1
|
Xu M, Lv D, Wei H, Li Z, Jin S, Liu Q, Zhang Y, Liu Y. Effects of antidiabetic agents on lipid metabolism of skeletal muscle: A narrative review. Diabetes Obes Metab 2025. [PMID: 39807619 DOI: 10.1111/dom.16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked. However, current research has predominantly focused on muscle mass rather than skeletal muscle lipid metabolism and its interplay with glucose metabolism. In this review, we summarised the latest research on the effects of antidiabetic drugs and certain natural compounds with antidiabetic activity on skeletal muscle lipid metabolism, focusing on data from preclinical to clinical studies. Given the widespread use of antidiabetic drugs, a better understanding of their effects on skeletal muscle lipid metabolism merits further attention in future research.
Collapse
Affiliation(s)
- Ming Xu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Dongqing Lv
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhe Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shuqing Jin
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qinhao Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
3
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. J Clin Endocrinol Metab 2024:dgae727. [PMID: 39401337 DOI: 10.1210/clinem/dgae727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
CONTEXT Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. OBJECTIVE We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). METHODS The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. RESULTS Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. CONCLUSIONS Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
Affiliation(s)
- Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Lee Tran
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Nyssa Hoffman
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Lori R Roust
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | | | - Lawrence J Mandarino
- Department of Medicine, and Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona College of Medicine, Tucson, AZ 85724
| | - Kailin Johnsson
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Marek Belohlavek
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Matthew R Buras
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
4
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598550. [PMID: 38915696 PMCID: PMC11195248 DOI: 10.1101/2024.06.11.598550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Context Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. Objective We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). Methods The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. Results Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. Conclusions Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
|
5
|
Shimizu T, Ota H, Kodama A, Suzuki Y, Ohnuma T, Suzuki R, Sugawara K, Sato Y, Kodama H. Unmodulated 40 Hz Stimulation as a Therapeutic Strategy for Aging: Improvements in Metabolism, Frailty, and Cognitive Function in Senescence-Accelerated Prone 10 Mice. Biomolecules 2024; 14:1079. [PMID: 39334848 PMCID: PMC11429768 DOI: 10.3390/biom14091079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
With aging populations in many countries, including Japan, efforts to mitigate the aging-related decline in physical function have gained importance not only for improving individual quality of life but also for mitigating the effects of this loss of function on society. Impaired glucose tolerance, muscle weakness, and cognitive decline are well-known effects of aging. These interrelated factors can create a vicious cycle because impaired glucose tolerance can accelerate muscle weakness and cognitive decline. Unmodulated 40 Hz (u40Hz) stimulation is imperceptible to the human ear and has been reported to improve cognitive function in humans and mice. However, research on the effects of u40Hz stimulation is still limited. This study aimed to report the effects of u40Hz stimulation on glucose tolerance and muscle strength in senescence-accelerated prone (SAMP)-10 mice, a model of accelerated aging. SAMP-10 mice underwent five weeks of u40Hz stimulation followed by glucose-tolerance tests, cognitive and behavioral assessments, and frailty evaluations. In comparison with the control group, the u40Hz-stimulation group showed mitigation of age-related decline in glucose tolerance, a better frailty index (FI), and notably preserved muscle strength. Microarray analysis of stimulated muscle tissue revealed significant upregulation of β-oxidation genes and genes functioning downstream of peroxisome proliferator-activated receptor gamma, and significant downregulation of clock genes. These findings indicate the beneficial effects of u40Hz stimulation on glucose tolerance, muscle strength, and cognitive function, warranting further research in this area.
Collapse
Affiliation(s)
- Tatsunori Shimizu
- Advanced Research Center for Geriatric and Gerontology, Akita University, Akita 010-8543, Japan; (T.S.); (A.K.); (T.O.); (K.S.)
| | - Hidetaka Ota
- Advanced Research Center for Geriatric and Gerontology, Akita University, Akita 010-8543, Japan; (T.S.); (A.K.); (T.O.); (K.S.)
| | - Ayuto Kodama
- Advanced Research Center for Geriatric and Gerontology, Akita University, Akita 010-8543, Japan; (T.S.); (A.K.); (T.O.); (K.S.)
- Department of Occupational Therapy, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yasuhiro Suzuki
- Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Takako Ohnuma
- Advanced Research Center for Geriatric and Gerontology, Akita University, Akita 010-8543, Japan; (T.S.); (A.K.); (T.O.); (K.S.)
| | | | - Kaoru Sugawara
- Advanced Research Center for Geriatric and Gerontology, Akita University, Akita 010-8543, Japan; (T.S.); (A.K.); (T.O.); (K.S.)
| | | | - Hiroyuki Kodama
- Social Medical Corporation of Seiwakai, Akita 018-1401, Japan;
| |
Collapse
|
6
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
7
|
Fan Z, Ma K, Wang Y, Wang L, Zhang Y, Li C, Li J, Wu D, Li J, Li Z. Liver transcriptome and physiological analyses preliminarily revealed the adaptation mechanisms of Amur grayling ( Thymallus arcticus grubei, Dybowski, 1869) fry for dietary lipid nutrition. Front Vet Sci 2024; 11:1369845. [PMID: 38694481 PMCID: PMC11061402 DOI: 10.3389/fvets.2024.1369845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
The Amur grayling (Thymallus arcticus grubei Dybowski, 1869), a species of potentially economic and research value, is renowned for its tender meat, exquisite flavor, and high nutritional contents. This study was conducted to investigate the physiological adaptation mechanisms to dietary lipids in Amur grayling fry (with average initial weight 4.64±0.03 g). This study involved a 56-day feeding trial with diets containing varying lipid levels (9.07%, 12.17%, 15.26%, 18.09%, 21.16%, and 24.07%, designated as GL1 through GL6, respectively) to explore the impact of dietary lipids on growth performance, intestinal digestion, liver antioxidative function, and transcriptomic profiles. Results showed that The group receiving 18% dietary lipid exhibited a markedly higher weight gain rate (WGR) and specific growth rate compared to other groups, alongside a reduced feed conversion ratio (FCR), except in comparison to the 15% lipid group. Activities of lipase in pancreatic secretion and amylase in stomach mucosa peaked in the 18% lipid treatment group, indicating enhanced digestive efficiency. The liver of fish in this group also showed increased activities of antioxidative enzymes and higher levels of glutathione and total antioxidative capacity, along with reduced malondialdehyde content compared to the 9% and 24% lipid treatments. Additionally, serum high-density lipoprotein cholesterol levels were highest in the 18% group. Transcriptomic analysis revealed four significant metabolic pathways affected: Cholesterol metabolism, Fat digestion and absorption, PPAR signaling, and Fatty acid degradation, involving key genes such as Lipase, Lipoprotein lipase, Fatty acid-binding protein, and Carnitine palmitoyltransferase I. These findings suggest that the liver of Amur grayling employs adaptive mechanisms to manage excessive dietary lipids. Quadratic regression analysis determined the optimal dietary lipid levels to be 16.62% and 16.52%, based on WGR and FCR, respectively. The optimal dietary lipid level for juvenile Amur grayling appears to be around 18%, as evidenced by improved growth performance, digestive function, balanced serum lipid profile, and enhanced liver antioxidative capacity. Exceeding this lipid threshold triggers both adaptive and potentially detrimental liver responses.
