1
|
Chevenier A, Fanuel M, Sokolova E, Mico Latorre D, Jouanneau D, Jeudy A, Préchoux A, Zühlke MK, Bartel J, Becher D, Czjzek M, Ropartz D, Michel G, Ficko-Blean E. Structure, function and catalytic mechanism of the carrageenan-sulfatases from the marine bacterium Zobellia galactanivorans Dsij T. Carbohydr Polym 2025; 358:123487. [PMID: 40383559 DOI: 10.1016/j.carbpol.2025.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 05/20/2025]
Abstract
Carrageenans are highly diverse sulfated galactans found in red seaweeds. They play various physiological roles within macroalgae, but also serve as carbon sources for heterotrophic marine bacteria living at their surface. Carrageenan sulfatases catalyze the removal of sulfate esters from the glycans to expose the saccharide chain for further enzymatic processing. In the marine flavobacterium Zobellia galactanivorans, three carrageenan sulfatase genes are localized within a carrageenan utilization locus, belonging to three distinct SulfAtlas S1 (formylglycine-dependent sulfatases) subfamilies (S1_19, ZgCgsA; S1_7, ZgCgsB1; and S1_17, ZgCgsC). In this study we combined several techniques to characterize the detailed desulfurylation steps in the catabolic pathway of carrageenan in this model marine bacterium. High resolution UHPLC-MS/MS sequencing of the reaction species provides precise chemical localization of the enzymatic activities for the three carrageenan sulfatases on carrageenan polysaccharides and oligosaccharides. High resolution structures of the S1_19 endo-/exo-lytic carrageenan sulfatase (ZgCgsA) in complex with oligocarrageenan products show substrate plasticity which involve enzyme and glycan conformational rearrangements. A sulfo-enzyme covalent-intermediate sheds light on the catalytic mechanism and highlights the unique chemistry of formylglycine, an essential post-translationally modified catalytic residue in the active site of S1 family sulfatases.
Collapse
Affiliation(s)
- Antonin Chevenier
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Mathieu Fanuel
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, PROBE research infrastructure, BIBS facility, F-44316 Nantes, France
| | - Ekaterina Sokolova
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Diego Mico Latorre
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Diane Jouanneau
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Alexandra Jeudy
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Aurélie Préchoux
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - Marie-Katherin Zühlke
- Institute of Marine Biotechnology, 17487 Greifswald, Germany; Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - Jürgen Bartel
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany
| | - Mirjam Czjzek
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, PROBE research infrastructure, BIBS facility, F-44316 Nantes, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France.
| | - Elizabeth Ficko-Blean
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Modèles Marins, LBI2M, F-29680 Roscoff, France.
| |
Collapse
|
2
|
Zheng YD, Xu J, Wu J, Zhong T, He QY, Sun X. Oleanolic acid derivative bardoxolone combats multidrug-resistant Staphylococcus aureus by destroying cell membrane and pyruvate metabolism pathway. J Antimicrob Chemother 2025:dkaf190. [PMID: 40492526 DOI: 10.1093/jac/dkaf190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/29/2025] [Indexed: 06/12/2025] Open
Abstract
INTRODUCTION Staphylococcus aureus poses a significant threat to human health, making it imperative to develop novel antimicrobial agents to combat infections caused by this pathogen. OBJECTIVES To evaluate the antibacterial efficacy and elucidate the mechanism of bardoxolone as a potential agent against multidrug-resistant S. aureus. METHODS Natural products and their derivatives were systematically evaluated for antibacterial activity. The antibacterial activity of bardoxolone was assessed in vitro against planktonic bacteria, internalized bacteria and biofilm-forming multidrug-resistant S. aureus, as well as in vivo using mouse pneumonia and thigh abscess infection models. The underlying antibacterial mechanisms were investigated through quantitative proteomics and a series of biochemical assays. RESULTS Bardoxolone exhibited potent antibacterial efficacy against S. aureus and other Gram-positive pathogens. It demonstrated strong antibacterial activity against internalized and biofilm-associated multidrug-resistant S. aureus, showing low resistance potential. In murine infection models, treatment significantly enhanced survival rates while reducing bacterial burden and attenuating inflammatory responses in pulmonary and femoral tissues. Mechanistic analyses revealed dual antibacterial actions: membrane integrity disruption and suppression of pyruvate metabolism, manifesting as diminished activity of pivotal enzymes, reduced acetyl-CoA/ATP synthesis and consequent growth inhibition of S. aureus. CONCLUSIONS These findings suggest that bardoxolone holds promise as a candidate drug for treating refractory multidrug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Yun-Dan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Xu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Ribeiro DM, Sacarrão-Birrento L, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Sergeant K, Cocco E, Renaut J, Freire JPB, Prates JAM, de Almeida AM. The effect of high-level dietary Laminaria digitata on the muscle proteome and metabolome of weaned piglets. Res Vet Sci 2025; 189:105646. [PMID: 40199047 DOI: 10.1016/j.rvsc.2025.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The brown seaweed Laminaria digitata, known for its prebiotic qualities, and alginate lyase supplementation, may improve the growth and development of piglets during the critical post-weaning phase. The purpose of this study was to ascertain the effects of 10 % L. digitata and 0.01 % alginate lyase on the proteome and metabolome of the longissimus lumborum muscle in weaned piglets. Findings suggest that the enzyme supplement has a marginal effect on muscle proteome compared to the seaweed diet alone when compared to the control. L. digitata increased the prevalence of proteins related to muscle contraction and structure (such as ACTBL2), while it decreased the presence of glycolytic proteins (like GPI and ALDOC). It also increased the abundance of proteins related to the negative regulation of insulin receptor pathways, such as RABGAP1 and TSC2. Conversely, alginate lyase increased the abundance of proteins associated with fatty acid oxidation (ALOXE3) and calcium balance (WFS1), reflecting the impacts of dietary n-3 polyunsaturated fatty acids and lower calcium in the diet. As for the muscle metabolome, it remained mostly unchanged by dietary treatments, except for mannitol and threonine, which were enriched as a consequence of seaweed inclusion.
Collapse
Affiliation(s)
- David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Laura Sacarrão-Birrento
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal
| | - Daniela F P Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Kjell Sergeant
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Emmanuelle Cocco
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Portugal.
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
4
|
Kopacz A, Kloska D, Bar A, Targosz-Korecka M, Cysewski D, Awsiuk K, Piechota-Polanczyk A, Cichon M, Chlopicki S, Jozkowicz A, Grochot-Przeczek A. Endothelial miR-34a deletion guards against aneurysm development despite endothelial dysfunction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167812. [PMID: 40139409 DOI: 10.1016/j.bbadis.2025.167812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
We previously reported a link between NRF2, a cytoprotective transcription factor, and the ageing of endothelial cells (ECs) and aorta. We also found that NRF2 KO mice are more susceptible to the development of abdominal aortic aneurysm (AAA), which is an age-associated condition. Since miR-34a is a marker of ageing, we explored its relationship with NRF2 and its role in vascular function and AAA formation. Here, we demonstrate that premature NRF2-dependent ageing of ECs is mediated by miR-34a. Infusion of hypertensive angiotensin II (Ang II) in mice increases miR-34a in the aortic endothelial layer and serum, particularly in mice developing AAA. Mice lacking endothelial miR-34a exhibit severe EC dysfunction. Despite that, they are protected from AAA, also on the NRF2 KO background. This protective effect is reversed by rapamycin, which suppresses Ang II-induced EC proliferation. We identified MTA2, but not SIRT1, as a target of miR-34a that inhibits EC proliferation stimulated by Ang II. These findings suggest that fine-tuning of EC proliferation could have potential therapeutic implications for the treatment of aneurysms.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Awsiuk
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Milena Cichon
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Hendrickx DM, Savova MV, Zhu P, An R, Boeren S, Klomp K, Mutte SK, PRESTO study team, Wopereis H, van der Molen RG, Harms AC, Belzer C. A multi-omics machine learning classifier for outgrowth of cow's milk allergy in children. Mol Omics 2025. [PMID: 40407702 PMCID: PMC12101220 DOI: 10.1039/d4mo00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/01/2025] [Indexed: 05/26/2025]
Abstract
Cow's milk protein allergy (CMA) is one of the most common food allergies in children worldwide. However, it is still not well understood why certain children outgrow their CMA and others do not. While there is increasing evidence for a link of CMA with the gut microbiome, it is still unclear how the gut microbiome and metabolome interact with the immune system. Integrating data from different omics platforms and clinical data can help to unravel these interactions. In this study, we integrate clinical, microbial, (meta)proteomics, immune and metabolomics data into machine learning (ML) classification, using multi-view learning by late integration. The aim is to group infants into those that outgrew their CMA and those that did not. The results show that integration of microbiome data with clinical, immune, (meta)proteomics and metabolomics data could considerably improve classification of infants on outgrowth of CMA, compared to only considering one type of data. Moreover, pathways previously linked to development of CMA could also be related to outgrowth of this allergy.
Collapse
Affiliation(s)
- Diana M. Hendrickx
- Laboratory of Microbiology, Wageningen UniversityWageningenThe Netherlands
| | - Mariyana V. Savova
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | - Pingping Zhu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | - Ran An
- Laboratory of Microbiology, Wageningen UniversityWageningenThe Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen UniversityWageningenThe Netherlands
| | - Kelly Klomp
- Laboratory of Microbiology, Wageningen UniversityWageningenThe Netherlands
| | - Sumanth K. Mutte
- Laboratory of Biochemistry, Wageningen UniversityWageningenThe Netherlands
| | - PRESTO study team
- Laboratory of Microbiology, Wageningen UniversityWageningenThe Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory of Biochemistry, Wageningen UniversityWageningenThe Netherlands
- Danone Nutricia ResearchUtrechtThe Netherlands
- Department of Laboratory Medicine, Laboratory of Medical ImmunologyRadboudumcNijmegenThe Netherlands
| | | | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory of Medical ImmunologyRadboudumcNijmegenThe Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen UniversityWageningenThe Netherlands
| |
Collapse
|
6
|
Di Cianni N, Bolsinger S, Brendel J, Raabe M, König S, Mitchell L, Bischler T, Gräfenhan T, Read C, Erdmann S, Allers T, Walther P, Urlaub H, Dyall-Smith M, Pfeiffer F, Marchfelder A. Provirus deletion from Haloferax volcanii affects motility, stress resistance, and CRISPR RNA expression. MICROLIFE 2025; 6:uqaf008. [PMID: 40395997 PMCID: PMC12091111 DOI: 10.1093/femsml/uqaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/20/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
Haloferax volcanii harbours four putative proviruses: Halfvol1, Halfvol2, Halfvol3, and Halfvol4. In this study, we successfully deleted all four provirus genomes, demonstrating, that they are not essential. Transcriptome comparison between this strain (∆Halfvol1-4) and a wild-type strain reveals an increase in archaella and chemotaxis gene expression, resulting in higher swarming motility in ∆Halfvol1-4. Furthermore, ∆Halfvol1-4 cells show an elongated cell shape and a higher resistance to H2O2 stress compared to the wild type. RNA-seq also revealed downregulation of CRISPR arrays in the provirus-free strain. Circularised genomes of Halfvol1, Halfvol2, and Halfvol3 were found in the culture supernatant of the wild-type strain. This confirms excision of the proviruses from the chromosome, which seems to happen more efficiently at low temperature (30°C). Electron microscopy revealed potential viral particles in the supernatant, and mass spectrometry analysis confirmed the presence of structural viral proteins of Halfvol1 and Halfvol3 in the isolated virus sample. These observations suggest that these proviruses are active and cause a chronic infection in H. volcanii.
