1
|
Liu H, Yao X, Fan J, Lv L, Zhao Y, Nie J, Guo Y, Zhang L, Huang H, Shi Y, Zhang Q, Li J, Sui X. Cell wall invertase 3 plays critical roles in providing sugars during pollination and fertilization in cucumber. PLANT PHYSIOLOGY 2024; 195:1293-1311. [PMID: 38428987 DOI: 10.1093/plphys/kiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lidong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Hongyu Huang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiawang Li
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Xu Y, Yao Z, Cheng Y, Ruan M, Ye Q, Wang R, Zhou G, Liu J, Liu C, Wan H. Divergent Retention of Sucrose Metabolism Genes after Whole Genome Triplication in the Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:4145. [PMID: 38140472 PMCID: PMC10747743 DOI: 10.3390/plants12244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Sucrose, the primary carbon transport mode and vital carbohydrate for higher plants, significantly impacts plant growth, development, yield, and quality formation. Its metabolism involves three key steps: synthesis, transport, and degradation. Two genome triplication events have occurred in Solanaceae, which have resulted in massive gene loss. In this study, a total of 48 and 65 genes from seven sucrose metabolism gene families in Vitis vinifera and Solanum lycopersicum were identified, respectively. The number of members comprising the different gene families varied widely. And there were significant variations in the pattern of gene duplication and loss in the tomato following two WGD events. Tandem duplication is a major factor in the expansion of the SWEET and Acid INV gene families. All the genes are irregularly distributed on the chromosomes, with the majority of the genes showing collinearity with the grape, particularly the CIN family. And the seven gene families were subjected to a purifying selection. The expression patterns of the different gene families exhibited notable variations. This study presents basic information about the sucrose metabolism genes in the tomato and grape, and paves the way for further investigations into the impact of SCT events on the phylogeny, gene retention duplication, and function of sucrose metabolism gene families in the tomato or Solanaceae, and the adaptive evolution of the tomato.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Jia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China
| | - Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| |
Collapse
|
3
|
Zhan X, Yang Q, Wang S, Wang Y, Fan X, Bian Z. The Responses of Sucrose Metabolism and Carbon Translocation in Tomato Seedlings under Different Light Spectra. Int J Mol Sci 2023; 24:15054. [PMID: 37894735 PMCID: PMC10606089 DOI: 10.3390/ijms242015054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Light plays a dominant role in the biosynthesis and accumulation of photosynthetic products. However, the metabolism and translocation of photosynthetic products in plants under different light spectra remain elusive. In this study, tomato (Solanum lycopersicum L.) seedlings were treated with different light spectra delivered by light-emitting diodes (LEDs) with the same photosynthetic photon flux density at 300 μmol m-2 s-1, including monochromatic red (660 nm, R), blue (450 nm, B), sun-like white (W, 380-780 nm), or a combination of R and B lights (R:B = 1:1, RB). Compared with W, the biomass distribution ratio for leaves under R, B, and RB decreased by 5.01-9.53%, while the ratio for stems and roots increased by 3.71-6.92% and 0.14-2.81%, respectively. The photosynthetic carbon distribution expressed as 13C enrichment was higher in stems and roots under RB and R, while B led to more 13C transported from leaves and enriched in stems when compared with W. Meanwhile, RB led to significant increases in the activities of phosphate synthase (SPS), sucrose synthase (SS), vacuolar acid invertase (VI), and neutral invertase (NI). The R was more efficient in increasing the activity of SPS and SS, while B was more effective in promoting the activity of VI and NI. The transcript levels of SPS, SS3, NI6, and VI were upregulated under R, B, and RB. However, the transcript patterns of SPS, SS3, NI6, and VI were not consistent with the changes in their encoded enzymes, especially the transcript patterns of SPS and SS3. Our study suggests that the red- and blue-light-induced long-distance and short-distance transport of photosynthetic products in plants, respectively, might result from different regulation of sucrose-metabolizing enzymes from transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Xiaoxu Zhan
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Qichang Yang
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Sen Wang
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Yu Wang
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Xiaoxue Fan
- Institute of Agricultural Information, Key Laboratory of Intelligent Agricultural Technology (Changjiang Delta), Institute of Agricultural Information, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhonghua Bian
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| |
Collapse
|
4
|
Jiang Z, Zhang H, Gao S, Zhai H, He S, Zhao N, Liu Q. Genome-Wide Identification and Expression Analysis of the Sucrose Synthase Gene Family in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2023; 24:12493. [PMID: 37569874 PMCID: PMC10420203 DOI: 10.3390/ijms241512493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Z.J.); (H.Z.); (S.G.); (H.Z.); (S.H.); (N.Z.)
| |
Collapse
|
5
|
Bai X, Li Q, Zhang D, Zhao Y, Zhao D, Pan Y, Wang J, Yang Z, Zhu J. Bacillus velezensis Strain HN-Q-8 Induced Resistance to Alternaria solani and Stimulated Growth of Potato Plant. BIOLOGY 2023; 12:856. [PMID: 37372140 DOI: 10.3390/biology12060856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Bacillus velezensis HN-Q-8, isolated in our previous study, has an antagonistic effect on Alternaria solani. After being pretreated with a fermentation liquid with HN-Q-8 bacterial cell suspensions, the potato leaves inoculated with A. solani displayed smaller lesion areas and less yellowing than the controls. Interestingly, the activity levels of superoxide dismutase, peroxidase, and catalase in potato seedlings were enhanced by the addition of the fermentation liquid with bacterial cells. Additionally, the overexpression of key genes related to induced resistance in the Jasmonate/Ethylene pathway was activated by the addition of the fermentation liquid, suggesting that the HN-Q-8 strain induced resistance to potato early blight. In addition, our laboratory and field experiments showed that the HN-Q-8 strain can promote potato seedling growth and significantly increase tuber yield. The root activity and chlorophyll content of potato seedlings were significantly increased along with the levels of indole acetic acid, gibberellic acid 3, and abscisic acid upon addition of the HN-Q-8 strain. The fermentation liquid with bacterial cells was more efficient in inducing disease resistance and promoting growth than bacterial cell suspensions alone or the fermentation liquid without bacterial cells. Thus, the B. velezensis HN-Q-8 strain is an effective bacterial biocontrol agent, augmenting the options available for potato cultivation.
Collapse
Affiliation(s)
- Xuefei Bai
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yi Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
6
|
Fünfgeld MMFF, Wang W, Ishihara H, Arrivault S, Feil R, Smith AM, Stitt M, Lunn JE, Niittylä T. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. NATURE PLANTS 2022; 8:574-582. [PMID: 35484201 PMCID: PMC9122829 DOI: 10.1038/s41477-022-01140-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/18/2022] [Indexed: 05/11/2023]
Abstract
Many plants accumulate transitory starch reserves in their leaves during the day to buffer their carbohydrate supply against fluctuating light conditions, and to provide carbon and energy for survival at night. It is universally accepted that transitory starch is synthesized from ADP-glucose (ADPG) in the chloroplasts. However, the consensus that ADPG is made in the chloroplasts by ADPG pyrophosphorylase has been challenged by a controversial proposal that ADPG is made primarily in the cytosol, probably by sucrose synthase (SUS), and then imported into the chloroplasts. To resolve this long-standing controversy, we critically re-examined the experimental evidence that appears to conflict with the consensus pathway. We show that when precautions are taken to avoid artefactual changes during leaf sampling, Arabidopsis thaliana mutants that lack SUS activity in mesophyll cells (quadruple sus1234) or have no SUS activity (sextuple sus123456) have wild-type levels of ADPG and starch, while ADPG is 20 times lower in the pgm and adg1 mutants that are blocked in the consensus chloroplastic pathway of starch synthesis. We conclude that the ADPG needed for starch synthesis in leaves is synthesized primarily by ADPG pyrophosphorylase in the chloroplasts.
