1
|
Mikus N, Lamm C, Mathys C. Computational Phenotyping of Aberrant Belief Updating in Individuals With Schizotypal Traits and Schizophrenia. Biol Psychiatry 2025; 97:188-197. [PMID: 39218138 DOI: 10.1016/j.biopsych.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Psychotic experiences are thought to emerge from various interrelated patterns of disrupted belief updating, such as overestimating the reliability of sensory information and misjudging task volatility, yet these substrates have never been jointly addressed under one computational framework, and it is not clear to what degree they reflect trait-like computational patterns. METHODS We introduce a novel hierarchical Bayesian model that describes how individuals simultaneously update their beliefs about the task volatility and noise in observation. We applied this model to data from a modified predictive inference task in a test-retest study with healthy volunteers (N = 45, 4 sessions) and examined the relationship between model parameters and schizotypal traits in a larger online sample (N = 437) and in a cohort of patients with schizophrenia (N = 100). RESULTS The interclass correlations were moderate to high for model parameters and excellent for averaged belief trajectories and precision-weighted learning rates estimated through hierarchical Bayesian inference. We found that uncertainty about the task volatility was related to schizotypal traits and to positive symptoms in patients, when learning to gain rewards. In contrast, negative symptoms in patients were associated with more rigid beliefs about observational noise, when learning to avoid losses. CONCLUSIONS These findings suggest that individuals with schizotypal traits across the psychosis continuum are less likely to learn or use higher-order statistical regularities of the environment and showcase the potential of clinically relevant computational phenotypes for differentiating symptom groups in a transdiagnostic manner.
Collapse
Affiliation(s)
- Nace Mikus
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, Universität Wien, Vienna, Austria; Interacting Minds Centre, Aarhus University, Aarhus, Denmark.
| | - Claus Lamm
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, Universität Wien, Vienna, Austria
| | - Christoph Mathys
- Interacting Minds Centre, Aarhus University, Aarhus, Denmark; Translational Neuromodeling Unit, University of Zurich and ETH Zürich, Zurich, Switzerland; Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| |
Collapse
|
2
|
Yao G, Luo J, Li J, Feng K, Liu P, Xu Y. Functional gradient dysfunction in drug-naïve first-episode schizophrenia and its correlation with specific transcriptional patterns and treatment predictions. Psychol Med 2024:1-13. [PMID: 39552400 DOI: 10.1017/s0033291724001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND First-episode schizophrenia (FES) is a progressive psychiatric disorder influenced by genetics, environmental factors, and brain function. The functional gradient deficits of drug-naïve FES and its relationship to gene expression profiles and treatment outcomes are unknown. METHODS In this study, we engaged a cohort of 116 FES and 100 healthy controls (HC), aged 7 to 30 years, including 15 FES over an 8-week antipsychotic medication regimen. Our examination focused on primary-to-transmodal alterations in voxel-based connection gradients in FES. Then, we employed network topology, Neurosynth, postmortem gene expression, and support vector regression to evaluate integration and segregation functions, meta-analytic cognitive terms, transcriptional patterns, and treatment predictions. RESULTS FES displayed diminished global connectome gradients (Cohen's d = 0.32-0.57) correlated with compensatory integration and segregation functions (Cohen's d = 0.31-0.36). Predominant alterations were observed in the default (67.6%) and sensorimotor (21.9%) network, related to high-order cognitive functions. Furthermore, we identified notable overlaps between partial least squares (PLS1) weighted genes and dysregulated genes in other psychiatric conditions. Genes linked with gradient alterations were enriched in synaptic signaling, neurodevelopment process, specific astrocytes, cortical layers (layer II and IV), and developmental phases from late/mid fetal to young adulthood. Additionally, the onset age influenced the severity of FES, with discernible differences in connection gradients between minor- and adult-FES. Moreover, the connectivity gradients of FES at baseline significantly predicted treatment outcomes. CONCLUSIONS These results offer significant theoretical foundations for elucidating the intricate interplay between macroscopic functional connection gradient changes and microscopic transcriptional patterns during the onset and progression of FES.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Pozi Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, 100040, China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518031, China
| |
Collapse
|
3
|
Murphy PR, Krkovic K, Monov G, Kudlek N, Lincoln T, Donner TH. Individual differences in belief updating and phasic arousal are related to psychosis proneness. COMMUNICATIONS PSYCHOLOGY 2024; 2:88. [PMID: 39313542 PMCID: PMC11420346 DOI: 10.1038/s44271-024-00140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Many decisions entail the updating of beliefs about the state of the environment by accumulating noisy sensory evidence. This form of probabilistic reasoning may go awry in psychosis. Computational theory shows that optimal belief updating in environments subject to hidden changes in their state requires a dynamic modulation of the evidence accumulation process. Recent empirical findings implicate transient responses of pupil-linked central arousal systems to individual evidence samples in this modulation. Here, we analyzed behavior and pupil responses during evidence accumulation in a changing environment in a community sample of human participants. We also assessed their subclinical psychotic experiences (psychosis proneness). Participants most prone to psychosis showed overall less flexible belief updating profiles, with diminished behavioral impact of evidence samples occurring late during decision formation. These same individuals also exhibited overall smaller pupil responses and less reliable pupil encoding of computational variables governing the dynamic belief updating. Our findings provide insights into the cognitive and physiological bases of psychosis proneness and open paths to unraveling the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Peter R Murphy
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Psychology, Maynooth University, Co. Kildare, Ireland.
| | - Katarina Krkovic
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Gina Monov
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Kudlek
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Lincoln
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
4
|
Frank GKW, Scolnick B. Therapeutic ketogenic diet as treatment for anorexia nervosa. Front Nutr 2024; 11:1392135. [PMID: 39296512 PMCID: PMC11409850 DOI: 10.3389/fnut.2024.1392135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder. However, we lack neurobiological models and interventions to explain and treat the core characteristics of food restriction, feeling fat, and body size overestimation. Research has made progress in understanding brain function involved in the pathophysiology of AN, but translating those results into biological therapies has been challenging. Studies have suggested that metabolic factors could contribute to developing and maintaining AN pathophysiology. Here, we describe a neurobiological model for why using a therapeutic ketogenic diet could address key alterations in brain function in AN and prevent the desire for weight loss and associated eating disorder-specific symptoms. This translational model is based on animal studies and human data and integrates behavioral traits, brain neural energy metabolism, and neurotransmitter function. Pilot data indicate that the intervention can dramatically reduce eating and body-related fears, although larger studies across illness stages still need to be conducted.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | | |
Collapse
|
5
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Keller GB, Sterzer P. Predictive Processing: A Circuit Approach to Psychosis. Annu Rev Neurosci 2024; 47:85-101. [PMID: 38424472 DOI: 10.1146/annurev-neuro-100223-121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.
Collapse
Affiliation(s)
- Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- Faculty of Natural Science, University of Basel, Basel, Switzerland
| | - Philipp Sterzer
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Gross ME, Elliott JC, Schooler JW. Why creatives don't find the oddball odd: Neural and psychological evidence for atypical salience processing. Brain Cogn 2024; 178:106178. [PMID: 38823196 DOI: 10.1016/j.bandc.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Creativity has previously been linked with various attentional phenomena, including unfocused or broad attention. Although this has typically been interpreted through an executive functioning framework, such phenomena may also arise from atypical incentive salience processing. Across two studies, we examine this hypothesis both neurally and psychologically. First we examine the relationship between figural creativity and event-related potentials during an audio-visual oddball task, finding that rater creativity of drawings is associated with a diminished P300 response at midline electrodes, while abstractness and elaborateness of the drawings is associated with an altered distribution of the P300 over posterior electrodes. These findings support the notion that creativity may involve an atypical attribution of salience to prominent information. We further explore the incentive salience hypothesis by examining relationships between creativity and a psychological indicator of incentive salience captured by participants' ratings of enjoyment (liking) and their motivation to pursue (wanting) diverse real world rewards, as well as their positive spontaneous thoughts about those rewards. Here we find enhanced motivation to pursue activities as well as a reduced relationship between the overall tendency to enjoy rewards and the tendency to pursue them. Collectively, these findings indicate that creativity may be associated with atypical allocation of attentional and motivational resources to novel and rewarding information, potentially allowing more types of information access to attentional resources and motivating more diverse behaviors. We discuss the possibility that salience attribution in creatives may be less dependent on task-relevance or hedonic pleasure, and suggest that atypical salience attribution may represent a trait-like feature of creativity.