Collapse
Affiliation(s)
- Nadia Di Cianni
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm 89069, Germany
| | - Simon Bolsinger
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm 89069, Germany
| | - Jutta Brendel
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm 89069, Germany
| | - Monika Raabe
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Göttingen 37077, Germany
| | - Sabine König
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Göttingen 37077, Germany
- Bioanalytics Groups, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Laura Mitchell
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg 97080, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University of Würzburg, Würzburg 97080, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm 89069, Germany
| | - Susanne Erdmann
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Institute of Microbiology, University Innsbruck, Innsbruck 6020, Austria
| | - Thorsten Allers
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm 89069, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Göttingen 37077, Germany
- Bioanalytics Groups, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Mike Dyall-Smith
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville 3010, Australia
- Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Friedhelm Pfeiffer
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm 89069, Germany
- Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Anita Marchfelder
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Ulm 89069, Germany
| |
Collapse
|
7
|
Jadhav DB, Roy S. Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock. PLANT, CELL & ENVIRONMENT 2025; 48:3512-3528. [PMID: 39777639 DOI: 10.1111/pce.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations. Chlamydomonas reinhardtii is a well-studied miniature plant model. We quantitatively probed the Chlamydomonas proteome for two subsequent circadian cycles using high throughput SWATH-DIA mass spectrometry. We quantified > 1000 proteins, half of which demonstrate circadian rhythms. Among these rhythmic proteins, > 90% peak around subjective midday or midnight. We uncovered key enzymes involved in Box C/D pathway, amino acid biosynthesis, fatty acid (FA) biosynthesis and peroxisomal β-oxidation of FAs are driven by the clock, which were undocumented from earlier transcriptomic studies. Proteins associated with key biological processes such as photosynthesis, redox, carbon fixation, glycolysis and TCA cycle show extreme temporal regulation. We conclude that circadian proteomics is required to complement transcriptomic studies to understand the complex clock regulation of organismal biology. We believe our study will not only refine and enrich the evaluation of temporal metabolic processes in C. reinhardtii but also provide a novel understanding of clock regulation across species.
Collapse
Affiliation(s)
| | - Sougata Roy
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
8
|
Jebeli L, McDaniels TA, Ho DTT, Tahir H, Kai-Ming NL, Mcgaw M, Karlic KI, Lewis JM, Scott NE. The late-stage steps of Burkholderia cenocepacia protein O-linked glycan biosynthesis are conditionally essential. J Biol Chem 2025; 301:108515. [PMID: 40286851 DOI: 10.1016/j.jbc.2025.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Periplasmic O-linked protein glycosylation is a highly conserved process observed across the Burkholderia genus. Within Burkholderia, protein glycosylation requires the five-gene cluster known as the O-glycosylation cluster (OGC, ogcXABEI), which facilitates the construction of the O-linked trisaccharide attached to periplasmic proteins. Previous studies have reported conflicting results regarding the essentiality of ogcA, predicted to be responsible for the addition of the final carbohydrate of the O-linked trisaccharide, and ogcX, the putative O-linked glycan flippase. Within this work, we aimed to dissect the impact of the loss of ogcA and ogcX on Burkholderia cenocepacia viability. We demonstrate that the loss of either ogcA or ogcX is detrimental if glycosylation is initiated, leading to marked phenotypic effects. Proteomic analysis supports that the loss of ogcA/ogcX both blocks glycosylation and drives pleotropic effects in the membrane proteome, resulting in the loss of membrane integrity. Consistent with this, strains lacking ogcA and ogcX exhibit increased sensitivity to membrane stressors, including antibiotics, and demonstrate marked changes in membrane permeability. These effects are consistent with the fouling of the undecaprenyl pool due to dead-end O-linked glycan intermediates, and consistent with this, we show that modulation of the undecaprenyl pool through the overexpression of undecaprenyl pyrophosphate synthase (UppS) or the OGC flippase (OgcX) restores viability, while expression of early-stage OGC biosynthesis genes (ogcI and ogcB) reduces B. cenocepacia viability. These findings demonstrate that disrupting O-linked glycan biosynthesis or transport appears to dramatically impact B. cenocepacia viability, supporting the assignment of ogcA and ogcX as conditionally essential.
Collapse
Affiliation(s)
- Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylor A McDaniels
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Duncan T T Ho
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hamza Tahir
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas L Kai-Ming
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Molli Mcgaw
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kristian I Karlic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
9
|
Sanguankiattichai N, Chandrasekar B, Sheng Y, Hardenbrook N, Tabak WWA, Drapal M, Kaschani F, Grünwald-Gruber C, Krahn D, Buscaill P, Yamamoto S, Kato A, Nash R, Fleet G, Strasser R, Fraser PD, Kaiser M, Zhang P, Preston GM, van der Hoorn RAL. Bacterial pathogen deploys the iminosugar glycosyrin to manipulate plant glycobiology. Science 2025; 388:297-303. [PMID: 40245141 DOI: 10.1126/science.adp2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
The extracellular space (apoplast) in plants is a key battleground during microbial infections. To avoid recognition, the bacterial model phytopathogen Pseudomonas syringae pv. tomato DC3000 produces glycosyrin. Glycosyrin inhibits the plant-secreted β-galactosidase BGAL1, which would otherwise initiate the release of immunogenic peptides from bacterial flagellin. Here, we report the structure, biosynthesis, and multifunctional roles of glycosyrin. High-resolution cryo-electron microscopy and chemical synthesis revealed that glycosyrin is an iminosugar with a five-membered pyrrolidine ring and a hydrated aldehyde that mimics monosaccharides. Glycosyrin biosynthesis was controlled by virulence regulators, and its production is common in bacteria and prevents flagellin recognition and alters the extracellular glycoproteome and metabolome of infected plants. These findings highlight a potentially wider role for glycobiology manipulation by plant pathogens across the plant kingdom.
Collapse
Affiliation(s)
- Nattapong Sanguankiattichai
- Department of Biology, University of Oxford, Oxford, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Werner W A Tabak
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Farnusch Kaschani
- Analytics Core Facility Essen (ACE), Chemical Biology, Faculty of Biology, Universität Duisburg-Essen, ZMB, Essen, Germany
| | | | - Daniel Krahn
- Leibniz Institut für analytische Wissenschaften ISAS e.V., Dortmund, Germany
| | | | - Suzuka Yamamoto
- Department of Hospital Pharmacy, University of Toyama, Toyama, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama, Japan
| | - Robert Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Aberystwyth, UK
| | - George Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Biotechnology and Food Science, BOKU University, Vienna, Austria
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
10
|
Keller MR, McKinney MG, Sen AK, Guagliardo FG, Hellwarth EB, Islam KN, Kaplan NA, Gibbons WJ, Kemmerly GE, Meers C, Wang X, Jones JA. Psilocybin biosynthesis enhancement through gene source optimization. Metab Eng 2025; 91:119-129. [PMID: 40250599 DOI: 10.1016/j.ymben.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Psilocybin, the prodrug to the psychoactive compound in 'magic' mushrooms, is currently being studied in clinical trials as a treatment for severe mental health conditions, such as depression and anxiety. Previous reports of psilocybin biosynthesis as reconstituted in E. coli reported maximum titers of 1.16 g/L, exclusively using genes from the most common recreationally used mushroom, Psilocybe cubensis. This study explores the effect of gene species variation on psilocybin and baeocystin production using various exogenous genes sourced from psilocybin-producing mushrooms Psilocybe cubensis, Psilocybe cyanescens, Panaeolus cyanescens, and Gymnopilus dilepis. The psiD and psiK genes sourced from P. cubensis demonstrated unequivocally superior performance, while psiM showed varied production levels of psilocybin and the pathway intermediate baeocystin with changes in gene source. Strains containing a psiM gene sourced from Psilocybe cyanescens demonstrated a higher degree of baeocystin selectivity as compared to other psiM genes, demonstrating a key difference between species. Most notably, the strain Gymdi30, containing psiM sourced from G. dilepis, achieved a psilocybin titer of 1.46 ± 0.13 g/L, the highest reported to date. Comparative proteomic analysis of Gymdi30 during periods of high and low productivity was also performed to investigate bottlenecks in cellular metabolism, which could be limiting strain performance. This work represents a significant improvement in psilocybin biosynthesis, a key step towards the development of a biosynthetic manufacturing route for psilocybin.
Collapse
Affiliation(s)
- Madeleine R Keller
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Madeline G McKinney
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Abhishek K Sen
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Felicia G Guagliardo
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Elle B Hellwarth
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Khondokar Nowshin Islam
- Miami University, Department of Microbiology, Oxford, OH, USA; University of Florida, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, Gainesville, FL, USA.
| | - Nicholas A Kaplan
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - William J Gibbons
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Grace E Kemmerly
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| | - Xin Wang
- Miami University, Department of Microbiology, Oxford, OH, USA; University of Florida, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, Gainesville, FL, USA.
| | - J Andrew Jones
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH, USA.
| |
Collapse
|
11
|
Sewald L, Tabak WWA, Fehr L, Zolg S, Najdzion M, Verhoef CJA, Podlesainski D, Geiss-Friedlander R, Lammens A, Kaschani F, Hellerschmied D, Huber R, Kaiser M. Sulphostin-inspired N-phosphonopiperidones as selective covalent DPP8 and DPP9 inhibitors. Nat Commun 2025; 16:3208. [PMID: 40180908 PMCID: PMC11968843 DOI: 10.1038/s41467-025-58493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Covalent chemical probes and drugs combine unique pharmacologic properties with the availability of straightforward compound profiling technologies via chemoproteomic platforms. These advantages have fostered the development of suitable electrophilic "warheads" for systematic covalent chemical probe discovery. Despite undisputable advances in the last years, the targeted development of proteome-wide selective covalent probes remains a challenge for dipeptidyl peptidase (DPP) 8 and 9 (DPP8/9), intracellular serine hydrolases of the pharmacologically relevant dipeptidyl peptidase 4 activity/structure homologues (DASH) family. Here, we show the exploration of the natural product Sulphostin, a DPP4 inhibitor, as a starting point for DPP8/9 inhibitor development. The generation of Sulphostin-inspired N-phosphonopiperidones leads to derivatives with improved DPP8/9 inhibitory potency, an enhanced proteome-wide selectivity and confirmed DPP8/9 engagement in cells, thereby representing that structural fine-tuning of the warhead's leaving group may represent a straightforward strategy for achieving target selectivity in exoproteases such as DPPs.