Collapse
Affiliation(s)
- Maximilian M F F Fünfgeld
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - Wei Wang
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- University of Helsinki, Helsinki, Finland
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden.
| |
Collapse
|
7
|
Liu B, Sun G, Liu C, Liu S. LEAFY COTYLEDON 2: A Regulatory Factor of Plant Growth and Seed Development. Genes (Basel) 2021; 12:genes12121896. [PMID: 34946844 PMCID: PMC8701892 DOI: 10.3390/genes12121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors are key molecules in the regulation of gene expression in all organisms. The transcription factor LEAFY COTYLEDON 2 (LEC2), which belongs to the DNA-binding protein family, contains a B3 domain. The transcription factor is involved in the regulation of important plant biological processes such as embryogenesis, somatic embryo formation, seed storage protein synthesis, fatty acid metabolism, and other important biological processes. Recent studies have shown that LEC2 regulates the formation of lateral roots and influences the embryonic resetting of the parental vernalization state. The orthologs of LEC2 and their regulatory effects have also been identified in some crops; however, their regulatory mechanism requires further investigation. Here, we summarize the most recent findings concerning the effects of LEC2 on plant growth and seed development. In addition, we discuss the potential molecular mechanisms of the action of the LEC2 gene during plant development.
Collapse
|
8
|
Zhou X, Wang L, Yan J, Ye J, Cheng S, Xu F, Wang G, Zhang W, Liao Y, Liu X. Functional Characterization of the EMBRYONIC FLOWER 2 Gene Involved in Flowering in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2021; 12:681166. [PMID: 34552601 PMCID: PMC8451716 DOI: 10.3389/fpls.2021.681166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 05/19/2023]
Abstract
Ginkgo biloba has edible, medicinal, and ornamental value. However, the long juvenile phase prevents the development of the G. biloba industry, and there are few reports on the identification and functional analysis of genes regulating the flowering time of G. biloba. EMBRYONIC FLOWER 2 (EMF), an important protein in flower development, functions to promote vegetative growth and repress flowering. In this study, a novel EMF gene (GbEMF2) was cloned and characterized from G. biloba. GbEMF2 contains a 2,193 bp open reading frame (ORF) encoding 730 amino acids. GbEMF2 harbors conserved VEFS-Box domain by the plant EMF protein. The phylogenic analysis showed that GbEMF2 originated from a polycomb-group (Pc-G) protein ancestor and was a member of the EMF2 protein. The quantitative real-time PCR (qRT-PCR) analysis revealed that GbEMF2 was expressed in all detected organs, and it showed a significantly higher level in ovulating strobilus and microstrobilus than in other organs. Compared with emf2 mutant plants, overexpression of GbEMF2 driven by the CaMV 35S promoter in emf2 mutant Arabidopsis plants delayed flowering but earlier than wild-type (WT) plants. This result indicated that GbEMF2 repressed flowering in G. biloba. Moreover, the RNA-seq analysis of GbEMF2 transgenic Arabidopsis plants (GbEMF2-OE/emf2), WT plants, and emf2 mutants screened out 227 differentially expressed genes (DEGs). Among these DEGs, FLC, MAF5, and MAF5-1 genes were related to flower organ development and regulated by GbEMF2. In addition, some genes participating in sugar metabolism, such as Alpha-amylase 1 (AMY1), BAM1, and Sucrose synthase 3 (SUS3) genes, were also controlled by GbEMF2. Overall, our results suggested that GbEMF2 negatively regulates flowering development in G. biloba. This finding provided a foundation and target gene for shortening the Ginkgo juvenile period by genetic engineering technology.
Collapse
Affiliation(s)
- Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Janping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
9
|
Lu J, Le Hir R, Gómez-Páez DM, Coen O, Péchoux C, Jasinski S, Magnani E. The nucellus: between cell elimination and sugar transport. PLANT PHYSIOLOGY 2021; 185:478-490. [PMID: 33721907 PMCID: PMC8133628 DOI: 10.1093/plphys/kiaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 05/29/2023]
Abstract
The architecture of the seed is shaped by the processes of tissue partitioning, which determines the volume ratio of maternal and zygotic tissues, and nutrient partitioning, which regulates nutrient distribution among tissues. In angiosperms, early seed development is characterized by antagonistic development of the nucellus maternal tissue and the endosperm fertilization product to become the main sugar sink. This process marked the evolution of angiosperms and outlines the most ancient seed architectures. In Arabidopsis, the endosperm partially eliminates the nucellus and imports sugars from the seed coat. Here, we show that the nucellus is symplasmically connected to the chalaza, the seed nutrient unloading zone, and works as both a sugar sink and source alongside the seed coat. After fertilization, the transient nucellus accumulates starch early on and releases it in the apoplasmic space during its elimination. By contrast, the persistent nucellus exports sugars toward the endosperm through the SWEET4 hexose facilitator. Finally, we analyzed sugar metabolism and transport in the transparent testa 16 mutant, which fails to undergo nucellus cell elimination, which shed light on the coordination between tissue and nutrient partitioning. Overall, this study identifies a path of sugar transport in the Arabidopsis seed and describes a link between sugar redistribution and the nucellus cell-elimination program.
Collapse
Affiliation(s)
- Jing Lu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Dennys-Marcela Gómez-Páez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Olivier Coen
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Christine Péchoux
- INRAE, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Sophie Jasinski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| |
Collapse
|
10
|
Jiang M, Zhan Z, Li H, Dong X, Cheng F, Piao Z. Brassica rapa orphan genes largely affect soluble sugar metabolism. HORTICULTURE RESEARCH 2020; 7:181. [PMID: 33328469 PMCID: PMC7603504 DOI: 10.1038/s41438-020-00403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 05/04/2023]
Abstract
Orphan genes (OGs), which are genes unique to a specific taxon, play a vital role in primary metabolism. However, little is known about the functional significance of Brassica rapa OGs (BrOGs) that were identified in our previous study. To study their biological functions, we developed a BrOG overexpression (BrOGOE) mutant library of 43 genes in Arabidopsis thaliana and assessed the phenotypic variation of the plants. We found that 19 of the 43 BrOGOE mutants displayed a mutant phenotype and 42 showed a variable soluble sugar content. One mutant, BrOG1OE, with significantly elevated fructose, glucose, and total sugar contents but a reduced sucrose content, was selected for in-depth analysis. BrOG1OE showed reduced expression and activity of the Arabidopsis sucrose synthase gene (AtSUS); however, the activity of invertase was unchanged. In contrast, silencing of two copies of BrOG1 in B. rapa, BraA08002322 (BrOG1A) and BraSca000221 (BrOG1B), by the use of an efficient CRISPR/Cas9 system of Chinese cabbage (B. rapa ssp. campestris) resulted in decreased fructose, glucose, and total soluble sugar contents because of the upregulation of BrSUS1b, BrSUS3, and, specifically, the BrSUS5 gene in the edited BrOG1 transgenic line. In addition, we observed increased sucrose content and SUS activity in the BrOG1 mutants, with the activity of invertase remaining unchanged. Thus, BrOG1 probably affected soluble sugar metabolism in a SUS-dependent manner. This is the first report investigating the function of BrOGs with respect to soluble sugar metabolism and reinforced the idea that OGs are a valuable resource for nutrient metabolism.