Collapse
Affiliation(s)
- Madeleine E Gross
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - James C Elliott
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Jonathan W Schooler
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Schoeller F, Jain A, Pizzagalli DA, Reggente N. The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:617-630. [PMID: 38383913 PMCID: PMC11233292 DOI: 10.3758/s13415-024-01168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
The phenomenon of aesthetic chills-shivers and goosebumps associated with either rewarding or threatening stimuli-offers a unique window into the brain basis of conscious reward because of their universal nature and simultaneous subjective and physical counterparts. Elucidating the neural mechanisms underlying aesthetic chills can reveal fundamental insights about emotion, consciousness, and the embodied mind. What is the precise timing and mechanism of bodily feedback in emotional experience? How are conscious feelings and motivations generated from interoceptive predictions? What is the role of uncertainty and precision signaling in shaping emotions? How does the brain distinguish and balance processing of rewards versus threats? We review neuroimaging evidence and highlight key questions for understanding how bodily sensations shape conscious feelings. This research stands to advance models of brain-body interactions shaping affect and may lead to novel nonpharmacological interventions for disorders of motivation and pleasure.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Abhinandan Jain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| |
Collapse
|
9
|
Smith E, Michalski S, Knauth K, Tuzsus D, Theis H, van Eimeren T, Peters J. Pharmacological Enhancement of Dopamine Neurotransmission Does Not Affect Illusory Pattern Perception. eNeuro 2024; 11:ENEURO.0465-23.2024. [PMID: 38997143 PMCID: PMC11270156 DOI: 10.1523/eneuro.0465-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
Psychotic symptoms and delusional beliefs have been linked to dopamine transmission in both healthy and clinical samples and are assumed to result at least in part from perceiving illusory patterns in noise. However, the existing literature on the role of dopamine in detecting patterns in noise is inconclusive. To address this issue, we assessed the effect of manipulating dopaminergic neurotransmission on illusory pattern perception in healthy individuals (n = 48, n = 19 female) in a double-blind placebo-controlled within-subjects design (see preregistration at https://osf.io/a4k9j/). We predicted individuals on versus off ʟ-DOPA to be more likely to perceive illusory patterns, specifically objects in images containing only noise. Using a signal detection model, however, we found no credible evidence that ʟ-DOPA compared with placebo increased false alarm rates. Further, ʟ-DOPA did not reliably modulate measures of accuracy, discrimination sensitivity, and response bias. In all cases, Bayesian statistics revealed strong evidence in favor of the null hypothesis. The task design followed previous work on illusory pattern perception and comprised a limited number of items per condition. The results therefore need to be interpreted with caution, as power was limited. Future studies should address illusory pattern perception using more items and take into account potential dose-dependent effects and differential effects in healthy versus clinical samples.
Collapse
Affiliation(s)
- Elke Smith
- Department of Psychology, Biological Psychology, University of Cologne, Cologne 50969, Germany
| | - Simon Michalski
- Department of Psychology, Biological Psychology, University of Cologne, Cologne 50969, Germany
| | - Kilian Knauth
- Department of Psychology, Biological Psychology, University of Cologne, Cologne 50969, Germany
| | - Deniz Tuzsus
- Department of Psychology, Biological Psychology, University of Cologne, Cologne 50969, Germany
| | - Hendrik Theis
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50937 Cologne, Germany
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Cologne 50969, Germany
| |
Collapse
|
10
|
Abplanalp SJ, Braff DL, Light GA, Joshi YB, Nuechterlein KH, Green MF. Clarifying directional dependence among measures of early auditory processing and cognition in schizophrenia: leveraging Gaussian graphical models and Bayesian networks. Psychol Med 2024; 54:1930-1939. [PMID: 38287656 DOI: 10.1017/s0033291724000023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
BACKGROUND Research using latent variable models demonstrates that pre-attentive measures of early auditory processing (EAP) and cognition may initiate a cascading effect on daily functioning in schizophrenia. However, such models fail to account for relationships among individual measures of cognition and EAP, thereby limiting their utility. Hence, EAP and cognition may function as complementary and interacting measures of brain function rather than independent stages of information processing. Here, we apply a data-driven approach to identifying directional relationships among neurophysiologic and cognitive variables. METHODS Using data from the Consortium on the Genetics of Schizophrenia 2, we estimated Gaussian Graphical Models and Bayesian networks to examine undirected and directed connections between measures of EAP, including mismatch negativity and P3a, and cognition in 663 outpatients with schizophrenia and 630 control participants. RESULTS Chain structures emerged among EAP and attention/vigilance measures in schizophrenia and control groups. Concerning differences between the groups, object memory was an influential variable in schizophrenia upon which other cognitive domains depended, and working memory was an influential variable in controls. CONCLUSIONS Measures of EAP and attention/vigilance are conditionally independent of other cognitive domains that were used in this study. Findings also revealed additional causal assumptions among measures of cognition that could help guide statistical control and ultimately help identify early-stage targets or surrogate endpoints in schizophrenia.
Collapse
Affiliation(s)
- Samuel J Abplanalp
- Desert Pacific Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - David L Braff
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Gregory A Light
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Yash B Joshi
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Keith H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael F Green
- Desert Pacific Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Harding JN, Wolpe N, Brugger SP, Navarro V, Teufel C, Fletcher PC. A new predictive coding model for a more comprehensive account of delusions. Lancet Psychiatry 2024; 11:295-302. [PMID: 38242143 DOI: 10.1016/s2215-0366(23)00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Attempts to understand psychosis-the experience of profoundly altered perceptions and beliefs-raise questions about how the brain models the world. Standard predictive coding approaches suggest that it does so by minimising mismatches between incoming sensory evidence and predictions. By adjusting predictions, we converge iteratively on a best guess of the nature of the reality. Recent arguments have shown that a modified version of this framework-hybrid predictive coding-provides a better model of how healthy agents make inferences about external reality. We suggest that this more comprehensive model gives us a richer understanding of psychosis compared with standard predictive coding accounts. In this Personal View, we briefly describe the hybrid predictive coding model and show how it offers a more comprehensive account of the phenomenology of delusions, thereby providing a potentially powerful new framework for computational psychiatric approaches to psychosis. We also make suggestions for future work that could be important in formalising this novel perspective.
Collapse
Affiliation(s)
- Jessica Niamh Harding
- School of Clinical Medicine, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - Noham Wolpe
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Peter Brugger
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Centre for Academic Mental Health, Bristol Medical school, University of Bristol, Bristol, UK
| | - Victor Navarro
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Christoph Teufel
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Paul Charles Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Benrimoh D, Fisher VL, Seabury R, Sibarium E, Mourgues C, Chen D, Powers A. Evidence for Reduced Sensory Precision and Increased Reliance on Priors in Hallucination-Prone Individuals in a General Population Sample. Schizophr Bull 2024; 50:349-362. [PMID: 37830405 PMCID: PMC10919780 DOI: 10.1093/schbul/sbad136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND There is increasing evidence that people with hallucinations overweight perceptual beliefs relative to incoming sensory evidence. Past work demonstrating prior overweighting has used simple, nonlinguistic stimuli. However, auditory hallucinations in psychosis are often complex and linguistic. There may be an interaction between the type of auditory information being processed and its perceived quality in engendering hallucinations. STUDY DESIGN We administered a linguistic version of the conditioned hallucinations (CH) task to an online sample of 88 general population participants. Metrics related to hallucination-proneness, hallucination severity, stimulus thresholds, and stimulus detection rates were collected. Data were used to fit parameters of a Hierarchical Gaussian Filter (HGF) model of perceptual inference to determine how latent perceptual states influenced task behavior. STUDY RESULTS Replicating past results, higher CH rates were observed both in those with recent hallucinatory experiences as well as participants with high hallucination-proneness; CH rates were positively correlated with increased prior weighting; and increased prior weighting was related to hallucination severity. Unlike past results, participants with recent hallucinatory experiences as well as those with higher hallucination-proneness had higher stimulus thresholds, lower sensitivity to stimuli presented at the highest threshold, and had lower response confidence, consistent with lower precision of sensory evidence. CONCLUSIONS We replicate the finding that increased CH rates and recent hallucinations correlate with increased prior weighting using a linguistic version of the CH task. Results support a role for reduced sensory precision in the interplay between prior weighting and hallucination-proneness.
Collapse
Affiliation(s)
- David Benrimoh
- Department of Psychiatry, McGill University School of Medicine, Montreal, Canada
| | - Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Rashina Seabury
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Ely Sibarium
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Doris Chen
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Albert Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
13
|
Charaf K, Agoub M, Boussaoud D. Associative learning and facial expression recognition in schizophrenic patients: Effects of social presence. Schizophr Res Cogn 2024; 35:100295. [PMID: 38025824 PMCID: PMC10663675 DOI: 10.1016/j.scog.2023.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Schizophrenia (SCZ) is a psychiatric disorder that alters both general and social cognition. However, the exact mechanisms that are altered remain to be elucidated. In this study, we investigated associative learning (AL) and facial expression recognition (FER) in the same patients, using emotional expressions and abstract images. Our main aim was to investigate how these cognitive abilities are affected by SCZ and to assess the role of mere social presence, a factor that has not been considered before. The study compared the behavioral performance of 60 treated outpatients with SCZ and 103 demographically matched healthy volunteers. In the AL task, participants had to associate abstract images or facial expressions with key presses, guided by feedback on each trial. In the FER task, they had to report whether two successively presented facial expressions were the same or different. All participants performed the two tasks under two social context conditions: alone or in the presence of a passive but attentive audience. The results showed a severe learning impairment in patients compared to controls, with a slight advantage for facial expressions compared to abstract images, and a gender-dependent effect of social presence. In contrast, facial expression recognition was partially spared in patients and facilitated by social presence. We conclude that cognitive abilities are impaired in patients with SCZ, but their investigation needs to take into account the social context in which they are assessed.