Collapse
Affiliation(s)
- Leonard Sewald
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Werner W A Tabak
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Lorenz Fehr
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Samuel Zolg
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maja Najdzion
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Carlo J A Verhoef
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, MB, Eindhoven, The Netherlands
| | - David Podlesainski
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Farnusch Kaschani
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Doris Hellerschmied
- Mechanistic Cell Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
- TUM Senior Excellence Faculty, Technical University of Munich, Munich, Germany
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Meyer A, Khalil B, Iljin M, Bange H, Price LS, Dyubankova N, van Westen GJP, van Vlijmen H, Peters DJM, Artursson P. A Patient-Derived 3D Cyst Model of Polycystic Kidney Disease That Mimics Disease Development and Responds to Repurposing Candidates. Clin Transl Sci 2025; 18:e70214. [PMID: 40235151 PMCID: PMC12000233 DOI: 10.1111/cts.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. Its progressively expanding, fluid-filled renal cysts eventually lead to end-stage renal disease. Despite the relatively high prevalence, treatment options are currently limited to a single drug approved by the FDA and EMA. Here, we investigated human ADPKD patient-derived three-dimensional cyst cultures (3DCC) as an in vitro model for ADPKD and drug repurposing research. First, we analyzed the proteomes of 3DCC derived from healthy and diseased tissues. We then compared the protein expression profiles with those of reference tissues, mainly from the same patients. We quantified 290 proteins affecting drug disposition and proposed target proteins for drug treatment. Lastly, we investigated the functional response of the quantified target proteins after exposure to repurposing candidates in the 3DCC. Proteomic profiling of human 3DCC reflected previously reported pathophysiological alterations, including aberrant protein expression in inflammation and metabolic reprogramming. While the 3DCCs largely recapitulated the disease phenotype in vitro, drug transporter expression was reduced compared to in vivo conditions. Target proteins for proposed repurposing candidates showed similar expression in vitro and in tissues. Exposure to these repurposing candidates inhibited cyst swelling in vitro, supporting the suitability of the 3DCC for ADPKD drug screening. In summary, our results provide new insights into the ADPKD proteome and offer a starting point for further research to improve treatment options for affected individuals.
Collapse
Affiliation(s)
- Alina Meyer
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Bola Khalil
- In Silico Discovery, J&J Innovative MedicineBeerseBelgium
- Division of Medicinal ChemistryLeiden Academic Centre for Drug ResearchLeidenthe Netherlands
| | | | - Hester Bange
- Crown Bioscience Netherlands B.VLeidenthe Netherlands
| | - Leo S. Price
- Crown Bioscience Netherlands B.VLeidenthe Netherlands
| | | | - Gerard J. P. van Westen
- Division of Medicinal ChemistryLeiden Academic Centre for Drug ResearchLeidenthe Netherlands
| | | | - Dorien J. M. Peters
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Per Artursson
- Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
13
|
Kumar R, Haripriya V, Patra A, Kalita B, Vanuopadath M, Nair BG, Mahato R, Lalremsanga HT, Khan MR, Bala A, Mukherjee AK. Proteomic and functional characterisation of Trimeresurus popeiorum (Pope's pit viper) venom proteins: Role of enzymatic and non-enzymatic venom toxins in envenomation pathophysiology. Int J Biol Macromol 2025; 304:140638. [PMID: 39914545 DOI: 10.1016/j.ijbiomac.2025.140638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
Snakebite remains a significant public health issue in tropical regions, with 4.5 to 5.4 million incidents annually. Trimeresurus popeiorum (Pope's Pit Viper), found in Southeast Asia and northeast India, poses a potential threat, yet its venom's protein composition and toxicity are poorly understood. In this study, we used label-free quantitative proteomics to analyze the venom of T. popeiorum, identifying 106 proteins across 12 venom protein families. Notably, 60 % of the venom consisted of proteolytic enzymes, correlating with its prominent metalloprotease, fibrin(ogen)lytic, procoagulant, and thrombin-like activities. The proteome composition also correlates with the clinical effects such as consumption coagulopathy and local effects, seen in victims of Pit Viper envenomation in northeast India. Our findings suggest that T. popeiorum venom is less toxic than other Viperinae species such as Daboia russelii and Echis carinatus, likely due to isoform-level variations in certain toxin classes, including metalloprotease and serine protease. The venom's lethal dose (LD50) in Swiss albino mice was 1 mg/kg, and it caused haemorrhage, tissue necrosis, edema, myotoxicity, and defibrinogenation. Histopathological examination of the TPV-treated mice showed notable toxic effects, including marked hepatic vacuolation in the liver, damage to cardiac muscle and vascular congestion in the heart, bronchial epithelial hyperplasia with cellular infiltration in the interstitial and peribronchiolar regions of the lungs, as well as tubular necrosis and haemorrhage in the kidneys. This research provides the first comprehensive analysis of T. popeiorum venom, highlighting its pharmacological effects and the need for greater medical attention to this lesser-known species.
Collapse
Affiliation(s)
- Rahul Kumar
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati 781035, Assam, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V Haripriya
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, AIMS-, Kochi, Kerala 682041, India
| | - Aparup Patra
- Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana 121002, India
| | - Bhargab Kalita
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, AIMS-, Kochi, Kerala 682041, India; Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana 121002, India
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala 690525, India
| | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala 690525, India
| | - Rosy Mahato
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati 781035, Assam, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - H T Lalremsanga
- Developmental Biology and Herpetology Laboratory, Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India
| | - Mojibur R Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati 781035, Assam, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asis Bala
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati 781035, Assam, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashis K Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati 781035, Assam, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
14
|
Schmerling C, Schroeder C, Zhou X, Bost J, Waßmer B, Ninck S, Busche T, Montero L, Kaschani F, Schmitz OJ, Kalinowski J, Kaiser M, Albers SV, Bräsen C, Siebers B. An unusual glycerol-3-phosphate dehydrogenase in Sulfolobus acidocaldarius elucidates the diversity of glycerol metabolism across Archaea. Commun Biol 2025; 8:539. [PMID: 40169898 PMCID: PMC11962113 DOI: 10.1038/s42003-025-07953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
Glycerol is highly abundant in natural ecosystems and serves as both an important carbon source for microorganisms as well as a promising feedstock for industrial applications. However, the pathways involved in glycerol degradation in Archaea remain unclear. Here, we show that the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius can grow with glycerol as its sole carbon source and characterize the mechanisms involved in glycerol utilization. We show that after uptake involving facilitated diffusion, glycerol is phosphorylated to glycerol-3-phosphate by glycerol kinase (GK), followed by oxidation to dihydroxyacetone phosphate catalyzed by an unusual glycerol-3-phosphate dehydrogenase (G3PDH) with a previously undescribed type of membrane anchoring via a CoxG-like protein. Furthermore, we show that while S. acidocaldarius has two paralogous GK/G3PDH copies (saci_1117-1119, saci_2031-2033) with similar biochemical activity, only saci_2031-2033 is highly upregulated and essential on glycerol, suggesting that distinct enzyme pairs may be regulated by different environmental conditions. Finally, we explore the diversity of glycerol metabolism enzymes across the Archaea domain, revealing a high versatility of G3PDHs with respect to interacting proteins, electron transfer mechanisms, and modes of membrane anchoring. Our findings help to elucidate the mechanisms involved in glycerol utilization in Archaea, highlighting unique evolutionary strategies that likely enabled adaptation to different lifestyles.
Collapse
Affiliation(s)
- Christian Schmerling
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carsten Schroeder
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Xiaoxiao Zhou
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jan Bost
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
| | - Bianca Waßmer
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
| | - Sabrina Ninck
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Lidia Montero
- Applied Analytical Chemistry (AAC), University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation (TRC), University of Duisburg-Essen, Essen, Germany
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Farnusch Kaschani
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen (ACE), Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry (AAC), University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation (TRC), University of Duisburg-Essen, Essen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, Freiburg, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Froschauer K, Svensson SL, Gelhausen R, Fiore E, Kible P, Klaude A, Kucklick M, Fuchs S, Eggenhofer F, Yang C, Falush D, Engelmann S, Backofen R, Sharma CM. Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni. Nat Commun 2025; 16:3078. [PMID: 40159498 PMCID: PMC11955535 DOI: 10.1038/s41467-025-58329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
In contrast to transcriptome maps, bacterial small protein (≤50-100 aa) coding landscapes, including overlapping genes, are poorly characterized. However, an emerging number of small proteins have crucial roles in bacterial physiology and virulence. Here, we present a Ribo-seq-based high-resolution translatome map for the major foodborne pathogen Campylobacter jejuni. Besides conventional Ribo-seq, we employed translation initiation site (TIS) profiling to map start codons and also developed a translation termination site (TTS) profiling approach, which revealed stop codons not apparent from the reference genome in virulence loci. Our integrated approach combined with independent validation expanded the small proteome by two-fold, including CioY, a new 34 aa component of the CioAB oxidase. Overall, our study generates a high-resolution annotation of the C. jejuni coding landscape, provided in an interactive browser, and showcases a strategy for applying integrated Ribo-seq to other species to enrich our understanding of small proteomes.
Collapse
Affiliation(s)
- Kathrin Froschauer
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Elisabetta Fiore
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Philipp Kible
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Alicia Klaude
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Martin Kucklick
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Stephan Fuchs
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Falush
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Susanne Engelmann
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, Freiburg, Germany
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany.
| |
Collapse
|
16
|
Will V, Moynié L, Si Ahmed Charrier E, Le Bas A, Kuhn L, Volck F, Chicher J, Aksoy H, Madec M, Antheaume C, Mislin GLA, Schalk IJ. Structure of the Outer Membrane Transporter FemA and Its Role in the Uptake of Ferric Dihydro-Aeruginoic Acid and Ferric Aeruginoic Acid in Pseudomonas aeruginosa. ACS Chem Biol 2025; 20:690-706. [PMID: 40035455 DOI: 10.1021/acschembio.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Iron is essential for bacterial growth, and Pseudomonas aeruginosa synthesizes the siderophores pyochelin (PCH) and pyoverdine to acquire it. PCH contains a thiazolidine ring that aids in iron chelation but is prone to hydrolysis, leading to the formation of 2-(2-hydroxylphenyl)-thiazole-4-carbaldehyde (IQS). Using mass spectrometry, we demonstrated that PCH undergoes hydrolysis and oxidation in solution, resulting in the formation of aeruginoic acid (AA). This study used proteomic analyses and fluorescent reporters to show that AA, dihydroaeruginoic acid (DHA), and PCH induce the expression of femA, a gene encoding the ferri-mycobactin outer membrane transporter in P. aeruginosa. Notably, the induction by AA and DHA was observed only in strains unable to produce pyoverdine, suggesting their weaker iron-chelating ability compared to that of pyoverdine. 55Fe uptake assays demonstrated that both AA-Fe and DHA-Fe complexes are transported via FemA; however, no uptake was observed for PCH-Fe through this transporter. Structural studies revealed that FemA is able to bind AA2-Fe or DHA2-Fe complexes. Key interactions are conserved between FemA and these two complexes, with specificity primarily driven by one of the two siderophore molecules. Interestingly, although no iron uptake was noted for PCH through FemA, the transporter also binds PCH-Fe in a similar manner. These findings show that under moderate iron deficiency, when only PCH is produced by P. aeruginosa, degradation products AA and DHA enhance iron uptake by inducing femA expression and facilitating iron transport through FemA. This provides new insights into the pathogen's strategies for iron homeostasis.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Lucile Moynié
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Elise Si Ahmed Charrier
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Audrey Le Bas
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Florian Volck
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Hava Aksoy
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Cyril Antheaume
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Gaëtan L A Mislin
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Chu F, Jenson SC, Barente AS, Heller NC, Merkley ED, Jarman KH. MARLOWE: An Untargeted Proteomics, Statistical Approach to Taxonomic Classification for Forensics. J Proteome Res 2025; 24:995-1007. [PMID: 39898467 DOI: 10.1021/acs.jproteome.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
General proteomics research for fundamental science typically addresses laboratory- or patient-derived samples of known origin and composition. However, in a few research areas, such as environmental proteomics, clinical identification of infectious organisms, archeology, art/cultural history, and forensics, attributing the origin of a protein-containing sample to the organisms that produced it is a central focus. A small number of groups have approached this problem and developed software tools for taxonomic characterization and/or identification using bottom-up proteomics. Most such tools identify peptides via database search, and many rely on organism-specific peptides as markers. Our group recently introduced MARLOWE, a software tool for taxonomic characterization of unknown samples based on de novo peptide identification and signal-erosion-resistant strong peptides, which are shared peptides distributed in a taxonomy-dependent manner. In the current work, we further characterize the utility of MARLOWE using publicly available proteomics data from forensically-relevant samples. MARLOWE characterizes samples based on their protein profile, and returns ranked organism lists of potential contributors and taxonomic scores based on shared strong peptides between organisms. Overall, the correct characterization rate ranges between 44 and 100%, depending on the sample type and data acquisition parameters (with lower numbers associated with lower-quality data sets). MARLOWE demonstrates successful characterization of true contributors and close relatives, and provides sufficient specificity to distinguish certain microbial species. MARLOWE demonstrates its ability to provide insight into potential taxonomic sources for a wide range of sample types without prior assumptions about sample contents. This approach can find utility in forensic science and also broadly in bioanalytical applications that utilize proteomics approaches for taxonomic characterization.
