1
|
Zhang J, Kaiser E, Zhang H, Marcelis LFM, Vialet-Chabrand S. A simple new method to determine leaf specific heat capacity. PLANT METHODS 2025; 21:6. [PMID: 39856783 PMCID: PMC11759430 DOI: 10.1186/s13007-025-01326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Quantifying plant transpiration via thermal imaging is desirable for applications in agriculture, plant breeding, and plant science. However, thermal imaging under natural non-steady state conditions is currently limited by the difficulty of quantifying thermal properties of leaves, especially specific heat capacity (Cp). Existing literature offers only rough estimates of Cp and lacks simple and accurate methods to determine it. RESULTS We developed a non-invasive method to quantify k (the product of leaf thickness (lt), leaf density(ρ), and Cp), by fitting a leaf energy balance model to a leaf temperature (Tleaf) transient during and after a ~ 10 s light pulse. Cp was then estimated by dividing k by lt*ρ. Using this method, we quantified Cp for 13 horticultural and tropical plant species, and explored the relationship between Cp and leaf water content, specific leaf area and Tleaf response rate during the light pulse. Values of Cp ranged between 3200-4000 J kg-1 K-1, and were positively correlated with leaf water content. In species with very thick leaves, such as Phalaenopsis amabilis, we found leaf thickness to be a major factor in the temperature response to a short light pulse. CONCLUSIONS Our method allows for easy determination of leaf Cp of different species, and may help pave the way to apply more accurate thermal imaging under natural non-steady state conditions.
Collapse
Affiliation(s)
- Jiayu Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Hanyi Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands.
| |
Collapse
|
2
|
Routier C, Hermida-Carrera C, Stavrinidou E. Investigating the Effect of Syringe Infiltration on Nicotiana tabacum (Tobacco). ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2025; 5:28-35. [PMID: 39850806 PMCID: PMC11752493 DOI: 10.1021/acsagscitech.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025]
Abstract
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process per se on plant physiology needs to be better understood. This study investigates the effect of syringe infiltration, a commonly employed technique in plants, using a typical infiltration buffer solution. Noninvasive and real-time monitoring methods, including high-resolution thermal imaging and a porometer/fluorometer, were used to study the physiological responses and stress levels of the infiltrated plants. Our results revealed localized cell damage at the infiltration site due to syringe compression, but the overall cell viability and tissue integrity were largely unaffected. Thermography showed a temporary temperature increase of the leaves and stomatal conductance alterations postinfiltration, with leaf recovery in 3-6 days. Additionally, fluorescence measurements indicated a 6% decrease in maximum quantum efficiency (F v/F m) and a 34% decrease in photosystem II (ΦPSII) quantum yield, persisting for 5 days after infiltration, suggesting sustained photosystem efficiency changes. Our work highlights the need to consider the effect of infiltration when performing biological studies and aims to facilitate the optimization of protocols commonly used in plant science and biotechnology.
Collapse
Affiliation(s)
- Cyril Routier
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Carmen Hermida-Carrera
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| |
Collapse
|
3
|
Faralli M, Mellers G, Wall S, Vialet-Chabrand S, Forget G, Galle A, Van Rie J, Gardner KA, Ober ES, Cockram J, Lawson T. Exploring natural genetic diversity in a bread wheat multi-founder population: dual imaging of photosynthesis and stomatal kinetics. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6733-6747. [PMID: 38795361 PMCID: PMC11565207 DOI: 10.1093/jxb/erae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Recent research has shown that optimizing photosynthetic and stomatal traits holds promise for improved crop performance. However, standard phenotyping tools such as gas exchange systems have limited throughput. In this work, a novel approach based on a bespoke gas exchange chamber allowing combined measurement of the quantum yield of PSII (Fq'/Fm'), with an estimation of stomatal conductance via thermal imaging was used to phenotype a range of bread wheat (Triticum aestivum L.) genotypes. Using the dual-imaging methods and traditional approaches, we found broad and significant variation in key traits, including photosynthetic CO2 uptake at saturating light and ambient CO2 concentration (Asat), photosynthetic CO2 uptake at saturating light and elevated CO2 concentration (Amax), the maximum velocity of Rubisco for carboxylation (Vcmax), time for stomatal opening (Ki), and leaf evaporative cooling. Anatomical analysis revealed significant variation in flag leaf adaxial stomatal density. Associations between traits highlighted significant relationships between leaf evaporative cooling, leaf stomatal conductance, and Fq'/Fm', highlighting the importance of stomatal conductance and stomatal rapidity in maintaining optimal leaf temperature for photosynthesis in wheat. Additionally, gsmin and gsmax were positively associated, indicating that potential combinations of preferable traits (i.e. inherently high gsmax, low Ki, and maintained leaf evaporative cooling) are present in wheat. This work highlights the effectiveness of thermal imaging in screening dynamic gs in a panel of wheat genotypes. The wide phenotypic variation observed suggested the presence of exploitable genetic variability in bread wheat for dynamic stomatal conductance traits and photosynthetic capacity for targeted optimization within future breeding programmes.