Collapse
Affiliation(s)
- Khansa Charaf
- Laboratoire de Neurosciences Cliniques, Faculté de Médecine, Université Hassan II, Casablanca, Morocco
| | - Mohamed Agoub
- Laboratoire de Neurosciences Cliniques, Faculté de Médecine, Université Hassan II, Casablanca, Morocco
| | - Driss Boussaoud
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
14
|
Wolff A, Northoff G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol Psychiatry 2024; 29:425-438. [PMID: 38228893 DOI: 10.1038/s41380-023-02337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
15
|
Li J, Chen L, Zhou D, Tang E, Zheng J, Huang X, Zhong BL, Guan C, Liu H, Shen M, Chen H. Flexibility Retained: Unimpaired Updating of Expectations in Schizophrenia. Behav Sci (Basel) 2024; 14:41. [PMID: 38247693 PMCID: PMC10812936 DOI: 10.3390/bs14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Flexibly and actively updating expectations based on feedback is crucial for navigating daily life. Previous research has shown that people with schizophrenia (PSZ) have difficulty adjusting their expectations. However, there are studies suggesting otherwise. To explore this further, we used a novel trial-based expectation updating paradigm called attribute amnesia. In the task, the participants needed to report the location of a target stimulus among distractors in pre-surprise trials. In the surprise trial, they were unexpectedly asked to report the identity of the target before reporting its location. Afterward, control trials were conducted whereby the participants were asked the same questions as in the surprise trial. Notably, the surprise trial and control trials were nearly identical, except that the participants expected to be asked about identity information in the control trials but not in the surprise trial. Thus, an improvement in identity reporting accuracy in the control trials in comparison with the surprise trial indicated active updating of expectations. In the current study, a total of 63 PSZ and 60 healthy control subjects (HCS) were enrolled. We found that both the PSZ and the HCS were unable to report information that they had fully attended to (i.e., identity) in the surprise trial. However, both groups showed a significant improvement in reporting identity information even in the first control trial. Critically, there was no significant difference in the magnitude of improvement between the two groups. The current findings indicate that PSZ have the ability to update their expectations as quickly and flexibly as HCS, at least in the context of the current task. The possible factors that might contribute to the discrepancy regarding expectation updating are discussed.
Collapse
Affiliation(s)
- Jian Li
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Luo Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | | | - Enze Tang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Jiewei Zheng
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Xiaoqi Huang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Bao-Liang Zhong
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430022, China
| | - Chenxiao Guan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Huiying Liu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| | - Hui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
16
|
Abstract
BACKGROUND AND HYPOTHESIS The neurocomputational framework of predictive processing (PP) provides a promising approach to explaining delusions, a key symptom of psychotic disorders. According to PP, the brain makes inferences about the world by weighing prior beliefs against the available sensory data. Mismatches between prior beliefs and sensory data result in prediction errors that may update the brain's model of the world. Psychosis has been associated with reduced weighting of priors relative to the sensory data. However, delusional beliefs are highly resistant to change, suggesting increased rather than decreased weighting of priors. We propose that this "delusion paradox" can be resolved within a hierarchical PP model: Reduced weighting of prior beliefs at low hierarchical levels may be compensated by an increased influence of higher-order beliefs represented at high hierarchical levels, including delusional beliefs. This may sculpt perceptual processing into conformity with delusions and foster their resistance to contradictory evidence. STUDY DESIGN We review several lines of experimental evidence on low- and high-level processes, and their neurocognitive underpinnings in delusion-related phenotypes and link them to predicted processing. STUDY RESULTS The reviewed evidence supports the notion of decreased weighting of low-level priors and increased weighting of high-level priors, in both delusional and delusion-prone individuals. Moreover, we highlight the role of prefrontal cortex as a neural basis for the increased weighting of high-level prior beliefs and discuss possible clinical implications of the proposed hierarchical predictive-processing model. CONCLUSIONS Our review suggests the delusion paradox can be resolved within a hierarchical PP model.
Collapse
Affiliation(s)
- Predrag Petrovic
- Center for Psychiatry Research (CPF), Center for Cognitive and Computational Neuropsychiatry (CCNP), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Sterzer
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Ehlen F, Montag C, Leopold K, Heinz A. Linguistic findings in persons with schizophrenia-a review of the current literature. Front Psychol 2023; 14:1287706. [PMID: 38078276 PMCID: PMC10710163 DOI: 10.3389/fpsyg.2023.1287706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 10/24/2024] Open
Abstract
INTRODUCTION Alterations of verbalized thought occur frequently in psychotic disorders. We characterize linguistic findings in individuals with schizophrenia based on the current literature, including findings relevant for differential and early diagnosis. METHODS Review of literature published via PubMed search between January 2010 and May 2022. RESULTS A total of 143 articles were included. In persons with schizophrenia, language-related alterations can occur at all linguistic levels. Differentiating from findings in persons with affective disorders, typical symptoms in those with schizophrenia mainly include so-called "poverty of speech," reduced word and sentence production, impaired processing of complex syntax, pragmatic language deficits as well as reduced semantic verbal fluency. At the at-risk state, "poverty of content," pragmatic difficulties and reduced verbal fluency could be of predictive value. DISCUSSION The current results support multilevel alterations of the language system in persons with schizophrenia. Creative expressions of psychotic experiences are frequently found but are not in the focus of this review. Clinical examinations of linguistic alterations can support differential diagnostics and early detection. Computational methods (Natural Language Processing) may improve the precision of corresponding diagnostics. The relations between language-related and other symptoms can improve diagnostics.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Vivantes Klinikum am Urban und Vivantes Klinikum im Friedrichshain, Kliniken für Psychiatrie, Psychotherapie und Psychosomatik, Akademische Lehrkrankenhäuser Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Montag
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte (Psychiatric University Clinic at St. Hedwig Hospital, Große Hamburger Berlin) – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karolina Leopold
- Vivantes Klinikum am Urban und Vivantes Klinikum im Friedrichshain, Kliniken für Psychiatrie, Psychotherapie und Psychosomatik, Akademische Lehrkrankenhäuser Charité - Universitätsmedizin Berlin, Berlin, Germany
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Romaniuk L, MacSweeney N, Atkinson K, Chan SWY, Barbu MC, Lawrie SM, Whalley HC. Striatal correlates of Bayesian beliefs in self-efficacy in adolescents and their relation to mood and autonomy: a pilot study. Cereb Cortex Commun 2023; 4:tgad020. [PMID: 38089939 PMCID: PMC10712445 DOI: 10.1093/texcom/tgad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 02/02/2024] Open
Abstract
Major depressive disorder often originates in adolescence and is associated with long-term functional impairment. Mechanistically characterizing this heterogeneous illness could provide important leads for optimizing treatment. Importantly, reward learning is known to be disrupted in depression. In this pilot fMRI study of 21 adolescents (16-20 years), we assessed how reward network disruption impacts specifically on Bayesian belief representations of self-efficacy (SE-B) and their associated uncertainty (SE-U), using a modified instrumental learning task probing activation induced by the opportunity to choose, and an optimal Hierarchical Gaussian Filter computational model. SE-U engaged caudate, nucleus accumbens (NAcc), precuneus, posterior parietal and dorsolateral prefrontal cortex (PFWE < 0.005). Sparse partial least squares analysis identified SE-U striatal activation as associating with one's sense of perceived choice and depressive symptoms, particularly anhedonia and negative feelings about oneself. As Bayesian uncertainty modulates belief flexibility and their capacity to steer future actions, this suggests that these striatal signals may be informative developmentally, longitudinally and in assessing response to treatment.
Collapse
Affiliation(s)
- Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5H, United Kingdom
| | - Niamh MacSweeney
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5H, United Kingdom
| | - Kimberley Atkinson
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5H, United Kingdom
| | - Stella W Y Chan
- School of Psychology & Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights, Reading RG6 6ES, United Kingdom
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5H, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5H, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5H, United Kingdom
| |
Collapse
|
19
|
Han J, Pontikes TK, Zabinski J, Gilbert C, Hicks C, Fayez R, Walterfang M, Mahdanian A, Nanavati J, Lobner K, Leppla I, Roy D. First-Onset Psychosis After COVID-19 Infection: A Systematic Review of the Literature. J Acad Consult Liaison Psychiatry 2023; 64:533-549. [PMID: 37506882 DOI: 10.1016/j.jaclp.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The COVID-19 pandemic has been an inciting factor for a wide variety of neuropsychiatric symptoms, including first-episode psychosis (FEP). OBJECTIVE The aim of this systematic review was to summarize the current literature on COVID-19 associated postviral FEP. METHODS A systematic review was completed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and identified 81 articles that met inclusion criteria. RESULTS Articles included case reports, case series, and cohort studies with postviral FEP occurring outside the setting of delirium, demonstrating a broad range of symptoms. CONCLUSIONS This systematic review shows that postviral FEP associated with COVID-19 follows a pattern similar to psychosis associated with other viral infections and is an important consideration when building a differential for FEP when delirium has been ruled out. Better understanding of postviral FEP associated with COVID-19 and other viral illnesses may help clarify aspects of underlying pathophysiology of psychotic symptoms broadly.