Collapse
Affiliation(s)
- Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Kai Ma
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yan Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yongquan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chenhui Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jiaxin Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Zhengwei Li
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, China
| |
Collapse
|
8
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
9
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Fatty Acids and their Proteins in Adipose Tissue Inflammation. Cell Biochem Biophys 2024; 82:35-51. [PMID: 37794302 PMCID: PMC10867084 DOI: 10.1007/s12013-023-01185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Chronic low-grade adipose tissue inflammation is associated with metabolic disorders. Inflammation results from the intertwined cross-talks of pro-inflammatory and anti-inflammatory pathways in the immune response of adipose tissue. In addition, adipose FABP4 levels and lipid droplet proteins are involved in systemic and tissue inflammation. Dysregulated adipocytes help infiltrate immune cells derived from bone marrow responsible for producing cytokines and chemokines. When adipose tissue expands in excess, adipocyte exhibits increased secretion of adipokines and is implicated in metabolic disturbances due to the release of free fatty acids. This review presents an emerging concept in adipose tissue fat metabolism, fatty acid handling and binding proteins, and lipid droplet proteins and their involvement in inflammatory disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, Queretaro, 76130, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
10
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
11
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
12
|
Schleh MW, Ahn C, Ryan BJ, Chugh OK, Luker AT, Luker KE, Gillen JB, Ludzki AC, Van Pelt DW, Pitchford LM, Zhang T, Rode T, Howton SM, Burant CF, Horowitz JF. Both moderate- and high-intensity exercise training increase intramyocellular lipid droplet abundance and modify myocellular distribution in adults with obesity. Am J Physiol Endocrinol Metab 2023; 325:E466-E479. [PMID: 37729021 PMCID: PMC10864005 DOI: 10.1152/ajpendo.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
13
|
Mandal N, Asuzu P, Stentz F, Wan J, Dagogo-Jack S. Ceramides and other sphingolipids as predictors of incident dysglycemia (CASPID): Design, methods, and baseline characteristics. Exp Biol Med (Maywood) 2023; 248:1393-1402. [PMID: 37452717 PMCID: PMC10657588 DOI: 10.1177/15353702231184228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
The Ceramides and other Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study tests the overall hypothesis that sphingolipids are pathophysiologic mediators of transition from normal glucose regulation (NGR) to prediabetes, type 2 diabetes (T2DM), and associated complications. The CASPID study utilizes two longitudinal cohorts - the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC)/Pathobiology and Reversibility of Prediabetes in a Biracial Cohort (PROP-ABC) and the Diabetes Prevention Program (DPP)/DPP Outcomes Study (DPPOS). Normoglycemic POP-ABC/PROP-ABC were followed for 10 years for progression to prediabetes and offered lifestyle intervention to reverse prediabetes. The DPP/DPPOS participants had prediabetes at enrollment, were randomized to placebo, lifestyle intervention, or metformin treatment, and followed for 11 years for progression to T2DM. Using a case-control design, we analyze 76 targeted plasma sphingolipids as predictors of progression from NGR to prediabetes (Aim 1), prediabetes to T2DM (Aim 2), response to interventions (Aim 3), and development of diabetes complications (Aim 4). A sample size of 600 subjects provides >80% power to detect a 20% difference in sphingolipid profiles between comparison groups (alpha = 0.01). At enrollment, POP-ABC participants had a mean age of 47.7 ± 9.00 years, body mass index (BMI) 30.4 ± 6.10 kg/m2, fasting glucose 92.9 ± 6.90 mg/dL, and 2-h glucose 130 ± 28.8 mg/dL; DPP participants had a mean age of 51.9 ± 9.44 years, BMI 33.7 ± 6.33 kg/m2, fasting glucose 106 ± 7.88 mg/dL, and 2-h glucose 164 ± 16.9 mg/dL. Among normoglycemic participants, those with parental history of T2DM had significantly higher baseline levels of total sphingomyelins, and lower levels of total ceramides and sphingosine, compared with control subjects without familial diabetes history. As the first such study in longitudinal human cohorts, CASPID will elucidate the role of sphingolipids in the pathogenesis of dysglycemia and facilitate the discovery of novel predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
14
|
Muscle Lipid Oxidation Is Not Affected by Obstructive Sleep Apnea in Diabetes and Healthy Subjects. Int J Mol Sci 2023; 24:ijms24065308. [PMID: 36982383 PMCID: PMC10048979 DOI: 10.3390/ijms24065308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The molecular mechanisms linking obstructive sleep apnea (OSA) with type 2 diabetes mellitus (T2DM) remain unclear. This study investigated the effect of OSA on skeletal muscle lipid oxidation in nondiabetic controls and in type 2 diabetes (T2DM) patients. Forty-four participants matched for age and adiposity were enrolled: nondiabetic controls (control, n = 14), nondiabetic patients with severe OSA (OSA, n = 9), T2DM patients with no OSA (T2DM, n = 10), and T2DM patients with severe OSA (T2DM + OSA, n = 11). A skeletal muscle biopsy was performed; gene and protein expressions were determined and lipid oxidation was analyzed. An intravenous glucose tolerance test was performed to investigate glucose homeostasis. No differences in lipid oxidation (178.2 ± 57.1, 161.7 ± 22.4, 169.3 ± 50.9, and 140.0 ± 24.1 pmol/min/mg for control, OSA, T2DM, and T2DM+OSA, respectively; p > 0.05) or gene and protein expressions were observed between the groups. The disposition index, acute insulin response to glucose, insulin resistance, plasma insulin, glucose, and HBA1C progressively worsened in the following order: control, OSA, T2DM, and T2DM + OSA (p for trend <0.05). No association was observed between the muscle lipid oxidation and the glucose metabolism variables. We conclude that severe OSA is not associated with reduced muscle lipid oxidation and that metabolic derangements in OSA are not mediated through impaired muscle lipid oxidation.
Collapse
|
15
|
Fan S, Kong C, Chen Y, Zheng X, Zhou R, Zhang X, Wu X, Zhang W, Ding Y, Yin Z. Copy Number Variation Analysis Revealed the Evolutionary Difference between Chinese Indigenous Pigs and Asian Wild Boars. Genes (Basel) 2023; 14:472. [PMID: 36833399 PMCID: PMC9957247 DOI: 10.3390/genes14020472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Copy number variation (CNV) has been widely used to study the evolution of different species. We first discovered different CNVs in 24 Anqingliubai pigs and 6 Asian wild boars using next-generation sequencing at the whole-genome level with 10× depth to understand the relationship between genetic evolution and production traits in wild boars and domestic pigs. A total of 97,489 CNVs were identified and divided into 10,429 copy number variation regions (CNVRs), occupying 32.06% of the porcine genome. Chromosome 1 had the most CNVRs, and chromosome 18 had the least. Ninety-six CNVRs were selected using VST 1% based on the signatures of all CNVRs, and sixty-five genes were identified in the selected regions. These genes were strongly correlated with traits distinguishing groups by enrichment in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, such as growth (CD36), reproduction (CIT, RLN), detoxification (CYP3A29), and fatty acid metabolism (ELOVL6). The QTL overlapping regions were associated with meat traits, growth, and immunity, which was consistent with CNV analysis. Our findings increase the understanding of evolved genome structural variations between wild boars and domestic pigs, and provide new molecular biomarkers to guide breeding and the efficient use of available genetic resources.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230036, China
| | - Yige Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xudong Wu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
16
|
Magkos F, Reeds DN, Mittendorfer B. Evolution of the diagnostic value of "the sugar of the blood": hitting the sweet spot to identify alterations in glucose dynamics. Physiol Rev 2023; 103:7-30. [PMID: 35635320 PMCID: PMC9576168 DOI: 10.1152/physrev.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we provide an overview of the evolution of the definition of hyperglycemia during the past century and the alterations in glucose dynamics that cause fasting and postprandial hyperglycemia. We discuss how extensive mechanistic, physiological research into the factors and pathways that regulate the appearance of glucose in the circulation and its uptake and metabolism by tissues and organs has contributed knowledge that has advanced our understanding of different types of hyperglycemia, namely prediabetes and diabetes and their subtypes (impaired fasting plasma glucose, impaired glucose tolerance, combined impaired fasting plasma glucose, impaired glucose tolerance, type 1 diabetes, type 2 diabetes, gestational diabetes mellitus), their relationships with medical complications, and how to prevent and treat hyperglycemia.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Handy RM, Holloway GP. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front Physiol 2023; 14:1151389. [PMID: 37153211 PMCID: PMC10157178 DOI: 10.3389/fphys.2023.1151389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.