Collapse
Affiliation(s)
- Michele Faralli
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg Mellers
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Shellie Wall
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | - Guillaume Forget
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac 33615, France
| | - Alexander Galle
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Jeron Van Rie
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Keith A Gardner
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Mexico
| | - Eric S Ober
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
4
|
Mayanja IK, Diepenbrock CH, Vadez V, Lei T, Bailey BN. Practical Considerations and Limitations of Using Leaf and Canopy Temperature Measurements as a Stomatal Conductance Proxy: Sensitivity across Environmental Conditions, Scale, and Sample Size. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0169. [PMID: 38629085 PMCID: PMC11018642 DOI: 10.34133/plantphenomics.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Stomatal conductance (gs) is a crucial component of plant physiology, as it links plant productivity and water loss through transpiration. Estimating gs indirectly through leaf temperature (Tl) measurement is common for reducing the high labor cost associated with direct gs measurement. However, the relationship between observed Tl and gs can be notably affected by local environmental conditions, canopy structure, measurement scale, sample size, and gs itself. To better understand and quantify the variation in the relationship between Tl measurements to gs, this study analyzed the sensitivity of Tl to gs using a high-resolution three-dimensional model that resolves interactions between microclimate and canopy structure. The model was used to simulate the sensitivity of Tl to gs across different environmental conditions, aggregation scales (point measurement, infrared thermometer, and thermographic image), and sample sizes. Results showed that leaf-level sensitivity of Tl to gs was highest under conditions of high net radiation flux, high vapor pressure deficit, and low boundary layer conductance. The study findings also highlighted the trade-off between measurement scale and sample size to maximize sensitivity. Smaller scale measurements (e.g., thermocouple) provided maximal sensitivity because they allow for exclusion of shaded leaves and the ground, which have low sensitivity. However, large sample sizes (up to 50 to 75) may be needed to differentiate genotypes. Larger-scale measurements (e.g., thermal camera) reduced sample size requirements but include low-sensitivity elements in the measurement. This work provides a means of estimating leaf-level sensitivity and offers quantitative guidance for balancing scale and sample size issues.
Collapse
Affiliation(s)
- Ismael K. Mayanja
- Department of Biological Systems Engineering,
University of California, Davis, Davis, CA, USA
| | | | - Vincent Vadez
- French National Research Institute for Sustainable Development (IRD), UMR DIADE,
University of Montpellier, Montpellier, France
| | - Tong Lei
- Department of Plant Sciences,
University of California, Davis, Davis, CA, USA
| | - Brian N. Bailey
- Department of Plant Sciences,
University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Zhang J, Kaiser E, Marcelis LFM, Vialet-Chabrand S. Rapid spatial assessment of leaf-absorbed irradiance. THE NEW PHYTOLOGIST 2024; 241:1866-1876. [PMID: 38124293 DOI: 10.1111/nph.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.
