1
|
Shea JM, Villeda SA. Microglia aging in the hippocampus advances through intermediate states that drive activation and cognitive decline. eLife 2025; 13:RP97671. [PMID: 40298588 PMCID: PMC12040317 DOI: 10.7554/elife.97671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
During aging, microglia - the resident macrophages of the brain - exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.
Collapse
Affiliation(s)
- Jeremy M Shea
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| | - Saul A Villeda
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
- Department of Physical Therapy and Rehabilitation Science, University of California San FranciscoSan FranciscoUnited States
- Bakar Aging Research Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Bhardwaj I, Singh S, Ansari AH, Rai SP, Singh D. Effect of stress on neuronal cell: Morphological to molecular approach. PROGRESS IN BRAIN RESEARCH 2025; 291:469-502. [PMID: 40222791 DOI: 10.1016/bs.pbr.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress can be characterized as any perceived or actual threat that necessitates compensatory actions to maintain homeostasis. It can alter an organism's behavior over time by permanently altering the composition and functionality of brain circuitry. The amygdala and prefrontal cortex are two interrelated brain regions that have been the focus of initial research on stress and brain structural and functional plasticity, with the hippocampus serving as the entry point for most of this knowledge. Prolonged stress causes significant morphological alterations in important brain regions such as the hippocampus, amygdala, and prefrontal cortex. Memory, learning, and emotional regulation are among the cognitive functions that are adversely affected by these changes, including neuronal shrinkage, dendritic retraction, and synaptic malfunction. Stress perturbs the equilibrium of neurotransmitters, neuronal plasticity, and mitochondrial function at the molecular level. On the other hand, chronic stress negatively impacts physiology and can result in neuropsychiatric diseases. Recent molecular research has linked various epigenetic processes, such as DNA methylation, histone modifications, and noncoding RNAs, to the dysregulation of genes in the impacted brain circuits responsible for the pathophysiology of chronic stress. Numerous disorders, including neurodegenerative diseases (NDDs) including Alzheimer's, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, multiple sclerosis, and Parkinson's disease, have been linked to oxidative stress as a possible cause.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India.
| |
Collapse
|
3
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Ghosh S, Roy R, Mukherjee N, Ghosh S, Jash M, Jana A, Ghosh S. EphA4 Targeting Peptide-Conjugated Extracellular Vesicles Rejuvenates Adult Neural Stem Cells and Exerts Therapeutic Benefits in Aging Rats. ACS Chem Neurosci 2024; 15:3482-3495. [PMID: 39288278 DOI: 10.1021/acschemneuro.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Aging and various neurodegenerative diseases cause significant reduction in adult neurogenesis and simultaneous increase in quiescent neural stem cells (NSCs), which impact the brain's regenerative capabilities. To deal with this challenging issue, current treatments involve stem cell transplants or prevention of neurodegeneration; however, the efficacy or success of this process remains limited. Therefore, extensive and focused investigation is highly demanding to overcome this challenging task. Here, we have designed an efficient peptide-based EphA4 receptor-targeted ligand through an in silico approach. Further, this strategy involves chemical conjugation of the peptide with adipose tissue stem cell-derived EV (Exo-pep-11). Interestingly, our newly designed engineered EV, Exo-pep-11, targets NSC through EphA4 receptors, which offers promising therapeutic advantages by stimulating NSC proliferation and subsequent differentiation. Our result demonstrates that NSC successfully internalized Exo-pep-11 in both in vitro culture conditions as well as in the in vivo aging rats. We found that the uptake of Exo-pep-11 decreased by ∼2.3-fold when NSC was treated with EphA4 antibody before Exo-pep-11 incubation, which confirms the receptor-specific uptake of Exo-pep-11. Exo-pep-11 treatment also increases NSC proliferation by ∼1.9-fold and also shows ∼1.6- and ∼2.4-fold increase in expressions of Nestin and ID1, respectively. Exo-pep-11 also has the potential to increase neurogenesis in aging rats, which is confirmed by ∼1.6- and ∼1.5-fold increases in expressions of TH and Tuj1, respectively, in rat olfactory bulb. Overall, our findings highlight the potential role of Exo-pep-11 for prospective applications in combating age-related declines in NSC activity and neurogenesis.
