan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
15
|
Pontes Ferreira C, de Moro Cariste L, Henrique Noronha I, Fernandes Durso D, Lannes-Vieira J, Ramalho Bortoluci K, Araki Ribeiro D, Golenbock D, Gazzinelli RT, de Vasconcelos JRC. CXCR3 chemokine receptor contributes to specific CD8+ T cell activation by pDC during infection with intracellular pathogens. PLoS Negl Trop Dis 2020; 14:e0008414. [PMID: 32574175 PMCID: PMC7337401 DOI: 10.1371/journal.pntd.0008414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/06/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
Chemokine receptor type 3 (CXCR3) plays an important role in CD8+ T cells migration during intracellular infections, such as Trypanosoma cruzi. In addition to chemotaxis, CXCR3 receptor has been described as important to the interaction between antigen-presenting cells and effector cells. We hypothesized that CXCR3 is fundamental to T. cruzi-specific CD8+ T cell activation, migration and effector function. Anti-CXCR3 neutralizing antibody administration to acutely T. cruzi-infected mice decreased the number of specific CD8+ T cells in the spleen, and those cells had impaired in activation and cytokine production but unaltered proliferative response. In addition, anti-CXCR3-treated mice showed decreased frequency of CD8+ T cells in the heart and numbers of plasmacytoid dendritic cells in spleen and lymph node. As CD8+ T cells interacted with plasmacytoid dendritic cells during infection by T. cruzi, we suggest that anti-CXCR3 treatment lowers the quantity of plasmacytoid dendritic cells, which may contribute to impair the prime of CD8+ T cells. Understanding which molecules and mechanisms guide CD8+ T cell activation and migration might be a key to vaccine development against Chagas disease as those cells play an important role in T. cruzi infection control. Inflammatory chemokine receptors such as CXCR3 play an important role in T lymphocytes migration into an infected tissue during Th1 response. Recently, the role of CXCR3 as a co-stimulatory molecule was demonstrated, and T lymphocytes from CXCR3 deficient mice had impaired effector function. CXCR3 receptor was highly expressed on specific CD8+ T cells after challenge with T. cruzi, and the hypothesis of that molecule is important for CD8+ T cells activation, migration and functionality was raised. We used the anti-CXCR3 neutralizing antibody approach and demonstrated that C57BL/6 treated mice died very quickly due to T. cruzi infection, and specific CD8+ T cells had decreased effector phenotyping, cytokine production, and cytotoxicity. In addition, anti-CXCR3 treatment decreased the number of dendritic plasmacytoid cells in the lymphoid tissues. The lower quantity of dendritic plasmacytoid cells in those tissues might contribute to the decrease in CD8+ T cells activation. Overall, CXCR3 molecule seems to be an important molecule to be explored during vaccine against Chagas disease strategies.
Collapse
Affiliation(s)
- Camila Pontes Ferreira
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Isaú Henrique Noronha
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Danielle Fernandes Durso
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences of the Federal University of São Paulo, Santos, Brazil
| | - Douglas Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ricardo Tostes Gazzinelli
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - José Ronnie Carvalho de Vasconcelos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
- Department of Biosciences of the Federal University of São Paulo, Santos, Brazil
- * E-mail:
| |
Collapse
|
16
|
Thierry GR, Gentek R, Bajenoff M. Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling. Immunol Rev 2020; 289:42-61. [PMID: 30977194 DOI: 10.1111/imr.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, "transient passengers" that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three-dimensional network that provides a rigid backbone for the transport of lymph and generates "roads" for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20-fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Rebecca Gentek
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Marc Bajenoff
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Aller MA, Arias N, Blanco-Rivero J, Arias J. Metabolism in Acute-On-Chronic Liver Failure: The Solution More than the Problem. Arch Med Res 2019; 50:271-284. [PMID: 31593852 DOI: 10.1016/j.arcmed.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation. The acute decompensation of the liver disease is associated with encephalopathy, ascites, acute renal failure, an acute phase response and a splanchnic increase of pro- and anti-inflammatory cytokines. This multiorgan inflammatory dysfunction is mainly associated with a splanchnic and systemic metabolic switch with dedifferentiation of the epithelial, endothelial and mesothelial splanchnic barriers. Furthermore, a splanchnic infiltration by mast cells occurs, which suggests that these cells could carry out a compensatory metabolic role, especially through the modulation of hepatic and extrahepatic mitochondrial-peroxisome crosstalk. For this reason, we propose the hypothesis that mastocytosis in the acute-on-chronic hepatic insufficiency could represent the development of a survival metabolic mechanisms that mitigates the noxious effect of the hepatic functional deficit. A better understanding the pathophysiological response of the mast cells in liver insufficiency and portal hypertension would help to find new pathways for decreasing the high morbidity and mortality rate of these patients.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonoma University of Madrid, Madrid, Spain, Instituto de Investigación Biomédica La Paz (IdIPAZ), Madrid, España; Centro de Investigación Biomédica en Red (Ciber) de Enfermedades Cardiovasculares, Madrid, España