Collapse
Affiliation(s)
- Jiayu Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
6
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Fan M, Stamford J, Lawson T. Using Infrared Thermography for High-Throughput Plant Phenotyping. Methods Mol Biol 2024; 2790:317-332. [PMID: 38649578 DOI: 10.1007/978-1-0716-3790-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Infrared thermography offers a rapid, noninvasive method for measuring plant temperature, which provides a proxy for stomatal conductance and plant water status and can therefore be used as an index for plant stress. Thermal imaging can provide an efficient method for high-throughput screening of large numbers of plants. This chapter provides guidelines for using thermal imaging equipment and illustrative methodologies, coupled with essential considerations, to access plant physiological processes.
Collapse
Affiliation(s)
- Mengjie Fan
- School of Life Sciences, University of Essex, Colchester, UK
| | - John Stamford
- School of Life Sciences, University of Essex, Colchester, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK.
| |
Collapse
|
8
|
Mertens S, Verbraeken L, Sprenger H, De Meyer S, Demuynck K, Cannoot B, Merchie J, De Block J, Vogel JT, Bruce W, Nelissen H, Maere S, Inzé D, Wuyts N. Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform. PLANT METHODS 2023; 19:132. [PMID: 37996870 PMCID: PMC10668392 DOI: 10.1186/s13007-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Thermography is a popular tool to assess plant water-use behavior, as plant temperature is influenced by transpiration rate, and is commonly used in field experiments to detect plant water deficit. Its application in indoor automated phenotyping platforms is still limited and mainly focuses on differences in plant temperature between genotypes or treatments, instead of estimating stomatal conductance or transpiration rate. In this study, the transferability of commonly used thermography analysis protocols from the field to greenhouse phenotyping platforms was evaluated. In addition, the added value of combining thermal infrared (TIR) with hyperspectral imaging to monitor drought effects on plant transpiration rate (E) was evaluated. RESULTS The sensitivity of commonly used TIR indices to detect drought-induced and genotypic differences in water status was investigated in eight maize inbred lines in the automated phenotyping platform PHENOVISION. Indices that normalized plant temperature for vapor pressure deficit and/or air temperature at the time of imaging were most sensitive to drought and could detect genotypic differences in the plants' water-use behavior. However, these indices were not strongly correlated to stomatal conductance and E. The canopy temperature depression index, the crop water stress index and the simplified stomatal conductance index were more suitable to monitor these traits, and were consequently used to develop empirical E prediction models by combining them with hyperspectral indices and/or environmental variables. Different modeling strategies were evaluated, including single index-based, machine learning and mechanistic models. Model comparison showed that combining multiple TIR indices in a random forest model can improve E prediction accuracy, and that the contribution of the hyperspectral data is limited when multiple indices are used. However, the empirical models trained on one genotype were not transferable to all eight inbred lines. CONCLUSION Overall, this study demonstrates that existing TIR indices can be used to monitor drought stress and develop E prediction models in an indoor setup, as long as the indices normalize plant temperature for ambient air temperature or relative humidity.
Collapse
Affiliation(s)
- Stien Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Lennart Verbraeken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Heike Sprenger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Food Safety Department , German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sam De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Robovision, Technologiepark 80, 9052, Zwijnaarde, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Julie Merchie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Eenheid Plant, Instituut voor Landbouw, Visserij-en Voedingsonderzoek (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | | | - Wesley Bruce
- BASF Corporation, 2 TW Alexander Drive, Durham, NC, 27709, USA
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium.