Collapse
Affiliation(s)
- Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surojit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Moumita Jash
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| |
Collapse
|
5
|
Homayouni R, Canada KL, Saifullah S, Foster D, Thill C, Raz N, Daugherty AM, Ofen N. Age-related differences in hippocampal subfield volumes across the human lifespan: A meta-analysis. Hippocampus 2023; 33:1292-1315. [PMID: 37881160 PMCID: PMC10841547 DOI: 10.1002/hipo.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | | | | | - Da’Jonae Foster
- Department of Psychology, Wayne State University, Detroit, MI
| | | | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Max Planck Institute for Human Development, Berlin, Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| |
Collapse
|
6
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
7
|
Han PP, Han Y, Shen XY, Gao ZK, Bi X. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms. Front Cell Neurosci 2023; 17:1210361. [PMID: 37484824 PMCID: PMC10360187 DOI: 10.3389/fncel.2023.1210361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Stroke is a common cerebrovascular disease that can interrupt local blood flow in the brain, causing neuronal damage or even death, resulting in varying degrees of neurological dysfunction. Neuroplasticity is an important neurological function that helps neurons reorganize and regain function after injury. After cerebral ischemia, neuroplasticity changes are critical factors for restoring brain function. An enriched environment promotes increased neuroplasticity, thereby aiding stroke recovery. In this review, we discuss the positive effects of the enriched environment on neuroplasticity after cerebral ischemia, including synaptic plasticity, neurogenesis, and angiogenesis. In addition, we also introduce some studies on the clinical application of enriched environments in the rehabilitation of post-stroke patients, hoping that they can provide some inspiration for doctors and therapists looking for new approaches to stroke rehabilitation.
Collapse
Affiliation(s)
- Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
8
|
The times they are a-changin': a proposal on how brain flexibility goes beyond the obvious to include the concepts of "upward" and "downward" to neuroplasticity. Mol Psychiatry 2023; 28:977-992. [PMID: 36575306 PMCID: PMC10005965 DOI: 10.1038/s41380-022-01931-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Since the brain was found to be somehow flexible, plastic, researchers worldwide have been trying to comprehend its fundamentals to better understand the brain itself, make predictions, disentangle the neurobiology of brain diseases, and finally propose up-to-date treatments. Neuroplasticity is simple as a concept, but extremely complex when it comes to its mechanisms. This review aims to bring to light an aspect about neuroplasticity that is often not given enough attention as it should, the fact that the brain's ability to change would include its ability to disconnect synapses. So, neuronal shrinkage, decrease in spine density or dendritic complexity should be included within the concept of neuroplasticity as part of its mechanisms, not as an impairment of it. To that end, we extensively describe a variety of studies involving topics such as neurodevelopment, aging, stress, memory and homeostatic plasticity to highlight how the weakening and disconnection of synapses organically permeate the brain in so many ways as a good practice of its intrinsic physiology. Therefore, we propose to break down neuroplasticity into two sub-concepts, "upward neuroplasticity" for changes related to synaptic construction and "downward neuroplasticity" for changes related to synaptic deconstruction. With these sub-concepts, neuroplasticity could be better understood from a bigger landscape as a vector in which both directions could be taken for the brain to flexibly adapt to certain demands. Such a paradigm shift would allow a better understanding of the concept of neuroplasticity to avoid any data interpretation bias, once it makes clear that there is no morality with regard to the organic and physiological changes that involve dynamic biological systems as seen in the brain.