Collapse
Affiliation(s)
- Mingliang Jiang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Feng Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 2020; 7:1776-1786. [PMID: 34691511 PMCID: PMC8290959 DOI: 10.1093/nsr/nwaa110] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/02/2023] Open
Abstract
Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Bin Zhou
- Institute of Crop Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chi Yu
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhang T, Yuan Y, Zhan Y, Cao X, Liu C, Zhang Y, Gai S. Metabolomics analysis reveals Embden Meyerhof Parnas pathway activation and flavonoids accumulation during dormancy transition in tree peony. BMC PLANT BIOLOGY 2020; 20:484. [PMID: 33096979 PMCID: PMC7583197 DOI: 10.1186/s12870-020-02692-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Bud dormancy is a sophisticated strategy which plants evolve to survive in tough environments. Endodormancy is a key obstacle for anti-season culture of tree peony, and sufficient chilling exposure is an effective method to promote dormancy release in perennial plants including tree peony. However, the mechanism of dormancy release is still poorly understood, and there are few systematic studies on the metabolomics during chilling induced dormancy transition. RESULTS The tree peony buds were treated with artificial chilling, and the metabolmics analysis was employed at five time points after 0-4 °C treatment for 0, 7, 14, 21 and 28 d, respectively. A total of 535 metabolites were obtained and devided into 11 groups including flavonoids, amino acid and its derivatives, lipids, organic acids and its derivates, nucleotide and its derivates, alkaloids, hydroxycinnamoyl derivatives, carbohydrates and alcohols, phytohormones, coumarins and vitamins. Totally, 118 differential metabolites (VIP ≥ 1, P < 0.05) during chilling treatment process were detected, and their KEGG pathways involved in several metabolic pathways related to dormancy. Sucrose was the most abundant carbohydrate in peony bud. Starch was degradation and Embden Meyerhof Parnas (EMP) activity were increased during the dormancy release process, according to the variations of sugar contents, related enzyme activities and key genes expression. Flavonoids synthesis and accumulation were also promoted by prolonged chilling. Moreover, the variations of phytohormones (salicylic acid, jasmonic acid, abscisic acid, and indole-3-acetic acid) indicated they played different roles in dormancy transition. CONCLUSION Our study suggested that starch degradation, EMP activation, and flavonoids accumulation were crucial and associated with bud dormancy transition in tree peony.
Collapse
Affiliation(s)
- Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yu Zhan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| |
Collapse
|
13
|
Sato N, Kihira M, Matsushita R, Kaneko C, Ishii Y, Yin YG, Kawachi N, Teramura H, Kusano H, Shimada H. AtFLL2, a member of the FLO2 gene family, affects the enlargement of leaves at the vegetative stage and facilitates the regulation of carbon metabolism and flow. Biosci Biotechnol Biochem 2020; 84:2466-2475. [PMID: 32897834 DOI: 10.1080/09168451.2020.1812374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Arabidopsis thaliana FLL2, a member of the FLO2 gene family, is expressed specifically in green leaves. The fll2 mutant showed significantly large rosette leaves and reduced the chlorophyll content. The sucrose content was significantly reduced. The glucose content was higher during the vegetative growth stage but decreased during the early reproductive growth stage. The amount of assimilated starch was lower than that in the wild type plant. The expression levels of genes involved in biosynthesis of sucrose and starch were largely altered. These results suggest that, in the fll2 mutant, a small amount of photosynthetic products was used for the biosynthesis of starch, and the products were supplied to promote intracellular growth of the source organs or for transport to the sink organs. These findings suggest that FLL2 is a factor affecting the expression level of genes involved in sugar metabolism, whose mutation caused a change in the assimilated products. Abbreviations : DAS: days after sowing.
Collapse
Affiliation(s)
- Nonoka Sato
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Miho Kihira
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan.,Division of Biological Science, Nara Institute of Science and Technology , Ikoma, Japan
| | - Ryoko Matsushita
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Chihiro Kaneko
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Yohei Ishii
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan.,Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology , Takasaki, Japan
| | - Yong-Gen Yin
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology , Takasaki, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology , Takasaki, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan.,Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science , Tokyo, Japan
| |
Collapse
|
14
|
Yao D, Gonzales-Vigil E, Mansfield SD. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1858-1869. [PMID: 31805187 PMCID: PMC7242074 DOI: 10.1093/jxb/erz539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
Sucrose synthase (SuSy) is one of two enzyme families capable of catalyzing the first degradative step in sucrose utilization. Several earlier studies examining SuSy mutants in Arabidopsis failed to identify obvious phenotypic abnormalities compared with wild-type plants in normal growth environments, and as such a functional role for SuSy in the previously proposed cellulose biosynthetic process remains unclear. Our study systematically evaluated the precise subcellular localization of all six isoforms of Arabidopsis SuSy via live-cell imaging. We showed that yellow fluorescent protein (YFP)-labeled SuSy1 and SuSy4 were expressed exclusively in phloem companion cells, and the sus1/sus4 double mutant accumulated sucrose under hypoxic conditions. SuSy5 and SuSy6 were found to be parietally localized in sieve elements and restricted only to the cytoplasm. SuSy2 was present in the endosperm and embryo of developing seeds, and SuSy3 was localized to the embryo and leaf stomata. No single isoform of SuSy was detected in developing xylem tissue of elongating stem, the primary site of cellulose deposition in plants. SuSy1 and SuSy4 were also undetectable in the protoxylem tracheary elements, which were induced by the vascular-related transcription factor VND7 during secondary cell wall formation. These findings implicate SuSy in the biological events related to sucrose translocation in phloem.
Collapse
Affiliation(s)
- Danyu Yao
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Genome-wide characterization of the NUCLEAR FACTOR-Y (NF-Y) family in Citrus grandis identified CgNF-YB9 involved in the fructose and glucose accumulation. Genes Genomics 2019; 41:1341-1355. [PMID: 31468348 DOI: 10.1007/s13258-019-00862-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Nuclear factor Y (NF-Y) is increasingly known to be involved in many aspects of plant growth and development. To date, the systematic characterization of NF-Y family has never been reported in Citrus grandis. OBJECTIVE Genome-wide characterization of C. grandis NF-Y (CgNF-Y) family and analysis of their role in sucrose metabolism. METHODS NF-Y conserved models were employed to identify CgNF-Y genes from genomic data. Phylogenetic tree was generated by the neighbor-joining method using program MEGA 7.0. Based on our previous transcriptomic data, the transcription levels were calculated by RSEM software and were clustered by ShortTime-series Expression Miner. The plant expression vector of CgNF-YB9 was constructed using In-Fusion Cloning and transferred into tobacco by leaf disc transformation method. Soluble sugars and gene expressions were analysis by HPLC and qRT-PCR, respectively. RESULTS A total of 24 CgNF-Y genes (6 CgNF-YAs, 13 CgNF-YBs and 5 CgNF-YCs) were identified with conserved domains. Phylogenetic analysis of the NF-Y proteins indicated that NF-YA, NF-YB and NF-YC could be categorized into four, five and three clades, respectively. Expression profiling analysis reflected spatio-temporally distinct expression patterns for CgNF-Y genes. Importantly, we observed a positive correlation between the expression level of CgNF-YB9 and the content of soluble sugar. Moreover, CgNF-YB9-corelated genes were enriched in carbohydrate metabolism. In CgNF-YB9 overexpression lines, sucrose content showed a decrease, whereas glucose and fructose contents displayed an increase. As expected, the transcription levels of sucrose-phosphate synthase and vacuolar invertase in transgenic Line 3 were observed with significantly down- and up-regulated, respectively. CONCLUSIONS The structure, phylogenetic relationship and expression pattern of 24 CgNF-Y genes were identified, and CgNF-YB9 was involved in sucrose metabolism.
Collapse
|
16
|
Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Brassica napus L. Int J Mol Sci 2019; 20:ijms20081982. [PMID: 31018533 PMCID: PMC6515390 DOI: 10.3390/ijms20081982] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Vegetable oil is an essential constituent of the human diet and renewable raw material for industrial applications. Enhancing oil production by increasing seed oil content in oil crops is the most viable, environmentally friendly, and sustainable approach to meet the continuous demand for the supply of vegetable oil globally. An in-depth understanding of the gene networks involved in oil biosynthesis during seed development is a prerequisite for breeding high-oil-content varieties. Rapeseed (Brassica napus) is one of the most important oil crops cultivated on multiple continents, contributing more than 15% of the world’s edible oil supply. To understand the phasic nature of oil biosynthesis and the dynamic regulation of key pathways for effective oil accumulation in B. napus, comparative transcriptomic profiling was performed with developing seeds and silique wall (SW) tissues of two contrasting inbred lines with ~13% difference in seed oil content. Differentially expressed genes (DEGs) between high- and low-oil content lines were identified across six key developmental stages, and gene enrichment analysis revealed that genes related to photosynthesis, metabolism, carbohydrates, lipids, phytohormones, transporters, and triacylglycerol and fatty acid synthesis tended to be upregulated in the high-oil-content line. Differentially regulated DEG patterns were revealed for the control of metabolite and photosynthate production in SW and oil biosynthesis and accumulation in seeds. Quantitative assays of carbohydrates and hormones during seed development together with gene expression profiling of relevant pathways revealed their fundamental effects on effective oil accumulation. Our results thus provide insights into the molecular basis of high seed oil content (SOC) and a new direction for developing high-SOC rapeseed and other oil crops.