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
18
|
Pfuderer PL, Ballhausen A, Seidler F, Stark HJ, Grabe N, Frayling IM, Ager A, von Knebel Doeberitz M, Kloor M, Ahadova A. High endothelial venules are associated with microsatellite instability, hereditary background and immune evasion in colorectal cancer. Br J Cancer 2019; 121:395-404. [PMID: 31358939 PMCID: PMC6738093 DOI: 10.1038/s41416-019-0514-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microsatellite-unstable (MSI) tumours show a high load of mutational neoantigens, as a consequence of DNA mismatch repair deficiency. Consequently, MSI tumours commonly present with dense immune infiltration and develop immune evasion mechanisms. Whether improved lymphocyte recruitment contributes to the pronounced immune infiltration in MSI tumours is unknown. We analysed the density of high endothelial venules (HEV) and postcapillary blood vessels specialised for lymphocyte trafficking, in MSI colorectal cancers (CRC). METHODS HEV density was determined by immunohistochemical staining of FFPE tissue sections from MSI (n = 48) and microsatellite-stable (MSS, n = 35) CRCs. Associations with clinical and pathological variables were analysed. RESULTS We found elevated HEV densities in MSI compared with MSS CRCs (median 0.049 vs 0.000 counts/mm2, respectively, p = 0.0002), with the highest densities in Lynch syndrome MSI CRCs. Dramatically elevated HEV densities were observed in B2M-mutant Lynch syndrome CRCs, pointing towards a link between lymphocyte recruitment and immune evasion (median 0.485 vs 0.0885 counts/mm2 in B2M-wild-type tumours, p = 0.0237). CONCLUSIONS Our findings for the first time indicate a significant contribution of lymphocyte trafficking in immune responses against MSI CRC, particularly in the context of Lynch syndrome. High HEV densities in B2M-mutant tumours underline the significance of immunoediting during tumour evolution.
Collapse
Affiliation(s)
- Pauline L Pfuderer
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Alexej Ballhausen
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Seidler
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis (TIGA) Center, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Ian M Frayling
- Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
19
|
Kitazawa Y, Ueta H, Sawanobori Y, Katakai T, Yoneyama H, Ueha S, Matsushima K, Tokuda N, Matsuno K. Novel Targeting to XCR1 + Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes. Front Immunol 2019; 10:1195. [PMID: 31191552 PMCID: PMC6548820 DOI: 10.3389/fimmu.2019.01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
Abstract
Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
20
|
Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers (Basel) 2019; 11:cancers11040470. [PMID: 30987228 PMCID: PMC6520684 DOI: 10.3390/cancers11040470] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
The immune response, both innate and adaptive, is a key player in cancer development and progression. Plasmacytoid dendritic cells (pDCs) are a subset of dendritic cells that play one of the central roles in the immune system. They are known mostly as the major IFN type I-producing cells upon stimulation of Toll-like receptors 7 and 9. However, based on current knowledge, the functionality of pDCs is very complex, as they have the ability to affect many other cell types. In the context of the tumor tissue, pDCs were mostly described to show substantial functional defects and therefore contribute to the establishement of immunosuppressive tumor microenvironment. Immunotherapeutic approaches have proven to be one of the most promising treatment strategies in the last decade. In view of this fact, it is crucial to map the complexity of the tumor microenvironment in detail, including less numerous cell types. This review focuses on pDCs in relation to solid tumors. We provide a summary of current data on the role of pDCs in different tumor types and suggest their possible clinical applications.
Collapse
|
21
|
Cabrera-Ortega AA, Feinberg D, Liang Y, Rossa C, Graves DT. The Role of Forkhead Box 1 (FOXO1) in the Immune System: Dendritic Cells, T Cells, B Cells, and Hematopoietic Stem Cells. Crit Rev Immunol 2019; 37:1-13. [PMID: 29431075 DOI: 10.1615/critrevimmunol.2017019636] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Forkhead box-O (FOXO) transcription factors have a fundamental role in the development and differentiation of immune cells. FOXO1 and FOXO3 are FOXO members that are structurally similar and bind to the same conserved consensus DNA sequences to induce transcription. FOXO1 has been studied in detail in the activation of dendritic cells (DCs), where it plays an important role through the regulation of target genes such as ICAM-1, CCR7, and the integrin αvβ3. FOXO1 is activated by bacteria challenge in DCs and promotes DC bacterial phagocytosis, migration, homing to lymph nodes, DC stimulation of CD4+ T cells and resting B cells, and antibody production. Deletion of FOXO1 in DCs enhances susceptibility to bacteria-induced periodontal disease. FOXO1 and FOXO3 maintain naive T cell quiescence and survival. FOXO1 and FOXO3 enhance the formation of regulatory T cells and inhibit the formation of T-helper 1 (Th1) and Th17 cells. FOXO1 promotes differentiation, proliferation, survival, immunoglobulin gene rearrangement, and class switching in B cells, but FOXO3 has little effect. Both FOXO1 and FOXO3 are important in the maintenance of hematopoietic stem cells by protecting them from oxidative stress. This review examines FOXO1/FOXO3 in the adaptive immune response, key target genes, and FOXO inhibition by the phosphoinositide 3-kinase/AKT pathway.
