1
|
Khomutovska N, Jasser I, Sarapultseva P, Spirina V, Zaitsev A, Masłowiecka J, Isidorov VA. Seasonal dynamics in leaf litter decomposing microbial communities in temperate forests: a whole-genome- sequencing-based study. PeerJ 2024; 12:e17769. [PMID: 39329142 PMCID: PMC11426322 DOI: 10.7717/peerj.17769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/27/2024] [Indexed: 09/28/2024] Open
Abstract
Leaf litter decomposition, a crucial component of the global carbon cycle, relies on the pivotal role played by microorganisms. However, despite their ecological importance, leaf-litter-decomposing microorganism taxonomic and functional diversity needs additional study. This study explores the taxonomic composition, dynamics, and functional role of microbial communities that decompose leaf litter of forest-forming tree species in two ecologically unique regions of Europe. Twenty-nine microbial metagenomes isolated from the leaf litter of eight forest-forming species of woody plants were investigated by Illumina technology using read- and assembly-based approaches of sequences analysis. The taxonomic structure of the microbial community varies depending on the stage of litter decomposition; however, the community's core is formed by Pseudomonas, Sphingomonas, Stenotrophomonas, and Pedobacter genera of Bacteria and by Aureobasidium, Penicillium, Venturia genera of Fungi. A comparative analysis of the taxonomic structure and composition of the microbial communities revealed that in both regions, seasonal changes in structure take place; however, there is no clear pattern in its dynamics. Functional gene analysis of MAGs revealed numerous metabolic profiles associated with leaf litter degradation. This highlights the diverse metabolic capabilities of microbial communities and their implications for ecosystem processes, including the production of volatile organic compounds (VOCs) during organic matter decomposition. This study provides important advances in understanding of ecosystem processes and the carbon cycle, underscoring the need to unravel the intricacies of microbial communities within these contexts.
Collapse
Affiliation(s)
- Nataliia Khomutovska
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Skane, Sweden, Lomma, Sweden
- Department of Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Iwona Jasser
- Department of Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | | | - Andrei Zaitsev
- Faculty of Geography of Perm, State University, Perm, Russia
| | - Jolanta Masłowiecka
- Institute of Forest Sciences, Białystok University of Technology, Białystok, Poland
| | - Valery A Isidorov
- Institute of Forest Sciences, Białystok University of Technology, Białystok, Poland
| |
Collapse
|
2
|
Ye J, Ji Y, Wang J, Ma X, Gao J. Climate factors dominate the elevational variation in grassland plant resource utilization strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1430027. [PMID: 39170792 PMCID: PMC11335560 DOI: 10.3389/fpls.2024.1430027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Specific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits often used to reflect plant resource utilization strategies and predict plant responses to environmental changes. In general, grassland plants at different elevations exhibit varying survival strategies. However, it remains unclear how grassland plants adapt to changes in elevation and their driving factors. To address this issue, we utilized SLA and LDMC data of grassland plants from 223 study sites at different elevations in China, along with climate and soil data, to investigate variations in resource utilization strategies of grassland plants along different elevational gradients and their dominant influencing factors employing linear mixed-effects models, variance partitioning method, piecewise Structural Equation Modeling, etc. The results show that with increasing elevation, SLA significantly decreases, and LDMC significantly increases (P < 0.001). This indicates different resource utilization strategies of grassland plants across elevation gradients, transitioning from a "faster investment-return" at lower elevations to a "slower investment-return" at higher elevations. Across different elevation gradients, climatic factors are the main factors affecting grassland plant resource utilization strategies, with soil nutrient factors also playing a non-negligible coordinating role. Among these, mean annual precipitation and hottest month mean temperature are key climatic factors influencing SLA of grassland plants, explaining 28.94% and 23.88% of SLA variation, respectively. The key factors affecting LDMC of grassland plants are mainly hottest month mean temperature and soil phosphorus content, with relative importance of 24.24% and 20.27%, respectively. Additionally, the direct effect of elevation on grassland plant resource utilization strategies is greater than its indirect effect (through influencing climatic and soil nutrient factors). These findings emphasize the substantive impact of elevation on grassland plant resource utilization strategies and have important ecological value for grassland management and protection under global change.
Collapse
Affiliation(s)
- Jinkun Ye
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Yuhui Ji
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jinfeng Wang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xiaodong Ma
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Ma F, Zhang G, Zhang J, Luo X, Liao L, Wang H, Tang X, Yi Z. Isoprenoid emissions from Schima superba and Cunninghamia lanceolata: Their responses to elevated temperature by two warming facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172669. [PMID: 38677435 DOI: 10.1016/j.scitotenv.2024.172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Isoprenoids (including isoprene (ISO) and monoterpenes (MTs)) are the majority of biogenic volatile organic compounds (BVOCs) which are important carbon-containing secondary metabolites biosynthesized by organisms, especially plant in terrestrial ecosystem. Results of the warming effects on isoprenoid emissions vary within species and warming facilities, and thus conclusions remain controversial. In this study, two typical subtropical tree species seedlings of Schima superba and Cunninghamia lanceolata were cultivated under three conditions, namely no warming (CK) and two warming facilities (with infrared radiators (IR) and heating wires (HW)) in open top chamber (OTC), and the isoprenoid emissions were measured with preconcentor-GC-MS system after warming for one, two and four months. The results showed that the isoprenoid emissions from S. superba and C. lanceolata exhibited uniformity in response to two warming facilities. IR and HW both stimulated isoprenoid emissions in two plants after one month of treatment, with increased ratios of 16.3 % and 72.5 % for S. superba, and 2.47 and 5.96 times for C. lanceolata. However, the emissions were suppressed after four months, with more pronounced effect for HW. The variation in isoprenoid emissions was primarily associated with the levels of Pn, Tr, monoterpene synthase (MTPS) activity. C. lanceolata predominantly released MTs (mainly α-pinene, α-terpene, γ-terpene, and limonene), with 39.7 % to 99.6 % of the total isoprenoid but ISO was only a very minor constituent. For S. superba, MTs constituted 24.7 % to 96.1 % of total isoprenoid. It is noteworthy that HW generated a greater disturbance to physiology activity in plants. Our study provided more comprehensive and more convincing support for integrating temperature-elevation experiments of different ecosystems and assessing response and adaptation of forest carbon cycle to global warming.
Collapse
Affiliation(s)
- Fangyuan Ma
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Geye Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junchuan Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinyue Luo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lulu Liao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xinghao Tang
- Fujian Academy of Forestry Science, Fuzhou 350012, China
| | - Zhigang Yi
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Ndah FA, Maljanen M, Kasurinen A, Rinnan R, Michelsen A, Kotilainen T, Kivimäenpää M. Acclimation of subarctic vegetation to warming and increased cloudiness. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10130. [PMID: 38323130 PMCID: PMC10840376 DOI: 10.1002/pei3.10130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024]
Abstract
Subarctic ecosystems are exposed to elevated temperatures and increased cloudiness in a changing climate with potentially important effects on vegetation structure, composition, and ecosystem functioning. We investigated the individual and combined effects of warming and increased cloudiness on vegetation greenness and cover in mesocosms from two tundra and one palsa mire ecosystems kept under strict environmental control in climate chambers. We also investigated leaf anatomical and biochemical traits of four dominant vascular plant species (Empetrum hermaphroditum, Vaccinium myrtillus, Vaccinium vitis-idaea, and Rubus chamaemorus). Vegetation greenness increased in response to warming in all sites and in response to increased cloudiness in the tundra sites but without associated increases in vegetation cover or biomass, except that E. hermaphroditum biomass increased under warming. The combined warming and increased cloudiness treatment had an additive effect on vegetation greenness in all sites. It also increased the cover of graminoids and forbs in one of the tundra sites. Warming increased leaf dry mass per area of V. myrtillus and R. chamaemorus, and glandular trichome density of V. myrtillus and decreased spongy intercellular space of E. hermaphroditum and V. vitis-idaea. Increased cloudiness decreased leaf dry mass per area of V. myrtillus, palisade thickness of E. hermaphroditum, and stomata density of E. hermaphroditum and V. vitis-idaea, and increased leaf area and epidermis thickness of V. myrtillus, leaf shape index and nitrogen of E. hermaphroditum, and palisade intercellular space of V. vitis-idaea. The combined treatment caused thinner leaves and decreased leaf carbon for V. myrtillus, and increased leaf chlorophyll of E. hermaphroditum. We show that under future warmer increased cloudiness conditions in the Subarctic (as simulated in our experiment), vegetation composition and distribution will change, mostly dominated by graminoids and forbs. These changes will depend on the responses of leaf anatomical and biochemical traits and will likely impact carbon gain and primary productivity and abiotic and biotic stress tolerance.