Collapse
|
9
|
Pathological Nuclear Hallmarks in Dentate Granule Cells of Alzheimer’s Patients: A Biphasic Regulation of Neurogenesis. Int J Mol Sci 2022; 23:ijms232112873. [PMID: 36361662 PMCID: PMC9654738 DOI: 10.3390/ijms232112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The dentate gyrus (DG) of the human hippocampus is a complex and dynamic structure harboring mature and immature granular neurons in diverse proliferative states. While most mammals show persistent neurogenesis through adulthood, human neurogenesis is still under debate. We found nuclear alterations in granular cells in autopsied human brains, detected by immunohistochemistry. These alterations differ from those reported in pyramidal neurons of the hippocampal circuit. Aging and early AD chromatin were clearly differentiated by the increased epigenetic markers H3K9me3 (heterochromatin suppressive mark) and H3K4me3 (transcriptional euchromatin mark). At early AD stages, lamin B2 was redistributed to the nucleoplasm, indicating cell-cycle reactivation, probably induced by hippocampal nuclear pathology. At intermediate and late AD stages, higher lamin B2 immunopositivity in the perinucleus suggests fewer immature neurons, less neurogenesis, and fewer adaptation resources to environmental factors. In addition, senile samples showed increased nuclear Tau interacting with aged chromatin, likely favoring DNA repair and maintaining genomic stability. However, at late AD stages, the progressive disappearance of phosphorylated Tau forms in the nucleus, increased chromatin disorganization, and increased nuclear autophagy support a model of biphasic neurogenesis in AD. Therefore, designing therapies to alleviate the neuronal nuclear pathology might be the only pathway to a true rejuvenation of brain circuits.
Collapse
|
10
|
Osterlund Oltmanns JR, Schaeffer EA, Blackwell AA, Lake RI, Einhaus RM, Kartje GL, Wallace DG. Age-related changes in the organization of spontaneously occurring behaviors. Behav Processes 2022; 201:104713. [PMID: 35901935 PMCID: PMC10436331 DOI: 10.1016/j.beproc.2022.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022]
Abstract
Age-related changes in spatial and temporal processing have been documented across a range of species. Rodent studies typically investigate differences in performance between adult and senescent animals; however, progressive loss of neurons in the hippocampus and cortex has been observed to occur as early as after adolescence. Therefore, the current study evaluated the effects of age in three- and ten-month-old female rats on the organization of movement in open field and food protection behaviors, two tasks that have previously dissociated hippocampal and cortical pathology. Age-related differences were observed in general measures of locomotion, spatial orientation, and attentional processing. The results of the current study are consistent with age-related changes in the processing of spatial information and motivation that occur earlier in life than previously anticipated. These observations establish a foundation for future studies evaluating interventions that influence these age-related differences in performance.
Collapse
Affiliation(s)
| | - E A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - A A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - R I Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - R M Einhaus
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - G L Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health, Sciences Division, Maywood, IL, USA
| | - D G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
11
|
Iannucci J, Nizamutdinov D, Shapiro LA. Neurogenesis and chronic neurobehavioral outcomes are partially improved by vagus nerve stimulation in a mouse model of Gulf War Illness. Neurotoxicology 2022; 90:205-215. [DOI: 10.1016/j.neuro.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
12
|
Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry 2022; 27:403-421. [PMID: 33990771 PMCID: PMC8960391 DOI: 10.1038/s41380-021-01136-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Adult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus. Within this framework, we propose that through its computational influences AHN is pivotal in shaping adaption to environmental demands, underlying its role in stress response. The hippocampus with its high input convergence and output divergence represents a computational hub, ideally positioned in the brain (1) to detect cues and contexts linked to past, current and predicted stressful experiences, and (2) to supervise the expression of the stress response at the cognitive, affective, behavioral, and physiological levels. AHN appears to bias hippocampal computations toward enhanced conjunctive encoding and pattern separation, promoting contextual discrimination and cognitive flexibility, reducing proactive interference and generalization of stressful experiences to safe contexts. These effects result in gating downstream brain areas with more accurate and contextualized information, enabling the different dimensions of the stress response to be more appropriately set with specific contexts. Here, we first provide an integrative perspective of the functional involvement of AHN in the hippocampus and a phenomenological overview of the stress response. We then examine the mechanistic underpinning of the role of AHN in the stress response and describe its potential implications in the different dimensions accompanying this response.