| | - Nathalie Wuyts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Zwijnaarde, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Plant Production Systems, Cultivation Techniques and Varieties in Arable Farming, Agroscope, Route de Duillier 50, 1260, Nyon, Switzerland
| |
Collapse
|
9
|
Verdonk JC, van Ieperen W, Carvalho DRA, van Geest G, Schouten RE. Effect of preharvest conditions on cut-flower quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1281456. [PMID: 38023857 PMCID: PMC10667726 DOI: 10.3389/fpls.2023.1281456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The cut flower industry has a global reach as flowers are often produced in countries around the equator and transported by plane or ship (reefer) mostly to the global north. Vase-life issues are often regarded as linked to only postharvest conditions while cultivation factors are just as important. Here, we review the main causes for quality reduction in cut flowers with the emphasis on the importance of preharvest conditions. Cut flower quality is characterised by a wide range of features, such as flower number, size, shape, colour (patterns), fragrance, uniformity of blooming, leaf and stem colour, plant shape and developmental stage, and absence of pests and diseases. Postharvest performance involves improving and preserving most of these characteristics for as long as possible. The main causes for cut flower quality loss are reduced water balance or carbohydrate availability, senescence and pest and diseases. Although there is a clear role for genotype, cultivation conditions are just as important to improve vase life. The role of growth conditions has been shown to be essential; irrigation, air humidity, and light quantity and quality can be used to increase quality. For example, xylem architecture is affected by the irrigation scheme, and the relative humidity in the greenhouse affects stomatal function. Both features determine the water balance of the flowering stem. Light quality and period drives photosynthesis, which is directly responsible for accumulation of carbohydrates. The carbohydrate status is important for respiration, and many senescence related processes. High carbohydrates can lead to sugar loss into the vase water, leading to bacterial growth and potential xylem blockage. Finally, inferior hygiene during cultivation and temperature and humidity control during postharvest can lead to pathogen contamination. At the end of the review, we will discuss the future outlook focussing on new phenotyping tools necessary to quantify the complex interactions between cultivation factors and postharvest performance of cut flowers.
Collapse
Affiliation(s)
- Julian C. Verdonk
- Department of Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Wim van Ieperen
- Department of Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Geert van Geest
- Interfaculty Bioinformatics, Institut für Biologie, Fakultät für Naturwissenschaften und Naturwissenschaften, Universität Bern, Bern, Switzerland
| | - Rob E. Schouten
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Wall S, Cockram J, Vialet-Chabrand S, Van Rie J, Gallé A, Lawson T. The impact of growth at elevated [CO2] on stomatal anatomy and behavior differs between wheat species and cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2860-2874. [PMID: 36633860 PMCID: PMC10134898 DOI: 10.1093/jxb/erad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 06/06/2023]
Abstract
The ability of plants to respond to changes in the environment is crucial to their survival and reproductive success. The impact of increasing the atmospheric CO2 concentration (a[CO2]), mediated by behavioral and developmental responses of stomata, on crop performance remains a concern under all climate change scenarios, with potential impacts on future food security. To identify possible beneficial traits that could be exploited for future breeding, phenotypic variation in morphological traits including stomatal size and density, as well as physiological responses and, critically, the effect of growth [CO2] on these traits, was assessed in six wheat relative accessions (including Aegilops tauschii, Triticum turgidum ssp. Dicoccoides, and T. turgidum ssp. dicoccon) and five elite bread wheat T. aestivum cultivars. Exploiting a range of different species and ploidy, we identified key differences in photosynthetic capacity between elite hexaploid wheat and wheat relatives. We also report differences in the speed of stomatal responses which were found to be faster in wheat relatives than in elite cultivars, a trait that could be useful for enhanced photosynthetic carbon gain and water use efficiency. Furthermore, these traits do not all appear to be influenced by elevated [CO2], and determining the underlying genetics will be critical for future breeding programmes.
Collapse
Affiliation(s)
- Shellie Wall
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | | | - Jeroen Van Rie
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alexander Gallé
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | | |
Collapse
|
11
|
Driever SM, Mossink L, Ocaña DN, Kaiser E. A simple system for phenotyping of plant transpiration and stomatal conductance response to drought. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111626. [PMID: 36738936 DOI: 10.1016/j.plantsci.2023.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plant breeding for increased crop water use efficiency or drought stress resistance requires methods to quickly assess the transpiration rate (E) and stomatal conductance (gs) of a large number of individual plants. Several methods to measure E and gs exist, each of which has its own advantages and shortcomings. To add to this toolbox, we developed a method that uses whole-plant thermal imaging in a controlled environment, where aerial humidity is changed rapidly to induce changes in E that are reflected in changes in leaf temperature. This approach is based on a simplified energy balance equation, without the need for a reference material or complicated calculations. To test this concept, we built a double-sided, perforated, open-top plexiglass chamber that was supplied with air at a high flow rate (35 L min-1) and whose relative humidity (RH) could be switched rapidly. Measurements included air and leaf temperature as well as RH. Using several well-watered and drought stressed genotypes of Arabidopsis thaliana that were exposed to multiple cycles in RH (30-50 % and back), we showed that leaf temperature as measured in our system correlated well with E and gs measured in a commercial gas exchange system. Our results demonstrate that, at least within a given species, the differences in leaf temperature under several RH can be used as a proxy for E and gs. Given that this method is fairly quick, noninvasive and remote, we envision that it could be upscaled for work within rapid plant phenotyping systems.