Collapse
Affiliation(s)
- Adriana Alicia Cabrera-Ortega
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youde Liang
- Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, China
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Boor PPC, Bosma BM, Tran KTC, van der Laan LJW, Hagenaars H, IJzermans JNM, Metselaar HJ, Kwekkeboom J. Characterization of Antigen-Presenting Cell Subsets in Human Liver-Draining Lymph Nodes. Front Immunol 2019; 10:441. [PMID: 30930897 PMCID: PMC6428028 DOI: 10.3389/fimmu.2019.00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
T-cell immunity in the liver is tightly regulated to prevent chronic liver inflammation in response to antigens and toxins derived from food and intestinal bacterial flora. Since the main sites of T cell activation in response to foreign components entering solid tissues are the draining lymph nodes (LN), we aimed to study whether Antigen-Presenting Cell (APC) subsets in human liver lymph-draining LN show features that may contribute to the immunologically tolerant liver environment. Healthy liver LN, iliac LN, spleen and liver perfusates were obtained from multi-organ donors, while diseased liver LN were collected from explanted patient livers. Inguinal LN were obtained from kidney transplant recipients. Mononuclear cells were isolated from fresh tissues, and immunophenotypic and functional characteristics of APC subsets were studied using flowcytometry and in ex vivo cultures. Healthy liver-draining LN contained significantly lower relative numbers of CD1c+ conventional dendritic cells (cDC2), plasmacytoid DC (PDC), and CD14+CD163+DC-SIGN+ macrophages (MF) compared to inguinal LN. Compared to spleen, both types of LN contained low relative numbers of CD141hi cDC1. Both cDC subsets in liver LN showed a more activated/mature immunophenotype than those in inguinal LN, iliacal LN, spleen and liver tissue. Despite their more mature status, cDC2 isolated from hepatic LN displayed similar cytokine production capacity (IL-10, IL-12, and IL-6) and allogeneic T cell stimulatory capacity as their counterparts from spleen. Liver LN from patients with inflammatory liver diseases showed a further reduction of cDC1, but had increased relative numbers of PDC and MF. In steady state conditions human liver LN contain relatively low numbers of cDC2, PDC, and macrophages, and relative numbers of cDC1 in liver LN decline during liver inflammation. The paucity of cDC in liver LN may contribute to immune tolerance in the liver environment.
Collapse
Affiliation(s)
- Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Brenda M Bosma
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Khe T C Tran
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Hanneke Hagenaars
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
23
|
Veerman K, Tardiveau C, Martins F, Coudert J, Girard JP. Single-Cell Analysis Reveals Heterogeneity of High Endothelial Venules and Different Regulation of Genes Controlling Lymphocyte Entry to Lymph Nodes. Cell Rep 2019; 26:3116-3131.e5. [PMID: 30865898 DOI: 10.1016/j.celrep.2019.02.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
High-endothelial venules (HEVs) are specialized blood vessels allowing recirculation of naive lymphocytes through lymphoid organs. Here, using full-length, single-cell RNA sequencing, RNA fluorescence in situ hybridization (FISH), flow cytometry, and immunohistofluorescence, we reveal the heterogeneity of HEVs in adult mouse peripheral lymph nodes (PLNs) under conditions of homeostasis, antigenic stimulation, and after inhibition of lymphotoxin-β receptor (LTβR) signaling. We demonstrate that HEV endothelial cells are in an activated state during homeostasis, and we identify the genes characteristic of the differentiated HEV phenotype. We show that LTβR signaling regulates many HEV genes and pathways in resting PLNs and that immune stimulation induces a global and temporary inflammatory phenotype in HEVs without compromising their ability to recruit naive lymphocytes. Most importantly, we uncover differences in the regulation of genes controlling lymphocyte trafficking, Glycam1, Fut7, Gcnt1, Chst4, B3gnt3, and Ccl21a, that have implications for HEV function and regulation in health and disease.