Collapse
Affiliation(s)
- A Surget
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - C Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
13
|
Sekeres MJ, Bradley-Garcia M, Martinez-Canabal A, Winocur G. Chemotherapy-Induced Cognitive Impairment and Hippocampal Neurogenesis: A Review of Physiological Mechanisms and Interventions. Int J Mol Sci 2021; 22:12697. [PMID: 34884513 PMCID: PMC8657487 DOI: 10.3390/ijms222312697] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A wide range of cognitive deficits, including memory loss associated with hippocampal dysfunction, have been widely reported in cancer survivors who received chemotherapy. Changes in both white matter and gray matter volume have been observed following chemotherapy treatment, with reduced volume in the medial temporal lobe thought to be due in part to reductions in hippocampal neurogenesis. Pre-clinical rodent models confirm that common chemotherapeutic agents used to treat various forms of non-CNS cancers reduce rates of hippocampal neurogenesis and impair performance on hippocampally-mediated learning and memory tasks. We review the pre-clinical rodent literature to identify how various chemotherapeutic drugs affect hippocampal neurogenesis and induce cognitive impairment. We also review factors such as physical exercise and environmental stimulation that may protect against chemotherapy-induced neurogenic suppression and hippocampal neurotoxicity. Finally, we review pharmacological interventions that target the hippocampus and are designed to prevent or reduce the cognitive and neurotoxic side effects of chemotherapy.
Collapse
Affiliation(s)
| | | | - Alonso Martinez-Canabal
- Cell Biology Department, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, ON M6A 2E1, Canada;
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
14
|
Ai JQ, Luo R, Tu T, Yang C, Jiang J, Zhang B, Bi R, Tu E, Yao YG, Yan XX. Doublecortin-Expressing Neurons in Chinese Tree Shrew Forebrain Exhibit Mixed Rodent and Primate-Like Topographic Characteristics. Front Neuroanat 2021; 15:727883. [PMID: 34602987 PMCID: PMC8481370 DOI: 10.3389/fnana.2021.727883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Doublecortin (DCX) is transiently expressed in new-born neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) related to adult neurogenesis in the olfactory bulb (OB) and hippocampal formation. DCX immunoreactive (DCX+) immature neurons also occur in the cerebral cortex primarily over layer II and the amygdala around the paralaminar nucleus (PLN) in various mammals, with interspecies differences pointing to phylogenic variation. The tree shrews (Tupaia belangeri) are phylogenetically closer to primates than to rodents. Little is known about DCX+ neurons in the brain of this species. In the present study, we characterized DCX immunoreactivity (IR) in the forebrain of Chinese tree shrews aged from 2 months- to 6 years-old (n = 18). DCX+ cells were present in the OB, SVZ, SGZ, the piriform cortex over layer II, and the amygdala around the PLN. The numerical densities of DCX+ neurons were reduced in all above neuroanatomical regions with age, particularly dramatic in the DG in the 5–6 years-old animals. Thus, DCX+ neurons are present in the two established neurogenic sites (SVZ and SGZ) in the Chinese tree shrew as seen in other mammals. DCX+ cortical neurons in this animal exhibit a topographic pattern comparable to that in mice and rats, while these immature neurons are also present in the amygdala, concentrating around the PLN as seen in primates and some nonprimate mammals.