Collapse
Affiliation(s)
- Joan Han
- Department of Psychiatry, Johns Hopkins, Baltimore, MD
| | | | | | - Cyrus Gilbert
- Department of Psychiatry, Johns Hopkins, Baltimore, MD
| | | | - Rola Fayez
- Erada Complex for Mental Health, Dammam, Saudi Arabia
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | | | | | - Katie Lobner
- Department of Psychiatry, Johns Hopkins, Baltimore, MD
| | - Idris Leppla
- Department of Psychiatry, Johns Hopkins, Baltimore, MD
| | - Durga Roy
- Department of Psychiatry, Johns Hopkins, Baltimore, MD
| |
Collapse
|
20
|
Menon V, Palaniyappan L, Supekar K. Integrative Brain Network and Salience Models of Psychopathology and Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2023; 94:108-120. [PMID: 36702660 DOI: 10.1016/j.biopsych.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Brain network models of cognitive control are central to advancing our understanding of psychopathology and cognitive dysfunction in schizophrenia. This review examines the role of large-scale brain organization in schizophrenia, with a particular focus on a triple-network model of cognitive control and its role in aberrant salience processing. First, we provide an overview of the triple network involving the salience, frontoparietal, and default mode networks and highlight the central role of the insula-anchored salience network in the aberrant mapping of salient external and internal events in schizophrenia. We summarize the extensive evidence that has emerged from structural, neurochemical, and functional brain imaging studies for aberrancies in these networks and their dynamic temporal interactions in schizophrenia. Next, we consider the hypothesis that atypical striatal dopamine release results in misattribution of salience to irrelevant external stimuli and self-referential mental events. We propose an integrated triple-network salience-based model incorporating striatal dysfunction and sensitivity to perceptual and cognitive prediction errors in the insula node of the salience network and postulate that dysregulated dopamine modulation of salience network-centered processes contributes to the core clinical phenotype of schizophrenia. Thus, a powerful paradigm to characterize the neurobiology of schizophrenia emerges when we combine conceptual models of salience with large-scale cognitive control networks in a unified manner. We conclude by discussing potential therapeutic leads on restoring brain network dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| | - Lena Palaniyappan
- Department of Psychiatry and Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
21
|
Yip SW, Barch DM, Chase HW, Flagel S, Huys QJ, Konova AB, Montague R, Paulus M. From Computation to Clinic. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:319-328. [PMID: 37519475 PMCID: PMC10382698 DOI: 10.1016/j.bpsgos.2022.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Theory-driven and data-driven computational approaches to psychiatry have enormous potential for elucidating mechanism of disease and providing translational linkages between basic science findings and the clinic. These approaches have already demonstrated utility in providing clinically relevant understanding, primarily via back translation from clinic to computation, revealing how specific disorders or symptoms map onto specific computational processes. Nonetheless, forward translation, from computation to clinic, remains rare. In addition, consensus regarding specific barriers to forward translation-and on the best strategies to overcome these barriers-is limited. This perspective review brings together expert basic and computationally trained researchers and clinicians to 1) identify challenges specific to preclinical model systems and clinical translation of computational models of cognition and affect, and 2) discuss practical approaches to overcoming these challenges. In doing so, we highlight recent evidence for the ability of computational approaches to predict treatment responses in psychiatric disorders and discuss considerations for maximizing the clinical relevance of such models (e.g., via longitudinal testing) and the likelihood of stakeholder adoption (e.g., via cost-effectiveness analyses).
Collapse
Affiliation(s)
- Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Deanna M. Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University, St. Louis, Missouri
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelly Flagel
- Department of Psychiatry and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Quentin J.M. Huys
- Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Institute of Neurology, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Anna B. Konova
- Department of Psychiatry and Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Read Montague
- Fralin Biomedical Research Institute and Department of Physics, Virginia Tech, Blacksburg, Virginia
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
22
|
Tao B, Xiao Y, Li B, Yu W, Zhu F, Gao Z, Cao H, Gong Q, Gu S, Qiu C, Lui S. Linked patterns of interhemispheric functional connectivity and microstructural characteristics of the corpus callosum in antipsychotic-naive first-episode schizophrenia. Asian J Psychiatr 2023; 86:103659. [PMID: 37327564 DOI: 10.1016/j.ajp.2023.103659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Many magnetic resonance imaging (MRI) studies have showed significant structural abnormalities of the corpus callosum (CC) and dysregulated interhemispheric functional connectivity (FC) in schizophrenia. Although the hemispheres are mainly linked through CC, few studies directly examined the relationship between aberrant interhemispheric FC and the white matter deficits of the CC in schizophrenia. METHODS One hundred and sixty-nine antipsychotic-naive first-episode schizophrenia patients (AN-FES) and 214 healthy controls (HCs) were recruited. Diffusional and functional MRI data were obtained for each participant, and fractional anisotropy (FA) values of the five CC subregions and interhemispheric FC for each participant were acquired. Between-group differences in these metrics were compared using multivariate analysis of covariance (MANCOVA). Moreover, sparse canonical correlation analysis (sCCA) was conducted to explore correlations of fibers integrity of the CC subregions with dysregulated interhemispheric FC in patients. RESULTS Compared with HCs, the patients with schizophrenia showed significantly reduced FA values of the CC subregions and dysregulated connectivity between two cerebral hemispheres. The canonical correlation coefficients identified five significant sCCA modes between FA and FC (r > 0.75, p < 0.001), suggesting strong relationships between FA values of the CC subregions and interhemispheric FC in patients. CONCLUSION Our findings support a key role of CC in maintaining ongoing functional communication between two cerebral hemispheres, and suggest that microstructural changes of white matter fibers crossing different CC subregions may affect special interhemispheric FC in schizophrenia.
Collapse
Affiliation(s)
- Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China
| | - Wei Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ziyang Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hengyi Cao
- Center for Psychiatry Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China..
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, 28 Dianxin Street, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
24
|
Fromm SP, Wieland L, Klettke A, Nassar MR, Katthagen T, Markett S, Heinz A, Schlagenhauf F. Computational mechanisms of belief updating in relation to psychotic-like experiences. Front Psychiatry 2023; 14:1170168. [PMID: 37215663 PMCID: PMC10196365 DOI: 10.3389/fpsyt.2023.1170168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Psychotic-like experiences (PLEs) may occur due to changes in weighting prior beliefs and new evidence in the belief updating process. It is still unclear whether the acquisition or integration of stable beliefs is altered, and whether such alteration depends on the level of environmental and belief precision, which reflects the associated uncertainty. This motivated us to investigate uncertainty-related dynamics of belief updating in relation to PLEs using an online study design. Methods We selected a sample (n = 300) of participants who performed a belief updating task with sudden change points and provided self-report questionnaires for PLEs. The task required participants to observe bags dropping from a hidden helicopter, infer its position, and dynamically update their belief about the helicopter's position. Participants could optimize performance by adjusting learning rates according to inferred belief uncertainty (inverse prior precision) and the probability of environmental change points. We used a normative learning model to examine the relationship between adherence to specific model parameters and PLEs. Results PLEs were linked to lower accuracy in tracking the outcome (helicopter location) (β = 0.26 ± 0.11, p = 0.018) and to a smaller increase of belief precision across observations after a change point (β = -0.003 ± 0.0007, p < 0.001). PLEs were related to slower belief updating when participants encountered large prediction errors (β = -0.03 ± 0.009, p = 0.001). Computational modeling suggested that PLEs were associated with reduced overall belief updating in response to prediction errors (βPE = -1.00 ± 0.45, p = 0.028) and reduced modulation of updating at inferred environmental change points (βCPP = -0.84 ± 0.38, p = 0.023). Discussion We conclude that PLEs are associated with altered dynamics of belief updating. These findings support the idea that the process of balancing prior belief and new evidence, as a function of environmental uncertainty, is altered in PLEs, which may contribute to the development of delusions. Specifically, slower learning after large prediction errors in people with high PLEs may result in rigid beliefs. Disregarding environmental change points may limit the flexibility to establish new beliefs in the face of contradictory evidence. The present study fosters a deeper understanding of inferential belief updating mechanisms underlying PLEs.
Collapse
Affiliation(s)
- Sophie Pauline Fromm
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lara Wieland
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Arne Klettke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthew R. Nassar
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Teresa Katthagen
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
25
|
Purcell JR, Brown JW, Tullar RL, Bloomer BF, Kim DJ, Moussa-Tooks AB, Dolan-Bennett K, Bangert BM, Wisner KM, Lundin NB, O'Donnell BF, Hetrick WP. Insular and Striatal Correlates of Uncertain Risky Reward Pursuit in Schizophrenia. Schizophr Bull 2023; 49:726-737. [PMID: 36869757 PMCID: PMC10154703 DOI: 10.1093/schbul/sbac206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Risk-taking in specific contexts can be beneficial, leading to rewarding outcomes. Schizophrenia is associated with disadvantageous decision-making, as subjects pursue uncertain risky rewards less than controls. However, it is unclear whether this behavior is associated with more risk sensitivity or less reward incentivization. Matching on demographics and intelligence quotient (IQ), we determined whether risk-taking was more associated with brain activation in regions affiliated with risk evaluation or reward processing. STUDY DESIGN Subjects (30 schizophrenia/schizoaffective disorder, 30 controls) completed a modified, fMRI Balloon Analogue Risk Task. Brain activation was modeled during decisions to pursue risky rewards and parametrically modeled according to risk level. STUDY RESULTS The schizophrenia group exhibited less risky-reward pursuit despite previous adverse outcomes (Average Explosions; F(1,59) = 4.06, P = .048) but the comparable point at which risk-taking was volitionally discontinued (Adjusted Pumps; F(1,59) = 2.65, P = .11). Less activation was found in schizophrenia via whole brain and region of interest (ROI) analyses in the right (F(1,59) = 14.91, P < 0.001) and left (F(1,59) = 16.34, P < 0.001) nucleus accumbens (NAcc) during decisions to pursue rewards relative to riskiness. Risk-taking correlated with IQ in schizophrenia, but not controls. Path analyses of average ROI activation revealed less statistically determined influence of anterior insula upon dorsal anterior cingulate bilaterally (left: χ2 = 12.73, P < .001; right: χ2 = 9.54, P = .002) during risky reward pursuit in schizophrenia. CONCLUSIONS NAcc activation in schizophrenia varied less according to the relative riskiness of uncertain rewards compared to controls, suggesting aberrations in reward processing. The lack of activation differences in other regions suggests similar risk evaluation. Less insular influence on the anterior cingulate may relate to attenuated salience attribution or inability for risk-related brain region collaboration to sufficiently perceive situational risk.