Collapse
Affiliation(s)
- Krystle Veerman
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Tardiveau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, INSERM, UPS, Toulouse, France; Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Juliette Coudert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
24
|
Vescovi R, Monti M, Moratto D, Paolini L, Consoli F, Benerini L, Melocchi L, Calza S, Chiudinelli M, Rossi G, Bugatti M, Maio M, Fonsatti E, Farisoglio C, Simbolo M, Almici C, Verardi R, Scarpa A, Bergese P, Manganoni A, Facchetti F, Vermi W. Collapse of the Plasmacytoid Dendritic Cell Compartment in Advanced Cutaneous Melanomas by Components of the Tumor Cell Secretome. Cancer Immunol Res 2019; 7:12-28. [PMID: 30401679 DOI: 10.1158/2326-6066.cir-18-0141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Melanoma is an immunogenic neoplasm infiltrated by T cells, although these adaptive T cells usually fail to eradicate the tumor. Plasmacytoid dendritic cells (PDCs) are potent regulators of the adaptive immune response and can eliminate melanoma cells via TLR-mediated effector functions. The PDC compartment is maintained by progressively restricted bone marrow progenitors. Terminally differentiated PDCs exit the bone marrow into the circulation, then home to lymph nodes and inflamed peripheral tissues. Infiltration by PDCs is documented in various cancers. However, their role within the melanoma immune contexture is not completely known. We found that in locoregional primary cutaneous melanoma (PCM), PDC infiltration was heterogeneous, occurred early, and was recurrently localized at the invasive margin, the site where PDCs interact with CD8+ T cells. A reduced PDC density was coupled with an increased Breslow thickness and somatic mutations at the NRAS p.Q61 codon. Compared with what was seen in PCM, high numbers of PDCs were found in regional lymph nodes, as also identified by in silico analysis. In contrast, in metastatic melanoma patients, PDCs were mostly absent in the tumor tissues and were significantly reduced in the circulation, particularly in the advanced M1c group. Exposure of circulating PDCs to melanoma cell supernatant (SN-mel) depleted of extracellular vesicles resulted in significant PDC death. SN-mel exposure also resulted in a defect of PDC differentiation from CD34+ progenitors. These findings indicate that soluble components released by melanoma cells support the collapse of the PDC compartment, with clinical implications for refining TLR agonist-based trials.
Collapse
Affiliation(s)
- Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniele Moratto
- Laboratory of Genetic Disorders of Childhood, "Angelo Nocivelli" Institute for Molecular Medicine, Spedali Civili, Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Luisa Benerini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Melocchi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mariella Chiudinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda Romagna, Hospital Santa Maria delle Croci, Ravenna, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Ester Fonsatti
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | | | - Michele Simbolo
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, Università degli Studi di Verona, Verona, Italy
| | - Camillo Almici
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, Brescia, Italy
| | - Rosanna Verardi
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, Brescia, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, Università degli Studi di Verona, Verona, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Fabio Facchetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Memory formation and long-term maintenance of IL-7Rα + ILC1s via a lymph node-liver axis. Nat Commun 2018; 9:4854. [PMID: 30451860 PMCID: PMC6242895 DOI: 10.1038/s41467-018-07405-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are reported to have immunological memory, with CD49a+ liver-resident NK cells shown to confer hapten-specific memory responses, but how this memory is induced or maintained is unclear. Here we show that memory type I innate lymphoid cells (ILC1s), which express IL-7Rα, are generated in the lymph nodes (LNs) and require IL-7R signaling to maintain their longevity in the liver. Hapten sensitization initiates CXCR3-dependent recruitment of IL-7Rα+ ILC1s into skin-draining LNs, where they are primed and acquire hapten-specific memory potential. Memory IL-7Rα+ ILC1s then exit draining LNs and are preferentially recruited, via CXCR6, to reside in the liver. Moreover, long-term blockade of IL-7R signaling significantly reduces ILC1-mediated memory responses. Thus, our results identify a memory IL-7Rα+ ILC1 population and reveal a LN-liver axis that is essential for ILC1 memory generation and long-term maintenance. Natural killer cells may respond better on second antigen encounters, but how this memory is induced or maintained in vivo is not clear. Here the authors show that memory NK cells expressing interleukin-7 (IL-7) receptor are induced in the lymph nodes but later recruited to liver for long term, IL-7 dependent survival and memory maintenance.
Collapse
|
26
|
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 2018; 15:346-352. [PMID: 29563613 DOI: 10.1038/s41423-018-0005-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy.
| |
Collapse
|
27
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
28
|
Aiello A, Giannessi F, Percario ZA, Affabris E. The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 2018; 40:77-89. [PMID: 29588163 DOI: 10.1016/j.cytogfr.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset.
Collapse
|
29
|
Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol 2018; 8:1878. [PMID: 29403469 PMCID: PMC5780348 DOI: 10.3389/fimmu.2017.01878] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body’s first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
Collapse
Affiliation(s)
- Mariana Silva
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal.,Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Robert Sackstein
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Role of the chemokine receptors CXCR3, CXCR4 and CCR7 in the intramuscular recruitment of plasmacytoid dendritic cells in dermatomyositis. J Neuroimmunol 2018; 319:142-148. [PMID: 29366593 DOI: 10.1016/j.jneuroim.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 10/13/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
To explore the possible mechanism implicated in the recruitment of plasmacytoid dendritic cells (pDCs), we investigated the expression of the chemokine receptors CXCR3, CXCR4, and CCR7 on intramuscular and circulating pDCs from patients with dermatomyositis (DM). Using immunohistochemistry, preferential expression of CXCR3, CXCR4 and CCR7 was identified in the perivascular inflammatory infiltrates within the perimysium in DM muscle. Western-blot analysis showed marked up-regulation of expression of CXCR3, CXCR4 and CCR7 in muscle homogenate from patients with DM compared with that in non-diseased controls. Co-localization of CD303+ pDCs with these chemokine receptors was further examined by double immunofluorescence staining, which showed extensive co-localization of CD303 with CXCR3/CXCR4/CCR7 in DM biopsies. Flow cytometry was then used to investigate the proportion of pDCs among the total PBMCs and the expression of CXCR3, CXCR4 and CCR7 on circulating pDCs. The proportion of CD123+CD303+ pDCs in peripheral blood from DM patients was markedly decreased compared to that from polymyositis (PM) patients and normal controls. Significantly increased expression of CXCR3, but not CXCR4 or CCR7, was further identified on circulating pDCs in DM. Correlation analysis showed that the expression of CXCR3 correlated inversely with the frequency of pDCs in peripheral blood. Our findings indicate that the chemokine receptors, CXCR3, CXCR4 and CCR7 may be involved in the recruitment of pDCs from peripheral blood to muscle tissues in DM via different mechanisms, and in which CXCR3 may play an important role under DM conditions.
