1
|
Gasch K, Hykollari A, Habe M, Haubensak P, Painer-Gigler J, Smith S, Stalder G, Arnold W. Summer fades, deer change: Photoperiodic control of cellular seasonal acclimatization of skeletal muscle. iScience 2024; 27:108619. [PMID: 38155774 PMCID: PMC10753075 DOI: 10.1016/j.isci.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.
Collapse
Affiliation(s)
- Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Alba Hykollari
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Manuela Habe
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Patricia Haubensak
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Johanna Painer-Gigler
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
2
|
The Effects of Omega-3 Supplementation on Resting Metabolic Rate: A Systematic Review and Meta-Analysis of Clinical Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6213035. [PMID: 34976098 PMCID: PMC8716205 DOI: 10.1155/2021/6213035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Background It is uncertain if omega-3 polyunsaturated fatty acids are associated with increase in resting metabolic rate (RMR) in adults. Objective The aim of the present study was to evaluate the overall effects of omega-3 on RMR. Methods Both PubMed and Scopus libraries were searched up to April 2021. Study quality was assessed using the Jadad scale. Random- and fixed-effects models were utilized in order to obtain pooled estimates of omega-3 supplementation impacts on RMR, using weight mean difference (WMD). Results Seven studies including a total of 245 participants were included. There was significantly higher FFM-adjusted RMR in the intervention group than the control group (WMD: 26.666 kcal/kg/day, 95% CI: 9.010 to 44.322, p=0.003). Study quality showed that four of seven included studies were of high quality. However, there was no significant difference in results in the subgroup analysis according to the quality of studies. Subgroup analyses revealed significant changes for sex (for women: WMD = 151.793 kcal/day, 95% CI = 62.249 to 241.337, p=0.001) and BMI (for BMI > 25: WMD = 82.208 kcal/day, 95% CI = 0.937 to 163.480, p=0.047). Influence analysis indicated no outlier among inclusions. Conclusion The current study depicted that omega-3 polyunsaturated acids can significantly increase RMR in adults. However, further assessments of omega-3 supplementation therapy are critical to monitor its long-term outcomes and potential clinical application.
Collapse
|
3
|
Wang J, Han L, Wang D, Sun Y, Huang J, Shahidi F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int J Mol Sci 2021; 22:ijms222212463. [PMID: 34830341 PMCID: PMC8619600 DOI: 10.3390/ijms222212463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are the nuclear receptors that could mediate the nutrient-dependent transcriptional activation and regulate metabolic networks through energy homeostasis. However, these receptors cannot work properly under metabolic stress. PPARs and their subtypes can be modulated by nutrigenomic interventions, particularly under stress conditions to restore cellular homeostasis. Many nutrients such as polyunsaturated fatty acids, vitamins, dietary amino acids and phytochemicals have shown their ability for potential activation or inhibition of PPARs. Thus, through different mechanisms, all these nutrients can modulate PPARs and are ultimately helpful to prevent various metabolic disorders, particularly in transition dairy cows. This review aims to provide insights into the crucial role of PPARs in energy metabolism and their potential modulation through nutrigenomic interventions to improve energy homeostasis in dairy animals.
Collapse
|
5
|
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, insulin resistance (IR) and dyslipidaemia. Consumption of a high-fat diet (HFD) enriched in SFA leads to the accumulation of ceramide (Cer), the central molecule in sphingolipid metabolism. Elevations in plasma and tissue Cer are found in obese individuals, and there is evidence to suggest that Cer lipotoxicity contributes to the MetS. EPA and DHA have shown to improve MetS parameters including IR, inflammation and hypertriacylglycerolaemia; however, whether these improvements are related to Cer is currently unknown. This review examines the potential of EPA and DHA to improve Cer lipotoxicity and MetS parameters including IR, inflammation and dyslipidaemia in vitro and in vivo. Current evidence from cell culture and animal studies indicates that EPA and DHA attenuate palmitate- or HFD-induced Cer lipotoxicity and IR, whereas evidence in humans is greatly lacking. Overall, there is intriguing potential for EPA and DHA to improve Cer lipotoxicity and related MetS parameters, but more research is warranted.
Collapse
|
6
|
El-Bahr SM, Al-Sultan S, Alfattah MA, Shehab A, Sabeq I, Shousha S, Ahmed-Farid O, El-Garhy O, Albusadah KA, Alhojaily S, Khattab W. Influence of dietary combinations of Amphora coffeaeformis with linseed oil or sunflower oil on performance, fatty and amino acid profiles, oxidative stability and meat quality of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1983736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sabry M. El-Bahr
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Saad Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Ahmed Shehab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Islam Sabeq
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Saad Shousha
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Omar Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12622, Egypt
| | - Osama El-Garhy
- Department of Animal Production, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Khalid A. Albusadah
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Wasseem Khattab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| |
Collapse
|
7
|
García-García FJ, Monistrol-Mula A, Cardellach F, Garrabou G. Nutrition, Bioenergetics, and Metabolic Syndrome. Nutrients 2020; 12:E2785. [PMID: 32933003 PMCID: PMC7551996 DOI: 10.3390/nu12092785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization (WHO), the global nutrition report shows that whilst part of the world's population starves, the other part suffers from obesity and associated complications. A balanced diet counterparts these extreme conditions with the proper proportion, composition, quantity, and presence of macronutrients, micronutrients, and bioactive compounds. However, little is known on the way these components exert any influence on our health. These nutrients aiming to feed our bodies, our tissues, and our cells, first need to reach mitochondria, where they are decomposed into CO2 and H2O to obtain energy. Mitochondria are the powerhouse of the cell and mainly responsible for nutrients metabolism, but they are also the main source of oxidative stress and cell death by apoptosis. Unappropriated nutrients may support mitochondrial to become the Trojan horse in the cell. This review aims to provide an approach to the role that some nutrients exert on mitochondria as a major contributor to high prevalent Western conditions including metabolic syndrome (MetS), a constellation of pathologic conditions which promotes type II diabetes and cardiovascular risk. Clinical and experimental data extracted from in vitro animal and cell models further demonstrated in patients, support the idea that a balanced diet, in a healthy lifestyle context, promotes proper bioenergetic and mitochondrial function, becoming the best medicine to prevent the onset and progression of MetS. Any advance in the prevention and management of these prevalent complications help to face these challenging global health problems, by ameliorating the quality of life of patients and reducing the associated sociosanitary burden.
Collapse
Affiliation(s)
- Francesc Josep García-García
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (F.J.G.-G.); (A.M.-M.); (F.C.)
- CIBERER—Centre for Biomedical Research Network in Rare Diseases, 28029 Madrid, Spain
| | - Anna Monistrol-Mula
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (F.J.G.-G.); (A.M.-M.); (F.C.)
- CIBERER—Centre for Biomedical Research Network in Rare Diseases, 28029 Madrid, Spain
| | - Francesc Cardellach
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (F.J.G.-G.); (A.M.-M.); (F.C.)
- CIBERER—Centre for Biomedical Research Network in Rare Diseases, 28029 Madrid, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (F.J.G.-G.); (A.M.-M.); (F.C.)