Collapse
|
18
|
Katare PB, Dalmao-Fernandez A, Mengeste AM, Hamarsland H, Ellefsen S, Bakke HG, Kase ET, Thoresen GH, Rustan AC. Energy metabolism in skeletal muscle cells from donors with different body mass index. Front Physiol 2022; 13:982842. [DOI: 10.3389/fphys.2022.982842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m2) and individuals with obesity (BMI>30 kg/m2). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups. Alterations in protein expression were investigated using proteomic analysis, and energy metabolism was studied using radiolabeled substrates. Gene Ontology enrichment analysis showed that glycolytic, apoptotic, and hypoxia pathways were upregulated, whereas the pentose phosphate pathway was downregulated in myotubes from donors with obesity compared to myotubes from lean donors. Moreover, fatty acid, glucose, and amino acid uptake were increased in myotubes from individuals with obesity. However, fatty acid oxidation was reduced, glucose oxidation was increased in myotubes from subjects with obesity compared to cells from lean. Pretreatment of myotubes with palmitic acid (PA) or eicosapentaenoic acid (EPA) for 24 h increased glucose oxidation and oleic acid uptake. EPA pretreatment increased the glucose and fatty acid uptake and reduced leucine fractional oxidation in myotubes from donors with obesity. In conclusion, these results suggest that myotubes from individuals with obesity showed increased fatty acid, glucose, and amino acid uptake compared to cells from lean donors. Furthermore, myotubes from individuals with obesity had reduced fatty acid oxidative capacity, increased glucose oxidation, and a higher glycolytic reserve capacity compared to cells from lean donors. Fatty acid pretreatment enhances glucose metabolism, and EPA reduces oleic acid and leucine fractional oxidation in myotubes from donor with obesity, suggesting increased metabolic flexibility after EPA treatment.
Collapse
|
19
|
Al Saedi A, Debruin DA, Hayes A, Hamrick M. Lipid metabolism in sarcopenia. Bone 2022; 164:116539. [PMID: 36007811 DOI: 10.1016/j.bone.2022.116539] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Sarcopenia is an age-related disease associated with loss of muscle mass and strength. This geriatric syndrome predisposes elderly individuals to a disability, falls, fractures, and death. Fat infiltration in muscle is one of the hallmarks of sarcopenia and aging. Alterations in fatty acid (FA) metabolism are evident in aging, type 2 diabetes, and obesity, with the accumulation of lipids inside muscle cells contributing to muscle insulin resistance and ceramide accumulation. These lipids include diacylglycerol, lipid droplets, intramyocellular lipids, intramuscular triglycerides, and polyunsaturated fatty acids (PUFAs). In this review, we examine the regulation of lipid metabolism in skeletal muscle, including lipid metabolization and storage, intervention, and the types of lipases expressed in skeletal muscle responsible for the breakdown of adipose triglyceride fats. In addition, we address the role of FAs in sarcopenia and the potential benefits of PUFAs.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia.
| | - Danielle A Debruin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Mark Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Munggari IP, Kurnia D, Deawati Y, Julaeha E. Current Research of Phytochemical, Medicinal and Non-Medicinal Uses of Uncaria gambir Roxb.: A Review. Molecules 2022; 27:6551. [PMID: 36235088 PMCID: PMC9571117 DOI: 10.3390/molecules27196551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
Uncaria gambir Roxb. is a plant from Southeast Asia and is widely used as an alternative medicine with various applications. This plant has been widely used in traditional medicine. This paper aims to provide information on U. gambir, a summary of data on phytochemicals and on medical and nonmedical activities. Phytochemical studies reveal biologically active constituents such as flavonoids, phenolics, and alkaloids. Various studies have shown that extracts and compounds obtained from U. gambir have medical uses for their antioxidant, antibacterial, anti-helminthic, anticancer, antifungal, anti-inflammatory, anti-hyperglycemic, anti-hyperuricemic, anti-lipid peroxidation, antihyperlipidemic and other properties. In addition, this extract has other uses, such as adsorbent for dyes and metal ions, as well as corrosion inhibition. Thus, U. gambir, which is commonly used in traditional medicine, is a potential plant for many therapeutic applications and prospects for drug development as well as other applications such as adsorbent and corrosion inhibition.
Collapse
Affiliation(s)
| | | | | | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
21
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
22
|
Cao C, Koh HCE, Van Vliet S, Patterson BW, Reeds DN, Laforest R, Gropler RJ, Mittendorfer B. Increased plasma fatty acid clearance, not fatty acid concentration, is associated with muscle insulin resistance in people with obesity. Metabolism 2022; 132:155216. [PMID: 35577100 PMCID: PMC10424797 DOI: 10.1016/j.metabol.2022.155216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although it is well-accepted that increased plasma free fatty acid (FFA) concentration causes lipid overload and muscle insulin resistance in people with obesity, plasma FFA concentration poorly predicts insulin-resistant glucose metabolism. It has been proposed that hyperinsulinemia in people with obesity sufficiently inhibits adipose tissue triglyceride lipolysis to prevent FFA-induced insulin resistance. However, we hypothesized enhanced FFA clearance in people with obesity, compared with lean people, prevents a marked increase in plasma FFA even when FFA appearance is high. METHODS We assessed FFA kinetics during basal conditions and during a hyperinsulinemic-euglycemic clamp procedure in 14 lean people and 46 people with obesity by using [13C]palmitate tracer infusion. Insulin-stimulated muscle glucose uptake rate was evaluated by dynamic PET-imaging of skeletal muscles after [18F]fluorodeoxyglucose injection. RESULTS Plasma FFA clearance was accelerated in participants with obesity and correlated negatively with muscle insulin sensitivity without a difference between lean and obese participants. Furthermore, insulin infusion increased FFA clearance and the increase was greater in obese than lean participants. CONCLUSIONS Our findings suggest plasma FFA extraction efficiency, not just plasma FFA concentration, is an important determinant of the cellular fatty acid load and the stimulatory effect of insulin on FFA clearance counteracts some of its antilipolytic effect.