Collapse
Affiliation(s)
- Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Zhang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,CSA Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
15
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
16
|
Bonfanti L, Seki T. The PSA-NCAM-Positive "Immature" Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells 2021; 10:2542. [PMID: 34685522 PMCID: PMC8534119 DOI: 10.3390/cells10102542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 160-8402, Japan
| |
Collapse
|
17
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
18
|
Kotah JM, Hoeijmakers L, Nutma E, Lucassen PJ, Korosi A. Early-life stress does not alter spatial memory performance, hippocampal neurogenesis, neuroinflammation, or telomere length in 20-month-old male mice. Neurobiol Stress 2021; 15:100379. [PMID: 34430678 PMCID: PMC8369064 DOI: 10.1016/j.ynstr.2021.100379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Early-life stress (ES) increases the risk for psychopathology and cognitive decline later in life. Because the neurobiological substrates affected by ES (i.e., cognition, neuroplasticity, and neuroinflammation) are also altered in aging, we set out to investigate if and how ES in the first week of life affects these domains at an advanced age, and how ES modulates the aging trajectory per se. We subjected C57BL/6j mice to an established ES mouse model from postnatal days 2–9. Mice underwent behavioral testing at 19 months of age and were sacrificed at 20 months to investigate their physiology, hippocampal neuroplasticity, neuroinflammation, and telomere length. ES mice, as a group, did not perform differently from controls in the open field or Morris water maze (MWM). Hippocampal neurogenesis and synaptic marker gene expression were not different in ES mice at this age. While we find aging-associated alterations to neuroinflammatory gene expression and telomere length, these were unaffected by ES. When integrating the current data with those from our previously reported 4- and 10-month-old cohorts, we conclude that ES leads to a ‘premature’ shift in the aging trajectory, consisting of early changes that do not further worsen at the advanced age of 20 months. This could be explained e.g. by a ‘floor’ effect in ES-induced impairments, and/or age-induced impairments in control mice. Future studies should help understand how exactly ES affects the overall aging trajectory. Early-life stress (ES) exposure does not worsen water maze learning in aged male mice. ES does not affect brain plasticity markers at 20 months of age. Hippocampal telomere length is reduced by aging but unaffected by ES. ES leads to a premature aging trajectory that does not worsen with aging.
Collapse
Affiliation(s)
- Janssen M Kotah
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Erik Nutma
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Lee TH, Christie BR, van Praag H, Lin K, Siu PMF, Xu A, So KF, Yau SY. AdipoRon Treatment Induces a Dose-Dependent Response in Adult Hippocampal Neurogenesis. Int J Mol Sci 2021; 22:2068. [PMID: 33669795 PMCID: PMC7922380 DOI: 10.3390/ijms22042068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
AdipoRon, an adiponectin receptor agonist, elicits similar antidiabetic, anti-atherogenic, and anti-inflammatory effects on mouse models as adiponectin does. Since AdipoRon can cross the blood-brain barrier, its chronic effects on regulating hippocampal function are yet to be examined. This study investigated whether AdipoRon treatment promotes hippocampal neurogenesis and spatial recognition memory in a dose-dependent manner. Adolescent male C57BL/6J mice received continuous treatment of either 20 mg/kg (low dose) or 50 mg/kg (high dose) AdipoRon or vehicle intraperitoneally for 14 days, followed by the open field test to examine anxiety and locomotor activity, and the Y maze test to examine hippocampal-dependent spatial recognition memory. Immunopositive cell markers of neural progenitor cells, immature neurons, and newborn cells in the hippocampal dentate gyrus were quantified. Immunosorbent assays were used to measure the serum levels of factors that can regulate hippocampal neurogenesis, including adiponectin, brain-derived neurotrophic factor (BDNF), and corticosterone. Our results showed that 20 mg/kg AdipoRon treatment significantly promoted hippocampal cell proliferation and increased serum levels of adiponectin and BDNF, though there were no effects on spatial recognition memory and locomotor activity. On the contrary, 50 mg/kg AdipoRon treatment impaired spatial recognition memory, suppressed cell proliferation, neuronal differentiation, and cell survival associated with reduced serum levels of BDNF and adiponectin. The results suggest that a low-dose AdipoRon treatment promotes hippocampal cell proliferation, while a high-dose AdipoRon treatment is detrimental to the hippocampus function.