Collapse
Affiliation(s)
- Flobert A. Ndah
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Marja Maljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Anne Kasurinen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Volatile Interactions (VOLT), Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | | | - Minna Kivimäenpää
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
- Natural Resources Institute FinlandSuonenjokiFinland
| |
Collapse
|
5
|
Kilpeläinen J, Domisch T, Lehto T, Kivimäenpää M, Martz F, Piirainen S, Repo T. Separating the effects of air and soil temperature on silver birch. Part II. The relation of physiology and leaf anatomy to growth dynamics. TREE PHYSIOLOGY 2022; 42:2502-2520. [PMID: 35939341 PMCID: PMC9743009 DOI: 10.1093/treephys/tpac093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
The aboveground parts of boreal forest trees grow earlier in the growing season, the roots mostly later. The idea was to examine whether root growth followed soil temperature, or whether shoot growth also demanded most resources in the early growing season (soil temperature vs internal sink strengths for resources). The linkage between air and soil temperature was broken by switching the soil temperature. We aimed here to identify the direct effects of different soil temperature patterns on physiology, leaf anatomy and their interactions, and how they relate to the control of the growth dynamics of silver birch (Betula pendula Roth). Sixteen 2-year-old seedlings were grown in a controlled environment for two 14-week simulated growing seasons (GS1, GS2). An 8-week dormancy period interposed the GSs. In GS2, soil temperature treatments were applied: constant 10 °C (Cool), constant 18 °C (Warm), early growing season at 10 °C switched to 18 °C later (Early Cool Late Warm) and 18 °C followed by 10 °C (Early Warm Late Cool) were applied during GS2. The switch from cool to warm enhanced the water status, net photosynthesis, chlorophyll content index, effective yield of photosystem II (ΔF/Fm') and leaf expansion of the seedlings. Warm treatment increased the stomatal number per leaf. In contrast, soil cooling increased glandular trichomes. This investment in increasing the chemical defense potential may be associated with the decreased growth in cool soil. Non-structural carbohydrates were accumulated in leaves at a low soil temperature showing that growth was more hindered than net photosynthesis. Leaf anatomy differed between the first and second leaf flush of silver birch, which may promote tree fitness in the prevailing growing conditions. The interaction of birch structure and function changes with soil temperature, which can further reflect to ecosystem functioning.
Collapse
Affiliation(s)
- Jouni Kilpeläinen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Timo Domisch
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80100 Joensuu, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
- Natural Resources Institute Finland (Luke), Juntintie 154, 77600 Suonenjoki, Finland
| | - Françoise Martz
- Natural Resources Institute Finland (Luke), Ounasjoentie 6, 96200 Rovaniemi, Finland
| | - Sirpa Piirainen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Tapani Repo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| |
Collapse
|
6
|
Kivimäenpä M, Mofikoya A, Abd El-Raheem AM, Riikonen J, Julkunen-Tiitto R, Holopainen JK. Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil ( Ocimum basilicum) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12287-12296. [PMID: 36126343 PMCID: PMC9545148 DOI: 10.1021/acs.jafc.2c03309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Basil (Ocimum basilicum, cv. Dolly) grew under three different light spectra (A, B, and C) created by light-emitting diode lamps. The proportions of UV-A, blue, and green-yellow wavelengths decreased linearly from A to C, and the proportions of red and far-red wavelengths increased from A to C. Photosynthetic photon flux density was 300 μmol m-2 s-1 in all spectra. The spectrum C plants had highest concentrations of phenolic acids (main compounds: rosmarinic acid and cichoric acid), lowest concentrations and emissions of phenylpropanoid eugenol and terpenoids (main compounds: linalool and 1,8-cineole), highest dry weight, and lowest water content. Conversely, spectra A and B caused higher terpenoid and eugenol concentrations and emissions and lower concentrations of phenolic acids. High density of peltate glandular trichomes explained high terpenoid and eugenol concentrations and emissions. Basil growth and secondary compounds affecting aroma and taste can be modified by altering light spectra; however, increasing terpenoids and phenylpropanoids decreases phenolic acids and growth and vice versa.
Collapse
Affiliation(s)
- Minna Kivimäenpä
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Adedayo Mofikoya
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ahmed M. Abd El-Raheem
- Department
of Economic Entomology and Agricultural Zoology, Menoufia University, Shebin
El Kom 32514, Egypt
| | - Johanna Riikonen
- Natural
Resources Institute Finland, Juntintie 154, 77600 Suonenjoki, Finland
| | - Riitta Julkunen-Tiitto
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Jarmo K. Holopainen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Kivimäenpää M, Riikonen J, Valolahti H, Elina H, Holopainen JK, Holopainen T. Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. TREE PHYSIOLOGY 2022; 42:1570-1586. [PMID: 35183060 PMCID: PMC9366870 DOI: 10.1093/treephys/tpac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Norway spruce (Picea abies (L.) Karst) trees are affected by ongoing climate change, including warming and exposure to phytotoxic levels of ozone. Non-volatile terpenoids and volatile terpenoids (biogenic organic volatile compounds, BVOCs) protect spruce against biotic and abiotic stresses. BVOCs also affect the atmosphere's oxidative capacity. Four-year-old Norway spruce were exposed to elevated ozone (EO) (1.4 × ambient) and warming (1.1 °C + ambient air) alone and in combination on an open-field exposure site in Central Finland. Net photosynthesis, needle terpenoid concentrations and BVOC emissions were measured four times during the experiment's second growing season: after bud opening in May, during the mid-growing season in June, and after needle maturation in August and September. Warming increased terpene concentrations in May due to advanced phenology and decreased them at the end of the growing season in matured current-year needles. Ozone enhanced these effects of warming on several compounds. Warming decreased concentrations of oxygenated sesquiterpenes in previous-year needles. Decreased emissions of oxygenated monoterpenes by warming and ozone alone in May were less prominent when ozone and warming were combined. A similar interactive treatment response in isoprene, camphene, tricyclene and α-pinene was observed in August when the temperature and ozone concentration was high. The results suggest long-term warming may reduce the terpenoid-based defence capacity of young spruce, but the defence capacity can be increased during the most sensitive growth phase (after bud break), and when high temperatures or ozone concentrations co-occur. Reduced BVOC emissions from young spruce may decrease the atmosphere's oxidative capacity in the warmer future, but the effect of EO may be marginal because less reactive minor compounds are affected.
Collapse
Affiliation(s)
| | | | - Hanna Valolahti
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
- Ramboll, Niemenkatu 73, Lahti 15140, Finland
| | - Häikiö Elina
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
- South Savo Centre for Economic Development, Transport and the Environment, PO Box 164, Mikkeli 50101, Finland
| | - Jarmo K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
| | - Toini Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland
| |
Collapse
|
8
|
Rodríguez BD, Kloth KJ, Albrectsen BR. Effects of condensed tannins on behavior and performance of a specialist aphid on aspen. Ecol Evol 2022; 12:e9229. [PMID: 36016819 PMCID: PMC9396707 DOI: 10.1002/ece3.9229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Genes involved in plant defences against herbivores and pathogens are often highly polymorphic. This is a putative sign that balancing selection may have operated reciprocally on the hosts and their herbivores. Spatial and temporal variations (for example, in soil nutrients and the plants' ontogenetic development) may also modulate resistance traits, and thus selection pressures, but have been largely overlooked in theories of plant defences. Important elements of defences in Populus tremula (hereafter aspen) are phenolic compounds, including condensed tannins (CTs). Concentrations of CTs vary considerably with both variations in external factors and time, but they are also believed to provide genotype-dependent resistance, mainly against chewing herbivores and pathogens. However, evidence of their contributions to resistance is sparse. Detailed studies of co-evolved plant-herbivore associations could provide valuable insights into these contributions. Therefore, we examined correlations between CT levels in aspen leaves and both the feeding behavior and reproduction of the specialist aspen leaf aphid (Chaitophorus tremulae) in varied conditions. We found that xylem sap intake and probing difficulties were higher on genotypes with high-CT concentrations. However, aphids engaged in more nonprobing activities on low-CT genotypes, indicating that CTs were not the only defence traits involved. Thus, high-CT genotypes were not necessarily more resistant than low-CT genotypes, but aphid reproduction was generally negatively correlated with local CT accumulation. Genotype-specific resistance ranking also depended on the experimental conditions. These results support the hypothesis that growth conditions may affect selection pressures mediated by aphids in accordance with balancing selection theory.