Collapse
Affiliation(s)
- Chao Cao
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Han-Chow E Koh
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Stephan Van Vliet
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, United States of America.
| |
Collapse
|
23
|
Xie C, Teng J, Wang X, Xu B, Niu Y, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. ANIMAL NUTRITION 2022; 9:84-99. [PMID: 35949981 PMCID: PMC9344316 DOI: 10.1016/j.aninu.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Abstract
The gut microbiome has great effects on the digestion, absorption, and metabolism of lipids. However, the microbiota composition that can alter the fat deposition and the meat quality of pigs remains unclear. Here, we used Laiwu (LW) pigs (a native Chinese breed with higher intramuscular fat) compared with commercial crossbreed Duroc × (Landrace × Yorkshire) (DLY) pigs to investigate the effects of microbiota on meat quality, especially in intramuscular fat content. A total of 32 DLY piglets were randomly allotted to 4 groups and transplanted with fecal microbiota from healthy LW pigs. The results indicated that the high dose of fecal microbiota transplantation (HFMT) selectively enhanced fat deposition in longissimus dorsi (P < 0.05) but decreased backfat thickness (P < 0.05) compared with control group. HFMT significantly altered meat color and increased feed conversation ratio (P < 0.05). Furthermore, the multi-omics analysis revealed that Bacteroides uniformis, Sphaerochaeta globosa, Hydrogenoanaerobacterium saccharovorans, and Pyramidobacter piscolens are the core species which can regulate lipid deposition. A total of 140 male SPF C57BL/6j mice were randomly allotted into 7 groups and administrated with these 4 microbes alone or consortium to validate the relationships between microbiota and lipid deposition. Inoculating the bacterial consortium into mice increased intramuscular fat content (P < 0.05) compared with control mice. Increased expressions of lipogenesis-associated genes including cluster of differentiation 36 (Cd36), diacylglycerol O-acyltransferase 2 (Dgat2), and fatty acid synthase (FASN) were observed in skeletal muscle in the mice with mixed bacteria compared with control mice. Together, our results suggest that the gut microbiota may play an important role in regulating the lipid deposition in the muscle of pigs and mice.
Collapse
|
24
|
A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci Rep 2022; 12:5916. [PMID: 35396566 PMCID: PMC8993862 DOI: 10.1038/s41598-022-09908-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is one of the main receptors implicated in the pathogenesis of the cardiovascular disease. This study aimed to assess the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors including body mass index (BMI), waist circumference (WC), total cholesterol (TC), triglyceride, HDL-C, LDL-C, blood pressure and fasting blood glucose (FBG). PubMed, EMBASE, Scopus, web of science, and Google Scholar were searched up to December 2021. Subgroup and meta-regression analyses were conducted to explore sources of heterogeneity. Eighteen eligible studies (6317 participants) were included in the study. In the overall analysis, a significant association was found between rs1761667 polymorphism of CD36 and TG in allelic (p < 0.001), recessive (p = 0.001) and homozygous (p = 0.006) models. A relationship between this polymorphism and HDL-C and FBG level was observed in the recessive genetic model. In the subgroup analysis, the A allele was associated with impaired lipid profiles (TC, LDL-C and HDL-C) in the Asian population. The influences of health status, design of the study, confounders, and other sources of heterogeneity should be considered when interpreting present findings. Cohort studies with large sample size and in different ethnicities are needed to confirm the relationship between rs1761667 SNP and cardiometabolic risk factors.
Collapse
|
25
|
Fachada V, Rahkila P, Fachada N, Turpeinen T, Kujala UM, Kainulainen H. Enlarged PLIN5-uncoated lipid droplets in inner regions of skeletal muscle type II fibers associate with type 2 diabetes. Acta Histochem 2022; 124:151869. [PMID: 35220055 DOI: 10.1016/j.acthis.2022.151869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023]
Abstract
Skeletal muscle physiology remains of paramount importance in understanding insulin resistance. Due to its high lipid turnover rates, regulation of intramyocellular lipid droplets (LDs) is a key factor. Perilipin 5 (PLIN5) is one of the most critical agents in such regulation, being often referred as a protector against lipotoxicity and consequent skeletal muscle insulin resistance. We examined area fraction, size, subcellular localization and PLIN5 association of LDs in two fiber types of type 2 diabetic (T2D), obese (OB) and healthy (HC) individuals by means of fluorescence microscopy and image analysis. We found that T2D type II fibers have a significant sub-population of large and internalized LDs, uncoated by PLIN5. Based on this novel result, additional hypotheses for the pathophysiology of skeletal muscle insulin resistance are formulated, together with future research directions.
Collapse
Affiliation(s)
- Vasco Fachada
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland.
| | - Paavo Rahkila
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| | - Nuno Fachada
- Lusofona University, COPELABS, Lisboa 1749-024, Portugal
| | - Tuomas Turpeinen
- Department of Physics, University of Jyvaskyla, Jyvaskyla 40014, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| |
Collapse
|
26
|
Holloway GP, Nickerson JG, Lally JSV, Petrick HL, Dennis KMJH, Jain SS, Alkhateeb H, Bonen A. Co-overexpression of CD36 and FABPpm increases fatty acid transport additively, not synergistically, within muscle. Am J Physiol Cell Physiol 2022; 322:C546-C553. [PMID: 35138177 DOI: 10.1152/ajpcell.00435.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to determine the combined effects of over-expressing FABPpm and CD36 on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ~0.019 and ~0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Co-transfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41% and CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the co-transfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15sec for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15sec. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15sec. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism-of-action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not co-immunoprecipitate.
Collapse
Affiliation(s)
- Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - James S V Lally
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Kaitlyn M J H Dennis
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Swati S Jain
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - Arend Bonen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| |
Collapse
|
27
|
Rekhi UR, Omar M, Alexiou M, Delyea C, Immaraj L, Elahi S, Febbraio M. Endothelial Cell CD36 Reduces Atherosclerosis and Controls Systemic Metabolism. Front Cardiovasc Med 2021; 8:768481. [PMID: 34888367 PMCID: PMC8650007 DOI: 10.3389/fcvm.2021.768481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
High-fat Western diets contribute to tissue dysregulation of fatty acid and glucose intake, resulting in obesity and insulin resistance and their sequelae, including atherosclerosis. New therapies are desperately needed to interrupt this epidemic. The significant idea driving this research is that the understudied regulation of fatty acid entry into tissues at the endothelial cell (EC) interface can provide novel therapeutic targets that will greatly modify health outcomes and advance health-related knowledge. Dysfunctional endothelium, defined as activated, pro-inflammatory, and pro-thrombotic, is critical in atherosclerosis initiation, in modulating thrombotic events that could result in myocardial infarction and stroke, and is a hallmark of insulin resistance. Dyslipidemia from high-fat diets overwhelmingly contributes to the development of dysfunctional endothelium. CD36 acts as a receptor for pathological ligands generated by high-fat diets and in fatty acid uptake, and therefore, it may additionally contribute to EC dysfunction. We created EC CD36 knockout (CD36°) mice using cre-lox technology and a cre-promoter that does not eliminate CD36 in hematopoietic cells (Tie2e cre). These mice were studied on different diets, and crossed to the low density lipoprotein receptor (LDLR) knockout for atherosclerosis assessment. Our data show that EC CD36° and EC CD36°/LDLR° mice have metabolic changes suggestive of an uncompensated role for EC CD36 in fatty acid uptake. The mice lacking expression of EC CD36 had increased glucose clearance compared with controls when fed with multiple diets. EC CD36° male mice showed increased carbohydrate utilization and decreased energy expenditure by indirect calorimetry. Female EC CD36°/LDLR° mice have reduced atherosclerosis. Taken together, these data support a significant role for EC CD36 in systemic metabolism and reveal sex-specific impact on atherosclerosis and energy substrate use.