Collapse
Affiliation(s)
- Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Leon Mossink
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Diego Nuñez Ocaña
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
12
|
Mshenskaya NS, Grinberg MA, Kalyasova EA, Vodeneev VA, Ilin NV, Slyunyaev NN, Mareev EA, Sinitsyna YV. The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:826. [PMID: 36840174 PMCID: PMC9963552 DOI: 10.3390/plants12040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Extremely low-frequency magnetic fields are thought to be capable of modulating the resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in the Earth-ionosphere cavity. The aim of this work was to identify the influence of a magnetic field with a frequency of 14.3 Hz (which corresponds to the second Schumann harmonic) on the transpiration and photosynthesis of wheat plants under the influence of drought. The activity of photosynthesis processes, the crop water stress index, relative water content and leaf area were determined during drought intensification. At the end of the experiment, on the 12th day of drought, the length, and fresh and dry weight of wheat shoots were measured. The results obtained indicate a protective effect of the magnetic field on plants in unfavorable drought conditions; the magnetic field delayed the development of harmful changes in the transpiration and photosynthesis processes for several days. At the same time, in the absence of the stressor (drought), the effect of the electromagnetic field was not detected, except for a decrease in relative transpiration. In favorable conditions, there were only minimal modifications of the photosynthetic processes and transpiration by the magnetic field.
Collapse
Affiliation(s)
- N. S. Mshenskaya
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - M. A. Grinberg
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - E. A. Kalyasova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - V. A. Vodeneev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - N. V. Ilin
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - N. N. Slyunyaev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - E. A. Mareev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - Y. V. Sinitsyna
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| |
Collapse
|
13
|
Savvides AM, Velez‐Ramirez AI, Fotopoulos V. Challenging the water stress index concept: Thermographic assessment of Arabidopsis transpiration. PHYSIOLOGIA PLANTARUM 2022; 174:e13762. [PMID: 36281841 PMCID: PMC9542539 DOI: 10.1111/ppl.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 05/31/2023]
Abstract
Water stress may greatly limit plant functionality and growth. Stomatal closure and consequently reduced transpiration are considered as early and sensitive plant responses to drought and salinity stress. An important consequence of stomatal closure under water stress is the rise of leaf temperature (Tleaf ), yet Tleaf is not only fluctuating with stomatal closure. It is regulated by several plant parameters and environmental factors. Thermal imaging and different stress indices, incorporating actual leaf/crop temperature and reference temperatures, were developed in previous studies toward normalizing for effects unassociated to water stress on Tleaf , aiming at a more efficient water stress assessment. The concept of stress indices has not been extensively studied on the model plant Arabidopsis thaliana. Therefore, the aim of this study was to examine the different indices employed in previous studies in assessing rosette transpiration rate (E) in Arabidopsis plants grown under two different light environments and subjected to salinity. After salinity imposition, E was gravimetrically quantified, and thermal imaging was employed to quantify rosette (Trosette ) and artificial reference temperature (Twet, Tdry ). Trosette and several water stress indices were tested for their relation to E. Among the microclimatic growth conditions tested, RWSI1 ([Trosette - Twet ]/[Tdry - Twet ]) and RWSI2 ([Tdry - Trosette ]/[Tdry - Twet ]) were well linearly-related to E, irrespective of the light environment, while the sole use of either Twet or Tdry in different combinations with Trosette returned less accurate results. This study provides evidence that selected combinations of Trosette , Tdry , and Twet can be utilized to assess E under water stress irrespective of the light environment.