Collapse
Affiliation(s)
- Thomas H. Lee
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong;
| | - Brian R. Christie
- Division of Biomedical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Henriette van Praag
- FAU Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33431, USA;
| | - Kangguang Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, The Brain Affiliated Hospital of Guangzhou Medical University, Guangzhou 510370, China;
| | - Parco Ming-Fai Siu
- Division of Kinesiology, School of Public Health, The University of Hong Kong, Hong Kong;
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong;
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
- The State Key Laboratory of Pharmacology, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Department of Ophthalmology, The University of Hong Kong, Hong Kong
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong;
| |
Collapse
|
20
|
Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis After Stroke: A Therapeutic Perspective. Transl Stroke Res 2021; 12:1-14. [PMID: 32862401 PMCID: PMC7803692 DOI: 10.1007/s12975-020-00841-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.
Collapse
Affiliation(s)
- Abir A Rahman
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Narayanappa Amruta
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Bedrosian TA, Houtman J, Eguiguren JS, Ghassemzadeh S, Rund N, Novaresi NM, Hu L, Parylak SL, Denli AM, Randolph‐Moore L, Namba T, Gage FH, Toda T. Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 2021; 40:e105819. [PMID: 33300615 PMCID: PMC7849303 DOI: 10.15252/embj.2020105819] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis in the adult hippocampus declines with age, a process that has been implicated in cognitive and emotional impairments. However, the mechanisms underlying this decline have remained elusive. Here, we show that the age-dependent downregulation of lamin B1, one of the nuclear lamins in adult neural stem/progenitor cells (ANSPCs), underlies age-related alterations in adult hippocampal neurogenesis. Our results indicate that higher levels of lamin B1 in ANSPCs safeguard against premature differentiation and regulate the maintenance of ANSPCs. However, the level of lamin B1 in ANSPCs declines during aging. Precocious loss of lamin B1 in ANSPCs transiently promotes neurogenesis but eventually depletes it. Furthermore, the reduction of lamin B1 in ANSPCs recapitulates age-related anxiety-like behavior in mice. Our results indicate that the decline in lamin B1 underlies stem cell aging and impacts the homeostasis of adult neurogenesis and mood regulation.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
- Institute for Genomic MedicineNationwide Children's HospitalColumbusOHUSA
| | - Judith Houtman
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Juan Sebastian Eguiguren
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Saeed Ghassemzadeh
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Nicole M Novaresi
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Lauren Hu
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Sarah L. Parylak
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Ahmet M Denli
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | | | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Neuroscience Center, HiLIFE‐Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Fred H Gage
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Tomohisa Toda
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
- Paul F. Glenn Center for Biology of Aging Research at the Salk InstituteLa JollaCAUSA
| |
Collapse
|
22
|
Lazarov O, Minshall RD, Bonini MG. Harnessing neurogenesis in the adult brain-A role in type 2 diabetes mellitus and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:235-269. [PMID: 32854856 DOI: 10.1016/bs.irn.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Some metabolic disorders, such as type 2 diabetes mellitus (T2DM) are risk factors for the development of cognitive deficits and Alzheimer's disease (AD). Epidemiological studies suggest that in people with T2DM, the risk of developing dementia is 2.5 times higher than that in the non-diabetic population. The signaling pathways that underlie the increased risk and facilitate cognitive deficits are not fully understood. In fact, the cause of memory deficits in AD is not fully elucidated. The dentate gyrus of the hippocampus plays an important role in memory formation. Hippocampal neurogenesis is the generation of new neurons and glia in the adult brain throughout life. New neurons incorporate in the granular cell layer of the dentate gyrus and play a role in learning and memory and hippocampal plasticity. A large body of studies suggests that hippocampal neurogenesis is impaired in mouse models of AD and T2DM. Recent evidence shows that hippocampal neurogenesis is also impaired in human patients exhibiting mild cognitive impairment or AD. This review discusses the role of hippocampal neurogenesis in the development of cognitive deficits and AD, and considers inflammatory and endothelial signaling pathways in T2DM that may compromise hippocampal neurogenesis and cognitive function, leading to AD.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.