Collapse
|
17
|
Fan J, Wang H, Li X, Sui X, Zhang Z. Down-Regulating Cucumber Sucrose Synthase 4 (CsSUS4) Suppresses the Growth and Development of Flowers and Fruits. PLANT & CELL PHYSIOLOGY 2019; 60:752-764. [PMID: 30590818 DOI: 10.1093/pcp/pcy239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/17/2018] [Indexed: 05/11/2023]
Abstract
Sucrose synthase (SUS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. In this study, we used reverse genetic approaches and carbohydrate analysis to investigate the role of cucumber sucrose synthase gene 4 (CsSUS4) in the growth and development of sink organs. Transcript analyses showed that CsSUS4 was predominantly expressed in sink organs, particularly in flowers, fruits and roots, and that CsSUS4 protein was localized to companion cells and phloem parenchyma cells. Down-regulation of CsSUS4 expression resulted in a decrease in SUS activity in conjunction with lower hexose, starch and cellulose contents in fruits, and led to an overall reduction in the size and weight of flowers and fruits. Furthermore, CsSUS4 overexpression (OE) lines exhibited increased carbohydrate content, and larger and heavier flowers and fruits. The numbers of multi-petal flowers and multi-carpel fruits were greater in CsSUS4-OE plants compared with wild type and were regulated by MADS-box transcription factor. These results demonstrate that CsSUS4 plays important roles in the growth and development of cucumber flowers and fruits.
Collapse
Affiliation(s)
- Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Hongyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Deng S, Mai Y, Niu J. Fruit characteristics, soluble sugar compositions and transcriptome analysis during the development of Citrus maxima “seedless”, and identification of SUS and INV genes involved in sucrose degradation. Gene 2019; 689:131-140. [DOI: 10.1016/j.gene.2018.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
|
19
|
Raju SKK, Shao M, Sanchez R, Xu Y, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1836-1847. [PMID: 29570925 PMCID: PMC6181216 DOI: 10.1111/pbi.12919] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 05/17/2023]
Abstract
Epigenetic variation has been associated with a wide range of adaptive phenotypes in plants, but there exist few direct means for exploiting this variation. RNAi suppression of the plant-specific gene, MutS HOMOLOG1 (MSH1), in multiple plant species produces a range of developmental changes accompanied by modulation of defence, phytohormone and abiotic stress response pathways along with methylome repatterning. This msh1-conditioned developmental reprogramming is retained independent of transgene segregation, giving rise to transgene-null 'memory' effects. An isogenic memory line crossed to wild type produces progeny families displaying increased variation in adaptive traits that respond to selection. This study investigates amenability of the MSH1 system for inducing agronomically valuable epigenetic variation in soybean. We developed MSH1 epi-populations by crossing with msh1-acquired soybean memory lines. Derived soybean epi-lines showed increase in variance for multiple yield-related traits including pods per plant, seed weight and maturity time in both glasshouse and field trials. Selected epi-F2:4 and epi-F2:5 lines showed an increase in seed yield over wild type. By epi-F2:6, we observed a return of MSH1-derived enhanced growth back to wild-type levels. Epi-populations also showed evidence of reduced epitype-by-environment (e × E) interaction, indicating higher yield stability. Transcript profiling of epi-lines identified putative signatures of enhanced growth behaviour across generations. Genes related to cell cycle, abscisic acid biosynthesis and auxin response, particularly SMALL AUXIN UP RNAs (SAURs), were differentially expressed in epi-F2:4 lines that showed increased yield when compared to epi-F2:6 . These data support the potential of MSH1-derived epigenetic variation in plant breeding for enhanced yield and yield stability.
Collapse
Affiliation(s)
| | - Mon‐Ray Shao
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Robersy Sanchez
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
Departments of Biology and Plant SciencePennsylvania State UniversityUniversity ParkPAUSA
| | - Ying‐Zhi Xu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ajay Sandhu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
SyngentaWoodlandCAUSA
| | - George Graef
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Sally Mackenzie
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
Departments of Biology and Plant SciencePennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
20
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
21
|
Faria APD, Marabesi MA, Gaspar M, França MGC. The increase of current atmospheric CO 2 and temperature can benefit leaf gas exchanges, carbohydrate content and growth in C4 grass invaders of the Cerrado biome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:608-616. [PMID: 29738989 DOI: 10.1016/j.plaphy.2018.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Leaf gas exchanges, carbohydrate metabolism and growth of three Brazilian Cerrado invasive African grasses were evaluated after growing for 75 days under doubled CO2 concentration and temperature elevated by 3 °C. Results showed that although the species presented photosynthetic C4 metabolism, they all had some kind of positive response to increased CO2. Urochloa brizantha and Megathyrsus maximus showed increased height for all induced environmental conditions. Urochloa decumbens showed only improvement in water use efficiency (WUE), while U. brizantha showed increased CO2 assimilation and M. maximus presented higher biomass accumulation under doubled CO2 concentration. The most significant improvement of increased CO2 in all three species appears to be the increase in WUE. This improvement probably explains the positive increase of photosynthesis and biomass accumulation presented by U. brizantha and M. maximus, respectively. The increase in temperature affected leaf carbohydrate content of M. maximus by reducing sucrose, glucose and fructose content. These reductions were not related to thermal stress since photosynthesis and growth were not harmed. Cellulose content was not affected in any of the three species, just the lignin content in U. decumbens and M. maximus. All treatments promoted lignin content reduction in U. brizantha, suggesting a delay in leaf maturation of this species. Together, the results indicate that climate change may differentially promote changes in leaf gas exchanges, carbohydrate content and growth in C4 plant species studied and all of them could benefit in some way from these changes, constituting a threat to the native Cerrado biodiversity.
Collapse
Affiliation(s)
- A P de Faria
- Departamento de Botânica, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil; Laboratório de Fisiologia Vegetal, Universidade Federal de Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - M A Marabesi
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, 04301-902, São Paulo, SP, Brazil
| | - M Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, 04301-902, São Paulo, SP, Brazil
| | - M G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
22
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
23
|
Stein O, Avin-Wittenberg T, Krahnert I, Zemach H, Bogol V, Daron O, Aloni R, Fernie AR, Granot D. Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development. FRONTIERS IN PLANT SCIENCE 2017; 7:2047. [PMID: 28119723 PMCID: PMC5222831 DOI: 10.3389/fpls.2016.02047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/21/2016] [Indexed: 05/25/2023]
Abstract
Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1, confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.
Collapse
Affiliation(s)
- Ofer Stein
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Institute of Plant Sciences and Genetics in Agriculture, Food and Environment, Hebrew University of JerusalemRehovot, Israel
| | - Tamar Avin-Wittenberg
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Department of Plant and Environmental Sciences, Hebrew University of JerusalemGivat Ram, Jerusalem, Israel
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Hanita Zemach
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
| | - Vlada Bogol
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
| | - Oksana Daron
- Department of Life Sciences, Ben-Gurion UniversityBeer-Sheva, Israel
| | - Roni Aloni
- Department of Plant Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - David Granot
- Volcani Center, Institute of Plant Sciences, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
24
|
Zhao C, Hua LN, Liu XF, Li YZ, Shen YY, Guo JX. Sucrose synthase FaSS1 plays an important role in the regulation of strawberry fruit ripening. PLANT GROWTH REGULATION 2017. [PMID: 0 DOI: 10.1007/s10725-016-0189-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
25
|
Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U. Starch Turnover and Metabolism during Flower and Early Embryo Development. PLANT PHYSIOLOGY 2016; 172:2388-2402. [PMID: 27794100 PMCID: PMC5129708 DOI: 10.1104/pp.16.00916] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2016] [Indexed: 05/06/2023]
Abstract
The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed.