Collapse
Affiliation(s)
- John R Purcell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Joshua W Brown
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Rachel L Tullar
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bess F Bloomer
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Dae-Jin Kim
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandra B Moussa-Tooks
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Katherine Dolan-Bennett
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Science, Washington University, St. Louise, MO, USA
| | - Brianna M Bangert
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Krista M Wisner
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Nancy B Lundin
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Brian F O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
26
|
Vaessen T, Reininghaus U, van Aubel E, Beijer-Klippel A, Steinhart H, Myin-Germeys I, Waltz J. Neural correlates of daily-life affective stress reactivity in early psychosis: A study combining functional MRI and experience sampling methodology. Schizophr Res 2023; 255:93-101. [PMID: 36989675 DOI: 10.1016/j.schres.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Affective reactivity to daily stressors are increased in individuals in the early stages of psychosis. Studies in psychosis patients and healthy individuals at increased psychosis risk show altered neural reactivity to stress in limbic (i.e., hippocampus [HC] and amygdala), prelimbic (i.e., ventromedial prefrontal cortex [vmPFC] and ventral anterior cingulate cortex [vACC]), and salience areas (i.e., Anterior Insula [AI]). We investigated whether a similar pattern of neural reactivity is present in early psychosis individuals and if brain activity in these regions is associated with daily-life stress reactivity. Twenty-nine early psychosis individuals (11 at-risk mental state and 18 first-episode psychosis) completed the Montreal Imaging Stress Task in conjunction with functional MRI. The study was part of a large-scale randomized controlled trial on the efficacy of an acceptance and commitment therapy-based ecological momentary intervention for early psychosis. All participants also provided experience sampling methodology (ESM) data on momentary affect and stressful activities in their everyday environment. Multilevel regression models were used to estimate if daily-life stress reactivity was moderated by activity in (pre)limbic and salience areas. Task-induced stress was associated with increased activation of the right AI and decreased activation in the vmPFC, vACC, and HC. Task-induced changes in vmPFC and vACC activity were associated with affective stress reactivity, whereas changes in HC and amygdala activity were associated with higher overall stress ratings. These preliminary results suggest region-specific roles in affective and psychotic daily-life stress reactivity in early psychosis. The observed pattern suggests that chronic stress plays a role in neural stress reactivity.
Collapse
Affiliation(s)
- Thomas Vaessen
- Center for Contextual Psychiatry, KU Leuven, Kapucijnenvoer 33, P.O. Box 7001, 3000 Leuven, Belgium; Department of Psychology, Health, & Technology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands.
| | - Ulrich Reininghaus
- Department Public Mental Health, Central Institute of Mental Health, J 5, 68159 Mannheim, Germany
| | - Evelyne van Aubel
- Center for Contextual Psychiatry, KU Leuven, Kapucijnenvoer 33, P.O. Box 7001, 3000 Leuven, Belgium
| | - Annelie Beijer-Klippel
- Center for Contextual Psychiatry, KU Leuven, Kapucijnenvoer 33, P.O. Box 7001, 3000 Leuven, Belgium; Department of Lifespan Psychology, Open University, P.O. Box 2960, 6401DL Heerlen, the Netherlands
| | - Henrietta Steinhart
- Center for Contextual Psychiatry, KU Leuven, Kapucijnenvoer 33, P.O. Box 7001, 3000 Leuven, Belgium
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, KU Leuven, Kapucijnenvoer 33, P.O. Box 7001, 3000 Leuven, Belgium
| | - James Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| |
Collapse
|
27
|
Eckert AL, Gounitski Y, Guggenmos M, Sterzer P. Cross-Modality Evidence for Reduced Choice History Biases in Psychosis-Prone Individuals. Schizophr Bull 2023; 49:397-406. [PMID: 36440751 PMCID: PMC10016417 DOI: 10.1093/schbul/sbac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Predictive processing posits that perception emerges from inferential processes within a hierarchical cortical system. Alterations of these processes may result in psychotic experiences, such as hallucinations and delusions. Central to the predictive processing account of psychosis is the notion of aberrant weights attributed to prior information and sensory input. Based on the notion that previous perceptual choices represent a relevant source of prior information, we here asked whether the propensity towards psychotic experiences may be related to altered choice history biases in perceptual decision-making. METHODS We investigated the relationship between choice history biases in perceptual decision-making and psychosis proneness in the general population. Choice history biases and their adaptation to experimentally induced changes in stimulus serial dependencies were investigated in decision-making tasks with auditory (experiment 1) and visual (experiment 2) stimuli. We further explored a potential compensatory mechanism for reduced choice history biases by reliance on predictive cross-modal cues. RESULTS In line with our preregistered hypothesis, psychosis proneness was associated with decreased choice history biases in both experiments. This association is generalized across conditions with and without stimulus serial dependencies. We did not find consistent evidence for a compensatory reliance on cue information in psychosis-prone individuals across experiments. CONCLUSIONS Our results show reduced choice history biases in psychosis proneness. A compensatory mechanism between implicit choice history effects and explicit cue information is not supported unequivocally by our data.
Collapse
Affiliation(s)
- Anna-Lena Eckert
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Unter den Linden 6, 10099 Berlin, Germany.,Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Yael Gounitski
- Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Guggenmos
- Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Health and Medical University, Institute for Mind, Brain and Behavior, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Philipp Sterzer
- Bernstein Center for Computational Neuroscience Berlin, Unter den Linden 6, 10099 Berlin, Germany.,Department of Psychiatry and Neurosciences, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,University of Basel, Department of Psychiatry (UPK), Wilhelm-Klein-Strasse 27, 4002 Basel, Switzerland
| |
Collapse
|
28
|
Speers LJ, Bilkey DK. Maladaptive explore/exploit trade-offs in schizophrenia. Trends Neurosci 2023; 46:341-354. [PMID: 36878821 DOI: 10.1016/j.tins.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Schizophrenia is a complex disorder that remains poorly understood, particularly at the systems level. In this opinion article we argue that the explore/exploit trade-off concept provides a holistic and ecologically valid framework to resolve some of the apparent paradoxes that have emerged within schizophrenia research. We review recent evidence suggesting that fundamental explore/exploit behaviors may be maladaptive in schizophrenia during physical, visual, and cognitive foraging. We also describe how theories from the broader optimal foraging literature, such as the marginal value theorem (MVT), could provide valuable insight into how aberrant processing of reward, context, and cost/effort evaluations interact to produce maladaptive responses.
Collapse
Affiliation(s)
- Lucinda J Speers
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
29
|
Tangmose K, Rostrup E, Bojesen KB, Sigvard A, Jessen K, Johansen LB, Glenthøj BY, Nielsen MØ. Reward disturbances in antipsychotic-naïve patients with first-episode psychosis and their association to glutamate levels. Psychol Med 2023; 53:1629-1638. [PMID: 37010221 DOI: 10.1017/s0033291721003305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant anticipation of motivational salient events and processing of outcome evaluation in striatal and prefrontal regions have been suggested to underlie psychosis. Altered glutamate levels have likewise been linked to schizophrenia. Glutamatergic abnormalities may affect the processing of motivational salience and outcome evaluation. It remains unresolved, whether glutamatergic dysfunction is associated with the coding of motivational salience and outcome evaluation in antipsychotic-naïve patients with first-episode psychosis. METHODS Fifty-one antipsychotic-naïve patients with first-episode psychosis (22 ± 5.2 years, female/male: 31/20) and 52 healthy controls (HC) matched on age, sex, and parental education underwent functional magnetic resonance imaging and magnetic resonance spectroscopy (3T) in one session. Brain responses to motivational salience and negative outcome evaluation (NOE) were examined using a monetary incentive delay task. Glutamate levels were estimated in the left thalamus and anterior cingulate cortex using LCModel. RESULTS Patients displayed a positive signal change to NOE in the caudate (p = 0.001) and dorsolateral prefrontal cortex (DLPFC; p = 0.003) compared to HC. No group difference was observed in motivational salience or in levels of glutamate. There was a different association between NOE signal in the caudate and DLPFC and thalamic glutamate levels in patients and HC due to a negative correlation in patients (caudate: p = 0.004, DLPFC: p = 0.005) that was not seen in HC. CONCLUSIONS Our findings confirm prior findings of abnormal outcome evaluation as a part of the pathophysiology of schizophrenia. The results also suggest a possible link between thalamic glutamate and NOE signaling in patients with first-episode psychosis.
Collapse
Affiliation(s)
- Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Louise Baruël Johansen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Bruno JP. Enhancing the resolution of behavioral measures: Key observations during a forty year career in behavioral neuroscience. Neurosci Biobehav Rev 2023; 145:105004. [PMID: 36549379 DOI: 10.1016/j.neubiorev.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reviews several key observations from the research program of Professor John P. Bruno that are believed to have significantly advanced our understanding of the brain's mediation of behavior. This review focuses on findings within several important research areas in behavioral neuroscience, including a) age-dependent neurobehavioral plasticity following brain damage; b) the role of the cortical cholinergic system in attentional processing and cognitive flexibility; and c) the design and validation of animal models of cognitive deficits in schizophrenia. In selecting these observations, emphasis was given to examples in which the heuristic potency was increased by maximizing the resolution and microanalysis of behavioral assays in the same fashion as one typically refines neuronal manipulations. Professor Bruno served the International Behavioral Neuroscience Society (IBNS) as an IBNS Fellow (1995-present) and President of the IBNS (2001-02).
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Williams AB, Liu X, Hsieh F, Hurtado M, Lesh T, Niendam T, Carter C, Ranganath C, Ragland JD. Memory-Based Prediction Deficits and Dorsolateral Prefrontal Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:71-78. [PMID: 35618258 PMCID: PMC10036169 DOI: 10.1016/j.bpsc.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Theories suggest that people with schizophrenia (SZ) have problems generating predictions based on past experiences. The dorsolateral prefrontal cortex (DLPFC) and hippocampus participate in memory-based prediction. We used functional magnetic resonance imaging to investigate DLPFC and hippocampal function in healthy control (HC) subjects and people with SZ during memory-based prediction. METHODS Prior to scanning, HC subjects (n = 54) and people with SZ (n = 31) learned 5-object sequences presented in fixed or random orders on each repetition. During scanning, participants made semantic decisions (e.g., "Can this object fit in a shoebox?") on a continuous stream of objects from fixed and random sequences. Sequence prediction was demonstrated by faster semantic decisions for objects in fixed versus random sequences because memory could be used to anticipate and more efficiently process semantic information about upcoming objects in fixed sequences. Representational similarity analyses were used to determine how each sequence type was represented in the posterior hippocampus and DLPFC. RESULTS Sequence predictions were reduced in individuals with SZ relative to HC subjects. Representational similarity analyses revealed stronger memory-based predictions in the DLPFC of HC subjects than people with SZ, and DLPFC representations correlated with more successful predictions in HC subjects only. For the posterior hippocampus, voxel pattern similarity was increased for fixed versus random sequences in HC subjects only, but no significant between-group differences or correlations with prediction success were observed. CONCLUSIONS Individuals with SZ are capable of learning temporal sequences; however, they are impaired using memory to predict upcoming events as efficiently as HC subjects. This deficit appears related to disrupted neural representation of sequence information in the DLPFC.