Collapse
Affiliation(s)
- Fanny Chu
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah C Jenson
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Anthony S Barente
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Natalie C Heller
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D Merkley
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristin H Jarman
- Chemical & Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
18
|
Luo S, Peng H, Shi Y, Cai J, Zhang S, Shao N, Li J. Integration of proteomics profiling data to facilitate discovery of cancer neoantigens: a survey. Brief Bioinform 2025; 26:bbaf087. [PMID: 40052441 PMCID: PMC11886573 DOI: 10.1093/bib/bbaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Cancer neoantigens are peptides that originate from alterations in the genome, transcriptome, or proteome. These peptides can elicit cancer-specific T-cell recognition, making them potential candidates for cancer vaccines. The rapid advancement of proteomics technology holds tremendous potential for identifying these neoantigens. Here, we provided an up-to-date survey about database-based search methods and de novo peptide sequencing approaches in proteomics, and we also compared these methods to recommend reliable analytical tools for neoantigen identification. Unlike previous surveys on mass spectrometry-based neoantigen discovery, this survey summarizes the key advancements in de novo peptide sequencing approaches that utilize artificial intelligence. From a comparative study on a dataset of the HepG2 cell line and nine mixed hepatocellular carcinoma proteomics samples, we demonstrated the potential of proteomics for the identification of cancer neoantigens and conducted comparisons of the existing methods to illustrate their limits. Understanding these limits, we suggested a novel workflow for neoantigen discovery as perspectives.
Collapse
Affiliation(s)
- Shifu Luo
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hui Peng
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Ying Shi
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jiaxin Cai
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| | - Songming Zhang
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| | - Ningyi Shao
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jinyan Li
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
19
|
Krawczyk-Ożóg A, Stachowicz A, Szoniec G, Batko J, Stachyra K, Bolechała F, Strona M, Wołkow PP, Yin Z, Dobrzynski H, Hołda MK. Proteomic profile of human sinoatrial and atrioventricular nodes in comparison to working myocardium. Sci Rep 2025; 15:7238. [PMID: 40021668 PMCID: PMC11871314 DOI: 10.1038/s41598-025-89255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025] Open
Abstract
The proteomic profile of the human cardiac conduction system: the sinoatrial node (SAN) and atrioventricular node (AVN), remains poorly understood. The aim of the current study is to identify proteomic characteristic of the human SAN and AVN in the comparison to working myocardium of the right atrium (RAM) and right ventricle (RVM). The proteomic analysis was performed on 10 autopsied human heart specimens collected from healthy adults. During the data-independent acquisition proteomics analysis 2752 different proteins were identified in all sample sets. In both nodal tissues (compared to working myocardium), the following pathways were upregulated: regulation of Insulin-like Growth Factor transport and uptake by Insulin-like Growth Factor Binding Proteins, post-translational protein phosphorylation, glutathione metabolism, metabolism of carbohydrates, glycolysis and gluconeogenesis. Other common for nodal tissue pathways were these related to immune system and related to extracellular matrix. The pathways related to cardiac muscle contraction were more abundant in RAM and RVM samples. The current study presents extensive comparative analysis of protein abundance in the human SAN and AVN. Few key differences may be found in the nodal proteome in comparison to working cardiomyocytes, including involvement of immune system and upregulated pathways related to extracellular matrix. The SAN exhibits enrichment in the PPAR signaling and pentose phosphate pathways, as well as prostaglandin synthesis and regulatory proteins, compared to the AVN.
Collapse
Affiliation(s)
- Agata Krawczyk-Ożóg
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland.
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland.
| | - Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Szoniec
- Center for Medical Genomics OMICRON, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Batko
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Filip Bolechała
- Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Strona
- Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł P Wołkow
- Division of Laboratory Diagnostics and Clinical Epigenetics, Faculty of Medicine, Institute of Medical Sciences, University of Rzeszów Medical College, Rzeszów, Poland
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Halina Dobrzynski
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Mateusz K Hołda
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Seisenbacher G, Nakic ZR, Borràs E, Sabidó E, Sauer U, de Nadal E, Posas F. Redox proteomics reveal a role for peroxiredoxinylation in stress protection. Cell Rep 2025; 44:115224. [PMID: 39847483 DOI: 10.1016/j.celrep.2024.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/13/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce. Using global proteomic analyses, we show here that the yeast peroxiredoxin Tsa1 interacts with many proteins of essential biological processes, including protein turnover and carbohydrate metabolism. Several of these interactions are of a covalent nature, and we show that failure of peroxiredoxinylation of Gnd1 affects its phosphogluconate dehydrogenase activity and impairs recovery upon stress. Thioredoxins directly remove TSA1-formed mixed disulfide intermediates, thus expanding the role of the thioredoxin-peroxiredoxin redox cycle pair to buffer the redox state of proteins.
Collapse
Affiliation(s)
- Gerhard Seisenbacher
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland; ZHAW School of Life Sciences and Facility Management, Biosystems Technology, 8820 Wädenswil, Switzerland
| | - Eva Borràs
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre of Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre of Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Eulalia de Nadal
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Francesc Posas
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| |
Collapse
|
21
|
Ravenhill BJ, Oliveira M, Wood G, Di Y, Kite J, Wang X, Davies CTR, Lu Y, Antrobus R, Elliott G, Irigoyen N, Hughes DJ, Lyons PA, Chung B, Borner GHH, Weekes MP. Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11. Cell Rep 2025; 44:115263. [PMID: 39921859 DOI: 10.1016/j.celrep.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 02/10/2025] Open
Abstract
Appropriate cellular recognition of viruses is essential for the generation of an effective innate and adaptive immune response. Viral sensors and their downstream signaling components thus provide a crucial first line of host defense. Many of them exhibit subcellular relocalization upon activation, resulting in the expression of interferon and antiviral genes. To comprehensively identify signaling factors, we analyzed protein relocalization on a global scale during viral infection. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivators 2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon infection with multiple viruses in diverse cell types. This movement was dependent on mitochondrial antiviral signaling protein (MAVS), cyclo-oxygenase proteins, and protein kinase A. A key effect of CRTC2/3 translocation is transcription of the fibro-inflammatory cytokine interleukin (IL)-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2. Nuclear translocation of CRTC2/3 is, therefore, identified as an important pathway in the context of viral infection.
Collapse
Affiliation(s)
- Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - George Wood
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xinyue Wang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gill Elliott
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David J Hughes
- School of Biology, University of St. Andrews, St. Andrews, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Merino-Cacho L, Barroso-Gomila O, Pozo-Rodríguez M, Muratore V, Guinea-Pérez C, Serrano Á, Pérez C, Cano-López S, Urcullu A, Azkargorta M, Iloro I, Galdeano C, Juárez-Jiménez J, Mayor U, Elortza F, Barrio R, Sutherland JD. Cullin-RING ligase BioE3 reveals molecular-glue-induced neosubstrates and rewiring of the endogenous Cereblon ubiquitome. Cell Commun Signal 2025; 23:101. [PMID: 39972349 PMCID: PMC11841277 DOI: 10.1186/s12964-025-02091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The specificity of the ubiquitination process is mediated by the E3 ligases. Discriminating genuine substrates of E3s from mere interacting proteins is one of the major challenges in the field. We previously developed BioE3, a biotin-based approach that uses BirA-E3 fusions together with ubiquitin fused to a low-affinity AviTag to obtain a site-specific and proximity-dependent biotinylation of the substrates. We proved the suitability of BioE3 to identify targets of RING and HECT-type E3 ligases. METHODS BioE3 experiments were performed in HEK293FT and U2OS stable cell lines expressing TRIPZ-bioGEFUb transiently transfected with BirA-cereblon (CRBN). Cells were seeded using biotin-free media, followed later by a short-biotin pulse. We evaluated the applicability of the BioE3 system to CRBN and molecular glues by Western blot and confocal microscopy, blocking the proteasome with bortezomib, inhibiting NEDDylation with MLN4924 and treating the cells with pomalidomide. For the identification of endogenous substrates and neosubstrates we analyzed the eluates of streptavidin pull-downs of BioE3 experiments by LC-MS/MS. Analysis of targets for which ubiquitination changes significantly upon treatment was done using two-sided Student's t-test. Orthogonal validations were performed by histidine pull-down, GFP-trap and computational modelling. RESULTS Here we demonstrate that BioE3 is suitable for the multi-protein complex Cullin-RING E3s ligases (CRLs), the most utilized E3-type for targeted protein degradation (TPD) strategies. Using CRBN as proof of concept, one of the substrate receptors of CRL4 E3 ligase, we identified both endogenous substrates and novel neosubstrates upon pomalidomide treatment, including CSDE1 which contains a G-loop motif potentially involved in the binding to CRBN in presence of pomalidomide. Importantly, we observed a major rearrangement of the endogenous ubiquitination landscape upon treatment with this molecular glue. CONCLUSIONS The ability of BioE3 to detect and compare both substrates and neosubstrates, as well as how substrates change in response to treatments, will facilitate both on-target and off-target identifications and offer a broader characterization and validation of TPD compounds, like molecular glues and PROTACs.
Collapse
Affiliation(s)
- Laura Merino-Cacho
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Present address: Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Mónica Pozo-Rodríguez
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Present address: Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Claudia Guinea-Pérez
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Álvaro Serrano
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), School of Chemistry and Physics, University of Barcelona, 08028, Barcelona, Spain
| | - Coralia Pérez
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Sandra Cano-López
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Ainhoa Urcullu
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ibon Iloro
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Carles Galdeano
- Institute of Theoretical and Computational Chemistry (IQTC), School of Chemistry and Physics, University of Barcelona, 08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), School of Chemistry and Physics, University of Barcelona, 08028, Barcelona, Spain
| | - Ugo Mayor
- Biochemistry and Molecular Biology Department, University of the Basque Country, Leioa, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain.