Collapse
Affiliation(s)
- Afif Hedhly
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Marc W Schmid
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Diana Santelia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
26
|
The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds. Biochem J 2016; 473:3667-3682. [PMID: 27512054 DOI: 10.1042/bcj20160531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Imported sucrose is cleaved by sucrose synthase (SUS) as a critical initial reaction in the biosynthesis of storage end-products by developing seeds. Although SUS is phosphorylated at a conserved seryl residue by an apparent CDPK (Ca2+-dependent protein kinase) in diverse plant tissues, the functions and mechanistic details of this process remain obscure. Thus, the native CDPK that phosphorylates RcSUS1 (Ricinus communis SUS1) at Ser11 in developing COS (castor oil seeds) was highly purified and identified as RcCDPK2 by MS/MS. Purified RcSUS1-K (-kinase) and heterologously expressed RcCDPK2 catalyzed Ca2+-dependent Ser11 phosphorylation of RcSUS1 and its corresponding dephosphopeptide, while exhibiting a high affinity for free Ca2+ ions [K0.5(Ca2+) < 0.4 µM]. RcSUS1-K activity, RcCDPK2 expression, and RcSUS1 Ser11 phosphorylation peaked during early COS development and then declined in parallel. The elimination of sucrose import via fruit excision triggered RcSUS1 dephosphorylation but did not alter RcSUS1-K activity, suggesting a link between sucrose signaling and posttranslational RcCDPK2 control. Both RcCDPK2-mCherry and RcSUS1-EYFP co-localized throughout the cytosol when transiently co-expressed in tobacco suspension cells, although RcCDPK2-mCherry was also partially localized to the nucleus. Subcellular fractionation revealed that ∼20% of RcSUS1-K activity associates with microsomal membranes in developing COS, as does RcSUS1. In contrast with RcCDPK1, which catalyzes inhibitory phosphorylation of COS bacterial-type phosphoenolpyruvate carboxylase at Ser451, RcCDPK2 exhibited broad substrate specificity, a wide pH-activity profile centered at pH 8.5, and insensitivity to metabolite effectors or thiol redox status. Our combined results indicate a possible link between cytosolic Ca2+-signaling and the control of photosynthate partitioning during COS development.
Collapse
|
27
|
Klubicová K, Szabová M, Skultety L, Libiaková G, Hricová A. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.). CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2016-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAmaranth, a staple food source in ancient Aztec, Maya and Inca cultures, has been recognized as a 21st century crop. This superfood, known as Inca wheat, attracts the worldwide attention of researchers and farmers for its superior agronomical and technological properties but especially because of its exceptional nutritive value. A combination of two-dimensional electrophoresis (2-DE) with MS facilitating the effective differentiation of 13 classes of
Collapse
|
28
|
Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.). J Genet 2015; 94:461-72. [DOI: 10.1007/s12041-015-0558-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abstract
The evolution of seeds was a major reason for the rise of angiosperms to ecological dominance. Seeds of angiosperms are composed of three main structures: the embryo, which will give rise to the next generation; the endosperm, a nurturing tissue whose main function is to deliver nutrients from the mother plant to the embryo; and the seed coat (or testa), a tissue that is derived from the maternal integuments and which provides support and protection to the growing embryo. All three seed components need to exchange signals to ensure co-ordinated growth and development. The present review discusses the structure of the seed coat, its interaction with the endosperm, and bidirectional signalling events between endosperm and seed coat that co-ordinate growth of both tissues. Angiosperm seeds are not only of evolutionary significance, but also of major agronomic importance, demanding a thorough understanding of the events governing seed growth and development.
Collapse
|
30
|
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. THE PLANT CELL 2015; 27:607-19. [PMID: 25794936 PMCID: PMC4558658 DOI: 10.1105/tpc.114.134585] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Abstract
Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a "wrinkled" seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential.
Collapse
Affiliation(s)
- Li-Qing Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - I Winnie Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 Department of Biology, Stanford University, Stanford, California 94305
| | - Xiao-Qing Qu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Davide Sosso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Heather E McFarlane
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alejandra Londoño
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
31
|
Hua S, Chen ZH, Zhang Y, Yu H, Lin B, Zhang D. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. BOTANICAL STUDIES 2014; 55:34. [PMID: 28510961 PMCID: PMC5432831 DOI: 10.1186/1999-3110-55-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/03/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Although the seed oil content in canola is a crucial quality determining trait, the regulatory mechanisms of its formation are not fully discovered. This study compared the silique and seed physiological characteristics including fresh and dry weight, seed oil content, chlorophyll content, and carbohydrate content in a high oil content line (HOCL) and a low oil content line (LOCL) of canola derived from a recombinant inbred line in 2010, 2011, and 2012. The aim of the investigation is to uncover the physiological regulation of silique and seed developmental events on seed oil content in canola. RESULTS On average, 83% and 86% of silique matter while 69% and 63% of seed matter was produced before 30 days after anthesis (DAA) in HOCL and LOCL, respectively, over three years. Furthermore, HOCL exhibited significantly higher fresh and dry matter at most developmental stages of siliques and seeds. From 20 DAA, lipids were deposited in the seed of HOCL significantly faster than that of LOCL, which was validated by transmission electron microscopy, showing that HOCL accumulates considerable more oil bodies in the seed cells. Markedly higher silique chlorophyll content was observed in HOCL consistently over the three consecutive years, implying a higher potential of photosynthetic capacity in siliques of HOCL. As a consequence, HOCL exhibited significantly higher content of fructose, glucose, sucrose, and starch mainly at 20 to 45 DAA, a key stage of seed lipid deposition. Moreover, seed sugar content was usually higher than silique indicating the importance of sugar transportation from siliques to seeds as substrate for lipid biosynthesis. The much lower silique cellulose content in HOCL was beneficial for lipid synthesis rather than consuming excessive carbohydrate for cell wall. CONCLUSIONS Superior physiological characteristics of siliques in HOCL showed advantage to produce more photosynthetic assimilates, which were highly correlated to seed oil contents.
Collapse
Affiliation(s)
- Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Zhong-Hua Chen
- School of Science and Health, University of Western Sydney, Penrith, 2751NSW Australia
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Dongqing Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| |
Collapse
|
32
|
Fedosejevs ET, Ying S, Park J, Anderson EM, Mullen RT, She YM, Plaxton WC. Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase phosphorylated in vivo at serine 11 in developing castor oil seeds. J Biol Chem 2014; 289:33412-24. [PMID: 25313400 PMCID: PMC4246097 DOI: 10.1074/jbc.m114.585554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/06/2014] [Indexed: 11/06/2022] Open
Abstract
Sucrose synthase (SUS) catalyzes the UDP-dependent cleavage of sucrose into UDP-glucose and fructose and has become an important target for improving seed crops via metabolic engineering. A UDP-specific SUS homotetramer composed of 93-kDa subunits was purified to homogeneity from the triacylglyceride-rich endosperm of developing castor oil seeds (COS) and identified as RcSUS1 by mass spectrometry. RcSUS1 transcripts peaked during early development, whereas levels of SUS activity and immunoreactive 93-kDa SUS polypeptides maximized during mid-development, becoming undetectable in fully mature COS. The cytosolic location of the enzyme was established following transient expression of RcSUS1-enhanced YFP in tobacco suspension cells and fluorescence microscopy. Immunological studies using anti-phosphosite-specific antibodies revealed dynamic and high stoichiometric in vivo phosphorylation of RcSUS1 at its conserved Ser-11 residue during COS development. Incorporation of (32)P(i) from [γ-(32)P]ATP into a RcSUS1 peptide substrate, alongside a phosphosite-specific ELISA assay, established the presence of calcium-dependent RcSUS1 (Ser-11) kinase activity. Approximately 10% of RcSUS1 was associated with COS microsomal membranes and was hypophosphorylated relative to the remainder of RcSUS1 that partitioned into the soluble, cytosolic fraction. Elimination of sucrose supply caused by excision of intact pods of developing COS abolished RcSUS1 transcription while triggering the progressive dephosphorylation of RcSUS1 in planta. This did not influence the proportion of RcSUS1 associated with microsomal membranes but instead correlated with a subsequent marked decline in SUS activity and immunoreactive RcSUS1 polypeptides. Phosphorylation at Ser-11 appears to protect RcSUS1 from proteolysis, rather than influence its kinetic properties or partitioning between the soluble cytosol and microsomal membranes.