Collapse
Affiliation(s)
- Andreas M. Savvides
- Department of Agricultural Sciences, Biotechnology and Food ScienceCyprus University of TechnologyLimassolCyprus
| | - Aaron I. Velez‐Ramirez
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food ScienceCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
14
|
Sakoda K, Adachi S, Yamori W, Tanaka Y. Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3109-3121. [PMID: 35298629 DOI: 10.1093/jxb/erac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Japan Society for the Promotion of Science, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Dumschott K, Wuyts N, Alfaro C, Castillo D, Fiorani F, Zurita-Silva A. Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030323. [PMID: 35161304 PMCID: PMC8839172 DOI: 10.3390/plants11030323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/02/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a genetically diverse crop that has gained popularity in recent years due to its high nutritional content and ability to tolerate abiotic stresses such as salinity and drought. Varieties from the coastal lowland ecotype are of particular interest due to their insensitivity to photoperiod and their potential to be cultivated in higher latitudes. We performed a field experiment in the southern Atacama Desert in Chile to investigate the responses to reduced irrigation of nine previously selected coastal lowland self-pollinated (CLS) lines and the commercial cultivar Regalona. We found that several lines exhibited a yield and seed size superior to Regalona, also under reduced irrigation. Plant productivity data were analyzed together with morphological and physiological traits measured at the visible inflorescence stage to estimate the contribution of these traits to differences between the CLS lines and Regalona under full and reduced irrigation. We applied proximal sensing methods and found that thermal imaging provided a promising means to estimate variation in plant water use relating to yield, whereas hyperspectral imaging separated lines in a different way, potentially related to photosynthesis as well as water use.
Collapse
Affiliation(s)
- Kathryn Dumschott
- Institute for Biology I, BioSC, RWTH Aachen University, 52056 Aachen, Germany;
- Institute of Bio- and Geosciences, Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nathalie Wuyts
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany;
| | - Christian Alfaro
- Centro de Investigación Intihuasi (AZS), Instituto de Investigaciones Agropecuarias, La Serena 1722093, Chile; (C.A.); (D.C.)
- Centro de Investigación Rayentué (CA), Instituto de Investigaciones Agropecuarias, Rengo 2940000, Chile
- Centro de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile
| | - Dalma Castillo
- Centro de Investigación Intihuasi (AZS), Instituto de Investigaciones Agropecuarias, La Serena 1722093, Chile; (C.A.); (D.C.)
- Centro de Investigación Rayentué (CA), Instituto de Investigaciones Agropecuarias, Rengo 2940000, Chile
- Centro de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany;
| | - Andrés Zurita-Silva
- Centro de Investigación Intihuasi (AZS), Instituto de Investigaciones Agropecuarias, La Serena 1722093, Chile; (C.A.); (D.C.)
- Centro de Investigación Rayentué (CA), Instituto de Investigaciones Agropecuarias, Rengo 2940000, Chile
- Centro de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile
| |
Collapse
|
16
|
Cao Q, Li G, Liu F. Elevated CO 2 enhanced water use efficiency of wheat to progressive drought stress but not on maize. FRONTIERS IN PLANT SCIENCE 2022; 13:953712. [PMID: 36466229 PMCID: PMC9714360 DOI: 10.3389/fpls.2022.953712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Global rising atmospheric CO2 concentration ([CO2]) and drought stress exert profound influences on crop growth and yield. The objective of the present study was to investigate the responses of leaf gas exchange and plant water use efficiency (WUE) of wheat (C3) and maize (C4) plants to progressive drought stress under ambient (a[CO2], 400 ppm) and elevated (e[CO2], 800 ppm) atmospheric CO2 concentrations. The fraction of transpirable soil water (FTSW) was used to evaluate soil water status in the pots. Under non-drought stress, e[CO2] increased the net photosynthetic rate (An) solely in wheat, and dry matter accumulation (DMA), whereas it decreased stomatal conductance (g s) and water consumption (WC), resulting in enhanced WUE by 27.82% for maize and 49.86% for wheat. After onset of progressive soil drying, maize plants in e[CO2] showed lower FTSW thresholds than wheat, at which e.g. gs (0.31 vs 0.40) and leaf relative water content (0.21 vs 0.43) starts to decrease, indicating e[CO2] conferred a greater drought resistance in maize. Under the combination of e[CO2] and drought stress, enhanced WUE was solely found in wheat, which is mainly associated with increased DMA and unaffected WC. These varied responses of leaf gas exchange and WUE between the two species to combined drought and e[CO2] suggest that specific water management strategies should be developed to optimize crop WUE for different species in a future drier and CO2-enriched environment.