Collapse
|
31
|
Scanning the Immunopathogenesis of Psoriasis. Int J Mol Sci 2018; 19:ijms19010179. [PMID: 29316717 PMCID: PMC5796128 DOI: 10.3390/ijms19010179] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the immunologic model of which has been profoundly revised following recent advances in the understanding of its pathophysiology. In the current model, a crosstalk between keratinocytes, neutrophils, mast cells, T cells, and dendritic cells is thought to create inflammatory and pro-proliferative circuits mediated by chemokines and cytokines. Various triggers, including recently identified autoantigens, Toll-like receptor agonists, chemerin, and thymic stromal lymphopoietin may activate the pathogenic cascade resulting in enhanced production of pro-inflammatory and proliferation-inducing mediators such as interleukin (IL)-17, tumor necrosis factor (TNF)-α, IL-23, IL-22, interferon (IFN)-α, and IFN-γ by immune cells. Among these key cytokines lie therapeutic targets for currently approved antipsoriatic therapies. This review aims to provide a comprehensive overview on the immune-mediated mechanisms characterizing the current pathogenic model of psoriasis.
Collapse
|
32
|
Location, location, location: dendritic cell trafficking and transplant tolerance. Curr Opin Organ Transplant 2017; 12:1-4. [PMID: 27792081 DOI: 10.1097/mot.0b013e3280143cca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Use or targeting of dendritic cells for therapeutic manipulation of immune responses is being pursued in the areas of cancer, autoimmune disease, and allograft rejection. There is, however, a dearth of information regarding the optimal route of cell delivery or target location for maximal therapeutic effect, particularly in the field of transplantation. Further, little attention has been given to the roles that conventional experimental/immunosuppressive modalities have on the migratory capacity of these important antigen-presenting cells. RECENT FINDINGS Current understanding of the role of dendritic cells in immunologic ignorance, graft rejection, or tolerance to alloantigen suggests their function is influenced by subset, secondary lymphoid tissue location, and the type of organ transplanted. It also has been determined recently that dendritic cell subsets probably utilize distinct migratory routes to secondary lymphoid tissues, further underscoring the importance of understanding dendritic cell trafficking for optimization of dendritic cell therapy protocols. SUMMARY Increased comprehension of the requirements for dendritic cell-T cell interactions to take place in specific secondary lymphoid tissues for the induction of rejection versus tolerance, with and without antirejection therapy, will facilitate the ease with which cell-based therapy can be designed and implemented in transplant recipients.
Collapse
|
33
|
Loughland JR, Minigo G, Sarovich DS, Field M, Tipping PE, Montes de Oca M, Piera KA, Amante FH, Barber BE, Grigg MJ, William T, Good MF, Doolan DL, Engwerda CR, Anstey NM, McCarthy JS, Woodberry T. Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Sci Rep 2017; 7:2596. [PMID: 28572564 PMCID: PMC5453946 DOI: 10.1038/s41598-017-02096-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are activators of innate and adaptive immune responses that express HLA-DR, toll-like receptor (TLR) 7, TLR9 and produce type I interferons. The role of human pDC in malaria remains poorly characterised. pDC activation and cytokine production were assessed in 59 malaria-naive volunteers during experimental infection with 150 or 1,800 P. falciparum-parasitized red blood cells. Using RNA sequencing, longitudinal changes in pDC gene expression were examined in five adults before and at peak-infection. pDC responsiveness to TLR7 and TLR9 stimulation was assessed in-vitro. Circulating pDC remained transcriptionally stable with gene expression altered for 8 genes (FDR < 0.07). There was no upregulation of co-stimulatory molecules CD86, CD80, CD40, and reduced surface expression of HLA-DR and CD123 (IL-3R-α). pDC loss from the circulation was associated with active caspase-3, suggesting pDC apoptosis during primary infection. pDC remained responsive to TLR stimulation, producing IFN-α and upregulating HLA-DR, CD86, CD123 at peak-infection. In clinical malaria, pDC retained HLA-DR but reduced CD123 expression compared to convalescence. These data demonstrate pDC retain function during a first blood-stage P. falciparum exposure despite sub-microscopic parasitaemia downregulating HLA-DR. The lack of evident pDC activation in both early infection and malaria suggests little response of circulating pDC to infection.