Collapse
Affiliation(s)
- Umar R Rekhi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Omar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Alexiou
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cole Delyea
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Linnet Immaraj
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochem J 2021; 478:3809-3826. [PMID: 34751699 DOI: 10.1042/bcj20210145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
While the etiology of type 2 diabetes is multifaceted, the induction of insulin resistance in skeletal muscle is a key phenomenon, and impairments in insulin signaling in this tissue directly contribute to hyperglycemia. Despite the lack of clarity regarding the specific mechanisms whereby insulin signaling is impaired, the key role of a high lipid environment within skeletal muscle has been recognized for decades. Many of the proposed mechanisms leading to the attenuation of insulin signaling - namely the accumulation of reactive lipids and the pathological production of reactive oxygen species (ROS), appear to rely on this high lipid environment. Mitochondrial biology is a central component to these processes, as these organelles are almost exclusively responsible for the oxidation and metabolism of lipids within skeletal muscle and are a primary source of ROS production. Classic studies have suggested that reductions in skeletal muscle mitochondrial content and/or function contribute to lipid-induced insulin resistance; however, in recent years the role of mitochondria in the pathophysiology of insulin resistance has been gradually re-evaluated to consider the biological effects of alterations in mitochondrial content. In this respect, while reductions in mitochondrial content are not required for the induction of insulin resistance, mechanisms that increase mitochondrial content are thought to enhance mitochondrial substrate sensitivity and submaximal adenosine diphosphate (ADP) kinetics. Thus, this review will describe the central role of a high lipid environment in the pathophysiology of insulin resistance, and present both classic and contemporary views of how mitochondrial biology contributes to insulin resistance in skeletal muscle.
Collapse
|
29
|
Cao C, Sun S, Li J, Song C, Meng Q, Shi B, Shan A. Lycopene modulates lipid metabolism in rats and their offspring under a high-fat diet. Food Funct 2021; 12:8960-8975. [PMID: 34378595 DOI: 10.1039/d1fo01039e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to investigate the effects of lycopene supplementation on lipid metabolism in rats and their offspring. The experiment was conducted on 60 female rats divided into four groups: normal diet, normal diet with 200 mg kg-1 lycopene, high-fat diet, and high-fat diet with 200 mg kg-1 lycopene. The plasma levels of TG, LDL-C, AST and ALT in female rats fed a high-fat diet were significantly increased (P < 0.05). Lycopene supplementation reduced the plasma TG, LEP and AST levels (P < 0.05). In addition, the activity of ACC and mRNA expression of SREBP1c, FAS, PPARγ, CPT1, HMGCR, ACC, PLIN1 and FATP1 in the liver were also increased after feeding a high-fat diet (P < 0.05), whereas the expression of HSL was decreased (P < 0.05). Lycopene increased the activity of HSL and the expression of ATGL in the liver (P < 0.05), and the activity of ACC and mRNA expression of HMGCR and ACC were decreased (P < 0.05). For the offspring, maternal feeding of a high-fat diet reduced the plasma HDL-C levels (P < 0.05), but lycopene supplementation reduced the plasma TC levels (P < 0.05). Maternal high-fat diet also decreased the activity of HSL and the expression of CD36, PLIN1 and FATP1 in the liver while increasing the expression of PPARγ (P < 0.05). Maternal lycopene supplementation decreased the activities of ACC and FAS in the liver and decreased the expression of PPARγ, ACC and PLIN1 (P < 0.05). Maternal feeding of a high-fat diet increased the level of oxidative stress in the liver, the level of blood lipids in plasma and the rate of lipid production in the liver of rats and their offspring. Maternal lycopene supplementation can reduce the level of oxidative stress in rats and their offspring, reduce the level of blood lipids in plasma, and also reduce the rate of lipid production in the liver of rats and offspring.
Collapse
Affiliation(s)
- Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Shishuai Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Chunsheng Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
30
|
Mengeste AM, Rustan AC, Lund J. Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring) 2021; 29:1582-1595. [PMID: 34464025 DOI: 10.1002/oby.23227] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations in lipid turnover. In addition, fatty acid oxidation is decreased, probably at the level of complete oxidation, as β -oxidation may be enhanced in obesity, which indicates mitochondrial dysfunction. Metabolic changes in skeletal muscle with obesity promote metabolic inflexibility, ectopic lipid accumulation, and formation of toxic lipid intermediates. Skeletal muscle also acts as an endocrine organ, secreting myokines that participate in interorgan cross talk. This review highlights interventions and some possible targets for treatment through action on skeletal muscle energy metabolism. Effects of exercise in vivo on obesity have been compared with simulation of endurance exercise in vitro on myotubes (electrical pulse stimulation). Possible pharmaceutical targets, including signaling pathways and drug candidates that could modify lipid storage and turnover or increase mitochondrial function or cellular energy expenditure through adaptive thermogenic mechanisms, are discussed.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Dong S, Qian L, Cheng Z, Chen C, Wang K, Hu S, Zhang X, Wu T. Lactate and Myocadiac Energy Metabolism. Front Physiol 2021; 12:715081. [PMID: 34483967 PMCID: PMC8415870 DOI: 10.3389/fphys.2021.715081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 12/05/2022] Open
Abstract
The myocardium is capable of utilizing different energy substrates, which is referred to as “metabolic flexibility.” This process assures ATP production from fatty acids, glucose, lactate, amino acids, and ketones, in the face of varying metabolic contexts. In the normal physiological state, the oxidation of fatty acids contributes to approximately 60% of energy required, and the oxidation of other substrates provides the rest. The accumulation of lactate in ischemic and hypoxic tissues has traditionally be considered as a by-product, and of little utility. However, recent evidence suggests that lactate may represent an important fuel for the myocardium during exercise or myocadiac stress. This new paradigm drives increasing interest in understanding its role in cardiac metabolism under both physiological and pathological conditions. In recent years, blood lactate has been regarded as a signal of stress in cardiac disease, linking to prognosis in patients with myocardial ischemia or heart failure. In this review, we discuss the importance of lactate as an energy source and its relevance to the progression and management of heart diseases.
Collapse
Affiliation(s)
- Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Linhui Qian
- Department of Colorectal and Anal Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chang Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia.,Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
32
|
Zhang J, Li Q, Nogoy KMC, Sun J, Sun B, Wang Y, Tang L, Yu J, Jin X, Li X, Choi SH. Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:919-933. [PMID: 34447967 PMCID: PMC8367402 DOI: 10.5187/jast.2021.e78] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
We hypothesized that the unsaturated fatty acid palmitoleic acid (POA) could promote the expression of adipogenic/lipogenic genes in bovine skeletal muscle satellite cells (BSCs). The BSCs were cultured in a growth medium containing 10% fetal bovine serum. When the cells reached 80%-90% confluence, we used the differentiation medium with 5% horse serum for differentiation for 96 h. The differentiation medium contained 50 µM, 100 µM and 200 µM POA. Control BSC were cultured only in differentiation media. Compared with the control BSC, the POA BSC significantly up-regulated the expression of paired box 3 (Pax3) and paired box 7 (Pax7) and down-regulated myogenin gene expression (p < 0.01), which indicates a depression in muscle fiber development. However, all POA treatments up-regulated the expression of the adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha and beta (C/EBP α and C/EBP β), and other genes (p < 0.01) and increased the expression of PAT-family proteins and the concentration of adiponectin in the media. These results indicate that POA can convert part of BSCs into adipocytes.