Collapse
Affiliation(s)
- Qingjun Cao
- Key Laboratory of Northeast crop physiology ecology and cultivation, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, Jilin Academy of Agriculture Science, Changchun, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Gang Li
- Key Laboratory of Northeast crop physiology ecology and cultivation, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, Jilin Academy of Agriculture Science, Changchun, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
- *Correspondence: Fulai Liu,
| |
Collapse
|
17
|
Wang Y, Chan KX, Long SP. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:343-359. [PMID: 34087011 PMCID: PMC9291162 DOI: 10.1111/tpj.15365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 05/22/2023]
Abstract
The most productive C4 food and biofuel crops, such as Saccharum officinarum (sugarcane), Sorghum bicolor (sorghum) and Zea mays (maize), all use NADP-ME-type C4 photosynthesis. Despite high productivities, these crops fall well short of the theoretical maximum solar conversion efficiency of 6%. Understanding the basis of these inefficiencies is key for bioengineering and breeding strategies to increase the sustainable productivity of these major C4 crops. Photosynthesis is studied predominantly at steady state in saturating light. In field stands of these crops light is continually changing, and often with rapid fluctuations. Although light may change in a second, the adjustment of photosynthesis may take many minutes, leading to inefficiencies. We measured the rates of CO2 uptake and stomatal conductance of maize, sorghum and sugarcane under fluctuating light regimes. The gas exchange results were combined with a new dynamic photosynthesis model to infer the limiting factors under non-steady-state conditions. The dynamic photosynthesis model was developed from an existing C4 metabolic model for maize and extended to include: (i) post-translational regulation of key photosynthetic enzymes and their temperature responses; (ii) dynamic stomatal conductance; and (iii) leaf energy balance. Testing the model outputs against measured rates of leaf CO2 uptake and stomatal conductance in the three C4 crops indicated that Rubisco activase, the pyruvate phosphate dikinase regulatory protein and stomatal conductance are the major limitations to the efficiency of NADP-ME-type C4 photosynthesis during dark-to-high light transitions. We propose that the level of influence of these limiting factors make them targets for bioengineering the improved photosynthetic efficiency of these key crops.
Collapse
Affiliation(s)
- Yu Wang
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Kher Xing Chan
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Stephen P. Long
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
18
|
Palmitessa OD, Prinzenberg AE, Kaiser E, Heuvelink E. LED and HPS Supplementary Light Differentially Affect Gas Exchange in Tomato Leaves. PLANTS 2021; 10:plants10040810. [PMID: 33924106 PMCID: PMC8074298 DOI: 10.3390/plants10040810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Using light emitting diodes (LED) instead of conventionally used high pressure sodium (HPS) lamps as a supplemental light source in greenhouses results in a higher efficacy (µmol light per J electricity) and makes it possible to customize the light spectrum. To explore the effects of LED and HPS on gas exchange, thermal relations, photosynthesis, and water status of young tomato plants, seven genotypes were grown in a greenhouse under LED (95% red, 5% blue) or HPS lamps in four experiments differing in the fraction of lamp light over natural light. HPS lights emit a broader spectrum of red (40%), green–yellow (50%), blue (5%), and far-red (5%) and a substantial amount of infrared radiation (heat). Young tomato plants grown under LED showed lower leaf temperature and higher stomatal density, stomatal conductance (gs) and transpiration rate (E) than plants grown under HPS; this may be due to the different supplemental light spectrum. The young plants grown under LED tended to have increased photosynthetic capacity. Furthermore, the water stress indices CWSI and IG, which were obtained using thermal imaging, were positively correlated with gas exchange-derived gs and E, putting forward the use of thermal imaging for the phenotyping of transpiration. Under LED light, photosynthetic gas exchange was generally increased, which agreed with the water stress indices. The extent of this increase was genotype-dependent. All differences between LED and HPS were smaller in the experiments where the fraction of lamp light over natural light was smaller.