Collapse
Affiliation(s)
- Bárbara Díez Rodríguez
- Department of Plant Ecology and GeobotanyPhilipps‐University MarburgMarburgGermany
- Department of Plant PhysiologyUmeå Plant Science CentreUmeåSweden
| | - Karen J. Kloth
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
9
|
Moura BB, Bolsoni VP, de Paula MD, Dias GM, de Souza SR. Ozone Impact on Emission of Biogenic Volatile Organic Compounds in Three Tropical Tree Species From the Atlantic Forest Remnants in Southeast Brazil. FRONTIERS IN PLANT SCIENCE 2022; 13:879039. [PMID: 35812949 PMCID: PMC9263830 DOI: 10.3389/fpls.2022.879039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Plants emit a broad number of Biogenic Volatile Organic Compounds (BVOCs) that can impact urban ozone (O3) production. Conversely, the O3 is a phytotoxic pollutant that causes unknown alterations in BVOC emissions from native plants. In this sense, here, we characterized the constitutive and O3-induced BVOCs for two (2dO3) and four (4dO3) days of exposure (O3 dose 80 ppb) and evaluated the O3 response by histochemical techniques to detect programmed cell death (PCD) and hydrogen peroxide (H2O2) in three Brazilian native species. Croton floribundus Spreng, Astronium graveolens Jacq, and Piptadenia gonoacantha (Mart.) JF Macbr, from different groups of ecological succession (acquisitive and conservative), different carbon-saving defense strategies, and specific BVOC emissions. The three species emitted a very diverse BVOC composition: monoterpenes (MON), sesquiterpenes (SEQ), green leaf volatiles (GLV), and other compounds (OTC). C. floribundus is more acquisitive than A. graveolens. Their most representative BVOCs were methyl salicylate-MeSA (OTC), (Z) 3-hexenal, and (E)-2-hexenal (GLV), γ-elemene and (-)-β-bourbonene (SEQ) β-phellandrene and D-limonene (MON), while in A. graveolens were nonanal and decanal (OTC), and α-pinene (MON). Piptadenia gonoachanta is more conservative, and the BVOC blend was limited to MeSA (OTC), (E)-2-hexenal (GLV), and β-Phellandrene (MON). The O3 affected BVOCs and histochemical traits of the three species in different ways. Croton floribundus was the most O3 tolerant species and considered as an SEQ emitter. It efficiently reacted to O3 stress after 2dO3, verified by a high alteration of BVOC emission, the emergence of the compounds such as α-Ionone and trans-ß-Ionone, and the absence of H2O2 detection. On the contrary, A. graveolens, a MON-emitter, was affected by 2dO3 and 4dO3, showing increasing emissions of α-pinene and β-myrcene, (MON), γ-muurolene and β-cadinene (SEQ) and H2O2 accumulation. Piptadenia gonoachanta was the most sensitive and did not respond to BVOCs emission, but PCD and H2O2 were highly evidenced. Our results indicate that the BVOC blend emission, combined with histochemical observations, is a powerful tool to confirm the species' tolerance to O3. Furthermore, our findings suggest that BVOC emission is a trade-off associated with different resource strategies of species indicated by the changes in the quality and quantity of BVOC emission for each species.
Collapse
Affiliation(s)
- Bárbara Baêsso Moura
- Institute of Research on Terrestrial Ecosystems, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Vanessa Palermo Bolsoni
- Núcleo de Uso Sustentável de Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, Brazil
| | - Monica Dias de Paula
- Núcleo de Uso Sustentável de Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, Brazil
| | - Gustavo Muniz Dias
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Silvia Ribeiro de Souza
- Núcleo de Uso Sustentável de Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ndah F, Valolahti H, Schollert M, Michelsen A, Rinnan R, Kivimäenpää M. Influence of increased nutrient availability on biogenic volatile organic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness. ANNALS OF BOTANY 2022; 129:443-455. [PMID: 35029638 PMCID: PMC8944702 DOI: 10.1093/aob/mcac004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Climate change is subjecting subarctic ecosystems to elevated temperature, increased nutrient availability and reduced light availability (due to increasing cloud cover). This may affect subarctic vegetation by altering the emissions of biogenic volatile organic compounds (BVOCs) and leaf anatomy. We investigated the effects of increased nutrient availability on BVOC emissions and leaf anatomy of three subarctic dwarf shrub species, Empetrum hermaphroditum, Cassiope tetragona and Betula nana, and if increased nutrient availability modifies the responses to warming and shading. METHODS Measurements of BVOCs were performed in situ in long-term field experiments in the Subarctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Leaf anatomy was studied using light microscopy and scanning electron microscopy. KEY RESULTS Increased nutrient availability increased monoterpene emission rates and altered the emission profile of B. nana, and increased sesquiterpene and oxygenated monoterpene emissions of C. tetragona. Increased nutrient availability increased leaf tissue thicknesses of B. nana and C. tetragona, while it caused thinner epidermis and the highest fraction of functional (intact) glandular trichomes for E. hermaphroditum. Increased nutrient availability and warming synergistically increased mesophyll intercellular space of B. nana and glandular trichome density of C. tetragona, while treatments combining increased nutrient availability and shading had an opposite effect in C. tetragona. CONCLUSIONS Increased nutrient availability may enhance the protection capacity against biotic and abiotic stresses (especially heat and drought) in subarctic shrubs under future warming conditions as opposed to increased cloudiness, which could lead to decreased resistance. The study emphasizes the importance of changes in nutrient availability in the Subarctic, which can interact with climate warming and increased cloudiness effects.
Collapse
Affiliation(s)
| | - Hanna Valolahti
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K 1350, Denmark
- Ramboll, Niemenkatu 73, 15140, Lahti, Finland
| | - Michelle Schollert
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K 1350, Denmark
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K 1350, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K 1350, Denmark
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Natural Resources Institute Finland, Juntintie 154, 77600 Suonenjoki, Finland
| |
Collapse
|
11
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Wang Y, Xu S, Zhang W, Li Y, Wang N, He X, Chen W. Responses of growth, photosynthesis and related physiological characteristics in leaves of Acer ginnala Maxim. to increasing air temperature and/or elevated O 3. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:221-231. [PMID: 33527649 DOI: 10.1111/plb.13240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 05/26/2023]
Abstract
Regional warming and atmospheric ozone (O3 ) pollution are two of the most important environmental issues, and commonly coexist in many areas. Both factors have an intense impact on plants. However, little information is available on the combined and interactive effects of air warming and elevated O3 concentrations on physiological characteristics of plants. To explore this issue, we studied variations in growth, photosynthesis and physiological characteristics of leaves of Acer ginnala seedlings exposed to control (ambient temperature and O3 ), increasing air temperature (ambient temperature + 2 °C), elevated O3 (ambient O3 concentration + 40 ppb) and a combination of the two abiotic factors at different phenological stages by using open-top chambers. The results showed that increasing air temperature had no significant effect on growth, but increased photosynthesis and antioxidant enzyme activity at the leaf unfolding and defoliation stages. In contrast, elevated O3 decreased growth and photosynthesis and caused oxidative stress injury in A. ginnala leaves at each phenological stage. The combination of increasing air temperature and elevated O3 improved growth and net photosynthetic rates of tested plants and alleviated the oxidative stress compared to O3 alone. Our findings demonstrated that moderate warming was beneficial to A. ginnala at leaf unfolding and defoliation stages, and alleviated the adverse effects of O3 stress on growth, photosynthesis and the antioxidant system. These results will provide a theoretical reference and scientific basis for the adaptation and response of A. ginnala under regional air warming and atmospheric O3 pollution.
Collapse
Affiliation(s)
- Y Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - S Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
| | - W Zhang
- College of Environment, Shenyang University, 110044, China
| | - Y Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - N Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - X He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - W Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
13
|
Dai L, Xu Y, Harmens H, Duan H, Feng Z, Hayes F, Sharps K, Radbourne A, Tarvainen L. Reduced photosynthetic thermal acclimation capacity under elevated ozone in poplar (Populus tremula) saplings. GLOBAL CHANGE BIOLOGY 2021; 27:2159-2173. [PMID: 33609321 DOI: 10.1111/gcb.15564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The sensitivity of photosynthesis to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial carbon cycle response to future climate change. Although thermal acclimation of photosynthesis under rising temperature has been reported in many tree species, whether tropospheric ozone (O3 ) affects the acclimation capacity remains unknown. In this study, temperature responses of photosynthesis (light-saturated rate of photosynthesis (Asat ), maximum rates of RuBP carboxylation (Vcmax ), and electron transport (Jmax ) and dark respiration (Rdark ) of Populus tremula exposed to ambient O3 (AO3 , maximum of 30 ppb) or elevated O3 (EO3 , maximum of 110 ppb) and ambient or elevated temperature (ambient +5°C) were investigated in solardomes. We found that the optimum temperature of Asat (ToptA ) significantly increased in response to warming. However, the thermal acclimation capacity was reduced by O3 exposure, as indicated by decreased ToptA , and temperature optima of Vcmax (ToptV ) and Jmax (ToptJ ) under EO3 . Changes in both stomatal conductance (gs ) and photosynthetic capacity (Vcmax and Jmax ) contributed to the shift of ToptA by warming and EO3 . Neither Rdark measured at 25°C ( R dark 25 ) nor the temperature response of Rdark was affected by warming, EO3 , or their combination. The responses of Asat , Vcmax , and Jmax to warming and EO3 were closely correlated with changes in leaf nitrogen (N) content and N use efficiency. Overall, warming stimulated growth (leaf biomass and tree height), whereas EO3 reduced growth (leaf and woody biomass). The findings indicate that thermal acclimation of Asat may be overestimated if the impact of O3 pollution is not taken into account.