- CIBERER—Centre for Biomedical Research Network in Rare Diseases, 28029 Madrid, Spain
| |
Collapse
|
8
|
Yarizadeh H, Setayesh L, Roberts C, Yekaninejad MS, Mirzaei K. Nutrient pattern of unsaturated fatty acids and vitamin E increase resting metabolic rate of overweight and obese women. INT J VITAM NUTR RES 2020; 92:214-222. [PMID: 32672509 DOI: 10.1024/0300-9831/a000664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objectives: Obesity plays an important role in the development of chronic diseases including cardiovascular disease and diabetes. A low resting metabolic rate (RMR) for a given body size and composition is a risk factor for obesity, however, there is limited evidence available regarding the association of nutrient patterns and RMR. The aim of this study was to determine the association of nutrient patterns and RMR in overweight and obese women. Study design: This cross-sectional study was conducted on 360 women who were overweight or obese. Method: Dietary intake was assessed using a semi-quantitative standard food frequency questionnaire (FFQ). Nutrient patterns were also extracted by principal components analysis (PCA). All participants were evaluated for their body composition, RMR, and blood parameters. Result: Three nutrient patterns explaining 64% of the variance in dietary nutrients consumption were identified as B-complex-mineral, antioxidant, and unsaturated fatty acid and vitamin E (USFA-vit E) respectively. Participants were categorized into two groups based on the nutrient patterns. High scores of USFA-vit E pattern was significantly associated with the increase of RMR (β = 0.13, 95% CI = 0.79 to 68.16, p = 0.04). No significant associations were found among B-complex-mineral pattern (β = -0.00, 95% CI = -49.67 to 46.03, p = 0.94) and antioxidant pattern (β = 0.03, 95% CI -41.42 to 22.59, p = 0.56) with RMR. Conclusion: Our results suggested that the "USFA-vit E" pattern (such as PUFA, oleic, linoleic, vit.E, α-tocopherol and EPA) was associated with increased RMR.
Collapse
Affiliation(s)
- Habib Yarizadeh
- Students' Scientific Center, Tehran University of Medical Sciences, PO Box 1417755331, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Caroline Roberts
- Department of Nutritional Sciences School of Life Course Sciences, Faculty of Life Sciences and Medicine, Kings College London, Franklin-Wilkins Building room 4.108
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Medical Sciences/University of Tehran, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
9
|
Cauble RN, Greene ES, Orlowski S, Walk C, Bedford M, Apple J, Kidd MT, Dridi S. Research Note: Dietary phytase reduces broiler woody breast severity via potential modulation of breast muscle fatty acid profiles. Poult Sci 2020; 99:4009-4015. [PMID: 32731988 PMCID: PMC7597982 DOI: 10.1016/j.psj.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Woody breast (WB) myopathy is a major concern and economic burden to the poultry industry, and for which, there is no effective solution because of its unknown etiology. In a previous study, we have shown that phytase (Quantum Blue, QB) reduces the WB severity by 5% via modulation of oxygen homeostasis-related pathways. As WB has been suggested to be associated with lipid dysmetabolism, we aimed to determine the effect of QB on WB and breast muscle fatty acid profile. Male broilers were subjected to 6 treatments (96 birds/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with QB at 500 (NC+500 FTU), and 1,000 (NC+ 1,000 FTU) or 2,000 FTU/kg of feed (NC+2,000 FTU). Woody breast and white striping scores were recorded, and fatty acid profiles were determined using gas liquid chromatography. Woody breast-affected muscles exhibited a significant higher incidence of white striping as liquid chromatography analysis reveals an imbalance of fatty acid profile in the breast of WB-affected birds with a significant higher percent of saturated fatty acids (SFA, myristic [14:0], pentadecanoic [15:0], and margaric [17:0]) and monounsaturated fatty acids (myristoleic [14:1], palmitoleic [16:1c], 10-trans-heptadecenoic [17:1t], oleic [18:1c9], and vaccenic [18:1c11]), and lower content of polyunsaturated fatty acids (PUFA) and omega-3 (P < 0.05). Quantum Blue at high doses (1,000 and 2,000 FTU) significantly reduces the percent of SFA and increases that of PUFA compared with the control group. In conclusion, WB myopathy seemed to be associated with an imbalance of fatty acid profile, and QB ameliorates the severity of WB potentially via modulation of SFA and PUFA contents.
Collapse
Affiliation(s)
- Reagan N Cauble
- Department of Animal Science, University of Arkansas, Fayetteville 72701.
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | - Carrie Walk
- AB Vista, Woodstock Ct, Marlborough, Wiltshire SN8 4AN, UK
| | - Mike Bedford
- AB Vista, Woodstock Ct, Marlborough, Wiltshire SN8 4AN, UK
| | - Jason Apple
- Department of Animal Science, University of Arkansas, Fayetteville 72701
| | - Michael T Kidd
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701.
| |
Collapse
|
10
|
Lanchais K, Capel F, Tournadre A. Could Omega 3 Fatty Acids Preserve Muscle Health in Rheumatoid Arthritis? Nutrients 2020; 12:E223. [PMID: 31952247 PMCID: PMC7019846 DOI: 10.3390/nu12010223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.
Collapse
Affiliation(s)
- Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Frederic Capel
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Anne Tournadre
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
- CHU de Clermont-Ferrand, Service de rhumatologie, 63003 Clermont-Ferrand, France
| |
Collapse
|
11
|
Farahnak Z, Yuan Y, Vanstone CA, Weiler HA. Maternal and neonatal red blood cell n-3 polyunsaturated fatty acids inversely associate with infant whole-body fat mass assessed by dual-energy X-ray absorptiometry. Appl Physiol Nutr Metab 2019; 45:318-326. [PMID: 31437414 DOI: 10.1139/apnm-2019-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research regarding polyunsaturated fatty acid (PUFA) status and body composition in neonates is limited. This study tested the relationship between newborn docosahexaenoic acid (DHA) status and body composition. Healthy mothers and their term-born infants (n = 100) were studied within 1 month postpartum for anthropometry and whole-body composition using dual-energy X-ray absorptiometry. Maternal and infant red blood cell (RBC) membrane PUFA profiles were measured using gas chromatography (expressed as percentage of total fatty acids). Data were grouped according to infant RBC DHA quartiles and tested for differences in n-3 status and infant body composition using mixed-model ANOVA, Spearman correlations, and regression analyses (P < 0.05). Mothers were 32.2 ± 4.6 years (mean ± SD) of age, infants (54% males) were 0.68 ± 0.23 month of age, and 80% exclusively breastfed. Infant RBC DHA (ranged 3.96% to 7.75% of total fatty acids) inversely associated with infant fat mass (r = -0.22, P = 0.03). Infant and maternal RBC n-6/n-3 PUFA ratio (r2 = 0.28, P = 0.043; r2 = 0.28, P = 0.041 respectively) were positively associated with fat mass. These results demonstrate that both maternal and infant long-chain PUFA status are associated with neonatal body composition. Novelty Our findings support an early window to further explore the relationship between infant n-3 PUFA status and body composition. Maternal and infant n-3 PUFA status is inversely related to neonatal whole-body fat mass. DHA appears to be the best candidate to test in the development of a lean body phenotype.
Collapse
Affiliation(s)
- Zahra Farahnak
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ye Yuan
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Catherine A Vanstone
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Hope A Weiler
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.,School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
12
|
Gonçalves RV, Santos JDB, Silva NS, Guillocheau E, Silva RE, Souza-Silva TG, Oliveira RF, Santos EC, Novaes RD. Trans-fatty acids aggravate anabolic steroid-induced metabolic disturbances and differential gene expression in muscle, pancreas and adipose tissue. Life Sci 2019; 232:116603. [PMID: 31254587 DOI: 10.1016/j.lfs.2019.116603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
AIMS Although anabolic steroids (AS) and trans-fatty acids overload exerts systemic toxicity and are independent risk factors for metabolic and cardiovascular disorders, their interaction remains poorly understood. Thus, we investigated the impact of a diet rich in trans-fatty acids (HFD) combined with AS on glycemic control, lipid profile, adipose tissue, skeletal muscle and pancreas microstructure and expression of genes involved in energy metabolism. MAIN METHODS Forty-eight C57BL/6 mice were randomized into 6 groups treated for 12 weeks with a standard diet (SD) or a diet rich in C18:1 trans-fatty isomers (HFD), alone or combined with 10 or 20 mg/kg testosterone cypionate (AS). KEY FINDINGS Our results indicated that AS improved glycemic control, upregulated gene expression of Glut-4 and CPT-1 in skeletal muscle, FAS, ACC and UCP-1 in adipose tissue. AS also reduced total and LDL cholesterol in mice fed a SD. When combined with the HFD, AS was unable to induce microstructural adaptations in adipose tissue, pancreatic islets and β-cells, but potentiated GCK and Glut-2 (pancreas) and Glut-4 and CPT-1 (skeletal muscle) upregulation. HFD plus AS also downregulated FAS and ACC gene expression in adipose tissue. Combined with HFD, AS increased triacylglycerol circulating levels, improved insulin sensitivity and glycemic control in mice. SIGNIFICANCE Our findings indicated that HFD and AS can interact to modulates glycemic control and lipid profile by a mechanism potentially related with a reprogramming of genes expression in organs such as the pancreas, adipose tissue and skeletal muscle.