Collapse
Affiliation(s)
- Ashley B Williams
- Center for Neuroscience, University of California, Davis, Davis, California
| | - Xiaonan Liu
- Center for Neuroscience, University of California, Davis, Davis, California; Departments of Psychology, University of California, Davis, Davis, California
| | - Frank Hsieh
- Department of Psychology, University of California, Berkeley, Berkeley, California; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Mitzi Hurtado
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Tyler Lesh
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Tara Niendam
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cameron Carter
- Departments of Psychology, University of California, Davis, Davis, California; Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, California; Departments of Psychology, University of California, Davis, Davis, California
| | - J Daniel Ragland
- Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California.
| |
Collapse
|
32
|
Scott MR, Zong W, Ketchesin KD, Seney ML, Tseng GC, Zhu B, McClung CA. Twelve-hour rhythms in transcript expression within the human dorsolateral prefrontal cortex are altered in schizophrenia. PLoS Biol 2023; 21:e3001688. [PMID: 36693045 PMCID: PMC9873190 DOI: 10.1371/journal.pbio.3001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/01/2022] [Indexed: 01/25/2023] Open
Abstract
Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes.
Collapse
Affiliation(s)
- Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wei Zong
- Department of Bioinformatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - George C. Tseng
- Department of Bioinformatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
33
|
Fromm S, Katthagen T, Deserno L, Heinz A, Kaminski J, Schlagenhauf F. Belief Updating in Subclinical and Clinical Delusions. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgac074. [PMID: 39145350 PMCID: PMC11207849 DOI: 10.1093/schizbullopen/sgac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Current frameworks propose that delusions result from aberrant belief updating due to altered prediction error (PE) signaling and misestimation of environmental volatility. We aimed to investigate whether behavioral and neural signatures of belief updating are specifically related to the presence of delusions or generally associated with manifest schizophrenia. Methods Our cross-sectional design includes human participants (n[female/male] = 66[25/41]), stratified into four groups: healthy participants with minimal (n = 22) or strong delusional-like ideation (n = 18), and participants with diagnosed schizophrenia with minimal (n = 13) or strong delusions (n = 13), resulting in a 2 × 2 design, which allows to test for the effects of delusion and diagnosis. Participants performed a reversal learning task with stable and volatile task contingencies during fMRI scanning. We formalized learning with a hierarchical Gaussian filter model and conducted model-based fMRI analysis regarding beliefs of outcome uncertainty and volatility, precision-weighted PEs of the outcome- and the volatility-belief. Results Patients with schizophrenia as compared to healthy controls showed lower accuracy and heightened choice switching, while delusional ideation did not affect these measures. Participants with delusions showed increased precision-weighted PE-related neural activation in fronto-striatal regions. People with diagnosed schizophrenia overestimated environmental volatility and showed an attenuated neural representation of volatility in the anterior insula, medial frontal and angular gyrus. Conclusions Delusional beliefs are associated with altered striatal PE-signals. Juxtaposing, the potentially unsettling belief that the environment is constantly changing and weaker neural encoding of this subjective volatility seems to be associated with manifest schizophrenia, but not with the presence of delusional ideation.
Collapse
Affiliation(s)
- Sophie Fromm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Teresa Katthagen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry and Psychotherapy, Technische Universität, Dresden, Germany
| | - Andreas Heinz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Jakob Kaminski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
| | - Florian Schlagenhauf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health CCM, Department of Psychiatry and Neuroscience | CCM, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
34
|
Knolle F, Sterner E, Moutoussis M, Adams RA, Griffin JD, Haarsma J, Taverne H, Goodyer IM, Fletcher PC, Murray GK. Action selection in early stages of psychosis: an active inference approach. J Psychiatry Neurosci 2023; 48:E78-E89. [PMID: 36810306 PMCID: PMC9949875 DOI: 10.1503/jpn.220141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND To interact successfully with their environment, humans need to build a model to make sense of noisy and ambiguous inputs. An inaccurate model, as suggested to be the case for people with psychosis, disturbs optimal action selection. Recent computational models, such as active inference, have emphasized the importance of action selection, treating it as a key part of the inferential process. Based on an active inference framework, we sought to evaluate previous knowledge and belief precision in an action-based task, given that alterations in these parameters have been linked to the development of psychotic symptoms. We further sought to determine whether task performance and modelling parameters would be suitable for classification of patients and controls. METHODS Twenty-three individuals with an at-risk mental state, 26 patients with first-episode psychosis and 31 controls completed a probabilistic task in which action choice (go/no-go) was dissociated from outcome valence (gain or loss). We evaluated group differences in performance and active inference model parameters and performed receiver operating characteristic (ROC) analyses to assess group classification. RESULTS We found reduced overall performance in patients with psychosis. Active inference modelling revealed that patients showed increased forgetting, reduced confidence in policy selection and less optimal general choice behaviour, with poorer action-state associations. Importantly, ROC analysis showed fair-to-good classification performance for all groups, when combining modelling parameters and performance measures. LIMITATIONS The sample size is moderate. CONCLUSION Active inference modelling of this task provides further explanation for dysfunctional mechanisms underlying decision-making in psychosis and may be relevant for future research on the development of biomarkers for early identification of psychosis.
Collapse
Affiliation(s)
- Franziska Knolle
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Elisabeth Sterner
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Michael Moutoussis
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Rick A Adams
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Juliet D Griffin
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Joost Haarsma
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Hilde Taverne
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Ian M Goodyer
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Paul C Fletcher
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Graham K Murray
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | | |
Collapse
|
35
|
Millman ZB, Hwang M, Sydnor VJ, Reid BE, Goldenberg JE, Talero JN, Bouix S, Shenton ME, Öngür D, Shinn AK. Auditory hallucinations, childhood sexual abuse, and limbic gray matter volume in a transdiagnostic sample of people with psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:118. [PMID: 36585407 PMCID: PMC9803640 DOI: 10.1038/s41537-022-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Childhood sexual abuse (CSA) is a potentially unique risk factor for auditory hallucinations (AH), but few studies have examined the moderating effects of sex or the association of CSA with limbic gray matter volume (GMV) in transdiagnostic samples of people with psychotic disorders. Here we found that people with psychotic disorders reported higher levels of all surveyed maltreatment types (e.g., physical abuse) than healthy controls, but people with psychotic disorders with AH (n = 41) reported greater CSA compared to both those without AH (n = 37; t = -2.21, p = .03) and controls (n = 37; t = -3.90, p < .001). Among people with psychosis, elevated CSA was most pronounced among females with AH (sex × AH status: F = 4.91, p = .009), held controlling for diagnosis, medications, and other maltreatment (F = 3.88, p = .02), and correlated with the current severity of AH (r = .26, p = .03) but not other symptoms (p's > .16). Greater CSA among patients related to larger GMV of the left amygdala accounting for AH status, diagnosis, medications, and other maltreatment (t = 2.12, p = .04). Among people with psychosis, females with AH may represent a unique subgroup with greater CSA. Prospective high-risk studies integrating multiple measures of maltreatment and brain structure/function may help elucidate the mechanisms linking CSA with amygdala alterations and AH.
Collapse
Affiliation(s)
- Zachary B Millman
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin E Reid
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua E Goldenberg
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Sylvain Bouix
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann K Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
36
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
37
|
Garbusow M, Ebrahimi C, Riemerschmid C, Daldrup L, Rothkirch M, Chen K, Chen H, Belanger MJ, Hentschel A, Smolka MN, Heinz A, Pilhatsch M, Rapp MA. Pavlovian-to-Instrumental Transfer across Mental Disorders: A Review. Neuropsychobiology 2022; 81:418-437. [PMID: 35843212 DOI: 10.1159/000525579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
Abstract
A mechanism known as Pavlovian-to-instrumental transfer (PIT) describes a phenomenon by which the values of environmental cues acquired through Pavlovian conditioning can motivate instrumental behavior. PIT may be one basic mechanism of action control that can characterize mental disorders on a dimensional level beyond current classification systems. Therefore, we review human PIT studies investigating subclinical and clinical mental syndromes. The literature prevails an inhomogeneous picture concerning PIT. While enhanced PIT effects seem to be present in non-substance-related disorders, overweight people, and most studies with AUD patients, no altered PIT effects were reported in tobacco use disorder and obesity. Regarding AUD and relapsing alcohol-dependent patients, there is mixed evidence of enhanced or no PIT effects. Additionally, there is evidence for aberrant corticostriatal activation and genetic risk, e.g., in association with high-risk alcohol consumption and relapse after alcohol detoxification. In patients with anorexia nervosa, stronger PIT effects elicited by low caloric stimuli were associated with increased disease severity. In patients with depression, enhanced aversive PIT effects and a loss of action-specificity associated with poorer treatment outcomes were reported. Schizophrenic patients showed disrupted specific but intact general PIT effects. Patients with chronic back pain showed reduced PIT effects. We provide possible reasons to understand heterogeneity in PIT effects within and across mental disorders. Further, we strengthen the importance of reliable experimental tasks and provide test-retest data of a PIT task showing moderate to good reliability. Finally, we point toward stress as a possible underlying factor that may explain stronger PIT effects in mental disorders, as there is some evidence that stress per se interacts with the impact of environmental cues on behavior by selectively increasing cue-triggered wanting. To conclude, we discuss the results of the literature review in the light of Research Domain Criteria, suggesting future studies that comprehensively assess PIT across psychopathological dimensions.