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC Biogune), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain.
| |
Collapse
|
23
|
An Z, Fan QW, Wang L, Yoda H, Barata MJ, Jimenez-Morales D, Phillips JJ, Swaney DL, Stevenson E, Lee E, Krogan N, Weiss WA. EGFR and EGFRvIII coopt host defense pathways promoting progression in glioblastoma. Neuro Oncol 2025; 27:383-397. [PMID: 39248287 PMCID: PMC11812036 DOI: 10.1093/neuonc/noae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Co-amplification of the epidermal growth factor receptor (EGFR) and EGFRvIII, a tumor-specific truncation mutant of EGFR, represent hallmark genetic lesions in glioblastoma. METHODS We used phospho-proteomics, RNA-sequencing, TCGA data, glioblastoma cell culture, and mouse models to study the signal transduction mediated by EGFR and EGFRvIII. RESULTS We report that EGFR and EGFRvIII stimulate the innate immune defense receptor Toll-like Receptor 2 (TLR2); and that knockout of TLR2 dramatically improved survival in orthotopic glioblastoma xenografts. EGFR and EGFRvIII activated TLR2 in a ligand-independent manner, promoting tumor growth and immune evasion. We show that EGFR and EGFRvIII cooperate to activate the Rho-associated protein kinase ROCK2, which modulated malignant progression both by activating TLR2 and WNT signaling, and through remodeling the tumor microenvironment. CONCLUSIONS Together, our findings show that EGFR and EGFRvIII cooperate to drive tumor progression through ROCK2 and downstream WNT-β-catenin/TLR2 signaling pathways.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, California, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, California, USA
| | - Linyu Wang
- Department of Neurology, University of California, San Francisco, California, USA
| | - Hiroyuki Yoda
- Department of Neurology, University of California, San Francisco, California, USA
| | - Megumi J Barata
- Department of Neurology, University of California, San Francisco, California, USA
| | - David Jimenez-Morales
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Erica Stevenson
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nevan Krogan
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - William A Weiss
- Brain Tumor Research Center, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
24
|
Tam V, Chopra N, Sima S, Chen P, Sharma R, Chan D, Diwan A. Effects of GDF6 on active protein synthesis by cells of degenerated intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08715-1. [PMID: 39920317 DOI: 10.1007/s00586-025-08715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
INTRODUCTION Intervertebral disc degeneration (IVD) is a leading cause of low back pain, a prevalent musculoskeletal condition. IVD degeneration is characterized by the degradation of nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates (EP). Growth Differentiation Factor 6 (GDF6), part of the bone morphogenetic protein family, has demonstrated potential in maintaining disc integrity. However, its precise role in cellular protein synthesis during IVD degeneration remains unclear. METHODS This study employed Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) to investigate the effects of GDF6 on protein synthesis in NP, AF, and EP cells isolated from degenerated human IVDs. Cells were cultured in SILAC media with and without GDF6 treatment. The proteomic profiles were analyzed via mass spectrometry, comparing newly synthesized "heavy" proteins with pre-existing "light" proteins. RESULTS GDF6 treatment altered protein synthesis in degenerated IVD cells. In NP cells, GDF6 reduced the synthesis of matrisome proteins, including collagens and proteoglycans, while promoting proteins associated with ECM stability, such as LOX, PCOLCE and HAPLN1/3. AF cells demonstrated an upregulation of ECM-stabilizing proteins like POSTN and FMOD. EP cells showed minimal changes, but GDF6 enhanced the synthesis of collagen type II, suggesting improved ECM integrity. Secretome analysis revealed that GDF6 modulated extracellular signalling by promoting ECM-stabilizing proteins and reducing inflammatory markers. CONCLUSION GDF6 exerts compartment-specific effects on protein synthesis in degenerated IVDs, promoting ECM stability, reducing fibrosis, and potentially preserving hydration. These findings support the potential of GDF6 as a therapeutic agent in treating IVD degeneration, particularly in NP-targeted therapies. Future studies should optimize GDF6 dosing and delivery to maximize its regenerative potential.
Collapse
Affiliation(s)
- Vivian Tam
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong S.A.R., China
| | - Neha Chopra
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Stone Sima
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Peikai Chen
- Department of Orthopaedics, The University of Hong Kong - Shenzhen Hospital, University of Hong Kong, Shenzhen, China
- The AI and Big Data Lab, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core, Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, Hong Kong S.A.R., China
| | - Danny Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong S.A.R., China
| | - Ashish Diwan
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia.
- Spine Service, Department of Orthopaedic Surgery, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia.
- Spinal Unit, Discipline of Orthopaedic Surgery, School of Medicine, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
25
|
Sabbarini IM, Reif D, Park K, McQuown AJ, Nelliat AR, Trejtnar C, Dötsch V, Shakhnovich EI, Murray AW, Denic V. A ribosome-associating chaperone mediates GTP-driven vectorial folding of nascent eEF1A. Nat Commun 2025; 16:1277. [PMID: 39900909 PMCID: PMC11790920 DOI: 10.1038/s41467-025-56489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Eukaryotic translation elongation factor 1A (eEF1A) is a highly abundant, multi-domain GTPase. Post-translational steps essential for eEF1A biogenesis are carried out by bespoke chaperones but co-translational mechanisms tailored to eEF1A folding remain unexplored. Here, we use AlphaPulldown to identify Ypl225w (also known as Chp1, Chaperone 1 for eEF1A) as a conserved yeast protein predicted to stabilize the N-terminal, GTP-binding (G) domain of eEF1A against its misfolding propensity, as predicted by computational simulations and validated by microscopy analysis of ypl225wΔ cells. Proteomics and biochemical reconstitution reveal that Ypl225w functions as a co-translational chaperone by forming dual interactions with the eEF1A G domain nascent chain and the UBA domain of ribosome-bound nascent polypeptide-associated complex (NAC). Lastly, we show that Ypl225w primes eEF1A nascent chains for binding to GTP as part of a folding mechanism tightly coupled to chaperone recycling. Our work shows that an ATP-independent chaperone can drive vectorial folding of nascent chains by co-opting G protein nucleotide binding.
Collapse
Affiliation(s)
- Ibrahim M Sabbarini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Dvir Reif
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexander J McQuown
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Anjali R Nelliat
- Graduate Program in Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Charlotte Trejtnar
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Vasou A, Nightingale K, Cetkovská V, Scheler J, Bamford CGG, Andrejeva J, Rowe JC, Swatek KN, Schwarz‐Linek U, Randall RE, McLauchlan J, Weekes MP, Bogunovic D, Hughes DJ. ISG15-Dependent Stabilisation of USP18 Is Necessary but Not Sufficient to Regulate Type I Interferon Signalling in Humans. Eur J Immunol 2025; 55:e202451651. [PMID: 39931755 PMCID: PMC11811815 DOI: 10.1002/eji.202451651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Type I interferon (IFN) signalling induces the expression of several hundred IFN-stimulated genes (ISGs) that provide an unfavourable environment for viral replication. To prevent an overexuberant response and autoinflammatory disease, IFN signalling requires tight control. One critical regulator is the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), evidenced by autoinflammatory disease in patients with inherited ISG15 deficiencies. Current models suggest that ISG15 stabilises ubiquitin-specific peptidase 18 (USP18), a well-established negative regulator of IFN signalling. USP18 also functions as an ISG15-specific peptidase that cleaves ISG15 from ISGylated proteins; however, USP18's catalytic activity is dispensable for controlling IFN signalling. Here, we show that the ISG15-dependent stabilisation of USP18 involves hydrophobic interactions reliant on tryptophan 123 (W123) in ISG15. Nonetheless, while USP18 stabilisation is necessary, it is not sufficient for the regulation of IFN signalling; ISG15 C-terminal mutants with significantly reduced affinity still stabilised USP18, yet the magnitude of signalling resembled ISG15-deficient cells. Hence, USP18 requires non-covalent interactions with the ISG15 C-terminal diGlycine motif to promote its regulatory function. It shows ISG15 is a repressor of type I IFN signalling beyond its role as a USP18 stabiliser.
Collapse
Affiliation(s)
- Andri Vasou
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Katie Nightingale
- Department of MedicineCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Vladimíra Cetkovská
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Jonathan Scheler
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Connor G. G. Bamford
- Medical Research Council‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Jelena Andrejeva
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Jessica C. Rowe
- Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kirby N. Swatek
- Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ulrich Schwarz‐Linek
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Richard E. Randall
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - John McLauchlan
- Medical Research Council‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Michael P. Weekes
- Department of MedicineCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Dusan Bogunovic
- Department of PediatricsColumbia University Medical CenterNew YorkNew YorkUSA
| | - David J. Hughes
- Biomedical Sciences Research ComplexSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
27
|
Corrêa CCG, Barroso TS, Xavier LR, Pinto VB, Reis RS, Pena GF, Santa-Catarina C, Vivas M, do Amaral Júnior AT, Silveira V. Comparative Proteomic Analysis of Popcorn Genotypes Identifies Differentially Accumulated Proteins Associated with Resistance Pathways to Southern Leaf Blight Disease. PLANTS (BASEL, SWITZERLAND) 2025; 14:426. [PMID: 39942988 PMCID: PMC11819967 DOI: 10.3390/plants14030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Southern leaf blight (SLB), caused by Bipolaris maydis, poses a significant threat to maize and popcorn production. To understand the molecular mechanisms underlying SLB resistance, we conducted a high-throughput proteomic analysis comparing SLB-resistant (L66) and SLB-susceptible (L51) popcorn genotypes at four and ten days after inoculation (DAI). A total of 717 proteins were identified, with 151 differentially accumulated proteins (DAPs) between the genotypes. Eighteen DAPs exhibited the same regulatory pattern in both the SLB-resistant and SLB-susceptible genotypes at four (R4/S4) and ten (R10/S10) DAI. The protein-protein interaction (PPI) network of differentially accumulated proteins (DAPs) linked to SLB resistance and susceptibility enriched specific metabolic pathways in the SLB response, including photosynthesis, ribosome, ascorbate and aldarate metabolism, glutathione metabolism, and carbon metabolism. Proteins such as photosystem II 11 kD protein (B4FRJ4, PSB27-1), which was up-regulated at both time points (R4/S4 and R10/S10), and 60S acidic ribosomal protein P0 (A0A1D6LEZ7, RPP0B), which was unique to the resistant genotype at both time points (R4 and R10), highlighted the importance of maintaining photosynthetic efficiency and protein synthesis during pathogen attack. Additionally, dehydroascorbate reductase like-3 (B4F817, DHAR3) was consistently up-regulated at both time points in resistant genotypes, emphasizing its role in redox balance and ROS detoxification. In contrast, glyceraldehyde-3-phosphate dehydrogenase (K7UGF5, GAPC2), a glycolytic enzyme, was unique to the susceptible genotype, suggesting its involvement in managing energy metabolism under stress conditions. Our findings suggest that resistance to SLB in popcorn involves a combination of enhanced photosynthetic repair, redox homeostasis, and ribosomal protein activity, providing new potential molecular targets, such as DHAR3 and RPP0B, for genetic improvement in SLB resistance. These results offer valuable insights into breeding programs aimed at developing SLB-resistant popcorn varieties.
Collapse
Affiliation(s)
- Caio Cézar Guedes Corrêa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Tatiana Santos Barroso
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alto Universitário s/n, Alegre 29500-000, ES, Brazil
| | - Lucas Rodrigues Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Ricardo Souza Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Guilherme Ferreira Pena
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (G.F.P.); (A.T.d.A.J.)
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Marcelo Vivas
- Laboratório de Engenharia Agrícola, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Antonio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (G.F.P.); (A.T.d.A.J.)