Collapse
Affiliation(s)
- Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, 36570-000, Minas Gerais, Brazil
| | - Jamili D B Santos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil
| | - Natanny S Silva
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil
| | - Etienne Guillocheau
- Laboratory of Biochemistry and Human Nutrition, Agrocampus-Ouest, 35042, Rennes, France
| | - Robson E Silva
- School of Medicine, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil
| | - Thaiany G Souza-Silva
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil
| | - Rafael F Oliveira
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil; School of Dentistry, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil
| | - Eliziária C Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, 39100-000, Minas Gerais, Brazil
| | - Romulo D Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, 37130-001, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, Luscombe-Marsh N. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front Physiol 2019; 10:532. [PMID: 31130874 PMCID: PMC6510277 DOI: 10.3389/fphys.2019.00532] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the cause-effect relationship remains to be fully elucidated. Compelling evidence suggests that boosting mitochondrial function may represent a valuable therapeutic tool to improve insulin sensitivity. Mitochondria are highly dynamic organelles, which adapt to short- and long-term metabolic perturbations by undergoing fusion and fission cycles, spatial rearrangement of the electron transport chain complexes into supercomplexes and biogenesis governed by peroxisome proliferator-activated receptor γ co-activator 1α (PGC 1α). However, these processes appear to be dysregulated in type 2 diabetic individuals. Herein, we describe the mechanistic link between mitochondrial dysfunction and insulin resistance in skeletal muscle alongside the intracellular pathways orchestrating mitochondrial bioenergetics. We then review current evidence on nutritional tools, including fatty acids, amino acids, caloric restriction and food bioactive derivatives, which may enhance insulin sensitivity by therapeutically targeting mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT, Australia
| | | | - Mahinda Abeywardena
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Nathan O'Callaghan
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, Italy
| | - Natalie Luscombe-Marsh
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Yu X, Huang S, Deng Q, Tang Y, Yao P, Tang H, Dong X. Linseed oil improves hepatic insulin resistance in obese mice through modulating mitochondrial quality control. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
15
|
Rodríguez E, Weber JM, Darveau CA. Diversity in membrane composition is associated with variation in thermoregulatory capacity in hymenopterans. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:115-120. [DOI: 10.1016/j.cbpb.2017.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
16
|
Giroud S, Stalder G, Gerritsmann H, Kübber-Heiss A, Kwak J, Arnold W, Ruf T. Dietary Lipids Affect the Onset of Hibernation in the Garden Dormouse ( Eliomys quercinus): Implications for Cardiac Function. Front Physiol 2018; 9:1235. [PMID: 30279661 PMCID: PMC6153335 DOI: 10.3389/fphys.2018.01235] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Dietary lipids strongly influence patterns of hibernation in heterotherms. Increased dietary uptake of n-6 polyunsaturated fatty acids (PUFAs), particularly of linoleic acid (LA, C18:2 n-6), enables animals to reach lower body temperatures (Tb), lengthens torpor bout duration, and results in lower energy expenditure during hibernation. Conversely, dietary n-3 PUFA impacts negatively on hibernation performance. PUFA in surrounding phospholipids (PLs) presumably modulate the temperature-dependent activity of the sarcoplasmic reticulum (SR) Ca2+ ATPase 2 (SERCA2) and thus determine the threshold Tb still allowing proper heart function during torpor. We tested the effect of diets enriched with 10% of either corn oil (“CO,” high n-6 PUFA, e.g., LA) or menhaden oil [“MO,” long-chain n-3 PUFA, e.g., docosahexaenoic acid (DHA)] on hibernation performance and SERCA2 activity levels during torpor in garden dormice, an insectivorous, fat-storing hibernator. Prior to hibernation, individuals fed the MO diet showed an almost nine-times higher DHA levels and 30% lower LA proportions in white adipose tissue (WAT), reflecting the fatty acid composition of SR membranes, compared to CO-diet fed animals. When fed the MO diet, dormice significantly delayed their mean onset of hibernation by almost 4 days (range: 0–12 days), compared with CO-diet fed animals. Hibernation onset correlated positively with WAT-DHA levels and negatively with WAT-LA proportions prior to hibernation. Subsequently, hibernating patterns were similar between the two dietary groups, despite a significant difference in WAT-LA but not in WAT-DHA levels in mid-hibernation. SR-PL fatty acid composition and SERCA2 activity were identical in torpid individuals from the two dietary groups in mid-hibernation. In line with our previous findings on Syrian hamsters, a granivorous, food-storing hibernator, SERCA2 activity correlated positively with LA and negatively with DHA levels of SR-PL in torpid dormice, although SERCA2 activity was about three-times higher in garden dormice than in Syrian hamsters at similar PL-DHA proportions. Similarly, minimal Tb during torpor decreased as SERCA2 activity increased. We conclude that: (1) fatty acid composition of SR membranes modulates cardiac SERCA2 activity, hence determining the minimum Tb tolerated by hibernators, and (2) high DHA levels prevent hibernators from entering into torpor, but the critical levels differ substantially between species.
Collapse
Affiliation(s)
- Sylvain Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Gabrielle Stalder
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Hanno Gerritsmann
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Anna Kübber-Heiss
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Jae Kwak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Walter Arnold
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients 2018. [PMID: 29538286 PMCID: PMC5872768 DOI: 10.3390/nu10030350] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress have been suggested to play a key role in insulin resistance development. Reactive oxygen species (ROS) production and lipid accumulation due to mitochondrial dysfunction seemed to be important mechanisms leading to cellular insulin resistance. Moreover, mitochondria are functionally and structurally linked to ER, which undergoes stress in conditions of chronic overnutrition, activating the unfolded protein response, which in turn activates the principal inflammatory pathways that impair insulin action. Among the nutrients, dietary fats are believed to play key roles in insulin resistance onset. However, not all dietary fats exert the same effects on cellular energy metabolism. Dietary omega 3 polyunsaturated fatty acids (PUFA) have been suggested to counteract insulin resistance development by modulating mitochondrial bioenergetics and ER stress. In the current review, we summarized current knowledge on the role played by mitochondrial and ER stress in inflammation and insulin resistance onset, focusing on the modulation role of omega 3 PUFA on these stress pathways. Understanding the mechanisms by which omega 3 PUFA modulates cellular metabolism and insulin resistance in peripheral tissues may provide additional details on the potential impact of omega 3 PUFA on metabolic function and the management of insulin resistance in humans.