Collapse
Affiliation(s)
- Jessica R Loughland
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.
| | - Gabriela Minigo
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia
| | - Derek S Sarovich
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Matt Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Peta E Tipping
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Royal Darwin Hospital, Darwin, Australia
| | | | - Kim A Piera
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Infectious Diseases Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Infectious Diseases Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,Sabah Department of Health, Kota Kinabalu, Sabah, Malaysia
| | | | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Royal Darwin Hospital, Darwin, Australia
| | | | - Tonia Woodberry
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia
| |
Collapse
|
34
|
Guo X, Chen SY. Dedicator of Cytokinesis 2 in Cell Signaling Regulation and Disease Development. J Cell Physiol 2017; 232:1931-1940. [DOI: 10.1002/jcp.25512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Xia Guo
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
35
|
Kohli K, Janssen A, Förster R. Plasmacytoid dendritic cells induce tolerance predominantly by cargoing antigen to lymph nodes. Eur J Immunol 2016; 46:2659-2668. [PMID: 27592607 PMCID: PMC5129535 DOI: 10.1002/eji.201646359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/01/2016] [Accepted: 08/25/2016] [Indexed: 01/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) have been shown to induce tolerance to innocuous antigens. Their migratory properties allow them to take up antigens from the periphery and transport them to the draining lymph nodes or to the thymus. However, pDC‐T‐cell interaction in the primary and secondary lymphoid organs still remains poorly defined. In this study, we show that resting pDCs loaded with exogenous antigen could induce tolerance when transferred intralymphatically into a single lymph node of wild‐type C57BL/6 mice. However, this was a result of antigen transfer from pDCs to endogenous antigen presenting cells and subsequent abortive proliferation of cognate CD4+ T cells. pDCs could not directly induce the proliferation of CD4+ T cells, as observed in mice lacking MHC class II gene. Moreover, pDCs failed to make physical contacts with OT‐II cells as revealed by two‐photon imaging. Thus, the role of resting pDCs in tolerance induction seems to be independent of its direct interaction with cognate CD4+ T cells.
Collapse
Affiliation(s)
- Karan Kohli
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
36
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
37
|
Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol 2016; 9:777-86. [PMID: 26462419 DOI: 10.1038/mi.2015.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/08/2015] [Indexed: 02/04/2023]
Abstract
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis (B. pertussis). T helper 17 (Th17) cells have a central role in the resolution of the infection. Emerging studies document that type I interferons (IFNs) suppress Th17 differentiation and interleukin (IL)-17 responses in models of infection and chronic inflammation. As plasmacytoid dendritic cells (pDCs) are a major source of type I IFNs, we hypothesize that during B. pertussis infection in mice, pDC-derived IFNα inhibits a rapid increase in Th17 cells. We found that IFNα-secreting pDCs appear in the lungs during the early stages of infection, while a robust rise of Th17 cells in the lungs is detected at 15 days post-infection or later. The presence of IFNα led to reduced Th17 differentiation and proliferation in vitro. Furthermore, in vivo blocking of IFNα produced by pDCs during infection with B. pertussis infection resulted in early increase of Th17 frequency, inflammation, and reduced bacterial loads in the airways of infected mice. Taken together, the experiments reported here describe an inhibitory role for pDCs and pDC-derived IFNα in modulating Th17 responses during the early stages of B. pertussis infection, which may explain the prolonged nature of whooping cough.
Collapse
|
38
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
39
|
García-León ML, Bonifaz LC, Espinosa-Torres B, Hernández-Pérez B, Cardiel-Marmolejo L, Santos-Preciado JI, Wong-Chew RM. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants. Hum Vaccin Immunother 2016; 11:1762-9. [PMID: 26075901 DOI: 10.1080/21645515.2015.1032488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.
Collapse
Key Words
- (-) ssRNA, nonsegmented negative single-stranded RNA
- DCs, dendritic cells
- EZ, Edmonston Zagreb
- GMT, Geometric mean titers
- IFN, interferon
- MMR, measles, mumps, rubella vaccine
- MeV, Measles virus
- PBMCs, peripheral blood mononuclear cells
- PRN, plaque reduction neutralization
- cellular and humoral immunity
- mDCs, myeloid dendritic cells
- measles vaccine
- pDCs, plasmacytoid dendritic cells
- plasmacytoid dendritic cells
Collapse
Affiliation(s)
- Miguel L García-León
- a Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México ; México City , México
| | | | | | | | | | | | | |
Collapse
|
40
|
Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S, Abrignani S. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Front Immunol 2015; 6:527. [PMID: 26528289 PMCID: PMC4603245 DOI: 10.3389/fimmu.2015.00527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against persistent infections or cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Giulia Nizzoli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Stefano Maglie
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich , Zurich , Switzerland
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy ; DISCCO, Department of Clinical Sciences and Community Health, University of Milano , Milan , Italy
| |
Collapse
|
41
|
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015; 4:e1008791. [PMID: 26155419 PMCID: PMC4485764 DOI: 10.1080/2162402x.2015.1008791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/06/2023] Open
Abstract
High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.