Collapse
Affiliation(s)
- Junfang Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Qiang Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | | | - Jianfu Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Bin Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Ying Wang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Lin Tang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Jia Yu
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China.,Department of Animal Science, Yanbian University, Yanji 133002, China
| | - Seong-Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
33
|
Zhou H, Yu B, Sun J, Liu Z, Chen H, Ge L, Chen D. Short-chain fatty acids can improve lipid and glucose metabolism independently of the pig gut microbiota. J Anim Sci Biotechnol 2021; 12:61. [PMID: 33952344 PMCID: PMC8101156 DOI: 10.1186/s40104-021-00581-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Previous studies have shown that exogenous short-chain fatty acids (SCFAs) introduction attenuated the body fat deposition in conventional mice and pigs. However, limited studies have evaluated the effects of exogenously introduced SCFAs on the lipid and glucose metabolism independently of the gut microbiota. This study was to investigate the effects of exogenous introduction of SCFAs on the lipid and glucose metabolism in a germ-free (GF) pig model. METHODS Twelve hysterectomy-derived newborn pigs were reared in six sterile isolators. All pigs were hand-fed with sterile milk powder for 21 d, then the sterile feed was introduced to pigs for another 21 d. In the second 21-d period, six pigs were orally administrated with 25 mL/kg sterile saline per day and considered as the GF group, while the other six pigs were orally administrated with 25 mL/kg SCFAs mixture (acetic, propionic, and butyric acids, 45, 15, and 11 mmol/L, respectively) per day and regarded as FA group. RESULTS Orally administrated with SCFAs tended to increase the adiponectin concentration in serum, enhance the CPT-1 activity in longissimus dorsi, and upregulate the ANGPTL4 mRNA expression level in colon (P < 0.10). Meanwhile, the mRNA abundances of ACC, FAS, and SREBP-1C in liver and CD36 in longissimus dorsi of the FA group were decreased (P < 0.05) compared with those in the GF group. Besides, the mRNA expression of PGC-1α in liver and LPL in longissimus dorsi tended to (P < 0.10) upregulate and downregulate respectively in the FA group. Moreover, oral administration of SCFAs tended to increase the protein level of GPR43 (P < 0.10) and decrease the protein level of ACC (P < 0.10) in liver. Also, oral administration of SCFAs upregulated the p-AMPK/AMPK ratio and the mRNA expressions of GLUT-2 and GYS2 in liver (P < 0.05). In addition, the metabolic pathway associated with the biosynthesis of unsaturated fatty acids was most significantly promoted (P < 0.05) by oral administration of SCFAs. CONCLUSIONS Exogenous introduction of SCFAs might attenuate the fat deposition and to some extent improve the glucose control in the pig model, which occurred independently of the gut microbiota.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, 611130 Sichuan China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, 611130 Sichuan China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jing Sun
- Key Laboratory of Pig Industry Sciences, Rongchang, 402460 Chongqing China
- Chongqing Academy of Animal Sciences, Rongchang, 402460 Chongqing China
| | - Zuohua Liu
- Key Laboratory of Pig Industry Sciences, Rongchang, 402460 Chongqing China
- Chongqing Academy of Animal Sciences, Rongchang, 402460 Chongqing China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Liangpeng Ge
- Key Laboratory of Pig Industry Sciences, Rongchang, 402460 Chongqing China
- Chongqing Academy of Animal Sciences, Rongchang, 402460 Chongqing China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, 611130 Sichuan China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
34
|
Zhou X, Backman LJ, Danielson P. Activation of NF-κB signaling via cytosolic mitochondrial RNA sensing in kerotocytes with mitochondrial DNA common deletion. Sci Rep 2021; 11:7360. [PMID: 33795727 PMCID: PMC8016944 DOI: 10.1038/s41598-021-86522-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Scar formation as a result of corneal wound healing is a leading cause of blindness. It is a challenge to understand why scar formation is more likely to occur in the central part of the cornea as compared to the peripheral part. The purpose of this study was to unravel the underlying mechanisms. We applied RNA-seq to uncover the differences of expression profile in keratocytes in the central/peripheral part of the cornea. The relative quantity of mitochondrial RNA was measured by multiplex qPCR. The characterization of mitochondrial RNA in the cytoplasm was confirmed by immunofluoresence microscope and biochemical approach. Gene expression was analyzed by western blot and RT qPCR. We demonstrate that the occurrence of mitochondrial DNA common deletion is greater in keratocytes from the central cornea as compared to those of the peripheral part. The keratocytes with CD have elevated oxidative stress levels, which leads to the leakage of mitochondrial double-stranded RNA into the cytoplasm. The cytoplasmic mitochondrial double-stranded RNA is sensed by MDA5, which induces NF-κB activation. The NF-κB activation thereafter induces fibrosis-like extracellular matrix expressions and IL-8 mRNA transcription. These results provide a novel explanation of the different clinical outcome in different regions of the cornea during wound healing.
Collapse
Affiliation(s)
- Xin Zhou
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Ludvig J. Backman
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, 90187 Umeå, Sweden
| | - Patrik Danielson
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Turner MC, Rimington RP, Martin NRW, Fleming JW, Capel AJ, Hodson L, Lewis MP. Physiological and pathophysiological concentrations of fatty acids induce lipid droplet accumulation and impair functional performance of tissue engineered skeletal muscle. J Cell Physiol 2021; 236:7033-7044. [PMID: 33738797 DOI: 10.1002/jcp.30365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Fatty acids (FA) exert physiological and pathophysiological effects leading to changes in skeletal muscle metabolism and function, however, in vitro models to investigate these changes are limited. These experiments sought to establish the effects of physiological and pathophysiological concentrations of exogenous FA upon the function of tissue engineered skeletal muscle (TESkM). Cultured initially for 14 days, C2C12 TESkM was exposed to FA-free bovine serum albumin alone or conjugated to a FA mixture (oleic, palmitic, linoleic, and α-linoleic acids [OPLA] [ratio 45:30:24:1%]) at different concentrations (200 or 800 µM) for an additional 4 days. Subsequently, TESkM morphology, functional capacity, gene expression and insulin signaling were analyzed. There was a dose response increase in the number and size of lipid droplets within the TESkM (p < .05). Exposure to exogenous FA increased the messenger RNA expression of genes involved in lipid storage (perilipin 2 [p < .05]) and metabolism (pyruvate dehydrogenase lipoamide kinase isozyme 4 [p < .01]) in a dose dependent manner. TESkM force production was reduced (tetanic and single twitch) (p < .05) and increases in transcription of type I slow twitch fiber isoform, myosin heavy chain 7, were observed when cultured with 200 µM OPLA compared to control (p < .01). Four days of OPLA exposure results in lipid accumulation in TESkM which in turn results in changes in muscle function and metabolism; thus, providing insight ito the functional and mechanistic changes of TESkM in response to exogenous FA.
Collapse
Affiliation(s)
- Mark C Turner
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK.,Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.,Centre for Sport, Exercise and Life Sciences, Research Institute for Health and Wellbeing, Coventry University, Coventry, UK
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Jacob W Fleming
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Leanne Hodson
- Oxford Center for Diabetes, Endocrinology and Metabolism, Oxford Biomedical Research Centre, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| |
Collapse
|
36
|
Association of mitochondrial DNA copy number with prevalent and incident type 2 diabetes in women: A population-based follow-up study. Sci Rep 2021; 11:4608. [PMID: 33633270 PMCID: PMC7907271 DOI: 10.1038/s41598-021-84132-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction is an important factor of the aging process and may play a key role in various diseases. Mitochondrial DNA copy number (mtDNA-CN) is an indirect measure of mitochondrial dysfunction and is associated with type 2 diabetes mellitus (T2DM); however, whether mtDNA-CN can predict the risk of developing T2DM is not well-known. We quantified absolute mtDNA-CN in both prevalent and incident T2DM by well-optimized droplet digital PCR (ddPCR) method in a population-based follow-up study of middle aged (50-59 years) Swedish women (n = 2387). The median follow-up period was 17 years. Compared to those who were free of T2DM, mtDNA-CN was significantly lower in both prevalent T2DM and in women who developed T2DM during the follow-up period. Mitochondrial DNA-copy number was also associated with glucose intolerance, systolic blood pressure, smoking status and education. In multivariable Cox regression analysis, lower baseline mtDNA-CN was prospectively associated with a higher risk of T2DM, independent of age, BMI, education, smoking status and physical activity. Moreover, interaction term analysis showed that smoking increased the effect of low mtDNA-CN at baseline on the risk of incident T2DM. Mitochondrial DNA-copy number may be a risk factor of T2DM in women. The clinical usefulness of mtDNA-CN to predict the future risk of T2DM warrants further investigation.