| | - Richard D Minshall
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, United States; Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Marcelo G Bonini
- Department of Medicine (Hematology/Oncology), Feinberg School of Medicine of Northwestern University and Basic Sciences Research, Robert H. Lurie Comprehensive Cancer Centre, Chicago, IL, United States
| |
Collapse
|
23
|
Seki T. Understanding the Real State of Human Adult Hippocampal Neurogenesis From Studies of Rodents and Non-human Primates. Front Neurosci 2020; 14:839. [PMID: 32848586 PMCID: PMC7432251 DOI: 10.3389/fnins.2020.00839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and a large number of studies have been performed in rodents using modern experimental techniques, which have clarified the nature and developmental processes of adult neural stem/progenitor cells, the functions of AHN, such as memory and learning, and its association with neural diseases. However, a fundamental problem is that it remains unclear as to what extent AHN actually occurs in humans. The answer to this is indispensable when physiological and pathological functions of human AHN are deduced from studies of rodent AHN, but there are controversial data on the extent of human AHN. In this review, studies on AHN performed in rodents and humans will be briefly reviewed, followed by a discussion of the studies in non-human primates. Then, how data of rodent and non-human primate AHN should be applied for understanding human AHN will be discussed.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Audesse AJ, Webb AE. Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 2020; 191:111323. [PMID: 32781077 DOI: 10.1016/j.mad.2020.111323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of neural stem cell function is vital to ensure neurogenesis throughout adulthood. During aging, there is a significant reduction in adult neurogenesis that correlates with a decline in cognitive function. Although recent studies have revealed novel extrinsic and intrinsic mechanisms that regulate the adult neural stem cell (NSC) pool and lineage progression, the precise molecular mechanisms that drive dysregulation of adult neurogenesis in the context of aging are only beginning to emerge. Recent studies have shed light on mechanisms that regulate the earliest step of adult neurogenesis, the activation of quiescent NSCs. Interestingly, the ability of NSCs to enter the cell cycle in the aged brain significantly declines suggesting a deepend state of quiescence. Given the likely contribution of adult neurogenesis to supporting cognitive function in humans, enhancing neurogenesis may be a strategy to combat age-related cognitive decline. This review highlights the mechanisms that regulate the NSC pool throughout adulthood and discusses how dysregulation of these processes may contribute to the decline in neurogenesis and cognitive function throughout aging.
Collapse
Affiliation(s)
- Amanda J Audesse
- Graduate Program in Neuroscience, Brown University, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
25
|
Do antidepressants promote neurogenesis in adult hippocampus? A systematic review and meta-analysis on naive rodents. Pharmacol Ther 2020; 210:107515. [DOI: 10.1016/j.pharmthera.2020.107515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
|
26
|
Hippocampal Subregion Transcriptomic Profiles Reflect Strategy Selection during Cognitive Aging. J Neurosci 2020; 40:4888-4899. [PMID: 32376783 DOI: 10.1523/jneurosci.2944-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related cognitive impairments are associated with differentially expressed genes (DEGs) linked to defined neural systems; however, studies examining multiple regions of the hippocampus fail to find links between behavior and transcription in the dentate gyrus (DG). We hypothesized that use of a task requiring intact DG function would emphasize molecular signals in the DG associated with a decline in performance. We used a water maze beacon discrimination task to characterize young and middle-age male F344 rats, followed by a spatial reference memory probe trial test. Middle-age rats showed increased variability in discriminating two identical beacons. Use of an allocentric strategy and formation of a spatial reference memory were not different between age groups; however, older animals compensated for impaired beacon discrimination through greater reliance on spatial reference memory. mRNA sequencing of hippocampal subregions indicated DEGs in the DG of middle-age rats, linked to synaptic function and neurogenesis, correlated with beacon discrimination performance, suggesting that senescence of the DG underlies the impairment. Few genes correlated with spatial memory across age groups, with a greater number in region CA1. Age-related CA1 DEGs, correlated with spatial memory, were linked to regulation of neural activity. These results indicate that the beacon task is sensitive to impairment in middle age, and distinct gene profiles are observed in neural circuits that underlie beacon discrimination performance and allocentric memory. The use of different strategies in older animals and associated transcriptional profiles could provide an animal model for examining cognitive reserve and neural compensation of aging.SIGNIFICANCE STATEMENT Hippocampal subregions are thought to differentially contribute to memory. We took advantage of age-related variability in performance on a water maze beacon task and next-generation sequencing to test the hypothesis that aging of the dentate gyrus is linked to impaired beacon discrimination and compensatory use of allocentric memory. The dentate gyrus expressed synaptic function and neurogenesis genes correlated with beacon discrimination in middle-age animals. Spatial reference memory was associated with CA1 transcriptional correlates linked to regulation of neural activity and use of an allocentric strategy. This is the first study examining transcriptomes of multiple hippocampal subregions to link age-related impairments associated with discrimination of feature overlap and alternate response strategies to gene expression in specific hippocampal subregions.