Collapse
Key Words
- EC, endothelial cells
- FRC, fibroblast reticular cells
- HEC, high endothelial cells
- HEV, high endothelial venules
- LN, lymph nodes
- LPA, lysophosphatidic acid
- LT, lymphotoxin
- LT-βR, lymphotoxin-β receptor
- MAdCAM, mucosal cell adhesion molecule
- PNAd, peripheral node addressin
- SIP, sphingosine-1-phosphate
- T cell homing
- TLO, tertiary lymphoid organ
- VE-cadherin, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- dendritic cells
- high endothelial venules
- lymphotoxin-β receptor
- tumor immunotherapy
Collapse
Affiliation(s)
- Ann Ager
- Infection and Immunity; School of Medicine; Cardiff University ; Cardiff, UK
| | - Michael J May
- School of Veterinary Medicine; University of Pennsylvania ; Philadelphia, PA, USA
| |
Collapse
|
42
|
Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 2014; 5:279. [PMID: 25120492 PMCID: PMC4110479 DOI: 10.3389/fphys.2014.00279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical UniversityMoscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
| | - Igor A. Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production ComplexMoscow, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneyCampbelltown, NSW, Australia
| |
Collapse
|
43
|
Abstract
Ovarian cancer is the most lethal malignancy of the female reproductive system and the fifth leading cause of cancer death in women. In the year 2012 alone, United States had 22,280 new ovarian cancer cases and 15,500 deaths were reported. About 7%-10% of ovarian cancers result from an inherited tendency to develop the disease. Ovarian cancer has the ability to escape the immune system because of its pathological interactions between cancer cells and host immune cells in the tumor microenvironment create an immunosuppressive network that promotes tumor growth, protects the tumor from immune system. The levels of immune suppressive elements like regulatory T cells, plasmacytoid dendritic cells and cytokines such as IL-10, IL-6, TNF-α, and TGF-β are elevated in the tumor microenvironment. Vascular endothelial growth factor is known to have an immune suppressing role besides its angiogenic role in the tumor microenvironment. Ovarian cancer is associated with high mortality partly due to difficulties in early diagnosis and development of metastases. These problems may overcome by developing accurate mouse models that should mimic the complexity of human ovarian cancer. Such animal models are better suited to understand pathophysiology, metastases, and also for preclinical testing of targeted molecular therapeutics. Immunotherapy is an area of active investigation and off late many clinical trials is ongoing to prevent disease progression. The main aim of dendritic cells vaccination is to stimulate tumor specific effector T cells that can reduce tumor size and induce immunological memory to prevent tumor relapse.
Collapse
Affiliation(s)
- T Sree Latha
- 1Department of Genetics & Genomics, Yogi Vemana University, Kadapa, India
| | | | | | | | | |
Collapse
|
44
|
Warren KJ, Iwami D, Harris DG, Bromberg JS, Burrell BE. Laminins affect T cell trafficking and allograft fate. J Clin Invest 2014; 124:2204-18. [PMID: 24691446 DOI: 10.1172/jci73683] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation.
Collapse
|
45
|
Role of G protein-coupled receptors in control of dendritic cell migration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:738253. [PMID: 24734242 PMCID: PMC3966334 DOI: 10.1155/2014/738253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
Abstract
Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor. The chemotactic G protein-coupled receptors (GPCR) play a vital role in control of DCs migration. Here, we reviewed the recent advances regarding the role of GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCs migration could provide a rational basis for the design of novel therapies in various clinical conditions.
Collapse
|
46
|
Soloff AC, Bissel SJ, Junecko BF, Giles BM, Reinhart TA, Ross TM, Barratt-Boyes SM. Massive mobilization of dendritic cells during influenza A virus subtype H5N1 infection of nonhuman primates. J Infect Dis 2014; 209:2012-6. [PMID: 24403559 DOI: 10.1093/infdis/jiu009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Highly pathogenic avian influenza virus infection is characterized by a marked inflammatory response, but the impact of infection on dendritic cells (DCs) is unknown. We show that influenza A virus subtype H5N1 infection rapidly and profoundly impacts DCs in cynomolgus macaques, increasing the number of blood myeloid and plasmacytoid DCs by 16- and 60-fold, respectively. Infection was associated with recruitment, activation, and apoptosis of DCs in lung-draining lymph nodes; granulocyte and macrophage infiltration in lungs was also detected, together with expression of CXCL10. This degree of DC mobilization is unprecedented in viral infection and suggests a potential role for DCs in the pathogenesis of highly pathogenic avian influenza virus.