Collapse
Affiliation(s)
- Maria Garbusow
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Carlotta Riemerschmid
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Luisa Daldrup
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Marcus Rothkirch
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Ke Chen
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Hao Chen
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Matthew J Belanger
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Angela Hentschel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Maximilan Pilhatsch
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Elblandklinikum, Radebeul, Germany
| | - Michael A Rapp
- Area of Excellence Cognitive Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
38
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
39
|
Sheffield JM, Suthaharan P, Leptourgos P, Corlett PR. Belief Updating and Paranoia in Individuals With Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1149-1157. [PMID: 35430406 PMCID: PMC9827723 DOI: 10.1016/j.bpsc.2022.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Persecutory delusions are among the most common delusions in schizophrenia and represent the extreme end of the paranoia continuum. Paranoia is accompanied by significant worry and distress. Identifying cognitive mechanisms underlying paranoia is critical for advancing treatment. We hypothesized that aberrant belief updating, which is related to paranoia in human and animal models, would also contribute to persecutory beliefs in individuals with schizophrenia. METHODS Belief updating was assessed in 42 participants with schizophrenia and 44 healthy control participants using a 3-option probabilistic reversal learning task. Hierarchical Gaussian Filter was used to estimate computational parameters of belief updating. Paranoia was measured using the Positive and Negative Syndrome Scale and the revised Green et al. Paranoid Thoughts Scale. Unusual thought content was measured with the Psychosis Symptom Rating Scale and the Peters et al. Delusions Inventory. Worry was measured using the Dunn Worry Questionnaire. RESULTS Paranoia was significantly associated with elevated win-switch rate and prior beliefs about volatility both in schizophrenia and across the whole sample. These relationships were specific to paranoia and did not extend to unusual thought content or measures of anxiety. We observed a significant indirect effect of paranoia on the relationship between prior beliefs about volatility and worry. CONCLUSIONS This work provides evidence that relationships between belief updating parameters and paranoia extend to schizophrenia, may be specific to persecutory beliefs, and contribute to theoretical models implicating worry in the maintenance of persecutory delusions.
Collapse
Affiliation(s)
- Julia M Sheffield
- Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Praveen Suthaharan
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, Connecticut
| | - Pantelis Leptourgos
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, Connecticut
| | - Philip R Corlett
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, Connecticut
| |
Collapse
|
40
|
Liebenow B, Jones R, DiMarco E, Trattner JD, Humphries J, Sands LP, Spry KP, Johnson CK, Farkas EB, Jiang A, Kishida KT. Computational reinforcement learning, reward (and punishment), and dopamine in psychiatric disorders. Front Psychiatry 2022; 13:886297. [PMID: 36339844 PMCID: PMC9630918 DOI: 10.3389/fpsyt.2022.886297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In the DSM-5, psychiatric diagnoses are made based on self-reported symptoms and clinician-identified signs. Though helpful in choosing potential interventions based on the available regimens, this conceptualization of psychiatric diseases can limit basic science investigation into their underlying causes. The reward prediction error (RPE) hypothesis of dopamine neuron function posits that phasic dopamine signals encode the difference between the rewards a person expects and experiences. The computational framework from which this hypothesis was derived, temporal difference reinforcement learning (TDRL), is largely focused on reward processing rather than punishment learning. Many psychiatric disorders are characterized by aberrant behaviors, expectations, reward processing, and hypothesized dopaminergic signaling, but also characterized by suffering and the inability to change one's behavior despite negative consequences. In this review, we provide an overview of the RPE theory of phasic dopamine neuron activity and review the gains that have been made through the use of computational reinforcement learning theory as a framework for understanding changes in reward processing. The relative dearth of explicit accounts of punishment learning in computational reinforcement learning theory and its application in neuroscience is highlighted as a significant gap in current computational psychiatric research. Four disorders comprise the main focus of this review: two disorders of traditionally hypothesized hyperdopaminergic function, addiction and schizophrenia, followed by two disorders of traditionally hypothesized hypodopaminergic function, depression and post-traumatic stress disorder (PTSD). Insights gained from a reward processing based reinforcement learning framework about underlying dopaminergic mechanisms and the role of punishment learning (when available) are explored in each disorder. Concluding remarks focus on the future directions required to characterize neuropsychiatric disorders with a hypothesized cause of underlying dopaminergic transmission.
Collapse
Affiliation(s)
- Brittany Liebenow
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Rachel Jones
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Emily DiMarco
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jonathan D. Trattner
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph Humphries
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kasey P. Spry
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Christina K. Johnson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Evelyn B. Farkas
- Georgia State University Undergraduate Neuroscience Institute, Atlanta, GA, United States
| | - Angela Jiang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
41
|
Brandt L, Liu S, Heim C, Heinz A. The effects of social isolation stress and discrimination on mental health. Transl Psychiatry 2022; 12:398. [PMID: 36130935 PMCID: PMC9490697 DOI: 10.1038/s41398-022-02178-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Social isolation and discrimination are growing public health concerns associated with poor physical and mental health. They are risk factors for increased morbidity and mortality and reduced quality of life. Despite their detrimental effects on health, there is a lack of knowledge regarding translation across the domains of experimental research, clinical studies, and real-life applications. Here, we review and synthesize evidence from basic research in animals and humans to clinical translation and interventions. Animal models indicate that social separation stress, particularly in early life, activates the hypothalamic-pituitary-adrenal axis and interacts with monoaminergic, glutamatergic, and GABAergic neurotransmitter systems, inducing long-lasting reductions in serotonin turnover and alterations in dopamine receptor sensitivity. These findings are of particular importance for human social isolation stress, as effects of social isolation stress on the same neurotransmitter systems have been implicated in addictive, psychotic, and affective disorders. Children may be particularly vulnerable due to lasting effects of social isolation and discrimination stress on the developing brain. The effects of social isolation and loneliness are pronounced in the context of social exclusion due to discrimination and racism, during widespread infectious disease related containment strategies such as quarantine, and in older persons due to sociodemographic changes. This highlights the importance of new strategies for social inclusion and outreach, including gender, culture, and socially sensitive telemedicine and digital interventions for mental health care.
Collapse
Affiliation(s)
- Lasse Brandt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Shuyan Liu
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Christine Heim
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany.
| |
Collapse
|
42
|
Interactions between the cortical midline structures and sensorimotor network track maladaptive self-beliefs in clinical high risk for psychosis. SCHIZOPHRENIA 2022; 8:74. [PMID: 36114173 PMCID: PMC9481626 DOI: 10.1038/s41537-022-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022]
Abstract
Individuals at clinical high risk for psychosis (CHR) report a maladaptive self-concept—with more negative and less positive self-beliefs—linked to clinical symptoms and functional impairment. Alterations have also been reported in brain networks associated with intrinsic (cortical midline structures, CMS) and extrinsic (sensorimotor network, SMN) self-processing. Theoretical accounts of multiple levels of self-experience in schizophrenia suggest that interactions between these networks would be relevant for self-beliefs. This study tested whether self-beliefs related to resting-state functional connectivity within and between the CMS and SMN. Participants were 56 individuals meeting CHR criteria and 59 matched healthy community participants (HC). Pearson correlations examined potential mediators and outcomes. The CHR group reported more negative and less positive self-beliefs. Greater resting-state functional connectivity between the posterior CMS (posterior cingulate cortex) and the SMN was associated with less positive self-beliefs in CHR, but more positive self-beliefs in HC. Attenuated negative symptoms and poorer social functioning were associated with CMS-SMN connectivity (trend level after FDR-correction) and self-beliefs. Reduced connectivity between the left and right PCC was associated with lower positive self-beliefs in CHR, although this effect was specific to very low levels of positive self-beliefs. Left-right PCC connectivity did not correlate with outcomes. Dynamic interactions between intrinsic and extrinsic self-processing supported positive self-beliefs in typically developing youth while undermining positive self-beliefs in CHR youth. Implications are discussed for basic self-fragmentation, narrative self-related metacognition, and global belief updating. Interventions for self-processing may be beneficial in the CHR syndrome.