Collapse
Affiliation(s)
| | | | - Joonho Park
- the Department of Fine Chemistry, Seoul National University of Science and Technology, Nowon-Gu, Seoul 139-743, Korea
| | - Erin M Anderson
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and
| | - Robert T Mullen
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and
| | - Yi-Min She
- the Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - William C Plaxton
- From the Departments of Biology and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada,
| |
Collapse
|
33
|
Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:33-67. [PMID: 24579990 DOI: 10.1146/annurev-arplant-050213-040251] [Citation(s) in RCA: 728] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose metabolism plays pivotal roles in development, stress response, and yield formation, mainly by generating a range of sugars as metabolites to fuel growth and synthesize essential compounds (including protein, cellulose, and starch) and as signals to regulate expression of microRNAs, transcription factors, and other genes and for crosstalk with hormonal, oxidative, and defense signaling. This review aims to capture the most exciting developments in this area by evaluating (a) the roles of key sucrose metabolic enzymes in development, abiotic stress responses, and plant-microbe interactions; (b) the coupling between sucrose metabolism and sugar signaling from extra- to intracellular spaces; (c) the different mechanisms by which sucrose metabolic enzymes could perform their signaling roles; and (d) progress on engineering sugar metabolism and transport for high yield and disease resistance. Finally, the review outlines future directions for research on sugar metabolism and signaling to better understand and improve plant performance.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- School of Environment and Life Sciences and Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan 2308, Australia;
| |
Collapse
|
34
|
Xiao X, Tang C, Fang Y, Yang M, Zhou B, Qi J, Zhang Y. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS J 2013; 281:291-305. [PMID: 24279382 DOI: 10.1111/febs.12595] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/17/2022]
Abstract
Sucrose synthase (Sus, EC 2.4.1.13) is widely recognized as a key enzyme in sucrose metabolism in plants. However, nothing is known about this gene family in Hevea brasiliensis (para rubber tree). Here, we identified six Sus genes in H. brasiliensis that comprise the entire Sus family in this species. Analysis of the gene structure and phylogeny of the Sus genes demonstrates evolutionary conservation in the Sus families across Hevea and other plant species. The expression of Sus genes was investigated via Solexa sequencing and quantitative PCR in various tissues, at various phases of leaf development, and under abiotic stresses and ethylene treatment. The Sus genes exhibited distinct but partially redundant expression profiles. Each tissue has one abundant Sus isoform, with HbSus3, 4 and 5 being the predominant isoforms in latex (cytoplasm of rubber-producing laticifers), bark and root, respectively. HbSus1 and 6 were barely expressed in any tissue examined. In mature leaves (source), all HbSus genes were expressed at low levels, but HbSus3 and 4 were abundantly expressed in immature leaves (sink). Low temperature and drought treatments conspicuously induced HbSus5 expression in root and leaf, suggesting a role in stress responses. HbSus2 and 3 transcripts were decreased by ethylene treatment, consistent with the reduced sucrose-synthesizing activity of Sus enzymes in the latex in response to ethylene stimulation. Our results are beneficial to further determination of functions for the Sus genes in Hevea trees, especially roles in regulating latex regeneration.
Collapse
Affiliation(s)
- Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China; College of Agronomy, Hainan University, Haikou, China
| | | | | | | | | | | | | |
Collapse
|
35
|
De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A. Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1006-16. [PMID: 23915060 DOI: 10.1111/pbi.12094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 05/18/2023]
Abstract
Nanobodies® (VHHs) provide powerful tools in therapeutic and biotechnological applications. Nevertheless, for some applications, bivalent antibodies perform much better, and for this, an Fc chain can be fused to the VHH domain, resulting in a bivalent homodimeric VHH-Fc complex. However, the production of bivalent antibodies in Escherichia coli is rather inefficient. Therefore, we compared the production of VHH7 and VHH7-Fc as antibodies of interest in Arabidopsis seeds for detecting prostate-specific antigen (PSA), a well-known biomarker for prostate cancer in the early stages of tumour development. The influence of the signal sequence (camel versus plant) and that of the Fc chain origin (human, mouse or pig) were evaluated. The accumulation levels of VHHs were very low, with a maximum of 0.13% VHH of total soluble protein (TSP) in homozygous T3 seeds, while VHH-Fc accumulation levels were at least 10- to 100-fold higher, with a maximum of 16.25% VHH-Fc of TSP. Both the camel and plant signal peptides were efficiently cleaved off and did not affect the accumulation levels. However, the Fc chain origin strongly affected the degree of proteolysis, but only had a slight influence on the accumulation level. Analysis of the mRNA levels suggested that the low amount of VHHs produced in Arabidopsis seeds was not due to a failure in transcription, but rather to translation inefficiency, protein instability and/or degradation. Most importantly, the plant-produced VHH7 and VHH7-Fc antibodies were functional in detecting PSA and could thus be used for diagnostic applications.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, VIB, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aranjuelo I, Sanz-Sáez Á, Jauregui I, Irigoyen JJ, Araus JL, Sánchez-Díaz M, Erice G. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1879-92. [PMID: 23564953 PMCID: PMC3638836 DOI: 10.1093/jxb/ert081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The expansion of the world's population requires the development of high production agriculture. For this purpose, it is essential to identify target points conditioning crop responsiveness to predicted [CO2]. The aim of this study was to determine the relevance of ear sink strength in leaf protein and metabolomic profiles and its implications in photosynthetic activity and yield of durum wheat plants exposed to elevated [CO2]. For this purpose, a genotype with high harvest index (HI) (Triticum durum var. Sula) and another with low HI (Triticum durum var. Blanqueta) were exposed to elevated [CO2] (700 µmol mol(-1) versus 400 µmol mol(-1) CO2) in CO2 greenhouses. The obtained data highlighted that elevated [CO2] only increased plant growth in the genotype with the largest HI; Sula. Gas exchange analyses revealed that although exposure to 700 µmol mol(-1) depleted Rubisco content, Sula was capable of increasing the light-saturated rate of CO2 assimilation (Asat) whereas, in Blanqueta, the carbohydrate imbalance induced the down-regulation of Asat. The specific depletion of Rubisco in both genotypes under elevated [CO2], together with the enhancement of other proteins in the Calvin cycle, revealed that there was a redistribution of N from Rubisco towards RuBP regeneration. Moreover, the down-regulation of N, NO3 (-), amino acid, and organic acid content, together with the depletion of proteins involved in amino acid synthesis that was detected in Blanqueta grown at 700 µmol mol(-1) CO2, revealed that inhibition of N assimilation was involved in the carbohydrate imbalance and consequently with the down-regulation of photosynthesis and growth in these plants.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192-Mutilva Baja, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Research progresses on the key enzymes involved in sucrose metabolism in maize. Carbohydr Res 2012; 368:29-34. [PMID: 23318271 DOI: 10.1016/j.carres.2012.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 11/22/2022]
Abstract
Sucrose, as the major product of photosynthesis, is a vital metabolite and signaling molecule in higher plants. Three enzymes are responsible for the synthesis, transport, and degradation of sucrose. In this article, the gene structure, expression and regulation, and the physiological functions of the key enzymes involved in sucrose metabolism in maize are reviewed, moreover, the existing problems of the sucrose metabolism research were discussed in detail, and we present our ideas for future research.