Collapse
Affiliation(s)
- Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, Italy.
| | - Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, Italy.
| | - Mario Alberto Burgos Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, Italy.
| | - Rosalba Putti
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S.Angelo, Edificio 7, via Cintia 26, 80126 Napoli, Italy.
| | - Lillà Lionetti
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S.Angelo, Edificio 7, via Cintia 26, 80126 Napoli, Italy.
| |
Collapse
|
18
|
Effects of docosahexanoic acid supplementation on inflammatory and subcutaneous adipose tissue gene expression in HIV-infected patients on combination antiretroviral therapy (cART). A sub-study of a randomized, double-blind, placebo-controlled study. Cytokine 2018; 105:73-79. [PMID: 29471285 DOI: 10.1016/j.cyto.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Omega-3 fatty acids have the potential to decrease inflammation and modify gene transcription. Whether docosahexanoic acid (DHA) supplementation can modify systemic inflammatory and subcutaneous adipose tissue (SAT) gene expression in HIV-infected patients is unknown. METHODS A randomized, double-blind, placebo-controlled trial that enrolled 84 antiretroviral-treated patients who had fasting TG levels from 2.26 to 5.65 mmol/l and received DHA or placebo for 48 weeks was performed (ClinicalTrials.gov, NCT02005900). Systemic inflammatory and SAT gene expression was assessed at baseline and at week 48 in 39 patients. RESULTS Patients receiving DHA had a 43.9% median decline in fasting TG levels at week 4 (IQR: -31% to -56%), compared with -2.9% (-18.6% to 16.5%) in the placebo group (P < 0.0001). High sensitivity C reactive protein (hsCRP) and arachidonic acid levels significantly decreased in the DHA group. Adipogenesis-related and mitochondrial-related gene expression did not experience significant changes. Mitochondrial DNA (mtDNA) significantly decreased in the placebo group. SAT inflammation-related gene expression (Tumor necrosis factor alpha [TNF-α], and monocyte chemoattractant protein-1 [MCP-1]) significantly decreased in the DHA group. CONCLUSIONS DHA supplementation down-regulated inflammatory gene expression in SAT. DHA impact on markers of systemic inflammation was restricted to hsCRP and arachidonic acid.
Collapse
|
19
|
Abstract
The aim of this study was to develop a purified diet that mimics the characteristics of the Japanese diet using readily available materials with a simpler composition and a focus on quality, with the goal of facilitating performance of studies on the Japanese diet worldwide. The utility of the new diet was examined as a mimic of the standard Japanese diet for use in animal experiments. We examined whether a key characteristic of the Japanese diet of being less likely to cause obesity could be reproduced. The mimic diet had a balance of protein, fat and carbohydrate based on the 1975 Japanese diet, which is the least likely to cause obesity, and materials chosen with reference to the National Health and Nutrition Survey (NHNS). To examine similarities of the mimic diet with the model 1975 Japanese diet, we created a menu of the 1975 diet based on the NHNS and prepared the freeze-dried and powdered diet. The mimic diet, the 1975 Japanese diet, a control AIN-93G diet and a Western diet were fed to mice for 4 weeks. As a result, the mimic diet and the 1975 diet resulted in less accumulation of visceral fat and liver fat. Mice given these two diets showed similar effects. This indicates that the mimic diet used in this study has characteristics of the 1975 Japanese diet and could be used as a standard Japanese diet in animal experiments.
Collapse
|
20
|
Raatz SK, Conrad Z, Johnson LK, Picklo MJ, Jahns L. Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults. Nutrients 2017; 9:nu9050438. [PMID: 28452961 PMCID: PMC5452168 DOI: 10.3390/nu9050438] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005-2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0-18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation.
Collapse
Affiliation(s)
- Susan K Raatz
- Grand Forks Human Nutrition Research Center, USDA-ARS, Grand Forks, ND 58203, USA.
- Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Zach Conrad
- Grand Forks Human Nutrition Research Center, USDA-ARS, Grand Forks, ND 58203, USA.
| | - LuAnn K Johnson
- Grand Forks Human Nutrition Research Center, USDA-ARS, Grand Forks, ND 58203, USA.
| | - Matthew J Picklo
- Grand Forks Human Nutrition Research Center, USDA-ARS, Grand Forks, ND 58203, USA.
| | - Lisa Jahns
- Grand Forks Human Nutrition Research Center, USDA-ARS, Grand Forks, ND 58203, USA.
| |
Collapse
|
21
|
Jannas-Vela S, Roke K, Boville S, Mutch DM, Spriet LL. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial. PLoS One 2017; 12:e0172576. [PMID: 28212390 PMCID: PMC5315390 DOI: 10.1371/journal.pone.0172576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 02/06/2017] [Indexed: 11/24/2022] Open
Abstract
Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10–12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR. Trial Registration: ClinicalTrials.gov NCT02092649
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Kaitlin Roke
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie Boville
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Xu H, Zhang Y, Wang C, Wei Y, Zheng K, Liang M. Cloning and characterization of fatty acid-binding proteins (fabps) from Japanese seabass (Lateolabrax japonicus) liver, and their gene expressions in response to dietary arachidonic acid (ARA). Comp Biochem Physiol B Biochem Mol Biol 2017; 204:27-34. [DOI: 10.1016/j.cbpb.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
|
23
|
Nutrigenomic Functions of PPARs in Obesogenic Environments. PPAR Res 2016; 2016:4794576. [PMID: 28042289 PMCID: PMC5155092 DOI: 10.1155/2016/4794576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments. This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities.
Collapse
|
24
|
Chorner Z, Barbeau PA, Castellani L, Wright DC, Chabowski A, Holloway GP. Dietary α-linolenic acid supplementation alters skeletal muscle plasma membrane lipid composition, sarcolemmal FAT/CD36 abundance, and palmitate transport rates. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1234-R1242. [PMID: 27806984 DOI: 10.1152/ajpregu.00346.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022]
Abstract
The cellular processes influenced by consuming polyunsaturated fatty acids remains poorly defined. Within skeletal muscle, a rate-limiting step in fatty acid oxidation is the movement of lipids across the sarcolemmal membrane, and therefore, we aimed to determine the effects of consuming flaxseed oil high in α-linolenic acid (ALA), on plasma membrane lipid composition and the capacity to transport palmitate. Rats fed a diet supplemented with ALA (10%) displayed marked increases in omega-3 polyunsaturated fatty acids (PUFAs) within whole muscle and sarcolemmal membranes (approximately five-fold), at the apparent expense of arachidonic acid (-50%). These changes coincided with increased sarcolemmal palmitate transport rates (+20%), plasma membrane fatty acid translocase (FAT/CD36; +20%) abundance, skeletal muscle triacylglycerol content (approximately twofold), and rates of whole body fat oxidation (~50%). The redistribution of FAT/CD36 to the plasma membrane could not be explained by increased phosphorylation of signaling pathways implicated in regulating FAT/CD36 trafficking events (i.e., phosphorylation of ERK1/2, CaMKII, AMPK, and Akt), suggesting the increased n-3 PUFA composition of the plasma membrane influenced FAT/CD36 accumulation. Altogether, the present data provide evidence that a diet supplemented with ALA increases the transport of lipids into resting skeletal muscle in conjunction with increased sarcolemmal n-3 PUFA and FAT/CD36 contents.
Collapse
Affiliation(s)
- Zane Chorner
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - Pierre-Andre Barbeau
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - Laura Castellani
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| |
Collapse
|
25
|
Rodríguez E, Weber JM, Pagé B, Roubik DW, Suarez RK, Darveau CA. Setting the pace of life: membrane composition of flight muscle varies with metabolic rate of hovering orchid bees. Proc Biol Sci 2016; 282:rspb.2014.2232. [PMID: 25652831 DOI: 10.1098/rspb.2014.2232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Patterns of metabolic rate variation have been documented extensively in animals, but their functional basis remains elusive. The membrane pacemaker hypothesis proposes that the relative abundance of polyunsaturated fatty acids in membrane phospholipids sets the metabolic rate of organisms. Using species of tropical orchid bees spanning a 16-fold range in body size, we show that the flight muscles of smaller bees have more linoleate (%18 : 3) and stearate (%18 : 0), but less oleate (%18 : 1). More importantly, flight metabolic rate (FlightMR) varies with the relative abundance of 18 : 3 according to the predictions of the membrane pacemaker hypothesis. Although this relationship was found across large differences in metabolic rate, a direct association could not be detected when taking phylogeny and body mass into account. Higher FlightMR, however, was related to lower %16 : 0, independent of phylogeny and body mass. Therefore, this study shows that flight muscle membrane composition plays a significant role in explaining diversity in FlightMR, but that body mass and phylogeny are other factors contributing to their variation. Multiple factors are at play to modulate metabolic capacity, and changing membrane composition can have gradual and stepwise effects to achieve a new range of metabolic rates. Orchid bees illustrate the correlated evolution between membrane composition and metabolic rate, supporting the functional link proposed in the membrane pacemaker hypothesis.