Collapse
|
43
|
Vinogradov S, Hamid AA, Redish AD. Etiopathogenic Models of Psychosis Spectrum Illnesses Must Resolve Four Key Features. Biol Psychiatry 2022; 92:514-522. [PMID: 35931575 PMCID: PMC9809152 DOI: 10.1016/j.biopsych.2022.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023]
Abstract
Etiopathogenic models for psychosis spectrum illnesses are converging on a number of key processes, such as the influence of specific genes on the synthesis of proteins important in synaptic functioning, alterations in how neurons respond to synaptic inputs and engage in synaptic pruning, and microcircuit dysfunction that leads to more global cortical information processing vulnerabilities. Disruptions in prefrontal operations then accumulate and propagate over time, interacting with environmental factors, developmental processes, and homeostatic mechanisms, eventually resulting in symptoms of psychosis and disability. However, there are 4 key features of psychosis spectrum illnesses that are of primary clinical relevance but have been difficult to assimilate into a single model and have thus far received little direct attention: 1) the bidirectionality of the causal influences for the emergence of psychosis, 2) the catastrophic clinical threshold seen in first episodes of psychosis and why it is irreversible in some individuals, 3) observed biotypes that are neurophysiologically distinct but clinically both convergent and divergent, and 4) a reconciliation of the role of striatal dopaminergic dysfunction with models of prefrontal cortical state instability. In this selective review, we briefly describe these 4 hallmark features and we argue that theoretically driven computational perspectives making use of both algorithmic and neurophysiologic models are needed to reduce this complexity and variability of psychosis spectrum illnesses in a principled manner.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - A David Redish
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
44
|
Chien YL, Lin HY, Tung YH, Hwang TJ, Chen CL, Wu CS, Shang CY, Hwu HG, Tseng WYI, Liu CM, Gau SSF. Neurodevelopmental model of schizophrenia revisited: similarity in individual deviation and idiosyncrasy from the normative model of whole-brain white matter tracts and shared brain-cognition covariation with ADHD and ASD. Mol Psychiatry 2022; 27:3262-3271. [PMID: 35794186 DOI: 10.1038/s41380-022-01636-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
The neurodevelopmental model of schizophrenia is supported by multi-level impairments shared among schizophrenia and neurodevelopmental disorders. Despite schizophrenia and typical neurodevelopmental disorders, i.e., autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), as disorders of brain dysconnectivity, no study has ever elucidated whether whole-brain white matter (WM) tracts integrity alterations overlap or diverge between these three disorders. Moreover, whether the linked dimensions of cognition and brain metrics per the Research Domain Criteria framework cut across diagnostic boundaries remains unknown. We aimed to map deviations from normative ranges of whole-brain major WM tracts for individual patients to investigate the similarity and differences among schizophrenia (281 patients subgrouped into the first-episode, subchronic and chronic phases), ASD (175 patients), and ADHD (279 patients). Sex-specific WM tract normative development was modeled from diffusion spectrum imaging of 626 typically developing controls (5-40 years). There were three significant findings. First, the patterns of deviation and idiosyncrasy of WM tracts were similar between schizophrenia and ADHD alongside ASD, particularly at the earlier stages of schizophrenia relative to chronic stages. Second, using the WM deviation patterns as features, schizophrenia cannot be separated from neurodevelopmental disorders in the unsupervised machine learning algorithm. Lastly, the canonical correlation analysis showed schizophrenia, ADHD, and ASD shared linked cognitive dimensions driven by WM deviations. Together, our results provide new insights into the neurodevelopmental facet of schizophrenia and its brain basis. Individual's WM deviations may contribute to diverse arrays of cognitive function along a continuum with phenotypic expressions from typical neurodevelopmental disorders to schizophrenia.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre and Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yu-Hung Tung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology & Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Chang-Le Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Shin Wu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chi-Yung Shang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan. .,Neurobiology & Cognitive Science Center, National Taiwan University, Taipei, Taiwan. .,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. .,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan. .,Neurobiology & Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Pugliese V, de Filippis R, Aloi M, Rotella P, Carbone EA, Gaetano R, De Fazio P. Aberrant salience correlates with psychotic dimensions in outpatients with schizophrenia spectrum disorders. Ann Gen Psychiatry 2022; 21:25. [PMID: 35786401 PMCID: PMC9250738 DOI: 10.1186/s12991-022-00402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Aberrant salience is a well-known construct associated with the development and maintenance of psychotic symptoms in schizophrenia. However, only a few studies have investigated aberrance salience as a trait, with no study investigating the association between the five aberrant salience domains and psychotic symptoms. We aimed to explore the role of aberrant salience and its domains on psychotic dimensions in both clinically remitted and non-remitted patients. METHODS A sample of 102 patients diagnosed with schizophrenia spectrum disorders was divided according to the Positive and Negative Syndrome Scale (PANSS) remission criteria into two groups: remitted and non-remitted. Differences regarding psychotic symptomatology assessed by the PANSS and aberrant salience measured by the Aberrant Salience Inventory (ASI) were explored. Finally, a correlation analysis between the PANSS and the ASI was run. RESULTS Significantly higher ASI scores were evident among non-remitted patients. Positive symptoms (i.e. delusions, conceptual disorganization, and hallucinatory behaviour) and general psychopathology (i.e. postural mannerisms, unusual thought content) were correlated to the aberrant salience subscales 'sharpening of senses', 'heightened emotionality' and 'heightened cognition' and with the ASI total score. Significant correlations emerged between negative symptoms (blunted affect and social withdrawal) and 'heightened cognition'. Finally, lack of spontaneity of conversation was related to the subscales 'heightened emotionality' and 'heightened cognition', as well as to the ASI total score. CONCLUSIONS These preliminary results support the hypothesis of an association between aberrant salience and psychotic symptoms in schizophrenia. Further research is needed, especially into the mechanisms underlying salience processing, in addition to social and environmental factors and cognitive variables.
Collapse
Affiliation(s)
- Valentina Pugliese
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Matteo Aloi
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Paola Rotella
- Department of Mental Health of Catanzaro, Lamezia Terme, Italy
| | - Elvira Anna Carbone
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaele Gaetano
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
46
|
Rethinking delusions: A selective review of delusion research through a computational lens. Schizophr Res 2022; 245:23-41. [PMID: 33676820 PMCID: PMC8413395 DOI: 10.1016/j.schres.2021.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Delusions are rigid beliefs held with high certainty despite contradictory evidence. Notwithstanding decades of research, we still have a limited understanding of the computational and neurobiological alterations giving rise to delusions. In this review, we highlight a selection of recent work in computational psychiatry aimed at developing quantitative models of inference and its alterations, with the goal of providing an explanatory account for the form of delusional beliefs in psychosis. First, we assess and evaluate the experimental paradigms most often used to study inferential alterations in delusions. Based on our review of the literature and theoretical considerations, we contend that classic draws-to-decision paradigms are not well-suited to isolate inferential processes, further arguing that the commonly cited 'jumping-to-conclusion' bias may reflect neither delusion-specific nor inferential alterations. Second, we discuss several enhancements to standard paradigms that show promise in more effectively isolating inferential processes and delusion-related alterations therein. We further draw on our recent work to build an argument for a specific failure mode for delusions consisting of prior overweighting in high-level causal inferences about partially observable hidden states. Finally, we assess plausible neurobiological implementations for this candidate failure mode of delusional beliefs and outline promising future directions in this area.
Collapse
|
47
|
Caporuscio C, Fink SB, Sterzer P, Martin JM. When seeing is not believing: A mechanistic basis for predictive divergence. Conscious Cogn 2022; 102:103334. [DOI: 10.1016/j.concog.2022.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 02/13/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
48
|
Haarsma J, Kok P, Browning M. The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis. Schizophr Res 2022; 245:68-76. [PMID: 33199171 PMCID: PMC9241988 DOI: 10.1016/j.schres.2020.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Predictive coding potentially provides an explanatory model for understanding the neurocognitive mechanisms of psychosis. It proposes that cognitive processes, such as perception and inference, are implemented by a hierarchical system, with the influence of each level being a function of the estimated precision of beliefs at that level. However, predictive coding models of psychosis are insufficiently constrained-any phenomenon can be explained in multiple ways by postulating different changes to precision at different levels of processing. One reason for the lack of constraint in these models is that the core processes are thought to be implemented by the function of specific cortical layers, and the technology to measure layer specific neural activity in humans has until recently been lacking. As a result, our ability to constrain the models with empirical data has been limited. In this review we provide a brief overview of predictive processing models of psychosis and then describe the potential for newly developed, layer specific neuroimaging techniques to test and thus constrain these models. We conclude by discussing the most promising avenues for this research as well as the technical and conceptual challenges which may limit its application.
Collapse
Affiliation(s)
- J. Haarsma
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom,Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Corresponding author at: Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom.
| | - P. Kok
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - M. Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Oxford Health NHS Trust, Oxford, United Kingdom
| |
Collapse
|
49
|
Keshavan MS, Yassin W, Stone WS. Conceptualizing psychosis as an information processing disorder: Signal, bandwidth, noise, and bias. Schizophr Res 2022; 242:70-72. [PMID: 35177283 DOI: 10.1016/j.schres.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Massachusetts Mental Health Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Walid Yassin
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Massachusetts Mental Health Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; McLean Hospital, Belmont, MA, United States of America
| | - William S Stone
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Massachusetts Mental Health Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
50
|
Impairment in acquisition of conditioned fear in schizophrenia. Neuropsychopharmacology 2022; 47:681-686. [PMID: 34588608 PMCID: PMC8782847 DOI: 10.1038/s41386-021-01193-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Individuals with schizophrenia show impairments in associative learning. One well-studied, quantifiable form of associative learning is Pavlovian fear conditioning. However, to date, studies of fear conditioning in schizophrenia have been inconclusive, possibly because they lacked sufficient power. To address this issue, we pooled data from four independent fear conditioning studies that included a total of 77 individuals with schizophrenia and 74 control subjects. Skin conductance responses (SCRs) to stimuli that were paired (the CS + ) or not paired (CS-) with an aversive, unconditioned stimulus were measured, and the success of acquisition of differential conditioning (the magnitude of CS + vs. CS- SCRs) and responses to CS + and CS- separately were assessed. We found that acquisition of differential conditioned fear responses was significantly lower in individuals with schizophrenia than in healthy controls (Cohen's d = 0.53). This effect was primarily related to a significantly higher response to the CS- stimulus in the schizophrenia compared to the control group. Moreover, the magnitude of this response to the CS- in the schizophrenia group was correlated with the severity of delusional ideation (p = 0.006). Other symptoms or antipsychotic dose were not associated with fear conditioning measures. In conclusion, individuals with schizophrenia who endorse delusional beliefs may be over-responsive to neutral stimuli during fear conditioning. This finding is consistent with prior models of abnormal associative learning in psychosis.
Collapse
|