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
28
|
Okuda S, Yoshizawa A, Kobayashi D, Takahashi Y, Watanabe Y, Moriya Y, Hatano A, Takami T, Matsumoto M, Araki N, Tabata T, Iwasaki M, Sugiyama N, Kodera Y, Tanaka S, Goto S, Kawano S, Ishihama Y. jPOST environment accelerates the reuse and reanalysis of public proteome mass spectrometry data. Nucleic Acids Res 2025; 53:D462-D467. [PMID: 39526391 PMCID: PMC11701591 DOI: 10.1093/nar/gkae1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
jPOST (https://jpostdb.org/) comprises jPOSTrepo (https://repository.jpostdb.org/) (over 2000 projects), a repository for proteome mass spectrometry data, the reanalysis of raw proteome data based on a standardised protocol using UniScore, and jPOSTdb (https://globe.jpostdb.org/) (over 600 datasets), a database that integrates the reanalysed data. The jPOST reanalysis protocol rescores MS/MS spectra using a new scale, UniScore, to evaluate the extent to which the spectral peaks correspond to the amino acid sequences identified by search engines. However, the metadata registered in the repository database is insufficient for conducting the reanalysis. To address this issue, the Japanese Proteomics Society launched a data journal, the Journal of Proteome Data and Methods (JPDM), which accepts data descriptor articles detailing metadata that can be reanalysed. Within jPOST, raw proteome data is reanalysed based on the metadata described in the JPDM data descriptor articles, utilising UniScore. The reanalysed data is deposited in jPOSTdb, and a link to the JPDM articles is added to jPOSTrepo. These reanalysis accelerations within the jPOST environment will promote FAIR data principles and open science.
Collapse
Affiliation(s)
- Shujiro Okuda
- Medical AI Center, Niigata University School of Medicine, 2−5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Akiyasu C Yoshizawa
- Medical AI Center, Niigata University School of Medicine, 2−5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Daiki Kobayashi
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yushi Takahashi
- Medical AI Center, Niigata University School of Medicine, 2−5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yu Watanabe
- Medical AI Center, Niigata University School of Medicine, 2−5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yuki Moriya
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Tomoyo Takami
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | | | - Mio Iwasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoyuki Sugiyama
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshio Kodera
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| | | | - Susumu Goto
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan
| | - Shin Kawano
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
29
|
Venturini E, Maaß S, Bischler T, Becher D, Vogel J, Westermann AJ. Functional characterization of the DUF1127-containing small protein YjiS of Salmonella Typhimurium. MICROLIFE 2025; 6:uqae026. [PMID: 39790481 PMCID: PMC11707872 DOI: 10.1093/femsml/uqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for Salmonella pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS. Cell culture infection assays with Salmonella mutants lacking or overexpressing YjiS suggested this small protein to delay bacterial escape from macrophages. Mutant scanning of the protein's conserved, arginine-rich DUF1127 domain excluded a major effect of single amino acid substitutions on the infection phenotype. A comparative dual RNA-seq assay uncovered the molecular footprint of YjiS in the macrophage response to infection, with host effects related to oxidative stress and the cell cortex. Bacterial cell fractionation experiments demonstrated YjiS to associate with the inner membrane and proteins interacting with YjiS in pull-down experiments were enriched for inner membrane processes. Among the YjiS interactors was the two-component system SsrA/B, the master transcriptional activator of intracellular virulence genes and a suppressor of flagellar genes. Indeed, in the absence of YjiS, we observed elevated expression of motility genes and an increased number of flagella per bacterium. Together, our study points to a role for Salmonella YjiS as a membrane-associated timer of pathogen dissemination.
Collapse
Affiliation(s)
- Elisa Venturini
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Sandra Maaß
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Department of Microbiology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
30
|
Zhang X, Ling T, Jin Z, Xu S, Gao Z, Sun B, Qiu Z, Wei J, Dong N, Wang G, Wang G, Li L, Abdul-Mageed M, Lakshmanan LVS, He F, Ouyang W, Chang C, Sun S. π-PrimeNovo: an accurate and efficient non-autoregressive deep learning model for de novo peptide sequencing. Nat Commun 2025; 16:267. [PMID: 39747823 PMCID: PMC11695716 DOI: 10.1038/s41467-024-55021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Peptide sequencing via tandem mass spectrometry (MS/MS) is essential in proteomics. Unlike traditional database searches, deep learning excels at de novo peptide sequencing, even for peptides missing from existing databases. Current deep learning models often rely on autoregressive generation, which suffers from error accumulation and slow inference speeds. In this work, we introduce π-PrimeNovo, a non-autoregressive Transformer-based model for peptide sequencing. With our architecture design and a CUDA-enhanced decoding module for precise mass control, π-PrimeNovo achieves significantly higher accuracy and up to 89x faster inference than state-of-the-art methods, making it ideal for large-scale applications like metaproteomics. Additionally, it excels in phosphopeptide mining and detecting low-abundance post-translational modifications (PTMs), marking a substantial advance in peptide sequencing with broad potential in biological research.
Collapse
Affiliation(s)
- Xiang Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- University of British Columbia, Vancouver, BC, Canada
| | - Tianze Ling
- Tsinghua University, Beijing, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhi Jin
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Sheng Xu
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhiqiang Gao
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Boyan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zijie Qiu
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Jiaqi Wei
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- Zhejiang University, Zhejiang, China
| | - Nanqing Dong
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Guangshuai Wang
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Guibin Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Leyuan Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Muhammad Abdul-Mageed
- University of British Columbia, Vancouver, BC, Canada
- MBZUAI, Abu Dhabi, United Arab Emirates
| | | | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- International Academy of Phronesis Medicine (Guangdong), Guangdong, Guangzhou, China
| | - Wanli Ouyang
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Cheng Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Joseph RE, Wales TE, Jayne S, Britton RG, Fulton DB, Engen JR, Dyer MJS, Andreotti AH. Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia. eLife 2024; 13:RP95488. [PMID: 39728925 DOI: 10.7554/elife.95488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Robert G Britton
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| |
Collapse
|
32
|
Xie N, Sharma C, Rusche K, Wang X. Phosphoketolase and KDPG aldolase metabolisms modulate photosynthetic carbon yield in cyanobacteria. THE PLANT CELL 2024; 37:koae291. [PMID: 39471324 DOI: 10.1093/plcell/koae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner-Doudoroff pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles.
Collapse
Affiliation(s)
- Ningdong Xie
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Chetna Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Katherine Rusche
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
33
|
Berkhout MD, Ioannou A, de Ram C, Boeren S, Plugge CM, Belzer C. Mucin-driven ecological interactions in an in vitro synthetic community of human gut microbes. Glycobiology 2024; 34:cwae085. [PMID: 39385462 PMCID: PMC11632381 DOI: 10.1093/glycob/cwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Carol de Ram
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
34
|
Véronique L, Véronique A, Guillaume C, Jean-Michel C, Françoise A. Candida albicans cells exhibit media specific proteomic profiles during induction of filamentation. BMC Microbiol 2024; 24:500. [PMID: 39592958 PMCID: PMC11600622 DOI: 10.1186/s12866-024-03627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Candida albicans is an opportunist pathogen responsible for a broad spectrum of infections, from superficial mycosis to the systemic disease candidiasis. C. albicans has various morphological forms, including unicellular budding yeasts, filamentous pseudohyphae and true hyphae, and the ability to switch from yeast to hyphal forms is a key survival mechanism underlying the adaptation of the pathogen to the microenvironments encountered within the host. Filamentation is regulated by multiple signalling pathways and its induction in different growth media in vitro has often led to conflicting results. In this study, we performed quantitative proteomic analyses to compare the response of C. albicans yeast cells grown in YNB minimal medium to those of cells grown in four media widely used in the literature to induce the yeast-to-hyphae transition: YNB-Serum, YNB-N-acetylglucosamine (YNB-NAG), Lee medium and rich Spider medium. We show that each growth medium induces a unique pattern of response in C. albicans cells, and that some conditions trigger an original and specific adaptive metabolic response, showing significant differences in the intracellular content of the various filamentous forms. Moreover, this comparison of proteomic profiles indicates that the medium used can modify the thiol-dependent redox status of the cells, particularly in YNB-Serum and Lee medium and, to a lesser extent, in Spider medium, confirming the role of oxidative stress in the filamentation process. Overall, our data indicate that some of the media routinely used to induce hyphae cause significant changes in proteomic signature that should be taken account more carefully when exploring the hyphal transition in this pathogen.
Collapse
Affiliation(s)
- Legros Véronique
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Albanese Véronique
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Chevreux Guillaume
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Auchère Françoise
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France.
| |
Collapse
|
35
|
Sengupta P, Dutta S, Liew F, Samrot A, Dasgupta S, Rajput MA, Slama P, Kolesarova A, Roychoudhury S. Reproductomics: Exploring the Applications and Advancements of Computational Tools. Physiol Res 2024; 73:687-702. [PMID: 39530905 PMCID: PMC11629954 DOI: 10.33549/physiolres.935389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Over recent decades, advancements in omics technologies, such as proteomics, genomics, epigenomics, metabolomics, transcriptomics, and microbiomics, have significantly enhanced our understanding of the molecular mechanisms underlying various physiological and pathological processes. Nonetheless, the analysis and interpretation of vast omics data concerning reproductive diseases are complicated by the cyclic regulation of hormones and multiple other factors, which, in conjunction with a genetic makeup of an individual, lead to diverse biological responses. Reproductomics investigates the interplay between a hormonal regulation of an individual, environmental factors, genetic predisposition (DNA composition and epigenome), health effects, and resulting biological outcomes. It is a rapidly emerging field that utilizes computational tools to analyze and interpret reproductive data, with the aim of improving reproductive health outcomes. It is time to explore the applications of reproductomics in understanding the molecular mechanisms underlying infertility, identification of potential biomarkers for diagnosis and treatment, and in improving assisted reproductive technologies (ARTs). Reproductomics tools include machine learning algorithms for predicting fertility outcomes, gene editing technologies for correcting genetic abnormalities, and single cell sequencing techniques for analyzing gene expression patterns at the individual cell level. However, there are several challenges, limitations and ethical issues involved with the use of reproductomics, such as the applications of gene editing technologies and their potential impact on future generations are discussed. The review comprehensively covers the applications and advancements of reproductomics, highlighting its potential to improve reproductive health outcomes and deepen our understanding of reproductive molecular mechanisms.