Collapse
Affiliation(s)
- Enrique Rodríguez
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît Pagé
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Raul K Suarez
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
26
|
Logan SL, Spriet LL. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females. PLoS One 2015; 10:e0144828. [PMID: 26679702 PMCID: PMC4682991 DOI: 10.1371/journal.pone.0144828] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Critical among the changes that occur with aging are decreases in muscle mass and metabolic rate and an increase in fat mass. These changes may predispose older adults to chronic disease and functional impairment; ultimately resulting in a decrease in the quality of life. Research has suggested that long chain omega-3 fatty acids, found predominantly in fatty fish, may assist in reducing these changes. The objective of this study was to evaluate the effect of fish oil (FO) supplementation in a cohort of healthy, community-dwelling older females on 1) metabolic rate and substrate oxidation at rest and during exercise; 2) resting blood pressure and resting and exercise heart rates; 3) body composition; 4) strength and physical function, and; 5) blood measures of insulin, glucose, c-reactive protein, and triglycerides. Twenty-four females (66 ± 1 yr) were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil) for 12 wk. Exercise measurements were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation. The results demonstrated that FO supplementation significantly increased resting metabolic rate by 14%, energy expenditure during exercise by 10%, and the rate of fat oxidation during rest by 19% and during exercise by 27%. In addition, FO consumption lowered triglyceride levels by 29% and increased lean mass by 4% and functional capacity by 7%, while no changes occurred in the PL group. In conclusion, FO may be a strategy to improve age-related physical and metabolic changes in healthy older females. Trial registration: ClinicalTrials.gov NCT01734538.
Collapse
Affiliation(s)
- Samantha L. Logan
- Department of Human Health and Nutritional Sciences, 50 Stone Road East, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- * E-mail:
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, 50 Stone Road East, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
27
|
Lalia AZ, Johnson ML, Jensen MD, Hames KC, Port JD, Lanza IR. Effects of Dietary n-3 Fatty Acids on Hepatic and Peripheral Insulin Sensitivity in Insulin-Resistant Humans. Diabetes Care 2015; 38:1228-37. [PMID: 25852206 PMCID: PMC4477338 DOI: 10.2337/dc14-3101] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dietary n-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), prevent insulin resistance and stimulate mitochondrial biogenesis in rodents, but the findings of translational studies in humans are thus far ambiguous. The aim of this study was to evaluate the influence of EPA and DHA on insulin sensitivity, insulin secretion, and muscle mitochondrial function in insulin-resistant, nondiabetic humans using a robust study design and gold-standard measurements. RESEARCH DESIGN AND METHODS Thirty-one insulin-resistant adults received 3.9 g/day EPA+DHA or placebo for 6 months in a randomized double-blind study. Hyperinsulinemic-euglycemic clamp with somatostatin was used to assess hepatic and peripheral insulin sensitivity. Postprandial glucose disposal and insulin secretion were measured after a meal. Measurements were performed at baseline and after 6 months of treatment. Abdominal fat distribution was evaluated by MRI. Muscle oxidative capacity was measured in isolated mitochondria using high-resolution respirometry and noninvasively by magnetic resonance spectroscopy. RESULTS Compared with placebo, EPA+DHA did not alter peripheral insulin sensitivity, postprandial glucose disposal, or insulin secretion. Hepatic insulin sensitivity, determined from the suppression of endogenous glucose production by insulin, exhibited a small but significant improvement with EPA+DHA compared with placebo. Muscle mitochondrial function was unchanged by EPA+DHA or placebo. CONCLUSIONS This study demonstrates that dietary EPA+DHA does not improve peripheral glucose disposal, insulin secretion, or skeletal muscle mitochondrial function in insulin-resistant nondiabetic humans. There was a modest improvement in hepatic insulin sensitivity with EPA+DHA, but this was not associated with any improvements in clinically meaningful outcomes.
Collapse
Affiliation(s)
- Antigoni Z Lalia
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew L Johnson
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Michael D Jensen
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - Kazanna C Hames
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| | - John D Port
- Division of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
28
|
Arnold W, Giroud S, Valencak TG, Ruf T. Ecophysiology of Omega Fatty Acids: A Lid for Every Jar. Physiology (Bethesda) 2015; 30:232-40. [DOI: 10.1152/physiol.00047.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omega fatty acids affect various physiological functions, such as locomotion, cardiac function, and thermogenesis. We highlight evidence from animal models that points to pathways by which specific omega fatty acids exert differential effects. We suggest that optimizing the omega fatty acid composition of tissues involves trade-offs between costs and benefits of specific fatty acids.
Collapse
Affiliation(s)
- Walter Arnold
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Austria
| | - Sylvain Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Austria
| | - Teresa G. Valencak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
29
|
Villalba JM, López-Domínguez JA, Chen Y, Khraiwesh H, González-Reyes JA, Del Río LF, Gutiérrez-Casado E, Del Río M, Calvo-Rubio M, Ariza J, de Cabo R, López-Lluch G, Navas P, Hagopian K, Burón MI, Ramsey JJ. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice. Biogerontology 2015; 16:655-70. [PMID: 25860863 DOI: 10.1007/s10522-015-9572-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/03/2015] [Indexed: 12/26/2022]
Abstract
The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gerling CJ, Whitfield J, Mukai K, Spriet LL. Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism. Appl Physiol Nutr Metab 2014; 39:1083-91. [PMID: 25054452 DOI: 10.1139/apnm-2014-0049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Omega-3 supplementation has been purported to improve the function of several organs in the body, including reports of increased resting metabolic rate (RMR) and reliance on fat oxidation. However, the potential for omega-3s to modulate human skeletal muscle metabolism has received little attention. This study examined the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation on whole-body RMR and the content of proteins involved in fat metabolism in human skeletal muscle. Recreationally active males supplemented with 3.0 g/day of EPA and DHA (n = 21) or olive oil (n = 9) for 12 weeks. Resting muscle biopsies were sampled in a subset of 10 subjects before (pre) and after (post) omega-3 supplementation. RMR significantly increased (5.3%, p = 0.040) following omega-3 supplementation (Pre, 1.33 ±0.05; Post, 1.40 ±0.04 kcal/min) with variable individual responses. When normalizing for body mass, this effect was lost (5.2%, p = 0.058). Omega-3s did not affect whole-body fat oxidation, and olive oil did not alter any parameter assessed. Omega-3 supplementation did not affect whole muscle, sarcolemmal, or mitochondrial FAT/CD36, FABPpm, FATP1 or FATP4 contents or mitochondrial electron chain and PDH proteins, but did increase the long form of UCP3 by 11%. In conclusion, supplementation with a high dose of omega-3s for 12 weeks increased RMR in a small and variable manner in a group of healthy young men. Omega-3 supplementation also had no effect on several proteins involved in skeletal muscle fat metabolism and did not cause mitochondrial biogenesis.