Collapse
Affiliation(s)
- Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Katrina Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Alan Radbourne
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Yu H, Holopainen JK, Kivimäenpää M, Virtanen A, Blande JD. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Molecules 2021; 26:2283. [PMID: 33920862 PMCID: PMC8071236 DOI: 10.3390/molecules26082283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Compared to most other forest ecosystems, circumpolar boreal and subarctic forests have few tree species, and are prone to mass outbreaks of herbivorous insects. A short growing season with long days allows rapid plant growth, which will be stimulated by predicted warming of polar areas. Emissions of biogenic volatile organic compounds (BVOC) from soil and vegetation could be substantial on sunny and warm days and biotic stress may accelerate emission rates. In the atmosphere, BVOCs are involved in various gas-phase chemical reactions within and above forest canopies. Importantly, the oxidation of BVOCs leads to secondary organic aerosol (SOA) formation. SOA particles scatter and absorb solar radiation and grow to form cloud condensation nuclei (CCN) and participate in cloud formation. Through BVOC and moisture release and SOA formation and condensation processes, vegetation has the capacity to affect the abiotic environment at the ecosystem scale. Recent BVOC literature indicates that both temperature and herbivory have a major impact on BVOC emissions released by woody species. Boreal conifer forest is the largest terrestrial biome and could be one of the largest sources of biogenic mono- and sesquiterpene emissions due to the capacity of conifer trees to store terpene-rich resins in resin canals above and belowground. Elevated temperature promotes increased diffusion of BVOCs from resin stores. Moreover, insect damage can break resin canals in needles, bark, and xylem and cause distinctive bursts of BVOCs during outbreaks. In the subarctic, mountain birch forests have cyclic outbreaks of Geometrid moths. During outbreaks, trees are often completely defoliated leading to an absence of BVOC-emitting foliage. However, in the years following an outbreak there is extended shoot growth, a greater number of leaves, and greater density of glandular trichomes that store BVOCs. This can lead to a delayed chemical defense response resulting in the highest BVOC emission rates from subarctic forest in the 1-3 years after an insect outbreak. Climate change is expected to increase insect outbreaks at high latitudes due to warmer seasons and arrivals of invasive herbivore species. Increased BVOC emission will affect tropospheric ozone (O3) formation and O3 induced oxidation of BVOCs. Herbivore-induced BVOC emissions from deciduous and coniferous trees are also likely to increase the formation rate of SOA and further growth of the particles in the atmosphere. Field experiments measuring the BVOC emission rates, SOA formation rate and particle concentrations within and above the herbivore attacked forest stands are still urgently needed.
Collapse
Affiliation(s)
- H. Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - J. K. Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - M. Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - A. Virtanen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - J. D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| |
Collapse
|
15
|
Simin T, Tang J, Holst T, Rinnan R. Volatile organic compound emission in tundra shrubs - Dependence on species characteristics and the near-surface environment. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 184:104387. [PMID: 33814646 PMCID: PMC7896103 DOI: 10.1016/j.envexpbot.2021.104387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/02/2023]
Abstract
Temperature is one of the key abiotic factors during the life of plants, especially in the Arctic region which is currently experiencing rapid climate change. We evaluated plant traits and environmental variables determining leaf temperature in tundra shrubs and volatile organic compound (VOC) emissions with field measurements on deciduous tundra shrubs, Salix myrsinites and Betula nana, and evergreen Cassiope tetragona and Rhododendron lapponicum. Higher leaf-to-air temperature difference was observed in evergreen, compared to deciduous shrubs. Evergreen shrubs also showed continuously increasing photosynthesis with increasing temperature, suggesting high thermal tolerance. For the deciduous species, the optimum temperature for net photosynthesis was between our measurement temperatures of 24 °C and 38 °C. Air temperature and vapor pressure deficit were the most important variables influencing leaf temperature and VOC emissions in all the studied plants, along with stomatal density and specific leaf area in the deciduous shrubs. Using climate data and emission factors from our measurements, we modelled total seasonal tundra shrub VOC emissions of 0.3-2.3 g m-2 over the main growing season. Our results showed higher-than-expected temperature optima for photosynthesis and VOC emission and demonstrated the relative importance of plant traits and local environments in determining leaf temperature and VOC emissions in a subarctic tundra.
Collapse
Affiliation(s)
- Tihomir Simin
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - Jing Tang
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - Thomas Holst
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| |
Collapse
|
16
|
Abstract
Tropospheric concentrations of phytotoxic ozone (O3) have undergone a great increase from preindustrial 10–15 ppbv to a present-day concentration of 35–40 ppbv in large parts of the industrialised world due to increased emissions of O3 precursors including NOx, CO, CH4 and volatile organic compounds. The rate of increase in O3 concentration ranges between 1 ppbv per decade in remote locations of the Southern hemisphere and 5 ppbv per decade in the Northern hemisphere, where largest sources of O3 precursors are located. Molecules of O3 penetrating into the leaves through the stomatal apertures trigger the formation of reactive oxygen species, leading thus to the damage of the photosynthetic apparatus. Accordingly, it is assumed, that O3 increase reduces the terrestrial carbon uptake relative to the preindustrial era. Here we summarise the results of previous manipulative experiments in laboratory growth cabinets, field open-top chambers and free-air systems together with O3 flux measurements under natural growth conditions. In particular, we focus on leaf-level physiological responses in trees, variability in stomatal O3 flux and changes in carbon fluxes and biomass production in forest stands. As the results reported in the literature are highly variable, ranging from negligible to severe declines in photosynthetic carbon uptake, we also discuss the possible interactions of O3 with other environmental factors including solar radiation, drought, temperature and nitrogen deposition. Those factors were found to have great potential to modulate stomata openness and O3 fluxes.
Collapse
|
17
|
Xu S, Wang Y, Zhang W, Li B, Du Z, He X, Chen W, Zhang Y, Li Y, Li M, Schaub M. Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115289. [PMID: 33190075 DOI: 10.1016/j.envpol.2020.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric warming and increasing tropospheric ozone (O3) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O3 (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba 'Berolinensis' seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O3 concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba 'Berolinensis' to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Collapse
Affiliation(s)
- Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, Shenyang, 110016, China
| | - Yijing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- College of Environment, Shenyang University, 110044, China
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province, Shenyang, 110016, China
| | - Zhong Du
- School of Land and Resources, China West Normal University, Nanchong, 637009, China; Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yue Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Maihe Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; SwissForestLab, Birmensdorf, 8903, Switzerland; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; SwissForestLab, Birmensdorf, 8903, Switzerland
| |
Collapse
|
18
|
Wu T, Tissue DT, Li X, Liu S, Chu G, Zhou G, Li Y, Zheng M, Meng Z, Liu J. Long-term effects of 7-year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. GLOBAL CHANGE BIOLOGY 2020; 26:7144-7157. [PMID: 32939936 DOI: 10.1111/gcb.15355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Rising temperature associated with climate change may have substantial impacts on forest tree functions. We conducted a 7-year warming experiment in subtropical China by translocating important native forest tree species (Machilas breviflora, Syzygium rehderianum, Schima superba and Itea chinensis) from cooler high-elevation sites (600 m) to 1-2°C warmer low-elevation sites (300 and 30 m) to investigate warming effects on leaf hydraulic and economic traits. Here, we report data from the last 3 years (Years 5-7) of the experiment. Warming increased leaf hydraulic conductance of S. superba to meet the higher evaporative demand. M. breviflora (300 m), S. rehderianum, S. superba and I. chinensis (300 and 30 m) exhibited higher area-based and mass-based maximum photosynthetic rates (Aa and Am , respectively) related to increasing stomatal conductance (gs ) and stomatal density in the wet season, which led to rapid growth; however, we observed decreased growth of M. breviflora at 30 m due to lower stomatal density and decreased Aa in the wet season. Warming increased photosynthetic nitrogen-use efficiency and photosynthetic phosphorus-use efficiency, but reduced leaf dry mass per unit area due to lower leaf thickness, suggesting that these tree species allocated more resources into upregulating photosynthesis rather than into structural investment. Our findings highlight that there was trait variation in the capacity of trees to acclimate to warmer temperatures such that I. chinensis may benefit from warming, but S. superba may be negatively influenced by warming in future climates.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Hartikainen K, Kivimäenpää M, Nerg AM, Mäenpää M, Oksanen E, Rousi M, Holopainen T. Elevated temperature and ozone modify structural characteristics of silver birch (Betula pendula) leaves. TREE PHYSIOLOGY 2020; 40:467-483. [PMID: 31860708 DOI: 10.1093/treephys/tpz127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/16/2019] [Accepted: 11/15/2019] [Indexed: 05/06/2023]
Abstract
To study the effects of slightly elevated temperature and ozone (O3) on leaf structural characteristics of silver birch (Betula pendula Roth), saplings of four clonal genotypes of this species were exposed to elevated temperature (ambient air temperature +0.8-1.0 °C) and elevated O3 (1.3-1.4× ambient O3), alone and in combination, in an open-air exposure field over two growing seasons (2007 and 2008). So far, the impacts of moderate elevation of temperature or the combination of elevated temperature and O3 on leaf structure of silver birch have not been intensively studied, thus showing the urgent need for this type of studies. Elevated temperature significantly increased leaf size, reduced non-glandular trichome density, decreased epidermis thickness and increased plastoglobuli size in birch leaves during one or both growing seasons. During the second growing season, O3 elevation reduced leaf size, increased palisade layer thickness and decreased the number of plastoglobuli in spongy cells. Certain leaf structural changes observed under a single treatment of elevated temperature or O3, such as increase in the amount of chloroplasts or vacuole, were no longer detected at the combined treatment. Leaf structural responses to O3 and rising temperature may also depend on timing of the exposure during the plant and leaf development as indicated by the distinct changes in leaf structure along the experiment. Genotype-dependent cellular responses to the treatments were detected particularly in the palisade cells. Overall, this study showed that even a slight but realistic elevation in ambient temperature can notably modify leaf structure of silver birch saplings. Leaf structure, in turn, influences leaf function, thus potentially affecting acclimation capacity under changing climate.