Collapse
Affiliation(s)
| | | | | | | | | | - Ted M Ross
- Center for Vaccine Research Department of Microbiology and Molecular Genetics
| | - Simon M Barratt-Boyes
- Center for Vaccine Research Department of Infectious Disease and Microbiology Department of Immunology, University of Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32:659-702. [PMID: 24655300 DOI: 10.1146/annurev-immunol-032713-120145] [Citation(s) in RCA: 1397] [Impact Index Per Article: 139.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.
Collapse
Affiliation(s)
- Jason W Griffith
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
48
|
Shi W, Li X, Porter JL, Ostrodi DH, Yang B, Li J, Wang Y, Zhang J, Bai L, Jiao S. Level of plasmacytoid dendritic cells is increased in non-small cell lung carcinoma. Tumour Biol 2013; 35:2247-52. [PMID: 24136746 DOI: 10.1007/s13277-013-1297-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022] Open
Abstract
In non-small cell lung carcinoma (NSCLC), the immune system fails to eradicate established tumors partly due to the induction of immune tolerance within the tumor microenvironment. Plasmacytoid dendritic cells (pDCs) play critical roles in regulating the immune system. In this study, we investigated pDCs in the peripheral blood of NSCLC. CD4 + CD123 + BDCA2+ pDCs were tested from peripheral blood mononuclear cells in 52 NSCLC patients and 52 healthy controls by flow cytometry. Results revealed that proportion of pDCs was significantly increased in cases than in controls (0.52 ± 0.07% versus 0.21 ± 0.02%, p < 0.001), whereas myeloid dendritic cells (mDCs) did not present any obvious difference between patients and healthy donors (0.25 ± 0.04 % versus 0.18 ± 0.02%, p = 0.120). We further studied pDCs in NSCLC patients with different clinical stages. Data showed that cases with higher stages (III/IV) had elevated level of pDCs than those with lower stages (I/II) (0.65 ± 0.09% versus 0.25 ± 0.07%, p = 0.006). In addition, the amount of pDCs was identified to be associated with squamous cell carcinoma, one of the major subtypes of NSCLC. Interestingly, we observed that smoking patients presented significantly elevated pDCs than those non-smokers (0.63 ± 0.09% versus 0.22 ± 0.05%, p = 0.008). These data suggested that pDCs may be closely involved in the pathogenesis of NSCLC and may predict the progression of the disease.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Oncology, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The mechanisms of tolerance induction and maintenance remain incompletely understood and have yet to be translated to clinical practice. Advances in imaging techniques have allowed precise examination of cell interactions in the lymph node, often in real time. Herein we review evidence that lymph node structure is dynamic and controls the character of the immune response in a multistep, multiplayer dance. T-cell responses in particular can be initiated or influenced in regions beyond the canonical T-cell zone. We propose that the cortical ridge is one such region required for induction and maintenance of tolerance. RECENT FINDINGS Lymph node domains are more complex than T-cell and B-cell zones. Different domains are important for different types of immune responses. These domains are in part defined by dynamic, malleable physical structures that guide cell interactions and influence immune outcomes. SUMMARY Further probing as to how lymph node stromal cells and fibers interact with and determine the character of immune responses should yield fundamental insights into tolerance and immunity. Manipulation of lymph node structure and associated unique cell types and molecules may allow therapeutic interventions in the tolerogenic process.
Collapse
|
50
|
Niederquell M, Kurig S, Fischer JAA, Tomiuk S, Swiecki M, Colonna M, Johnston ICD, Dzionek A. Sca-1 expression defines developmental stages of mouse pDCs that show functional heterogeneity in the endosomal but not lysosomal TLR9 response. Eur J Immunol 2013; 43:2993-3005. [PMID: 23922217 DOI: 10.1002/eji.201343498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/17/2013] [Accepted: 08/01/2013] [Indexed: 11/07/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) play an important role in innate and adaptive immunity and were shown to be identical to previously described natural interferon (IFN)-α-producing cells. Here, we describe two functionally distinct pDC subpopulations that are characterized by the differential expression of stem cell antigen-1 (Sca-1; Ly-6A/E). Sca-1(-) pDCs are mainly found in the BM, appear first during development, show a higher proliferative activity, and represent the more precursor phenotype. Sca-1(+) pDCs are mostly located in secondary lymphoid organs and represent a later developmental stage. Sca-1(-) pDCs give rise to an Sca-1(+) subset upon activation or in response to endogenous type I IFN. Interestingly, in contrast to Sca-1(-) pDCs, Sca-1(+) pDCs are defective in IFN-α production upon endosomal TLR9 stimulation, whereas lysosomal signaling via TLR9 is functional in both subsets. Gene expression analysis revealed that osteopontin is strongly upregulated in Sca-1(-) pDCs. These data provide evidence for the molecular basis of the observed functional heterogeneity, as the intracellular isoform of osteopontin couples TLR9 signaling to IFN-α expression. Taken together, our results indicate that Sca-1(-) pDCs are an early developmental stage of pDCs with distinct innate functions representing the true murine natural IFN-α-producing cells.
Collapse
|