Collapse
|
38
|
Angeles-Núñez JG, Tiessen A. Regulation of AtSUS2 and AtSUS3 by glucose and the transcription factor LEC2 in different tissues and at different stages of Arabidopsis seed development. PLANT MOLECULAR BIOLOGY 2012; 78:377-92. [PMID: 22228409 DOI: 10.1007/s11103-011-9871-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/14/2011] [Indexed: 05/25/2023]
Abstract
Sucrose synthase (SUS) is a key enzyme of carbon metabolism in heterotrophic tissues of plants. The Arabidopsis genome contains six SUS genes. Two members of this family, namely AtSUS2 (At5g49190) and AtSUS3 (At4g02280) are strongly and differentially expressed in Arabidopsis seed. Expression analysis was carried out using SUS:promoter-GUS fusion lines in a wild-type genetic background or in a mutant carrying a lesion in the transcription factor LEAFY COTYLEDON 2 (LEC2; At1g28300). The accumulation patterns of mRNA, protein, and SUS activity were altered in the lec2 mutant during seed development 9-18 days after flowering. This indicates that LEC2 acts epistatically on the expression of AtSUS2 and AtSUS3. It appears that LEC2 is required for cotyledon-specific expression of both SUS genes but it is not responsible for expression in the radicle tip during embryo development. The AtSUS2 promoter was induced in planta by feeding of glucose but less so by sucrose and trehalose. Non-phosphorylable glucose analogs such as 3-O-methyl-glucose and 2-deoxyglucose also caused an induction, suggesting that sugar signaling proceeds by a hexokinase-independent pathway, possibly involving hexose sensing. Analysis of transgenic lines carrying of truncated versions of the AtSUS2:promoter fused to Beta-glucuronidase activity revealed an internal 421 bp region that was responsible for expression in seeds. Bioinformatic sequence analysis revealed regulatory cis-elements putatively responsible for the spatio-temporal pattern of AtSUS2 expression such as the SEF3 (aaccca) and W-box (ttgact) motifs. These findings are discussed in relation to the roles played by AtSUS2, AtSUS3 and LEC2 in the biosynthesis of seed storage products in Arabidopsis.
Collapse
Affiliation(s)
- Juan Gabriel Angeles-Núñez
- Departamento de Ingeniería Genética, CINVESTAV, Unidad Irapuato, Km 9.8 Libramiento Norte, CP 36821 Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
39
|
Xu SM, Brill E, Llewellyn DJ, Furbank RT, Ruan YL. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. MOLECULAR PLANT 2012; 5:430-41. [PMID: 22115917 DOI: 10.1093/mp/ssr090] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains elusive, however, whether, or to what extent, increase in Sus activity may enhance sink development. We aimed to address this question by expressing a potato Sus gene in cotton where Sus expression has been previously shown to be critical for normal seed and fiber development. Segregation analyses at T1 generation followed by studies in homozygous progeny lines revealed that increased Sus activity in cotton (1) enhanced leaf expansion with the effect evident from young leaves emerging from shoot apex; (2) improved early seed development, which reduced seed abortion, hence enhanced seed set, and (3) promoted fiber elongation. In young leaves of Sus overexpressing lines, fructose concentrations were significantly increased whereas, in elongating fibers, both fructose and glucose levels were increased. Since hexoses contribute little to osmolality in leaves, in contrast to developing fibers, it is concluded that high Sus activity promotes leaf development independently of osmotic regulation, probably through sugar signaling. The analyses also showed that doubling the Sus activity in 0-d cotton seeds increased their fresh weight by about 30%. However, further increase in Sus activity did not lead to any further increase in seed weight, indicating an upper limit for the Sus overexpression effect. Finally, based on the observed additive effect on fiber yield from increased fiber length and seed number, a new strategy is proposed to increase cotton fiber yield by improving seed development as a whole, rather than solely focusing on manipulating fiber growth.
Collapse
Affiliation(s)
- Shou-Min Xu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
40
|
Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci U S A 2012. [PMID: 22184213 DOI: 10.73/pnas.1117099109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Sucrose synthase (SUS) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate-glucose and fructose. In Arabidopsis, a multigene family encodes six SUS (SUS1-6) isoforms. The involvement of SUS in the synthesis of UDP-glucose and ADP-glucose linked to Arabidopsis cellulose and starch biosynthesis, respectively, has been questioned by Barratt et al. [(2009) Proc Natl Acad Sci USA 106:13124-13129], who showed that (i) SUS activity in wild type (WT) leaves is too low to account for normal rate of starch accumulation in Arabidopsis, and (ii) different organs of the sus1/sus2/sus3/sus4 SUS mutant impaired in SUS activity accumulate WT levels of ADP-glucose, UDP-glucose, cellulose and starch. However, these authors assayed SUS activity under unfavorable pH conditions for the reaction. By using favorable pH conditions for assaying SUS activity, in this work we show that SUS activity in the cleavage direction is sufficient to support normal rate of starch accumulation in WT leaves. We also demonstrate that sus1/sus2/sus3/sus4 leaves display WT SUS5 and SUS6 expression levels, whereas leaves of the sus5/sus6 mutant display WT SUS1-4 expression levels. Furthermore, we show that SUS activity in leaves and stems of the sus1/sus2/sus3/sus4 and sus5/sus6 plants is ∼85% of that of WT leaves, which can support normal cellulose and starch biosynthesis. The overall data disprove Barratt et al. (2009) claims, and are consistent with the possible involvement of SUS in cellulose and starch biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, 31192 Mutiloabeti, Nafarroa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tiessen A, Padilla-Chacon D. Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning. FRONTIERS IN PLANT SCIENCE 2012; 3:306. [PMID: 23346090 PMCID: PMC3548396 DOI: 10.3389/fpls.2012.00306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/20/2012] [Indexed: 05/22/2023]
Abstract
Recent findings suggest that both subcellular compartmentation and route of sucrolysis are important for plant development, growth, and yield. Signaling effects are dependent on the tissue, cell type, and stage of development. Downstream effects also depend on the amount and localization of hexoses and disaccharides. All enzymes of sucrose metabolism (e.g., invertase, hexokinase, fructokinase, sucrose synthase, and sucrose 6-phosphate synthase) are not produced from single genes, but from paralog families in plant genomes. Each paralog has unique expression across plant organs and developmental stages. Multiple isoforms can be targeted to different cellular compartments (e.g., plastids, mitochondria, nuclei, and cytosol). Many of the key enzymes are regulated by post-transcriptional modifications and associate in multimeric protein complexes. Some isoforms have regulatory functions, either in addition to or in replacement of their catalytic activity. This explains why some isozymes are not redundant, but also complicates elucidation of their specific involvement in sugar signaling. The subcellular compartmentation of sucrose metabolism forces refinement of some of the paradigms of sugar signaling during physiological processes. For example, the catalytic and signaling functions of diverse paralogs needs to be more carefully analyzed in the context of post-genomic biology. It is important to note that it is the differential localization of both the sugars themselves as well as the sugar-metabolizing enzymes that ultimately led to sugar signaling. We conclude that a combination of subcellular complexity and gene duplication/subfunctionalization gave rise to sugar signaling as a regulatory mechanism in plant cells.
Collapse
Affiliation(s)
- Axel Tiessen
- *Correspondence: Axel Tiessen, Departamento de Ingenierïa Genética, CINVESTAV Unidad Irapuato, Km 9.8 Libramiento Norte, C.P. 36821 Irapuato, Guanajuato, México. e-mail:
| | | |
Collapse
|
42
|
Cho SK, Kang IH, Carr T, Hannapel DJ. Using the Yeast Three-Hybrid System to Identify Proteins that Interact with a Phloem-Mobile mRNA. FRONTIERS IN PLANT SCIENCE 2012; 3:189. [PMID: 22969782 PMCID: PMC3427875 DOI: 10.3389/fpls.2012.00189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/02/2012] [Indexed: 05/02/2023]
Abstract
Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3' untranslated region (UTR) of the RNA in mediating transport. Because the 3' UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3' UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that were predicted to function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3' UTR of StBEL5 using β-galactosidase assays in the Y3H system and RNA gel-shift assays. Among the final selections were two RBPs, a zinc finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the Y3H system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RBPs. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.
Collapse
Affiliation(s)
- Sung Ki Cho
- Plant Biology Major, Iowa State University Ames, IA, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Correa LDR, Troleis J, Mastroberti AA, Mariath JEA, Fett-Neto AG. Distinct modes of adventitious rooting in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:100-9. [PMID: 21974782 DOI: 10.1111/j.1438-8677.2011.00468.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.