Collapse
Affiliation(s)
- Christopher J Gerling
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
31
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
32
|
Vicente J, Isabel B, Cordero G, Lopez-Bote C. Fatty acid profile of the sow diet alters fat metabolism and fatty acid composition in weanling pigs. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Tabernero M, Bermejo LM, Elvira M, Caz V, Baeza F, Señorans FJ, De Miguel E, Largo C. Metabolic effect of docosahexaenoic acid supplementation in different doses and formulations (ethyl- and glyceryl-) in hypercholesterolemic rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Cortie CH, Else PL. Dietary docosahexaenoic Acid (22:6) incorporates into cardiolipin at the expense of linoleic Acid (18:2): analysis and potential implications. Int J Mol Sci 2012. [PMID: 23203135 PMCID: PMC3509651 DOI: 10.3390/ijms131115447] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiolipin is a signature phospholipid of major functional significance in mitochondria. In heart mitochondria the fatty acid composition of cardiolipin is commonly viewed as highly regulated due to its high levels of linoleic acid (18:2n − 6) and the dominant presence of a 4×18:2 molecular species. However, analysis of data from a comprehensive compilation of studies reporting changes in fatty acid composition of cardiolipin in heart and liver mitochondria in response to dietary fat shows that, in heart the accrual of 18:2 into cardiolipin conforms strongly to its dietary availability at up to 20% of total dietary fatty acid and thereafter is regulated. In liver, no dietary conformer trend is apparent for 18:2 with regulated lower levels across the dietary range for 18:2. When 18:2 and docosahexaenoic acid (22:6n − 3) are present in the same diet, 22:6 is incorporated into cardiolipin of heart and liver at the expense of 18:2 when 22:6 is up to ~20% and 10% of total dietary fatty acid respectively. Changes in fatty acid composition in response to dietary fat are also compared for the two other main mitochondrial phospholipids, phosphatidylcholine and phosphatidylethanolamine, and the potential consequences of replacement of 18:2 with 22:6 in cardiolipin are discussed.
Collapse
Affiliation(s)
- Colin H Cortie
- Metabolic Research Centre (in IHMRI), School of Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | |
Collapse
|
35
|
Pereira-Lancha LO, Campos-Ferraz PL, Lancha AH. Obesity: considerations about etiology, metabolism, and the use of experimental models. Diabetes Metab Syndr Obes 2012; 5:75-87. [PMID: 22570558 PMCID: PMC3346207 DOI: 10.2147/dmso.s25026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies have been conducted in order to identify the main factors that contribute to the development of obesity. The role of genetics has also been extensively studied. However, the substantial augmentation of obesity prevalence in the last 20 years cannot be justified only by genetic alterations that, theoretically, would have occurred in such a short time. Thus, the difference in obesity prevalence in various population groups is also related to environmental factors, especially diet and the reduction of physical activity. These aspects, interacting or not with genetic factors, could explain the excess of body fat in large proportions worldwide. This article will focus on positive energy balance, high-fat diet, alteration in appetite control hormones, insulin resistance, amino acids metabolism, and the limitation of the experimental models to address this complex issue.
Collapse
Affiliation(s)
| | | | - Antonio H Lancha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
36
|
Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J Nutr Metab 2012; 2012:539426. [PMID: 22570770 PMCID: PMC3335257 DOI: 10.1155/2012/539426] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 12/17/2022] Open
Abstract
Omega-6 (n-6) polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA)) and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are precursors to potent lipid mediator signalling molecules, termed "eicosanoids," which have important roles in the regulation of inflammation. In general, eicosanoids derived from n-6 PUFA are proinflammatory while eicosanoids derived from n-3 PUFA are anti-inflammatory. Dietary changes over the past few decades in the intake of n-6 and n-3 PUFA show striking increases in the (n-6) to (n-3) ratio (~15 : 1), which are associated with greater metabolism of the n-6 PUFA compared with n-3 PUFA. Coinciding with this increase in the ratio of (n-6) : (n-3) PUFA are increases in chronic inflammatory diseases such as nonalcoholic fatty liver disease (NAFLD), cardiovascular disease, obesity, inflammatory bowel disease (IBD), rheumatoid arthritis, and Alzheimer's disease (AD). By increasing the ratio of (n-3) : (n-6) PUFA in the Western diet, reductions may be achieved in the incidence of these chronic inflammatory diseases.
Collapse
Affiliation(s)
- E. Patterson
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - R. Wall
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - G. F. Fitzgerald
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Department of Microbiology, University College Cork, County Cork, Ireland
| | - R. P. Ross
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - C. Stanton
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
37
|
Royan M, Meng GY, Othman F, Sazili AQ, Navidshad B. Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (α & γ) mRNA expression in broiler chickens and their relation to body fat deposits. Int J Mol Sci 2011; 12:8581-95. [PMID: 22272093 PMCID: PMC3257090 DOI: 10.3390/ijms12128581] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/23/2011] [Accepted: 11/01/2011] [Indexed: 12/28/2022] Open
Abstract
An experiment was conducted on broiler chickens to study the effects of different dietary fats (Conjugated linoleic acid (CLA), fish oil, soybean oil, or their mixtures, as well as palm oil, as a more saturated fat), with a as fed dose of 7% for single fat and 3.5 + 3.5% for the mixtures, on Peroxisome Proliferator-Activated Receptors (PPARs) gene expression and its relation with body fat deposits. The CLA used in this experiment was CLA LUTA60 which contained 60% CLA, so 7% and 3.5% dietary inclusions of CLA LUTA60 were equal to 4.2% and 2.1% CLA, respectively. Higher abdominal fat pad was found in broiler chickens fed with a diet containing palm oil compared to chickens in the other experimental groups (P ≤ 0.05). The diets containing CLA resulted in an increased fat deposition in the liver of broiler chickens (P ≤ 0.05). The only exception was related to the birds fed with diets containing palm oil or fish oil + soybean oil, where contents of liver fat were compared to the CLA + fish oil treatment. PPARγ gene in adipose tissue of chickens fed with palm oil diet was up-regulated compared to other treatments (P ≤ 0.001), whereas no significant differences were found in adipose PPARγ gene expression between chickens fed with diets containing CLA, fish oil, soybean oil or the mixture of these fats. On the other hand, the PPARα gene expression in liver tissue was up-regulated in response to the dietary fish oil inclusion and the differences were also significant for both fish oil and CLA + fish oil diets compared to the diets with palm oil, soybean oil or CLA as the only oil source (P ≤ 0.001). In conclusion, the results of present study showed that there was a relationship between the adipose PPARγ gene up-regulation and abdominal fat pad deposition for birds fed with palm oil diet, while no deference was detected in n-3 and n-6 fatty acids, as well as CLA on PPARγ down regulation in comparison to a more saturated fat. When used on its own, fish oil was found to be a more effective fat in up-regulating hepatic PPARα gene expression and this effect was related to a less fat deposition in liver tissue. A negative correlation coefficient (-0.3) between PPARα relative gene expression and liver tissue fat content confirm the anti-lipogenic effect of PPARα, however, the change in these parameters was not completely parallel.
Collapse
Affiliation(s)
- Maryam Royan
- Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Goh Yong Meng
- Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
- Institute of Tropical Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fauziah Othman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Awis Qurni Sazili
- Department of Animal Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Bahman Navidshad
- Department of Animal Science, University of Mohaghegh Ardabili, P.O. Box: 179, Ardabil, Iran; E-Mail:
| |
Collapse
|
38
|
Bandarra NM, Rema P, Batista I, Pousão-Ferreira P, Valente LMP, Batista SMG, Ozório ROA. Effects of dietary n−3/n−6 ratio on lipid metabolism of gilthead seabream (Sparus aurata). EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Nuernberg K, Breier BH, Jayasinghe SN, Bergmann H, Thompson N, Nuernberg G, Dannenberger D, Schneider F, Renne U, Langhammer M, Huber K. Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes. Nutr Metab (Lond) 2011; 8:56. [PMID: 21835020 PMCID: PMC3169453 DOI: 10.1186/1743-7075-8-56] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/11/2011] [Indexed: 01/21/2023] Open
Abstract
Background Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA) confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue. Methods The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6) leading to rapid obesity development, or selected for high treadmill performance (DUhTP) leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein), or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein) or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein) for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways. Results Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue. Conclusions A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.