Collapse
Affiliation(s)
- Kaisa Hartikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, Kuopio FI-70211, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, Kuopio FI-70211, Finland
| | - Anne-Marja Nerg
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, Kuopio FI-70211, Finland
| | - Maarit Mäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Yliopistokatu 2, Joensuu FI-80101, Finland
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Yliopistokatu 2, Joensuu FI-80101, Finland
| | - Matti Rousi
- Natural Resources Institute Finland, PO Box 2, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Toini Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, Kuopio FI-70211, Finland
| |
Collapse
|
20
|
Faticov M, Ekholm A, Roslin T, Tack AJM. Climate and host genotype jointly shape tree phenology, disease levels and insect attacks. OIKOS 2019. [DOI: 10.1111/oik.06707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Faticov
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Adam Ekholm
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Tomas Roslin
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| |
Collapse
|
21
|
Mazian B, Cariou S, Chaignaud M, Fanlo JL, Fauconnier ML, Bergeret A, Malhautier L. Evolution of temporal dynamic of volatile organic compounds (VOCs) and odors of hemp stem during field retting. PLANTA 2019; 250:1983-1996. [PMID: 31529396 DOI: 10.1007/s00425-019-03280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
New non-destructive approach to evaluate the retting process was investigated. Increase of retting duration led to a decrease of VOCs emitted by plants and change of color and plant odor. The variation of VOCs and odor could be used as indicators for the degree of retting. In the hemp industry, retting is an upstream bioprocessing applied to the plants to facilitate the decortication of fibres from the central woody part of the stem. This treatment is currently carried out in an empirical way on the ground which leads to variability in the hemp stems quality, and thus to the hemp fibres quality. Therefore, controlling retting treatment is a crucial step for high-performance hemp fibre. In this study, a new approach is used to assess the retting degree by following the evolution of VOCs emitted by plants during different retting durations. Either harvest time or retting induces a change in VOCs released by plants. During plant maturity, volatile compounds emitted decreased with a factor of about 2, in relation to VOCs released at the end of flowering. Regardless of the harvest period, the majority of VOCs and odor concentrations, monitored by olfactometric analysis, decrease gradually until some of them disappear at the end of retting. Likewise, the green plant odor disappears during retting with an increase of dry plants odor and an appearance of fermented odor at the end of retting. Following the evolution of VOCs emitted by plants during retting could be a tool for farmers to improve the retting management.
Collapse
Affiliation(s)
- Brahim Mazian
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
- Centre des Matériaux des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
| | - Stéphane Cariou
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
| | | | - Jean-Louis Fanlo
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
- Olentica sas, 14 Boulevard Charles Peguy, 30100, Alès, France
| | - Marie-Laure Fauconnier
- Laboratoire de Chimie des Molécules Naturelles, Gembloux Agro-Bio Tech, e, Université de Liège, 2 Passage des Déportés, 5030, Gembloux, Belgium
| | - Anne Bergeret
- Centre des Matériaux des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France
| | - Luc Malhautier
- Laboratoire du Génie de l'Environnement Industriel des Mines d'Alès, IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319, Alès Cedex, France.
| |
Collapse
|
22
|
Hosni K, Hassen I, M’Rabet Y, Casabianca H. Biochemical response of Cupressus sempervirens to cement dust: Yields and chemical composition of its essential oil. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
23
|
Turan S, Kask K, Kanagendran A, Li S, Anni R, Talts E, Rasulov B, Kännaste A, Niinemets Ü. Lethal heat stress-dependent volatile emissions from tobacco leaves: what happens beyond the thermal edge? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5017-5030. [PMID: 31289830 PMCID: PMC6850906 DOI: 10.1093/jxb/erz255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/20/2019] [Indexed: 05/10/2023]
Abstract
Natural vegetation is predicted to suffer from extreme heat events as a result of global warming. In this study, we focused on the immediate response to heat stress. Photosynthesis and volatile emissions were measured in the leaves of tobacco (Nicotiana tabacum cv. Wisconsin 38) after exposure to heat shock treatments between 46 °C and 55 °C. Exposure to 46 °C decreased photosynthetic carbon assimilation rates (A) by >3-fold. Complete inhibition of A was observed at 49 °C, together with a simultaneous decrease in the maximum quantum efficiency of PSII, measured as the Fv/Fm ratio. A large increase in volatile emissions was observed at 52 °C. Heat stress resulted in only minor effects on the emission of monoterpenes, but volatiles associated with membrane damage such as propanal and (E)-2-hexenal+(Z)-3-hexenol were greatly increased. Heat induced changes in the levels of methanol and 2-ethylfuran that are indicative of modification of cell walls. In addition, the oxidation of metabolites in the volatile profiles was strongly enhanced, suggesting the acceleration of oxidative processes at high temperatures that are beyond the thermal tolerance limit.
Collapse
Affiliation(s)
- Satpal Turan
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Kaia Kask
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Rinaldo Anni
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Bahtijor Rasulov
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
24
|
Zhou Y, Deng J, Tai Z, Jiang L, Han J, Meng G, Li MH. Leaf Anatomy, Morphology and Photosynthesis of Three Tundra Shrubs after 7-Year Experimental Warming on Changbai Mountain. PLANTS 2019; 8:plants8080271. [PMID: 31394735 PMCID: PMC6724111 DOI: 10.3390/plants8080271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
Tundra is one of the most sensitive biomes to climate warming. Understanding plant eco-physiological responses to warming is critical because these traits can give feedback on the effects of climate-warming on tundra ecosystem. We used open-top chambers following the criteria of the International Tundra Experiment to passively warm air and soil temperatures year round in alpine tundra. Leaf size, photosynthesis and anatomy of three dominant species were investigated during the growing seasons after 7 years of continuous warming. Warming increased the maximal light-saturated photosynthetic rate (Pmax) by 43.6% for Dryas. octopetala var. asiatica and by 26.7% for Rhododendron confertissimum across the whole growing season, while warming did not significantly affect the Pmax of V. uliginosum. The leaf size of Dr. octopetala var. asiatica and Rh. confertissimum was increased by warming. No marked effects of warming on anatomical traits of Dr. octopetala var. asiatica were observed. Warming decreased the leaf thickness of Rh. confertissimum and Vaccinium uliginosum. This study highlights the species-specific responses to climate warming. Our results imply that Dr. octopetala var. asiatica could be more dominant because it, mainly in terms of leaf photosynthetic capacity and size, seems to have advantages over the other two species in a warming world.
Collapse
Affiliation(s)
- Yumei Zhou
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jifeng Deng
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhijuan Tai
- Department of Tourism Economy, Changbai Mountain Academy of Sciences, Baihe 133633, China
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jianqiu Han
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai 201418, China
| | - Gelei Meng
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai 201418, China
| | - Mai-He Li
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland.