Collapse
Affiliation(s)
- P Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE; Department of Life Science and Bioinformatics, Assam University, Silchar, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stachowicz A, Czepiel K, Wiśniewska A, Stachyra K, Ulatowska-Białas M, Kuśnierz-Cabala B, Surmiak M, Majka G, Kuś K, Wood ME, Torregrossa R, Whiteman M, Olszanecki R. Mitochondria-targeted hydrogen sulfide donor reduces fatty liver and obesity in mice fed a high fat diet by inhibiting de novo lipogenesis and inflammation via mTOR/SREBP-1 and NF-κB signaling pathways. Pharmacol Res 2024; 209:107428. [PMID: 39303773 DOI: 10.1016/j.phrs.2024.107428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Metabolic diseases that include obesity and metabolic-associated fatty liver disease (MAFLD) are a rapidly growing worldwide public health problem. The pathogenesis of MAFLD includes abnormally increased lipogenesis, chronic inflammation, and mitochondrial dysfunction. Mounting evidence suggests that hydrogen sulfide (H2S) is an important player in the liver, regulating lipid metabolism and mitochondrial function. However, direct delivery of H2S to mitochondria has not been investigated as a therapeutic strategy in obesity-related metabolic disorders. Therefore, our aim was to comprehensively evaluate the influence of prolonged treatment with a mitochondria sulfide delivery molecule (AP39) on the development of fatty liver and obesity in a high fat diet (HFD) fed mice. Our results demonstrated that AP39 reduced hepatic steatosis in HFD-fed mice, which was corresponded with decreased triglyceride content. Furthermore, treatment with AP39 downregulated pathways related to biosynthesis of unsaturated fatty acids, lipoprotein assembly and PPAR signaling. It also led to a decrease in hepatic de novo lipogenesis by downregulating mTOR/SREBP-1/SCD1 pathway. Moreover, AP39 administration alleviated obesity in HFD-fed mice, which was reflected by reduced weight of mice and adipose tissue, decreased leptin levels in the plasma and upregulated expression of adipose triglyceride lipase in epididymal white adipose tissue (eWAT). Finally, AP39 reduced inflammation in the liver and eWAT measured as the expression of proinflammatory markers (Il1b, Il6, Tnf, Mcp1), which was due to downregulated mTOR/NF-κB pathway. Taken together, mitochondria-targeted sulfide delivery molecules could potentially provide a novel therapeutic approach to the treatment/prevention of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| | - Klaudia Czepiel
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Kuśnierz-Cabala
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
37
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024; 50:1113-1133. [PMID: 38655699 PMCID: PMC11627473 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Lara Paulini
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | | | - Thorsten Mosler
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences, Goethe UniversityFrankfurt am MainGermany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and PharmacyJulius‐Maximilians‐UniversitätWürzburgGermany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Donat Kögel
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner Site FrankfurtFrankfurt am MainGermany
- German Cancer Research Center DKFZHeidelbergGermany
| |
Collapse
|
38
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
39
|
Stachowicz A, Wiśniewska A, Czepiel K, Pomierny B, Skórkowska A, Kuśnierz-Cabala B, Surmiak M, Kuś K, Wood ME, Torregrossa R, Whiteman M, Olszanecki R. Mitochondria-targeted hydrogen sulfide donor reduces atherogenesis by changing macrophage phenotypes and increasing UCP1 expression in vascular smooth muscle cells. Biomed Pharmacother 2024; 180:117527. [PMID: 39405912 DOI: 10.1016/j.biopha.2024.117527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Atherosclerosis is a leading cause of morbidity and mortality in the Western countries. Mounting evidence points to the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Recently, it has been shown that mitochondrial hydrogen sulfide (H2S) can complement the bioenergetic role of Krebs cycle leading to improved mitochondrial function. However, controlled, direct delivery of H2S to mitochondria was not investigated as a therapeutic strategy in atherosclerosis. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with mitochondrial H2S donor AP39 on the development of atherosclerotic lesions in apolipoprotein E knockout (apoE-/-) mice. Our results indicated that AP39 reduced atherosclerosis in apoE-/- mice and stabilized atherosclerotic lesions through decreased total macrophage content and increased collagen depositions. Moreover, AP39 reduced proinflammatory M1-like macrophages and increased anti-inflammatory M2-like macrophages in atherosclerotic lesions. It also upregulated pathways related to mitochondrial function, such as cellular respiration, fatty acid β-oxidation and thermogenesis while downregulated pathways associated with immune system, platelet aggregation and complement and coagulation cascades in the aorta. Furthermore, treatment with AP39 increased the expression of mitochondrial brown fat uncoupling protein 1 (UCP1) in vascular smooth muscle cells (VSMCs) in atherosclerotic lesions and upregulated mRNA expression of other thermogenesis-related genes in the aorta but not perivascular adipose tissue (PVAT) of apoE-/- mice. Finally, AP39 treatment decreased markers of activated endothelium and increased endothelial nitric oxide synthase (eNOS) expression and activation. Taken together, mitochondrial H2S donor AP39 could provide potentially a novel therapeutic approach to the treatment/prevention of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Hydrogen Sulfide/metabolism
- Macrophages/metabolism
- Macrophages/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Mice
- Phenotype
- Mice, Inbred C57BL
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Mice, Knockout, ApoE
- Mice, Knockout
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| | - Anna Wiśniewska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Imaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Poland
| | - Alicja Skórkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Imaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Poland
| | - Beata Kuśnierz-Cabala
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
40
|
Kaplieva-Dudek I, Samak NA, Bormann J, Kaschani F, Kaiser M, Meckenstock RU. Characterization of 2-phenanthroate:CoA ligase from the sulfate-reducing, phenanthrene-degrading enrichment culture TRIP. Appl Environ Microbiol 2024; 90:e0129624. [PMID: 39248461 PMCID: PMC11497795 DOI: 10.1128/aem.01296-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemically stable pollutants that are poorly degraded by microorganisms in anoxic sediments. The anaerobic degradation pathway of PAHs such as phenanthrene starts with a carboxylation reaction forming phenanthroic acid. In this study, we identified and characterized the next enzyme in the pathway, the 2-phenanthroate:CoA ligase involved in the ATP-dependent formation of 2-phenanthroyl-CoA from cell-free extracts of the sulfate-reducing enrichment culture TRIP grown anaerobically with phenanthrene. The identified gene sequence indicated that 2-phenanthroate:CoA ligase belongs to the phenylacetate:CoA ligase-like enzyme family. Based on the sequence, we predict a two-domain structure of the 2-phenanthroate:CoA ligase with a typical large N-terminal and a smaller C-terminal domain. Partial purification of 2-phenanthroate:CoA ligase allowed us to identify the coding gene in the genome. 2-Phenanthroate:CoA ligase gene was heterologously expressed in Escherichia coli. Characterization of the 2-phenanthroate:CoA ligase was performed using the partially purified enzyme from cell-free extract and the purified recombinant enzyme. Testing all possible phenanthroic acid isomers as substrate for the ligase reaction showed that 2-phenanthroic acid is the preferred substrate and only 3-phenanthroic acid can be utilized to a minor extent. This also suggests that the product of the prior carboxylase reaction is 2-phenanthroic acid. 2-Phenanthroate:CoA ligase has an optimal activity at pH 7.5 and is oxygen-insensitive, analogous to other aryl-CoA ligases. In contrast to aryl-Coenzyme A ligases reported in the literature, which need Mg2+ as cofactor, 2-phenanthroate:CoA ligase showed greatest activity with a combination of 5 mM MgCl2 and 5 mM KCl. Furthermore, a substrate inhibition was observed at ATP concentrations above 1 mM and the enzyme was also active with ADP. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) constitute a class of very toxic and persistent pollutants in the environment. However, the anaerobic degradation of three-ring PAHs such as phenanthrene is barely investigated. The initial degradation step starts with a carboxylation followed by a CoA‑thioesterification reaction performed by an aryl-CoA ligase. The formation of a CoA-thioester is an important step in the degradation pathway of aromatic compounds because the CoA-ester is needed for all downstream biochemical reactions in the pathway. Furthermore, we provide biochemical proof for the identification of the first genes for anaerobic phenanthrene degradation. Results presented here provide information about the biochemical and structural properties of the purified 2‑phenanthroate:CoA ligase and expand our knowledge of aryl-CoA ligases.
Collapse
Affiliation(s)
- I. Kaplieva-Dudek
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Nadia A. Samak
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Rainer U. Meckenstock
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Assendorp N, Fossati M, Libé-Philippot B, Christopoulou E, Depp M, Rapone R, Dingli F, Loew D, Vanderhaeghen P, Charrier C. CTNND2 moderates the pace of synaptic maturation and links human evolution to synaptic neoteny. Cell Rep 2024; 43:114797. [PMID: 39352808 DOI: 10.1016/j.celrep.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.
Collapse
Affiliation(s)
- Nora Assendorp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Matteo Fossati
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Marine Depp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Roberta Rapone
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
42
|
Pol SA, Liljenberg S, Barr J, Simon G, Wong-Dilworth L, Paterson DL, Berishvili VP, Bottanelli F, Kaschani F, Kaiser M, Pettersson M, Hellerschmied D. Induced degradation of SNAP-fusion proteins. RSC Chem Biol 2024:d4cb00184b. [PMID: 39444693 PMCID: PMC11494418 DOI: 10.1039/d4cb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Self-labeling protein tags are an efficient means to visualize, manipulate, and isolate engineered fusion proteins with suitable chemical probes. The SNAP-tag, which covalently conjugates to benzyl-guanine and -chloropyrimidine derivatives is used extensively in fluorescence microscopy, given the availability of suitable SNAP-ligand-based probes. Here, we extend the applicability of the SNAP-tag to targeted protein degradation. We developed a set of SNAP PROteolysis TArgeting Chimeras (SNAP-PROTACs), which recruit the VHL or CRBN-ubiquitin E3 ligases to induce the degradation of SNAP-fusion proteins. Endogenous tagging enabled the visualization and the selective depletion of a SNAP-clathrin light chain fusion protein using SNAP-PROTACs. The addition of PROTACs to the SNAP-tag reagent toolbox facilitates the comprehensive analysis of protein function with a single gene tagging event.
Collapse
Affiliation(s)
- Savina Abraham Pol
- Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
| | - Sara Liljenberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Jack Barr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Gina Simon
- Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
| | - Luis Wong-Dilworth
- Institut für Biochemie, Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Danielle L Paterson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Vladimir P Berishvili
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Francesca Bottanelli
- Institut für Biochemie, Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, University of Duisburg-Essen, Center for Medical Biotechnology, Faculty of Biology Essen Germany
| | - Markus Kaiser
- Department of Chemical Biology, University of Duisburg-Essen, Center for Medical Biotechnology, Faculty of Biology Essen Germany
| | - Mariell Pettersson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Doris Hellerschmied
- Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
| |
Collapse
|
43
|
Sauer PV, Pavlenko E, Cookis T, Zirden LC, Renn J, Singhal A, Hunold P, Hoehne-Wiechmann MN, van Ray O, Kaschani F, Kaiser M, Hänsel-Hertsch R, Sanbonmatsu KY, Nogales E, Poepsel S. Activation of automethylated PRC2 by dimerization on chromatin. Mol Cell 2024; 84:3885-3898.e8. [PMID: 39303719 PMCID: PMC11980035 DOI: 10.1016/j.molcel.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/31/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit enhancer of zeste homolog 2 (EZH2) stimulates its activity by an unknown mechanism. Here, we show that human PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a previously unknown mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification-coupled dimerization in the regulation of chromatin-modifying complexes.
Collapse
Affiliation(s)
- Paul V Sauer
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Egor Pavlenko
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Trinity Cookis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Linda C Zirden
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Juliane Renn
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Pascal Hunold
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Michaela N Hoehne-Wiechmann
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Olivia van Ray
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, University of Duisburg-Essen, Center for Medical Biotechnology (ZMB), Faculty of Biology, Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, University of Duisburg-Essen, Center for Medical Biotechnology (ZMB), Faculty of Biology, Essen, Germany
| | - Robert Hänsel-Hertsch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Institute of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Eva Nogales
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
44
|
Villa C, Secchi V, Macchi M, Tripodi L, Trombetta E, Zambroni D, Padelli F, Mauri M, Molinaro M, Oddone R, Farini A, De Palma A, Varela Pinzon L, Santarelli F, Simonutti R, Mauri P, Porretti L, Campione M, Aquino D, Monguzzi A, Torrente Y. Magnetic-field-driven targeting of exosomes modulates immune and metabolic changes in dystrophic muscle. NATURE NANOTECHNOLOGY 2024; 19:1532-1543. [PMID: 39039121 PMCID: PMC11486659 DOI: 10.1038/s41565-024-01725-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution.