Collapse
Affiliation(s)
- L da Rocha Correa
- Departamento de Botânica, Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
45
|
Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci U S A 2011; 109:321-6. [PMID: 22184213 DOI: 10.1073/pnas.1117099109] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sucrose synthase (SUS) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate-glucose and fructose. In Arabidopsis, a multigene family encodes six SUS (SUS1-6) isoforms. The involvement of SUS in the synthesis of UDP-glucose and ADP-glucose linked to Arabidopsis cellulose and starch biosynthesis, respectively, has been questioned by Barratt et al. [(2009) Proc Natl Acad Sci USA 106:13124-13129], who showed that (i) SUS activity in wild type (WT) leaves is too low to account for normal rate of starch accumulation in Arabidopsis, and (ii) different organs of the sus1/sus2/sus3/sus4 SUS mutant impaired in SUS activity accumulate WT levels of ADP-glucose, UDP-glucose, cellulose and starch. However, these authors assayed SUS activity under unfavorable pH conditions for the reaction. By using favorable pH conditions for assaying SUS activity, in this work we show that SUS activity in the cleavage direction is sufficient to support normal rate of starch accumulation in WT leaves. We also demonstrate that sus1/sus2/sus3/sus4 leaves display WT SUS5 and SUS6 expression levels, whereas leaves of the sus5/sus6 mutant display WT SUS1-4 expression levels. Furthermore, we show that SUS activity in leaves and stems of the sus1/sus2/sus3/sus4 and sus5/sus6 plants is ∼85% of that of WT leaves, which can support normal cellulose and starch biosynthesis. The overall data disprove Barratt et al. (2009) claims, and are consistent with the possible involvement of SUS in cellulose and starch biosynthesis in Arabidopsis.
Collapse
|
46
|
Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S, Ruan YL, Arioli T, Furbank RT. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. PLANT PHYSIOLOGY 2011; 157:40-54. [PMID: 21757635 PMCID: PMC3165887 DOI: 10.1104/pp.111.178574] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/11/2011] [Indexed: 05/18/2023]
Abstract
Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert T. Furbank
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (E.B., R.G.W., D.L., Y.-L.R., R.T.F.); Bayer BioScience, 9052 Ghent, Belgium (M.v.T., S.E.); Commonwealth Scientific and Industrial Research Organization Ecosystem Sciences, Canberra, Australian Capital Territory 2601, Australia (P.M.C.); School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia (Y.-L.R.); Bayer CropScience, Lubbock, Texas 79423 (T.A.)
| |
Collapse
|
47
|
Cho JI, Kim HB, Kim CY, Hahn TR, Jeon JS. Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. Mol Cells 2011; 31:553-61. [PMID: 21533550 PMCID: PMC3887615 DOI: 10.1007/s10059-011-1038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
Systematic searches using the complete genome sequence of rice (Oryza sativa) identified OsSUS7, a new member of the rice sucrose synthase (OsSUS) gene family, which shows only nine single nucleotide substitutions in the OsSUS5 coding sequence. Comparative genomic analysis revealed that the synteny between OsSUS5 and OsSUS7 is conserved, and that significant numbers of transposable elements are scattered at both loci. In particular, a 17.6-kb genomic region containing transposable elements was identified in the 5' upstream sequence of the OsSUS7 gene. GFP fusion experiments indicated that OsSUS5 and OsSUS7 are largely associated with the plasma membrane and partly with the cytosol in maize mesophyll protoplasts. RT-PCR analysis and transient expression assays revealed that OsSUS5 and OsSUS7 exhibit similar expression patterns in rice tissues, with the highest expression evident in roots. These results suggest that two redundant genes, OsSUS5 and OsSUS7, evolved via duplication of a chromosome region and through the transposition of transposable elements.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
48
|
Bennett EJ, Roberts JA, Wagstaff C. The role of the pod in seed development: strategies for manipulating yield. THE NEW PHYTOLOGIST 2011; 190:838-853. [PMID: 21507003 DOI: 10.1111/j.1469-8137.2011.03714.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pods play a key role in encapsulating the developing seeds and protecting them from pests and pathogens. In addition to this protective function, it has been shown that the photosynthetically active pod wall contributes assimilates and nutrients to fuel seed growth. Recent work has revealed that signals originating from the pod may also act to coordinate grain filling and regulate the reallocation of reserves from damaged seeds to those that have retained viability. In this review we consider the evidence that pods can regulate seed growth and maturation, particularly in members of the Brassicaceae family, and explore how the timing and duration of pod development might be manipulated to enhance either the quantity of crop yield or its nutritional properties.
Collapse
Affiliation(s)
- Emma J Bennett
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK
| | - Jeremy A Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonirgton Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
49
|
Abid G, Muhovski Y, Jacquemin JM, Mingeot D, Sassi K, Toussaint A, Baudoin JP. Characterization and expression profile analysis of a sucrose synthase gene from common bean (Phaseolus vulgaris L.) during seed development. Mol Biol Rep 2011; 39:1133-43. [PMID: 21573790 DOI: 10.1007/s11033-011-0842-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/05/2011] [Indexed: 11/28/2022]
Abstract
A full-length cDNA encoding common bean (Phaseolus vulgaris L.) sucrose synthase (designated as Pv_BAT93 Sus), which catalyses the synthesis and cleavage of sucrose, was isolated from seeds at 15 days after pollination (DAP) by rapid amplification of cDNA ends (RACE). The full-length cDNA of Pv_BAT93 Sus had a 2,418 bp open reading frame (ORF) encoding a protein of 806 amino acid residues. Sequence comparison analysis showed that Pv_BAT93 Sus was very similar to several members of the sucrose synthase family of other plant species. Tissue expression pattern analysis showed that Pv_BAT93 Sus was expressed in leaves, flowers, stems, roots, cotyledons, and particularly during seed development. Expression studies using in situ hybridization revealed altered spatial and temporal patterns of Sus expression in the EMS mutant relative to wild-type and confirmed Sus expression in common bean developing seeds. The expression and accumulation of Sus mRNA was clearly shown in several tissues, such as the suspensor and embryo, but also in the transfer cells and endothelium. The results highlight the diverse roles that Sus might play during seed development in common bean.
Collapse
Affiliation(s)
- Ghassen Abid
- University of Liège-Gembloux Agro-Bio Tech., Unit of Tropical Crop Husbandry and Horticulture, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics 2010; 11:49-61. [PMID: 20821031 DOI: 10.1007/s10142-010-0188-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/04/2010] [Accepted: 08/16/2010] [Indexed: 11/26/2022]
Abstract
Sucrose synthase catalyzes the reaction sucrose + UDP → UDP-glucose + fructose, the first step in the conversion of sucrose to starch in endosperm. Previous studies identified two tissue-specific, yet functionally redundant, sucrose synthase (SUS) genes, Sus1 and Sus2. In the present study, the wheat Sus2 orthologous gene (TaSus2) series was isolated and mapped on chromosomes 2A, 2B, and 2D. Based on sequencing in 61 wheat accessions, three single-nucleotide polymorphisms (SNPs) were detected in TaSus2-2B. These formed two haplotypes (Hap-H and Hap-L), but no diversity was found in either TaSus2-2A or TaSus2-2D. Based on the sequences of the two haplotypes, we developed a co-dominant marker, TaSus2-2B ( tgw ), which amplified 423 or 381-bp fragments in different wheat accessions. TaSus2-2B ( tgw ) was located between markers Xbarc102.2 and Xbarc91 on chromosome 2BS in a RIL population from Xiaoyan 54 × Jing 411. Association analysis suggested that the two haplotypes were significantly associated with 1,000 grain weight (TGW) in 89 modern wheat varieties in the Chinese mini-core collection. Mean TGW difference between the two haplotypes over three cropping seasons was 4.26 g (varying from 3.71 to 4.94 g). Comparative genomics analysis detected major kernel weight QTLs not only in the chromosome region containing TaSus2-2B (tgw), but also in the collinear regions of TaSus2 on rice chromosome 7 and maize chromosome 9. The preferred Hap-H haplotype for high TGW underwent very strong positive selection in Chinese wheat breeding, but not in Europe. The geographic distribution of Hap-H was perhaps determined by both latitude and the intensity of selection in wheat breeding.
Collapse
Affiliation(s)
- Qiyan Jiang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|