- School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
25
|
Schollert M, Kivimäenpää M, Michelsen A, Blok D, Rinnan R. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. ANNALS OF BOTANY 2017; 119:433-445. [PMID: 28064192 PMCID: PMC5314650 DOI: 10.1093/aob/mcw237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Climate change in the Arctic is projected to increase temperature, precipitation and snowfall. This may alter leaf anatomy and gas exchange either directly or indirectly. Our aim was to assess whether increased snow depth and warming modify leaf anatomy and affect biogenic volatile organic compound (BVOC) emissions and CO2 exchange of the widespread arctic shrubs Betula nana and Empetrum nigrum ssp. hermaphroditum METHODS: Measurements were conducted in a full-factorial field experiment in Central West Greenland, with passive summer warming by open-top chambers and snow addition using snow fences. Leaf anatomy was assessed using light microscopy and scanning electron microscopy. BVOC emissions were measured using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Carbon dioxide exchange was measured using an infrared gas analyser. KEY RESULTS Despite a later snowmelt and reduced photosynthesis for B. nana especially, no apparent delays in the BVOC emissions were observed in response to snow addition. Only a few effects of the treatments were seen for the BVOC emissions, with sesquiterpenes being the most responsive compound group. Snow addition affected leaf anatomy by increasing the glandular trichome density in B. nana and modifying the mesophyll of E. hermaphroditum The open-top chambers thickened the epidermis of B. nana, while increasing the glandular trichome density and reducing the palisade:spongy mesophyll ratio in E. hermaphroditum CONCLUSIONS: Leaf anatomy was modified by both treatments already after the first winter and we suggest links between leaf anatomy, CO2 exchange and BVOC emissions. While warming is likely to reduce soil moisture, melt water from a deeper snow pack alleviates water stress in the early growing season. The study emphasizes the ecological importance of changes in winter precipitation in the Arctic, which can interact with climate-warming effects.
Collapse
Affiliation(s)
- Michelle Schollert
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Daan Blok
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| |
Collapse
|
26
|
Lamote K, Vynck M, Van Cleemput J, Thas O, Nackaerts K, van Meerbeeck JP. Detection of malignant pleural mesothelioma in exhaled breath by multicapillary column/ion mobility spectrometry (MCC/IMS). J Breath Res 2016; 10:046001. [PMID: 27669062 DOI: 10.1088/1752-7155/10/4/046001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malignant pleural mesothelioma (MPM) is predominantly caused by previous asbestos exposure. Diagnosis often happens in advanced stages restricting any therapeutic perspectives. Early stage detection via breath analysis was explored using multicapillary column/ion mobility spectrometry (MCC/IMS) to detect volatile organic compounds (VOCs) in the exhaled breath of MPM patients in comparison to former occupational asbestos-exposed and non-exposed controls. Breath and background samples of 23 MPM patients, 22 asymptomatic former asbestos (AEx) workers and 21 healthy non-asbestos exposed persons were taken for analysis. After background correction, we performed a logistic least absolute shrinkage and selection operator (lasso) regression to select the most important VOCs, followed by receiver operating characteristic (ROC) analysis. MPM patients were discriminated from both controls with 87% sensitivity, 70% specificity and respective positive and negative predictive values of 61% and 91%. The overall accuracy was 76% and the area under the ROC-curve was 0.81. AEx individuals could be discriminated from MPM patients with 87% sensitivity, 86% specificity and respective positive and negative predictive values of 87% and 86%. The overall accuracy was 87% with an area under the ROC-curve of 0.86. Breath analysis by MCC/IMS allows MPM patients to be discriminated from controls and holds promise for further investigation as a screening tool for former asbestos-exposed persons at risk of developing MPM.
Collapse
Affiliation(s)
- Kevin Lamote
- Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium. Department of Internal Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium. Author to whom any correspondence should be addressed. Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185-building 7K12IE, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Kask K, Kännaste A, Talts E, Copolovici L, Niinemets Ü. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. PLANT, CELL & ENVIRONMENT 2016; 39:2027-42. [PMID: 27287526 PMCID: PMC5798583 DOI: 10.1111/pce.12775] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 05/04/2023]
Abstract
Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses.
Collapse
Affiliation(s)
- Kaia Kask
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Author for correspondence.
| | - Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” University, 2 Elena Dragoi St., 310330, Arad, Romania
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Elena Dragoi St., 310330, Arad, Romania
| |
Collapse
|
28
|
Wang H, Liu Y, Chen H. Ecological Strategy at Cell Size Level to Respond to Stressed Environments. POLISH JOURNAL OF ECOLOGY 2016. [DOI: 10.3161/15052249pje2016.64.2.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Jud W, Vanzo E, Li Z, Ghirardo A, Zimmer I, Sharkey TD, Hansel A, Schnitzler JP. Effects of heat and drought stress on post-illumination bursts of volatile organic compounds in isoprene-emitting and non-emitting poplar. PLANT, CELL & ENVIRONMENT 2016; 39:1204-15. [PMID: 26390316 PMCID: PMC4982041 DOI: 10.1111/pce.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/13/2015] [Indexed: 05/22/2023]
Abstract
Over the last decades, post-illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light-to-dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene-emitting (IE) and isoprene non-emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods). PIBs of isoprene were unaffected by elevated CO2 and heat and drought stress in IE, while they were absent in NE plants. On the other hand, PIBs of acetaldehyde and also GLVs were strongly reduced in stress-affected plants of all genotypes. After recovery from stress, distinct differences in PIB emissions in both genotypes confirmed different precursor pools for acetaldehyde and GLV emissions. Changes in PIBs of GLVs, almost absent in stressed plants and enhanced after recovery, could be mainly attributed to changes in lipoxygenase activity. Our results indicate that acetaldehyde PIBs, which recovered only partly, derive from a new mechanism in which acetaldehyde is produced from methylerythritol phosphate pathway intermediates, driven by deoxyxylulose phosphate synthase activity.
Collapse
Affiliation(s)
- Werner Jud
- Institute of Ion and Applied Physics, University of Innsbruck, 6020, Innsbruck, Austria
| | - Elisa Vanzo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Ziru Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan, 48823, USA
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan, 48823, USA
| | - Armin Hansel
- Institute of Ion and Applied Physics, University of Innsbruck, 6020, Innsbruck, Austria
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| |
Collapse
|
30
|
Tiwari S, Grote R, Churkina G, Butler T. Ozone damage, detoxification and the role of isoprenoids - new impetus for integrated models. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:324-336. [PMID: 32480464 DOI: 10.1071/fp15302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/22/2015] [Indexed: 06/11/2023]
Abstract
High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Rüdiger Grote
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Galina Churkina
- Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany
| | - Tim Butler
- Institute of Advanced Sustainable Studies, Berliner St. 130, 14467 Potsdam, Germany
| |
Collapse
|
31
|
Maja MM, Kasurinen A, Holopainen T, Julkunen-Tiitto R, Holopainen JK. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:39-47. [PMID: 26780130 DOI: 10.1016/j.scitotenv.2015.12.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 05/07/2023]
Abstract
Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient +2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A+T and UV-B+T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B×temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone.
Collapse
Affiliation(s)
- Mengistu M Maja
- University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio, Finland.
| | - Anne Kasurinen
- University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio, Finland
| | - Toini Holopainen
- University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio, Finland
| | - Riitta Julkunen-Tiitto
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland
| | - Jarmo K Holopainen
- University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
32
|
Schollert M, Kivimäenpää M, Valolahti HM, Rinnan R. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants. PLANT, CELL & ENVIRONMENT 2015; 38:2048-60. [PMID: 25737381 DOI: 10.1111/pce.12530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 05/22/2023]
Abstract
Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.
Collapse
Affiliation(s)
- Michelle Schollert
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, 1350, Denmark
| | - Minna Kivimäenpää
- Department of Environmental Science, University of Eastern Finland, Kuopio, 70211, Finland
| | - Hanna M Valolahti
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, 1350, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, 1350, Denmark
| |
Collapse
|
33
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
34
|
D'Angiolillo F, Tonelli M, Pellegrini E, Nali C, Lorenzini G, Pistelli L, Pistelli L. Can Ozone Alter the Terpenoid Composition and Membrane Integrity of in vitro Melissa officinalis Shoots? Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ozone affects volatile organic compounds that protect plants from biotic and abiotic stress. In vitro Melissa officinalis shoots were exposed to ozone (200 ppb, 3 h) in controlled environmental conditions: leaf pigments, membrane integrity and headspace composition were assayed during fumigation and after the recovery period (3 h from the beginning of the exposure, FBE). At the end of the exposure, no injury was observed in untreated and treated shoots, although an evident increase in lipid peroxidation was reported (+38.5 and +37.2% of TBARS levels in comparison with controls, respectively after 1 and 3 h FBE). The levels of total carotenoids significantly rose as a normal response mechanism to oxidative stress. SPME-GS-MS analysis showed that, as a consequence of the fumigation, the trends in non-terpenoid compounds increased after 1 and 3 h FBE. This suggests that the concentration and the duration of the treatment were enough to cause a breakdown of cells (as evidenced by increased TBARS levels) and involves an association between volatile products of the lipoxygenase pathway (LOX products) and membrane degradation.