Collapse
Grants
- Regione Lombardia (Region of Lombardy)
- Fondazione Telethon (Telethon Foundation)
- RF-2016-02362263 "Multimodal nanotracking for exosome-based therapy in DMD" (theory enhancing) “At the origin of congenital muscular dystrophy: shedding light on the Tdark proteins DPM2 and DPM3”, Bando “Cariplo Telethon Alliance GJC2021” 2022
- Multiomics pRofiling of patient spEcific Models to predict druggable targets in severe neuromuscular rare diseases (REMODEL)”, Unmet Medical Needs, Fondazione Regionale per la Ricerca Biomedica (FRRB), 2022 Nanoparticles in Freidreich Ataxia” National Center for Gene Therapy and Drugs based on RNA Technology, Spoke #1: Genetic diseases, PNRR CN3 RNA, 2022
- “Isolamento di nanoparticelle naturali da utilizzare come agenti anti-infiammatori/anti-fibrotici”, 5X1000, Fondazione Patrimonio e dalla Direzione Scientifica Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (2022)
- PNRR CN3 RNA, 2022, PNRR project ANTHEM: AdvaNced Technologies for Human-centrEd Medicine - PNC0000003 Spoke #2 – NextGenerationEU RF-2016-02362263 "Multimodal nanotracking for exosome-based therapy in DMD" (theory enhancing)
Collapse
Affiliation(s)
- Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Valeria Secchi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Mirco Macchi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Luxembourg Centre for Systems Biomedicine, Department of Biomedical Data Science, Luxembourg City, Luxembourg
| | - Luana Tripodi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Desiree Zambroni
- Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC, San Raffaele Scientific Institute - OSR, Milan, Italy
| | - Francesco Padelli
- Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Monica Molinaro
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Rebecca Oddone
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella De Palma
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy
- Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy
| | - Laura Varela Pinzon
- Veterinary Medicine, Department Clinical Sciences, Equine Sciences, Equine Musculoskeletal Biology. Utrecht University, Utrecht, Netherlands
| | - Federica Santarelli
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - PierLuigi Mauri
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy
- Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Campione
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
| | - Domenico Aquino
- Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
45
|
Choi S, Dalloul RSD, Vemulapalli PB, Yousef S, Goswami N, Schmidt F. Comprehensive Proteomic Profiling of Converted Adipocyte-like Cells from Normal Human Dermal Fibroblasts Using Data-Independent Acquisition Mass Spectrometry. ACS OMEGA 2024; 9:40034-40050. [PMID: 39346858 PMCID: PMC11425921 DOI: 10.1021/acsomega.4c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Adipocytes play an important role in the regulation of systemic energy homeostasis and are closely related to metabolic disorders, such as type-2 diabetes and inflammatory bowel diseases. Particularly, there is an increasing need for a human adipocyte model for studying metabolic diseases and obesity. However, utilizing human primary adipocyte culture and stem-cell-based models presents several practical limitations due to their time-consuming nature, requirement for relatively intensive labor, and high cost. Here, we applied direct conversion of normal human dermal fibroblasts (NHDFs) into adipocyte-like cells using an adipogenic cocktail containing 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and rosiglitazone and confirmed prominent lipid droplet accumulation in the converted cells. For profiling the proteome changes in the converted cells, we conducted a comprehensive quantitative proteome analysis of both the intracellular and extracellular proteome fractions using data-independent acquisition mass spectrometry. We observed that several proteins, which are known to be highly expressed in adipocytes specifically, were dominantly increased in the converted cells. In this study, we suggest that NHDFs can be converted into adipocyte-like cells by an adipogenic cocktail and can serve as a useful tool for studying human adipocytes and their metabolism.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Rajaa S D Dalloul
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Praveen Babu Vemulapalli
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Sondos Yousef
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Neha Goswami
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Research, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. 24144 Doha, Qatar
| |
Collapse
|
46
|
Schillinger J, Koci M, Bravo-Rodriguez K, Heilmann G, Kaschani F, Kaiser M, Beuck C, Luecke H, Huber R, Hellerschmied D, Burston SG, Ehrmann M. High resolution analysis of proteolytic substrate processing. J Biol Chem 2024; 300:107812. [PMID: 39313096 PMCID: PMC11513451 DOI: 10.1016/j.jbc.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates. To gain a deeper understanding of how folded proteins are initially processed and subsequently degraded into short peptides by human HTRA1, we established an integrated and quantitative approach using time-resolved mass spectrometry, CD spectroscopy, and bioinformatics. The resulting data provide high-resolution information on up to 178 individual proteolytic sites within folded ANXA1 (consisting of 346 amino acids), the relative frequency of cuts at each proteolytic site, the preferences of the protease for the amino acid sequence surrounding the scissile bond, as well as the degrees of sequential structural relaxation and unfolding of the substrate that occur during progressive degradation. Our workflow provides precise molecular insights into protease-substrate interactions, which could be readily adapted to address other posttranslational modifications such as phosphorylation in dynamic protein complexes.
Collapse
Affiliation(s)
- Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michelle Koci
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Geronimo Heilmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Hartmut Luecke
- Nova School of Science and Technology, Lisbon, Portugal; Department of Biophysics, University of California, Irvine, California, USA
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany; Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Doris Hellerschmied
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
47
|
Parsons JD, Cocker CR, East AK, Wheatley RM, Ramachandran VK, Kaschani F, Kaiser M, Poole PS. Factors governing attachment of Rhizobium leguminosarum to legume roots at acid, neutral, and alkaline pHs. mSystems 2024; 9:e0042224. [PMID: 39166858 PMCID: PMC11406972 DOI: 10.1128/msystems.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Rhizobial attachment to host legume roots is the first physical interaction of bacteria and plants in symbiotic nitrogen fixation. The pH-dependent primary attachment of Rhizobium leguminosarum biovar viciae 3841 to Pisum sativum (pea) roots was investigated by genome-wide insertion sequencing, luminescence-based attachment assays, and proteomic analysis. Under acid, neutral, or alkaline pH, a total of 115 genes are needed for primary attachment under one or more environmental pH, with 22 genes required for all. These include components of cell surfaces and membranes, together with enzymes that construct and modify them. Mechanisms of dealing with stress also play a part; however, exact requirements vary depending on environmental pH. RNASeq showed that knocking out the two transcriptional regulators required for attachment causes massive changes in the bacterial cell surface. Approximately half of the 54 proteins required for attachment at pH 7.0 have a role in the later stages of nodule formation. We found no evidence for a single rhicadhesin responsible for alkaline attachment, although sonicated cell surface fractions inhibited root attachment at alkaline pH. Our results demonstrate the complexity of primary root attachment and illustrate the diversity of mechanisms involved. IMPORTANCE The first step by which bacteria interact with plant roots is by attachment. In this study, we use a combination of insertion sequencing and biochemical analysis to determine how bacteria attach to pea roots and how this is influenced by pH. We identify several key adhesins, which are molecules that enable bacteria to stick to roots. This includes a novel filamentous hemagglutinin which is needed at all pHs for attachment. Overall, 115 proteins are required for attachment at one or more pHs.
Collapse
Affiliation(s)
- Jack D Parsons
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Clare R Cocker
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Alison K East
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | | | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, University Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen (ACE), University Duisburg-Essen, ZMB, Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, University Duisburg-Essen, Essen, Germany
| | - Philip S Poole
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Jonas E, Mnatsakanyan N, Rivera-Molina F, Robson A, Garfinkel AM, Kumar A, Batter S, Padovano V, Webster K, Cardone R, Berg J, Toomre D, Kibbey R, Caplan M, Khokha M. CALHM2 is a mitochondrial protein import channel that regulates fatty acid metabolism. RESEARCH SQUARE 2024:rs.3.rs-4985689. [PMID: 39315269 PMCID: PMC11419264 DOI: 10.21203/rs.3.rs-4985689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For mitochondrial metabolism to occur in the matrix, multiple proteins must be imported across the two (inner and outer) mitochondrial membranes. Classically, two protein import channels, TIM/TOM, are known to perform this function, but whether other protein import channels exist is not known. Here, using super-resolution microscopy, proteomics, and electrophysiological techniques, we identify CALHM2 as the import channel for the ECHA subunit of the mitochondrial trifunctional protein (mTFP), which catalyzes β-oxidation of fatty acids in the mitochondrial matrix. We find that CALHM2 sits specifically at the inner mitochondrial and cristae membranes and is critical for membrane morphology. Depletion of CALHM2 leads to a mislocalization of ECHA outside of the mitochondria leading to severe cellular metabolic defects. These defects include cytosolic accumulation of fatty acids, depletion of tricarboxylic acid cycle enzymes and intermediates, and reduced cellular respiration. Our data identify CALHM2 as an essential protein import channel that is critical for fatty acid- and glucose-dependent aerobic metabolism.
Collapse
|
49
|
Landman SL, Ressing ME, Gram AM, Tjokrodirijo RTN, van Veelen PA, Neefjes J, Hoeben RC, van der Veen AG, Berlin I. Epstein-Barr virus nuclear antigen EBNA3A modulates IRF3-dependent IFNβ expression. J Biol Chem 2024; 300:107645. [PMID: 39127175 PMCID: PMC11403517 DOI: 10.1016/j.jbc.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNβ induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNβ transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNβ promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.
Collapse
Affiliation(s)
- Sanne L Landman
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Anna M Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | | | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
50
|
Culver KD, Sadecki PW, Jackson JK, Brown ZA, Hnilica ME, Wu J, Shaw LN, Wommack AJ, Hicks LM. Identification and Characterization of CC-AMP1-like and CC-AMP2-like Peptides in Capsicum spp. J Proteome Res 2024; 23:2948-2960. [PMID: 38367000 PMCID: PMC11296913 DOI: 10.1021/acs.jproteome.3c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Antimicrobial peptides (AMPs) are compounds with a variety of bioactive properties. Especially promising are their antibacterial activities, often toward drug-resistant pathogens. Across different AMP sources, AMPs expressed within plants are relatively underexplored with a limited number of plant AMP families identified. Recently, we identified the novel AMPs CC-AMP1 and CC-AMP2 in ghost pepper plants (Capsicum chinense x frutescens), exerting promising antibacterial activity and not classifying into any known plant AMP family. Herein, AMPs related to CC-AMP1 and CC-AMP2 were identified within both Capsicum annuum and Capsicum baccatum. In silico predictions throughout plants were utilized to illustrate that CC-AMP1-like and CC-AMP2-like peptides belong to two broader AMP families, with three-dimensional structural predictions indicating that CC-AMP1-like peptides comprise a novel subfamily of α-hairpinins. The antibacterial activities of several closely related CC-AMP1-like peptides were compared with a truncated version of CC-AMP1 possessing significantly more activity than the full peptide. This truncated peptide was further characterized to possess broad-spectrum antibacterial activity against clinically relevant ESKAPE pathogens. These findings illustrate the value in continued study of plant AMPs toward characterization of novel AMP families, with CC-AMP1-like peptides possessing promising bioactivity.
Collapse
Affiliation(s)
- Kevin D. Culver
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Jessica K. Jackson
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Zoe A. Brown
- Department of Chemistry, High Point University, High Point, NC, 27268, United States
| | - Megan E. Hnilica
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Jingyun Wu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC, 27268, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| |
Collapse
|