Collapse
Affiliation(s)
- Karin Nuernberg
- Department of Physiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 2011; 50:372-87. [PMID: 21762726 DOI: 10.1016/j.plipres.2011.06.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 12/11/2022]
Abstract
Epidemiological, human, animal, and cell culture studies show that n-3 fatty acids, especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), reduce the risk factors of cardiovascular diseases. EPA and DHA, rather than ALA, have been the focus of research on the n-3 fatty acids, probably due to the relatively inefficient conversion of ALA to EPA and DHA in rodents and humans. This review will assess our current understanding of the effects and potential mechanisms of actions of individual n-3 fatty acids on multiple risk factors of metabolic syndrome. Evidence for pharmacological responses and the mechanism of action of each of the n-3 fatty acid trio will be discussed for the major risk factors of metabolic syndrome, especially adiposity, dyslipidemia, insulin resistance and diabetes, hypertension, oxidative stress, and inflammation. Metabolism of n-3 and n-6 fatty acids as well as the interactions of n-3 fatty acids with nutrients, gene expression, and disease states will be addressed to provide a rationale for the use of n-3 fatty acids to reduce the risk factors of metabolic syndrome.
Collapse
Affiliation(s)
- Hemant Poudyal
- School of Biomedical Sciences, The University of Queensland, Qld 4072, Australia
| | | | | | | |
Collapse
|
41
|
Smith BK, Holloway GP, Reza-Lopez S, Jeram SM, Kang JX, Ma DWL. A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Appl Physiol Nutr Metab 2010; 35:699-706. [PMID: 20962926 DOI: 10.1139/h10-066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A reduction in skeletal muscle fatty acid oxidation (FAO), manifested as a reduction in mitochondrial content and (or) FAO within mitochondria, may contribute to the development of insulin resistance. n-3 polyunsaturated fatty acids (PUFA) have been observed to increase the capacity for FAO and improve insulin sensitivity. We used the fat-1 mouse model, a transgenic animal capable of synthesizing n-3 PUFA from n-6 PUFA, to examine this relationship. Fat-1 mice exhibited a approximately 20-fold decrease in the n-6/n-3 ratio in skeletal muscle, and plasma glucose and the area under the glucose curve were significantly (p < 0.05) lower in fat-1 mice during a glucose challenge test. The improvement in whole-body glucose tolerance in the fat-1 mouse was associated with a approximately 21% (p < 0.05) decrease in whole-muscle citrate synthase (CS) activity (in red muscle only), without alterations in CS activity of isolated mitochondria (either red or white muscle; p > 0.05). These data suggest that the fat-1 mouse has decreased skeletal muscle mitochondrial content. However, the intrinsic ability of mitochondria to oxidize fatty acids was not altered in the fat-1 mouse, as rates of palmitate oxidation in isolated mitochondria from both red and white muscle were unchanged. Overall, this study demonstrates that a decrease in the n-6/n-3 ratio can enhance glucose tolerance in healthy animals, independent of changes in mitochondrial content.
Collapse
Affiliation(s)
- Brennan K Smith
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Buckley JD, Howe PRC. Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity-a review. Nutrients 2010; 2:1212-1230. [PMID: 22254005 PMCID: PMC3257626 DOI: 10.3390/nu2121212] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 01/02/2023] Open
Abstract
Current recommendations for counteracting obesity advocate the consumption of a healthy diet and participation in regular physical activity, but many individuals have difficulty complying with these recommendations. Studies in rodents and humans have indicated that long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) potentially elicit a number of effects which might be useful for reducing obesity, including suppression of appetite, improvements in circulation which might facilitate nutrient delivery to skeletal muscle and changes in gene expression which shift metabolism toward increased accretion of lean tissue, enhanced fat oxidation and energy expenditure and reduced fat deposition. While LC n-3 PUFA supplementation has been shown to reduce obesity in rodents, evidence in humans is limited. Epidemiological associations between LC n-3 PUFA intakes and obesity are inconclusive but small cross-sectional studies have demonstrated inverse relationships between markers of LC n-3 PUFA status and markers of obesity. Human intervention trials indicate potential benefits of LC n-3 PUFA supplementation, especially when combined with energy-restricted diets or exercise, but more well-controlled and long-term trials are needed to confirm these effects and identify mechanisms of action.
Collapse
Affiliation(s)
- Jonathan D. Buckley
- Nutritional Physiology Research Centre, University of South Australia Adelaide, South Australia, 5000, Australia;
- Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, 5000, Australia
- Author to whom correspondence should be addressed; ; Tel.: +61-8-8302-1853; Fax: +61-8-8302-2178
| | - Peter R. C. Howe
- Nutritional Physiology Research Centre, University of South Australia Adelaide, South Australia, 5000, Australia;
- Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, 5000, Australia
| |
Collapse
|
43
|
Al-Trad B, Wittek T, Gäbel G, Fürll M, Reisberg K, Aschenbach JR. Activity of hepatic but not skeletal muscle carnitine palmitoyltransferase enzyme is depressed by intravenous glucose infusions in lactating dairy cows*. J Anim Physiol Anim Nutr (Berl) 2010; 94:685-95. [DOI: 10.1111/j.1439-0396.2010.00993.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Noreen EE, Sass MJ, Crowe ML, Pabon VA, Brandauer J, Averill LK. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr 2010; 7:31. [PMID: 20932294 PMCID: PMC2958879 DOI: 10.1186/1550-2783-7-31] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/08/2010] [Indexed: 12/31/2022] Open
Abstract
Background To determine the effects of supplemental fish oil (FO) on resting metabolic rate (RMR), body composition, and cortisol production in healthy adults. Methods A total of 44 men and women (34 ± 13y, mean+SD) participated in the study. All testing was performed first thing in the morning following an overnight fast. Baseline measurements of RMR were measured using indirect calorimetry using a facemask, and body composition was measured using air displacement plethysmography. Saliva was collected via passive drool and analyzed for cortisol concentration using ELISA. Following baseline testing, subjects were randomly assigned in a double blind manner to one of two groups: 4 g/d of Safflower Oil (SO); or 4 g/d of FO supplying 1,600 mg/d eicosapentaenoic acid (EPA) and 800 mg/d docosahexaenoic acid (DHA). All tests were repeated following 6 wk of treatment. Pre to post differences were analyzed using a treatment X time repeated measures ANOVA, and correlations were analyzed using Pearson's r. Results Compared to the SO group, there was a significant increase in fat free mass following treatment with FO (FO = +0.5 ± 0.5 kg, SO = -0.1 ± 1.2 kg, p = 0.03), a significant reduction in fat mass (FO = -0.5 ± 1.3 kg, SO = +0.2 ± 1.2 kg, p = 0.04), and a tendency for a decrease in body fat percentage (FO = -0.4 ± 1.3% body fat, SO = +0. 3 ± 1.5% body fat, p = 0.08). No significant differences were observed for body mass (FO = 0.0 ± 0.9 kg, SO = +0.2 ± 0.8 kg), RMR (FO = +17 ± 260 kcal, SO = -62 ± 184 kcal) or respiratory exchange ratio (FO = -0.02 ± 0.09, SO = +0.02 ± 0.05). There was a tendency for salivary cortisol to decrease in the FO group (FO = -0.064 ± 0.142 μg/dL, SO = +0.016 ± 0.272 μg/dL, p = 0.11). There was a significant correlation in the FO group between change in cortisol and change in fat free mass (r = -0.504, p = 0.02) and fat mass (r = 0.661, p = 0.001). Conclusion 6 wk of supplementation with FO significantly increased lean mass and decreased fat mass. These changes were significantly correlated with a reduction in salivary cortisol following FO treatment.