Collapse
|
37
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
38
|
Romano A, Friuli M, Del Coco L, Longo S, Vergara D, Del Boccio P, Valentinuzzi S, Cicalini I, Fanizzi FP, Gaetani S, Giudetti AM. Chronic Oleoylethanolamide Treatment Decreases Hepatic Triacylglycerol Level in Rat Liver by a PPARγ/SREBP-Mediated Suppression of Fatty Acid and Triacylglycerol Synthesis. Nutrients 2021; 13:394. [PMID: 33513874 PMCID: PMC7910994 DOI: 10.3390/nu13020394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022] Open
Abstract
Oleoylethanolamide (OEA) is a naturally occurring bioactive lipid belonging to the family of N-acylethanolamides. A variety of beneficial effects have been attributed to OEA, although the greater interest is due to its potential role in the treatment of obesity, fatty liver, and eating-related disorders. To better clarify the mechanism of the antiadipogenic effect of OEA in the liver, using a lipidomic study performed by 1H-NMR, LC-MS/MS and thin-layer chromatography analyses we evaluated the whole lipid composition of rat liver, following a two-week daily treatment of OEA (10 mg kg-1 i.p.). We found that OEA induced a significant reduction in hepatic triacylglycerol (TAG) content and significant changes in sphingolipid composition and ceramidase activity. We associated the antiadipogenic effect of OEA to decreased activity and expression of key enzymes involved in fatty acid and TAG syntheses, such as acetyl-CoA carboxylase, fatty acid synthase, diacylglycerol acyltransferase, and stearoyl-CoA desaturase 1. Moreover, we found that both SREBP-1 and PPARγ protein expression were significantly reduced in the liver of OEA-treated rats. Our findings add significant and important insights into the molecular mechanism of OEA on hepatic adipogenesis, and suggest a possible link between the OEA-induced changes in sphingolipid metabolism and suppression of hepatic TAG level.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.R.); (M.F.); (S.G.)
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.R.); (M.F.); (S.G.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Piero Del Boccio
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.B.); (S.V.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Silvia Valentinuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.B.); (S.V.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco P. Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.R.); (M.F.); (S.G.)
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (L.D.C.); (S.L.); (D.V.)
| |
Collapse
|
39
|
Fritzen AM, Lundsgaard AM, Kiens B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol 2020; 16:683-696. [PMID: 32963340 DOI: 10.1038/s41574-020-0405-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
Both the consumption of a diet rich in fatty acids and exercise training result in similar adaptations in several skeletal muscle proteins. These adaptations are involved in fatty acid uptake and activation within the myocyte, the mitochondrial import of fatty acids and further metabolism of fatty acids by β-oxidation. Fatty acid availability is repeatedly increased postprandially during the day, particularly during high dietary fat intake and also increases during, and after, aerobic exercise. As such, fatty acids are possible signalling candidates that regulate transcription of target genes encoding proteins involved in muscle lipid metabolism. The mechanism of signalling might be direct or indirect targeting of peroxisome proliferator-activated receptors by fatty acid ligands, by fatty acid-induced NAD+-stimulated activation of sirtuin 1 and/or fatty acid-mediated activation of AMP-activated protein kinase. Lactate might also have a role in lipid metabolic adaptations. Obesity is characterized by impairments in fatty acid oxidation capacity, and individuals with obesity show some rigidity in increasing fatty acid oxidation in response to high fat intake. However, individuals with obesity retain improvements in fatty acid oxidation capacity in response to exercise training, thereby highlighting exercise training as a potential method to improve lipid metabolic flexibility in obesity.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Calcaterra V, Regalbuto C, Porri D, Pelizzo G, Mazzon E, Vinci F, Zuccotti G, Fabiano V, Cena H. Inflammation in Obesity-Related Complications in Children: The Protective Effect of Diet and Its Potential Role as a Therapeutic Agent. Biomolecules 2020; 10:E1324. [PMID: 32947869 PMCID: PMC7564478 DOI: 10.3390/biom10091324] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health problem in both children and adults, impairing physical and mental state and impacting health care system costs in both developed and developing countries. It is well-known that individuals with excessive weight gain frequently develop obesity-related complications, which are mainly known as Non-Communicable Diseases (NCDs), including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, non-alcoholic fatty liver disease, hypertension, hyperlipidemia and many other risk factors proven to be associated with chronic inflammation, causing disability and reduced life expectancy. This review aims to present and discuss complications related to inflammation in pediatric obesity, the critical role of nutrition and diet in obesity-comorbidity prevention and treatment, and the impact of lifestyle. Appropriate early dietary intervention for the management of pediatric overweight and obesity is recommended for overall healthy growth and prevention of comorbidities in adulthood.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
| | - Corrado Regalbuto
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
| | - Gloria Pelizzo
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
- Pediatric Surgery Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Federica Vinci
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Valentina Fabiano
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
41
|
Aas V, Thoresen GH, Rustan AC, Lund J. Substrate oxidation in primary human skeletal muscle cells is influenced by donor age. Cell Tissue Res 2020; 382:599-608. [PMID: 32897419 PMCID: PMC7683494 DOI: 10.1007/s00441-020-03275-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.e., musculus vastus lateralis, musculus obliquus internus abdominis, and musculi interspinales, and cellular energy metabolism was evaluated. Multiple linear regression analyses showed that donor age had a significant effect on glucose and oleic acid oxidation after correcting for gender, BMI, and muscle of origin. Donor BMI was the only significant contributor to cellular oleic acid uptake, whereas cellular glucose uptake did not rely on any of the variables examined. Despite the effect of age on substrate oxidation, cellular mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PPARGC1A) did not correlate with donor age. In conclusion, donor age significantly impacts substrate oxidation in cultured human myotubes, whereas donor BMI affects cellular oleic acid uptake.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| |
Collapse
|
42
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
43
|
Høgild ML, Gudiksen A, Pilegaard H, Stødkilde-Jørgensen H, Pedersen SB, Møller N, Jørgensen JOL, Jessen N. Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Physiol Rep 2020; 7:e14285. [PMID: 31724339 PMCID: PMC6854099 DOI: 10.14814/phy2.14285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fasting in human subjects shifts skeletal muscle metabolism toward lipid utilization and accumulation, including intramyocellular lipid (IMCL) deposition. Growth hormone (GH) secretion amplifies during fasting and promotes lipolysis and lipid oxidation, but it is unknown to which degree lipid deposition and metabolism in skeletal muscle during fasting depends on GH action. To test this, we studied nine obese but otherwise healthy men thrice: (a) in the postabsorptive state (“CTRL”), (b) during 72‐hr fasting (“FAST”), and (c) during 72‐hr fasting and treatment with a GH antagonist (GHA) (“FAST + GHA”). IMCL was assessed by magnetic resonance spectroscopy (MRS) and blood samples were drawn for plasma metabolomics assessment while muscle biopsies were obtained for measurements of regulators of substrate metabolism. Prolonged fasting was associated with elevated GH levels and a pronounced GHA‐independent increase in circulating medium‐ and long‐chain fatty acids, glycerol, and ketone bodies indicating increased supply of lipid intermediates to skeletal muscle. Additionally, fasting was associated with a release of short‐, medium‐, and long‐chain acylcarnitines to the circulation from an increased β‐oxidation. This was consistent with a ≈55%–60% decrease in pyruvate dehydrogenase (PDHa) activity. Opposite, IMCL content increased ≈75% with prolonged fasting without an effect of GHA. We suggest that prolonged fasting increases lipid uptake in skeletal muscle and saturates lipid oxidation, both favoring IMCL deposition. This occurs without a detectable effect of GHA on skeletal muscle lipid metabolism.