Collapse
Affiliation(s)
- Francesca D'Angiolillo
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
| | - Luisa Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa – Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa – Italy
| |
Collapse
|
35
|
Buckley PI, Bowdle DA, Newchurch MJ, Sive BC, Mount GH. Extractive FTIR spectroscopy with cryogen-free low-temperature inert preconcentration for autonomous measurements of atmospheric organics: 1: Instrument development and preliminary performance. APPLIED OPTICS 2015; 54:2908-2921. [PMID: 25967207 DOI: 10.1364/ao.54.002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
In collaboration with the Jefferson County Department of Health and the Environmental Protection Agency (EPA), the University of Alabama in Huntsville developed a novel sensor for detecting very low levels of volatile organic compounds (VOCs). This sensor uses a commercial Fourier-transform infrared (FTIR) spectrometer, a commercial long-path IR gas cell, a commercial acoustic Stirling cyrocooler, and a custom cryogen-free cryotrap to improve sensitivity in an autonomous system with on-board quality control and quality assurance. Laboratory and initial field results show this methodology is sensitive to and well-suited for a wide variety of VOC atmospheric research and monitoring applications, including EPA National Air Toxics Trends Stations and the National Core monitoring network.
Collapse
|
36
|
Rasulov B, Bichele I, Hüve K, Vislap V, Niinemets Ü. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls. PLANT, CELL & ENVIRONMENT 2015; 38:751-66. [PMID: 25158785 PMCID: PMC5772913 DOI: 10.1111/pce.12435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 05/20/2023]
Abstract
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Irina Bichele
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Katja Hüve
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Vivian Vislap
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
37
|
Copolovici L, Väärtnõu F, Portillo Estrada M, Niinemets Ü. Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. TREE PHYSIOLOGY 2014; 34:1399-410. [PMID: 25428827 PMCID: PMC4410320 DOI: 10.1093/treephys/tpu091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oak powdery mildew (Erysiphe alphitoides) is a major foliar pathogen of Quercus robur often infecting entire tree stands. In this study, foliage photosynthetic characteristics and constitutive and induced volatile emissions were studied in Q. robur leaves, in order to determine whether the changes in foliage physiological traits are quantitatively associated with the degree of leaf infection, and whether infection changes the light responses of physiological traits. Infection by E. alphitoides reduced net assimilation rate by 3.5-fold and isoprene emission rate by 2.4-fold, and increased stomatal conductance by 1.6-fold in leaves with the largest degree of infection of ∼60%. These alterations in physiological activity were quantitatively associated with the fraction of leaf area infected. In addition, light saturation of net assimilation and isoprene emission was reached at lower light intensity in infected leaves, and infection also reduced the initial quantum yield of isoprene emission. Infection-induced emissions of lipoxygenase pathway volatiles and monoterpenes were light-dependent and scaled positively with the degree of infection. Overall, this study indicates that the reduction of foliage photosynthetic activity and constitutive emissions and the onset of stress volatile emissions scale with the degree of infection, but also that the infection modifies the light responses of foliage physiological activities.
Collapse
Affiliation(s)
- Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia Institute of Research, Development, Innovation in Technical and Natural Sciences, 'Aurel Vlaicu' University, 2 Elena Dragoi, 310330 Arad, Romania
| | - Fred Väärtnõu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia
| | - Miguel Portillo Estrada
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi, 51014 Tartu, Estonia Estonian Academy of Sciences, 6 Kohtu, 10130 Tallinn, Estonia
| |
Collapse
|
38
|
Cardoso-Gustavson P, Bolsoni VP, de Oliveira DP, Guaratini MTG, Aidar MPM, Marabesi MA, Alves ES, de Souza SR. Ozone-induced responses in Croton floribundus Spreng. (Euphorbiaceae): metabolic cross-talk between volatile organic compounds and calcium oxalate crystal formation. PLoS One 2014; 9:e105072. [PMID: 25165889 PMCID: PMC4148241 DOI: 10.1371/journal.pone.0105072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3.
Collapse
Affiliation(s)
- Poliana Cardoso-Gustavson
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Mauro Alexandre Marabesi
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, São Paulo, Brazil
| | - Edenise Segala Alves
- Núcleo de Pesquisa em Anatomia, Instituto de Botânica, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
39
|
Egigu MC, Ibrahim MA, Riikonen J, Yahya A, Holopainen T, Julkunen-Tiitto R, Holopainen JK. Effects of Rising Temperature on Secondary Compounds of Yeheb (<i>Cordeauxia edulis</i> Hemsley). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.55066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ghimire RP, Markkanen JM, Kivimäenpää M, Lyytikäinen-Saarenmaa P, Holopainen JK. Needle removal by pine sawfly larvae increases branch-level VOC emissions and reduces below-ground emissions of Scots pine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4325-32. [PMID: 23586621 DOI: 10.1021/es4006064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate warming is expected to increase the frequency of insect outbreaks in Boreal conifer forests. We evaluated how needle removal by the larvae of two diprionid sawfly species affects the composition and quantity of VOC emissions from Pinus sylvestris L. saplings. Feeding damage significantly increased the rate of localized VOC emissions from the damaged branch. The emissions of total monoterpenes (MTs) were dominating (96-98% of total VOCs) and increased by14-fold in Neodiprion sertifer-damaged branches and by 16-fold in Diprion pini-damaged branches compared to intact branches. Emissions of δ-3-carene, α-pinene, sabinene, and β-phellandrene were most responsive. Feeding damage by N. sertifer larvae increased the emission rates of total sesquiterpenes by 7-fold (4% of total VOCs) and total green leaf volatiles by 13-fold (<1% of total VOCs). The VOC emissions from N. sertifer larvae constituted nearly 25% of the total branch emissions. N. sertifer feeding in the lower branches induced 4-fold increase in MT emissions in the top crown. Defoliation of Scots pine by D. pini significantly reduced the below-ground emissions of total MTs by approximately 80%. We conclude that defoliators could significantly increase total VOC emissions from the Scots pine canopy including MT emissions from resin storing sawfly larvae.
Collapse
Affiliation(s)
- Rajendra P Ghimire
- Department of Environmental Science, Kuopio Campus, University of Eastern Finland (UEF), P.O. Box 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
41
|
Metabolomics and Transcriptomics Increase Our Understanding About Defence Responses and Genotypic Differences of Northern Deciduous Trees to Elevating Ozone, CO2 and Climate Warming. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-08-098349-3.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Xu CY, Salih A, Ghannoum O, Tissue DT. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5829-5841. [PMID: 22915750 DOI: 10.1093/jxb/ers231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.
Collapse
Affiliation(s)
- Cheng-Yuan Xu
- Department of Biological and Physical Sciences and Australian Centre of Sustainable Catchments, University of Southern Queensland, West Street, Toowoomba, QLD 4350 Australia.
| | | | | | | |
Collapse
|
43
|
Riikonen J, Kontunen-Soppela S, Ossipov V, Tervahauta A, Tuomainen M, Oksanen E, Vapaavuori E, Heinonen J, Kivimäenpää M. Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration. TREE PHYSIOLOGY 2012; 32:1102-12. [PMID: 22935538 DOI: 10.1093/treephys/tps072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Northern forests are currently experiencing increasing mean temperatures, especially during autumn and spring. Consequently, alterations in carbon sequestration, leaf biochemical quality and freezing tolerance (FT) are likely to occur. The interactive effects of elevated temperature and ozone (O(3)), the most harmful phytotoxic air pollutant, on Norway spruce (Picea abies (L.) Karst.) seedlings were studied by analysing phenology, metabolite concentrations in the needles, FT and gas exchange. Sampling was performed in September and May. The seedlings were exposed to a year-round elevated temperature (+1.3 °C), and to 1.4× ambient O(3) concentration during the growing season in the field. Elevated temperature increased the concentrations of amino acids, organic acids of the citric acid cycle and some carbohydrates, and reduced the concentrations of phenolic compounds, some organic acids of the shikimic acid pathway, sucrose, cyclitols and steroids, depending on the timing of the sampling. Although growth onset occurred earlier at elevated temperature, the temperature of 50% lethality (LT(50)) was similar in the treatments. Photosynthesis and the ratio of photosynthesis to dark respiration were reduced by elevated temperature. Elevated concentrations of O(3) reduced the total concentration of soluble sugars, and tended to reduce LT(50) of the needles in September. These results show that alterations in needle chemical quality can be expected at elevated temperatures, but the seedlings' sensitivity to autumn and spring frosts is not altered. Elevated O(3) has the potential to disturb cold hardening of Norway spruce seedlings in autumn, and to alter the water balance of the seedling through changes in stomatal conductance (g(s)), while elevated temperature is likely to reduce g(s) and consequently reduce the O(3)-flux inside the leaves.