Collapse
Affiliation(s)
- Eric E Noreen
- Department of Health Sciences, Gettysburg College, Gettysburg Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Guzmán-Ruiz R, Somoza B, Gil-Ortega M, Merino B, Cano V, Attané C, Castan-Laurell I, Valet P, Fernández-Alfonso MS, Ruiz-Gayo M. Sensitivity of cardiac carnitine palmitoyltransferase to malonyl-CoA is regulated by leptin: similarities with a model of endogenous hyperleptinemia. Endocrinology 2010; 151:1010-8. [PMID: 20056820 DOI: 10.1210/en.2009-1170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute leptin increase as well as endogenous hyperleptinemia evoked by high-fat diets (HF) activate fatty acid metabolism in nonadipose tissues. This supports the notion that hyperleptinemia is pivotal to prevent/delay steatosis during periods of positive energy balance. We have previously shown that long-term HF spares ectopic accumulation of lipids specifically in the miocardium. Because carnitine palmitoyltransferase I (CPT-I) allows mitochondrial uptake/oxidation of fatty acids, we have hypothesized that leptin drives cardiac CPT-I activity. In the current study, hyperleptinemia was induced in C57BL/6J mice either by exogenous leptin administration or by means of HF, and the ability of malonyl-coenzyme A (malonyl-CoA) (the main endogenous inhibitor of CPT-I) to inhibit cardiac CPT was analyzed. IC(50) values of malonyl-CoA were 8.1 +/- 1.5 micromol/liter in controls vs. 69.3 +/- 5.2 micromol/liter (P < 0.01) in leptin-treated mice. This effect was also observed in cardiac explants incubated with leptin and was blocked by triciribine, a compound shown to inhibit protein kinase B (Akt) phosphorylation (pAkt). In accordance, acute leptin evoked an increase of cardiac pAkt levels, which correlated with CPT sensitivity to malonyl-CoA. Otherwise, the inhibitory effect of malonyl-CoA was hindered in HF hyperleptinemic mice, and in this case, pAkt levels also correlated with CPT sensitivity to malonyl-CoA. Our data show that leptin reduces the sensitivity of cardiac CPT-I to malonyl-CoA and suggest the involvement of an Akt-related signaling pathway in this effect. This mechanism appears to be sensitive to both acute and chronic hyperleptinemia. We conclude that this action of leptin is pivotal to drive cardiac metabolism under situations associated to hyperleptinemia.
Collapse
Affiliation(s)
- Rocío Guzmán-Ruiz
- Departamento de Ciencias Farmacéuticas y de la Alimentación, Facultad de Farmacia, Universidad Ceu-San Pablo, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang QC, Han XY, Xu ZR, Yang XY, Chen T, Zheng XT. Betaine suppresses carnitine palmitoyltransferase I in skeletal muscle but not in liver of finishing pigs. Livest Sci 2009. [DOI: 10.1016/j.livsci.2009.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Abstract
Animal studies suggest that increased consumption of the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, can protect against the development of obesity in animals exposed to an obesogenic diet and reduce body fat when already obese. There is also evidence that increased intakes of these fatty acids can reduce body fat in humans, but human studies are relatively few and have generally been conducted over short time periods with small sample sizes, making it difficult to draw definitive conclusions. Reported reductions in body fat may result from appetite-suppressing effects, adipocyte apoptosis and changes of gene expression in skeletal muscle, heart, liver, intestine and adipose tissues that suppress fat deposition and increase fat oxidation and energy expenditure. We conclude that increased intakes of long-chain omega-3 fatty acids may improve body composition, but longer-term human studies are needed to confirm efficacy and determine whether increasing omega-3 intakes might be an effective strategy to combat obesity.
Collapse
Affiliation(s)
- J D Buckley
- Nutritional Physiology Research Centre and Australian Technology Network (ATN) Centre for Metabolic Fitness, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | | |
Collapse
|
48
|
Nagahuedi S, Popesku JT, Trudeau VL, Weber JM. Mimicking the natural doping of migrant sandpipers in sedentary quails:effects of dietary n-3 fatty acids on muscle membranes and PPAR expression. J Exp Biol 2009; 212:1106-14. [DOI: 10.1242/jeb.027888] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARY
Wild semipalmated sandpipers (Calidris pusilla) eat n-3 fatty acids to prime their muscles for long migrations. Sedentary bobwhite quails(Colinus virginianus) were used as a model to investigate the mechanisms for this natural doping. Our goal was to characterize the stimulating effects of n-3 eicosapentaenoic acid (EPA) and n-3 docosahexaenoic acid (DHA) on oxidative capacity. Mechanisms linked to changes in membrane composition and in gene expression for peroxisome proliferator-activated receptors (PPAR) were investigated. Dietary n-3 fatty acids stimulated the activities of oxidative enzymes by 58–90% (citrate synthase, cytochrome oxidase, carnitine palmitoyl transferase and hydroxyacyl dehydrogenase), and sedentary quails showed the same changes in membrane composition as sandpipers preparing for migration. EPA and DHA have the same doping effect. The substitution of n-6 arachidonic acid by n-3 EPA in membrane phospholipids plays an important role in mediating the metabolic effects of the diet, but results provide no significant support for the involvement of PPARs (as determined by changes in gene expression). The fatty acid composition of mitochondrial membranes and sarcoplasmic reticulum can be monitored by measuring total muscle phospholipids because all phospholipids are equally affected by diet. Only extreme regimes of endurance training can lead to increments in oxidative capacity matching those induced here by diet. As they prepare for long migrations, semipalmated sandpipers improve their physical fitness by eating! Choosing n-3 fatty acid doping over endurance training strikes us as a better strategy to boost aerobic capacity when rapid storage of energy is critical.
Collapse
Affiliation(s)
- Simba Nagahuedi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason T. Popesku
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Vance L. Trudeau
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
49
|
Wein S, Wolffram S, Schrezenmeir J, Gasperiková D, Klimes I, Seböková E. Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab Res Rev 2009; 25:185-94. [PMID: 19219861 DOI: 10.1002/dmrr.925] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND High dietary intake of saturated fat impairs insulin sensitivity and lipid metabolism. The influence of fatty acid chain length, however, is not yet fully understood, but evidence exists for different effects of saturated long-chain (LC) versus saturated medium-chain (MC) fatty acids (FA). METHODS To investigate the effects of the FA chain length, male Wistar rats were fed high-fat diets containing triacylglycerols composed of either MC- or LCFA for 4 weeks; rats fed maintenance diet served as a control. The animals underwent euglycemic hyperinsulinemic clamping or oral metabolic tolerance testing respectively; enzyme activities of mitochondrial (EC2.3.1.21 carnitine palmitoyl transferase) and peroxisomal (EC1.3.3.6 acyl-CoA oxidase) FA oxidation were measured in liver and muscle. RESULTS LCFA consumption resulted in higher fasted serum insulin and glucose concentrations compared to controls, while MCFA-fed animals did not differ from controls. Insulin sensitivity was reduced by 30% in the LCFA group while the MCFA group did not differ from controls. Feeding MCFA resulted in the controls' lowered fasted and post-prandial triacylglycerol concentration compared to LCFA, while triacylglycerol concentrations in muscle were higher in both high-fat groups compared to controls. No diet-induced changes were found in acyl-CoA oxidase (ACO) activity (liver and muscle), while LCFA feeding significantly raised carnitine palmitoyltransferase activity. CONCLUSIONS The chain length of saturated fatty acids in isocaloric diets affects insulin sensitivity, lipid metabolism and mitochondrial fatty acid oxidation without influencing body weight. While dietary LCFA clearly impair insulin sensitivity and lipid metabolism, MCFA seem to protect from lipotoxicity and subsequent insulin resistance without caloric restriction.
Collapse
Affiliation(s)
- Silvia Wein
- Diabetes and Nutrition Research Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
50
|
Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 2007; 47:147-55. [PMID: 18198131 DOI: 10.1016/j.plipres.2007.12.004] [Citation(s) in RCA: 761] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/10/2007] [Accepted: 12/17/2007] [Indexed: 02/08/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute of Clinical Chemistry, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | | |
Collapse
|