Collapse
Affiliation(s)
- Morten L Høgild
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Gudiksen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Hans Stødkilde-Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,The MR Research Center, Aarhus University Hospital, Copenhagen, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens O L Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
45
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
46
|
Glatz JFC, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJFP. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165579. [PMID: 31678200 PMCID: PMC7586321 DOI: 10.1016/j.bbadis.2019.165579] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Fatty acids and glucose are the main substrates for myocardial energy provision. Under physiologic conditions, there is a distinct and finely tuned balance between the utilization of these substrates. Using the non-ischemic heart as an example, we discuss that upon stress this substrate balance is upset resulting in an over-reliance on either fatty acids or glucose, and that chronic fuel shifts towards a single type of substrate appear to be linked with cardiac dysfunction. These observations suggest that interventions aimed at re-balancing a tilted substrate preference towards an appropriate mix of substrates may result in restoration of cardiac contractile performance. Examples of manipulating cellular substrate uptake as a means to re-balance fuel supply, being associated with mended cardiac function underscore this concept. We also address the molecular mechanisms underlying the apparent need for a fatty acid-glucose fuel balance. We propose that re-balancing cellular fuel supply, in particular with respect to fatty acids and glucose, may be an effective strategy to treat the failing heart.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
47
|
Cortés-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, Rodríguez-Orozco AR, Calderón-Cortés E. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165801. [PMID: 32305451 DOI: 10.1016/j.bbadis.2020.165801] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are characterized by high NADH/NAD+ ratios due to excessive electron supply, causing defective mitochondrial function and impaired sirtuin-3 (SIRT-3) activity, the latter driving to oxidative stress and altered fatty acid β-oxidation. NADH is oxidized by the complex I in the electron transport chain, thereby factors inhibiting complex I like acetylation, cardiolipin peroxidation, and glutathionylation by low GSH/GSSG ratios affects SIRT3 function by increasing the NADH/NAD+ ratio. In this review, we summarized the evidence supporting a role of the above events in the development of insulin resistance, which is relevant in the pathogenesis of obesity and diabetes. We propose that maintenance of proper NADH/NAD+ and GSH/GSSG ratios are central to ameliorate insulin resistance, as alterations in these redox couples lead to complex I dysfunction, disruption of SIRT-3 activity, ROS production and impaired β-oxidation, the latter two being key effectors of insulin resistance.
Collapse
Affiliation(s)
- Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México.
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Berenice Eridani Olmos-Orizaba
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58020, México
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58260, México
| |
Collapse
|
48
|
Turpin-Nolan SM, Brüning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol 2020; 16:224-233. [PMID: 32060415 DOI: 10.1038/s41574-020-0320-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 01/21/2023]
Abstract
Ceramide accumulation is a hallmark in the manifestation of numerous obesity-related diseases, such as type 2 diabetes mellitus and atherosclerosis. Until the early 2000s, ceramides were viewed as a homogenous class of sphingolipids. However, it has now become clear that ceramides exert fundamentally different effects depending on the specific fatty acyl chain lengths, which are integrated into ceramides by a group of enzymes known as dihydroceramide synthases. In addition, alterations in ceramide synthesis, trafficking and metabolism in specific cellular compartments exert distinct consequences on metabolic homeostasis. Here, we examine the emerging concept of how the intracellular localization of ceramides with distinct acyl chain lengths can regulate glucose metabolism, thus emphasizing their potential as targets in the development of novel and specific therapies for obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sarah M Turpin-Nolan
- Max Planck Institute for Metabolism Research, Köln, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Köln, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany.
- Centre for Molecular Medicine Cologne (CMMC), Köln, Germany.
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Köln, Germany.
| |
Collapse
|
49
|
Ferreira MDR, Oliva ME, Aiassa V, D'Alessandro ME. Salvia hispanica L. (chia) seed improves skeletal muscle lipotoxicity and insulin sensitivity in rats fed a sucrose-rich diet by modulating intramuscular lipid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Verpoorten S, Sfyri P, Scully D, Mitchell R, Tzimou A, Mougios V, Patel K, Matsakas A. Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiol (Oxf) 2020; 228:e13395. [PMID: 31599493 DOI: 10.1111/apha.13395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
AIM The prevalence of obesity is a major risk factor for cardiovascular and metabolic diseases including impaired skeletal muscle regeneration. Since skeletal muscle regenerative capacity is regulated by satellite cells, we aimed to investigate whether a high-fat diet impairs satellite cell function and whether this is linked to fatty acid uptake via CD36. We also aimed to determine whether loss of CD36 impacts on muscle redox homeostasis and skeletal muscle regenerative capacity. METHODS We studied the impact of a high-fat diet and CD36 deficiency on murine skeletal muscle morphology, redox homeostasis, satellite cell function, bioenergetics and lipid accumulation in the liver. We also determined the effect of CD36 deficiency on skeletal muscle regeneration. RESULTS High-fat diet increased body weight, intramuscular lipid accumulation and oxidative stress in wild-type mice that were significantly mitigated in CD36-deficient mice. High-fat diet and CD36 deficiency independently attenuated satellite cell function on single fibres and myogenic capacity on primary satellite cells. CD36 deficiency resulted in delayed skeletal muscle regeneration following acute injury with cardiotoxin. CD36-deficient and wild-type primary satellite cells had distinct bioenergetic profiles in response to palmitate. High-fat diet induced hepatic steatosis in both genotypes that was more pronounced in the CD36-deficient mice. CONCLUSION This study demonstrates that CD36 deficiency protects against diet-induced obesity, intramuscular lipid deposition and oxidative stress but results in impaired muscle satellite cell function, delayed muscle regeneration and hepatic steatosis. CD36 is a key mediator of fatty acid uptake in skeletal muscle, linking obesity with satellite cell function and muscle regeneration.
Collapse
Affiliation(s)
- Sandrine Verpoorten
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| | - Peggy Sfyri
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| | - David Scully
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| | - Robert Mitchell
- School of Biological Sciences University of Reading Reading UK
| | - Anastasia Tzimou
- Laboratory of Evaluation of Human Biological Performance School of Physical Education and Sports Science at Thessaloniki Aristotle University of Thessaloniki Thessaloniki Greece
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance School of Physical Education and Sports Science at Thessaloniki Aristotle University of Thessaloniki Thessaloniki Greece
| | - Ketan Patel
- School of Biological Sciences University of Reading Reading UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory Centre for Atherothrombosis & Metabolic Disease Hull York Medical School University of Hull Hull UK
| |
Collapse
|