Collapse
Affiliation(s)
- Onofrio Davide Palmitessa
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy
- Horticulture and Product Physiology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands; (A.E.P.); (E.K.); (E.H.)
- Correspondence:
| | - Aina E. Prinzenberg
- Horticulture and Product Physiology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands; (A.E.P.); (E.K.); (E.H.)
- Plant Breeding Laboratory, Wageningen University and Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands; (A.E.P.); (E.K.); (E.H.)
| | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands; (A.E.P.); (E.K.); (E.H.)
| |
Collapse
|
19
|
Salter WT, Li S, Dracatos PM, Barbour MM. Identification of quantitative trait loci for dynamic and steady-state photosynthetic traits in a barley mapping population. AOB PLANTS 2020; 12:plaa063. [PMID: 33408849 PMCID: PMC7759950 DOI: 10.1093/aobpla/plaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/18/2020] [Indexed: 05/29/2023]
Abstract
Enhancing the photosynthetic induction response to fluctuating light has been suggested as a key target for improvement in crop breeding programmes, with the potential to substantially increase whole-canopy carbon assimilation and contribute to crop yield potential. Rubisco activation may be the main physiological process that will allow us to achieve such a goal. In this study, we assessed the phenotype of Rubisco activation rate in a doubled haploid (DH) barley mapping population [131 lines from a Yerong/Franklin (Y/F) cross] after a switch from moderate to saturating light. Rates of Rubisco activation were found to be highly variable across the mapping population, with a median activation rate of 0.1 min-1 in the slowest genotype and 0.74 min-1 in the fastest genotype. A unique quantitative trait locus (QTL) for Rubisco activation rate was identified on chromosome 7H. This is the first report on the identification of a QTL for Rubisco activation rate in planta and the discovery opens the door to marker-assisted breeding to improve whole-canopy photosynthesis of barley. This also suggests that genetic factors other than the previously characterized Rubisco activase (RCA) isoforms on chromosome 4H control Rubisco activity. Further strength is given to this finding as this QTL co-localized with QTLs identified for steady-state photosynthesis and stomatal conductance. Several other distinct QTLs were identified for these steady-state traits, with a common overlapping QTL on chromosome 2H, and distinct QTLs for photosynthesis and stomatal conductance identified on chromosomes 4H and 5H, respectively. Future work should aim to validate these QTLs under field conditions so that they can be used to aid plant breeding efforts.
Collapse
Affiliation(s)
- William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Si Li
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Peter M Dracatos
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
- School of Science, University of Waikato, Hillcrest, Hamilton, New Zealand
| |
Collapse
|
20
|
McAusland L, Vialet-Chabrand S, Jauregui I, Burridge A, Hubbart-Edwards S, Fryer MJ, King IP, King J, Pyke K, Edwards KJ, Carmo-Silva E, Lawson T, Murchie EH. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. THE NEW PHYTOLOGIST 2020; 228:1767-1780. [PMID: 32910841 DOI: 10.1111/nph.16832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 05/26/2023]
Abstract
The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | - Iván Jauregui
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Stella Hubbart-Edwards
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Michael J Fryer
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ian P King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Kevin Pyke
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | | | - Tracy Lawson
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
21
|
McAusland L, Murchie EH. Start me up; harnessing natural variation in photosynthetic induction to improve crop yields. THE NEW PHYTOLOGIST 2020; 227:989-991. [PMID: 32441779 DOI: 10.1111/nph.16634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
22
|
Evans JR, Lawson T. From green to gold: agricultural revolution for food security. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2211-2215. [PMID: 32251509 DOI: 10.1093/jxb/eraa110] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|