Collapse
Affiliation(s)
- Johanna Riikonen
- Finnish Forest Research Institute, FIN-77600 Suonenjoki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Volatiles emission patterns in poplar clones varying in response to ozone. J Chem Ecol 2012; 38:924-32. [PMID: 22811004 DOI: 10.1007/s10886-012-0162-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
The volatiles emitted from young and old leaves of two poplar clones (Populus deltoides x maximowiczii, Eridano, and P. x euramericana, I-214) were sampled after exposure to ozone (80 ppb, 5 h d(-1), for 10 consecutive days) by solid phase microextraction and characterized by GC-MS. Only mature leaves of the ozone-sensitive Eridano clone developed necrosis in response to ozone exposure, and their membrane integrity was significantly affected by ozone (+86 and +18 % of levels of thiobarbituric acid reactive substances in mature and young leaves). The headspace of the poplar clones studied here contained mono- and sesquiterpenes, both hydrocarbons and oxygenated ones in Eridano, and only hydrocarbons in the clone I-214. Furthermore, some non-terpenes, such as C(9)-C(15) straight-chain aldehydes and C(12)-C(16) saturated and unsaturated aliphatic hydrocarbons, were detected. Other common non-terpene volatiles were oxygenated aliphatic compounds, mainly C(6)-alcohols and their acetates. Ozone exposure induced a strong change in volatile profiles, depending on clones and leaf age. Regardless of leaf age, in clone I-214, quantities of oxygenated monoterpenes tended to increase after ozone exposure, however, "O(3) x leaf age" was not significant. In clone Eridano, increases were observed in emissions of hydrocarbons and oxygenated sesquiterpenes in response to ozone treatment. (Z)-3-Hexen-1-ol and (Z)-3-hexenol acetate were present in traces in the headspace of untreated Eridano mature leaves, but quantities slightly increased after ozone treatment. Quantities of non-terpene oxygenated compounds dropped in the headspace of young leaves of both clones (-24 and -44 % in Eridano and I-214) and also in mature ones of I-214 (-50 %) after ozone exposure. Similarly, quantities of non-terpene hydrocarbons in the emissions from mature leaves of both clones (-58 and -49 %, respectively) decreased, while these compounds increased in young leaves of Eridano (+83 %). We suggest that the resistance of the poplar clone I-214 to O(3) is achieved by: i) monoterpenes constitutively present in young leaves and ii) increase of monoterpene content induced by O(3) in mature leaves.
Collapse
|
45
|
Medori M, Michelini L, Nogues I, Loreto F, Calfapietra C. The impact of root temperature on photosynthesis and isoprene emission in three different plant species. ScientificWorldJournal 2012; 2012:525827. [PMID: 22701360 PMCID: PMC3373142 DOI: 10.1100/2012/525827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 11/22/2022] Open
Abstract
Most of the perennial plant species, particularly trees, emit volatile organic compounds (BVOCs) such as isoprene and monoterpenes, which in several cases have been demonstrated to protect against thermal shock and more generally against oxidative stress. In this paper, we show the response of three strong isoprene emitter species, namely, Phragmites australis, Populus x euramericana, and Salix phylicifolia exposed to artificial or natural warming of the root system in different conditions. This aspect has not been investigated so far while it is well known that warming the air around a plant stimulates considerably isoprene emission, as also shown in this paper. In the green house experiments where the warming corresponded with high stress conditions, as confirmed by higher activities of the main antioxidant enzymes, we found that isoprene uncoupled from photosynthesis at a certain stage of the warming treatment and that even when photosynthesis approached to zero isoprene emission was still ongoing. In the field experiment, in a typical cold-limited environment, warming did not affect isoprene emission whereas it increased significantly CO2 assimilation. Our findings suggest that the increase of isoprene could be a good marker of heat stress, whereas the decrease of isoprene a good marker of accelerated foliar senescence, two hypotheses that should be better investigated in the future.
Collapse
Affiliation(s)
- Mauro Medori
- Institute of Agro-Environmental & Forest Biology-IBAF, National Research Council-CNR, Via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Kasurinen A, Biasi C, Holopainen T, Rousi M, Mäenpää M, Oksanen E. Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. TREE PHYSIOLOGY 2012; 32:737-51. [PMID: 22363070 DOI: 10.1093/treephys/tps005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the present experiment, the single and combined effects of elevated temperature and ozone (O(3)) on four silver birch genotypes (gt12, gt14, gt15 and gt25) were studied in an open-air field exposure design. Above- and below-ground biomass accumulation, stem growth and soil respiration were measured in 2008. In addition, a (13)C-labelling experiment was conducted with gt15 trees. After the second exposure season, elevated temperature increased silver birch above- and below-ground growth and soil respiration rates. However, some of these variables showed that the temperature effect was modified by tree genotype and prevailing O(3) level. For instance, in gt14 soil respiration was increased in elevated temperature alone (T) and in elevated O(3) and elevated temperature in combination (O(3) + T) treatments, but in other genotypes O(3) either partly (gt12) or totally nullified (gt25) temperature effects on soil respiration, or acted synergistically with temperature (gt15). Before leaf abscission, all genotypes had the largest leaf biomass in T and O(3) + T treatments, whereas at the end of the season temperature effects on leaf biomass depended on the prevailing O(3) level. Temperature increase thus delayed and O(3) accelerated leaf senescence, and in combination treatment O(3) reduced the temperature effect. Photosynthetic : non-photosynthetic tissue ratios (P : nP ratios) showed that elevated temperature increased foliage biomass relative to woody mass, particularly in gt14 and gt12, whereas O(3) and O(3) + T decreased it most clearly in gt25. O(3)-caused stem growth reductions were clearest in the fastest-growing gt14 and gt25, whereas mycorrhizal root growth and sporocarp production increased under O(3) in all genotypes. A labelling experiment showed that temperature increased tree total biomass and hence (13)C fixation in the foliage and roots and also label return was highest under elevated temperature. Ozone seemed to change tree (13)C allocation, as it decreased foliar (13)C excess amount, simultaneously increasing (13)C excess obtained from the soil. The present results suggest that warming has potential to increase silver birch growth and hence carbon (C) accumulation in tree biomass, but the final magnitude of this C sink strength is partly counteracted by temperature-induced increase in soil respiration rates and simultaneous O(3) stress. Silver birch populations' response to climate change will also largely depend on their genotype composition.
Collapse
Affiliation(s)
- Anne Kasurinen
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
47
|
Holopainen JK. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? TREE PHYSIOLOGY 2011; 31:1356-77. [PMID: 22112623 DOI: 10.1093/treephys/tpr111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.
Collapse
Affiliation(s)
- Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
48
|
Mäenpää M, Riikonen J, Kontunen-Soppela S, Rousi M, Oksanen E. Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula. TREE PHYSIOLOGY 2011; 31:808-18. [PMID: 21856655 DOI: 10.1093/treephys/tpr075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2 × ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.
Collapse
Affiliation(s)
- Maarit Mäenpää
- Department of Biology, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland.
| | | | | | | | | |
Collapse
|
49
|
Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 2011; 36:22-34. [PMID: 20084432 DOI: 10.1007/s10886-009-9732-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/16/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.
Collapse
Affiliation(s)
- Delia M Pinto
- Plant Production Research/Plant Protection Unit, MTT Agrifood Research Finland, Jokioinen, Finland
| | | | | | | | | |
Collapse
|
50
|
Faubert P, Tiiva P, Rinnan Å, Michelsen A, Holopainen JK, Rinnan R. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. THE NEW PHYTOLOGIST 2010; 187:199-208. [PMID: 20456056 DOI: 10.1111/j.1469-8137.2010.03270.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
*Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. *We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. *The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5 degrees C, while litter addition had a minor influence. BVOC emissions were seasonal, and warming combined with litter addition triggered emissions of specific compounds. *The unexpectedly high rate of release of BVOCs measured in this conservative warming scenario is far above the estimates produced by the current models, which underlines the importance of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects.
Collapse
Affiliation(s)
- Patrick Faubert
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Päivi Tiiva
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Åsmund Rinnan
- Quality & Technology, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, Faculty of Science, University of Copenhagen, Øster Farimagsgade 2D, DK-1353 Copenhagen K, Denmark
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Riikka Rinnan
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
- Terrestrial Ecology Section, Department of Biology, Faculty of Science, University of Copenhagen, Øster Farimagsgade 2D, DK-1353 Copenhagen K, Denmark
| |
Collapse
|