Collapse
|
27
|
Namba T, Shinohara H, Seki T. Non-radial tortuous migration with cell polarity alterations of newly generated granule neurons in the neonatal rat dentate gyrus. Brain Struct Funct 2019; 224:3247-3262. [PMID: 31659443 DOI: 10.1007/s00429-019-01971-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Abstract
To establish functional neuronal circuits, newborn neurons generally migrate from the ventricular germinal zones to their final positions during embryonic periods. However, most excitatory neurons of the hippocampal dentate gyrus are born postnatally in the hilus, far from the lateral ventricle. Newly generated granule neurons must then migrate to the surrounding granule cell layer (GCL), which suggests that newborn granule cells may migrate by unique cellular mechanisms. In the present study, we describe the migratory behaviors of postnatally generated granule neurons using combined retroviral labeling and time-lapse imaging analysis. Our results show that whereas half of the newly generated neurons undergo radial migration, the remainder engages in more complex migratory patterns with veering and turning movements accompanied by process formation and cell polarity alterations. These data reveal a previously unappreciated diversity of mechanisms by which granule neurons distribute throughout the GCL to contribute to hippocampal circuitry.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
- Integrative Bioscience and Biomedical Engineering, School of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Hiroshi Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, 160-8421, Japan
| | - Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, 160-8421, Japan.
| |
Collapse
|
28
|
Yoneyama M, Ogita K. [Adult Neurogenesis-activating Signals as Therapeutic Targets for Neurodegenerative Disorders]. YAKUGAKU ZASSHI 2019; 139:853-859. [PMID: 31155525 DOI: 10.1248/yakushi.18-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most mammalian species, adult neurogenesis appears to occur only in the olfactory bulb and hippocampal dentate gyrus, where neural stem/progenitor cells exist to create new neurons. The discovery of multi-potential neural stem/progenitor cells (NPCs) in the adult brain has precipitated a novel therapeutic strategy for harnessing these endogenous cells to aid in recovery from neurodegenerative disorders. During neurodegeneration, a plethora of endogenous factors, including cytokines, chemokines, neurotransmitters, blood-derived factors, and reactive oxygen species, are released by the activation of resident microglia, astrocytes, and infiltrating peripheral macrophages. It is interesting that these endogenous factors affect the proliferation, migration, differentiation, and survival of newly generated cells involved in the incorporation of newly generated neurons into the brain's circuitry. The unique profile of these endogenous factors can vary the degree of neuroregeneration after neurodegeneration. We show that adult neurogenesis-activating signals are regulated by endogenous factors produced during neurodegeneration.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
29
|
Ramsaran AI, Schlichting ML, Frankland PW. The ontogeny of memory persistence and specificity. Dev Cogn Neurosci 2019; 36:100591. [PMID: 30316637 PMCID: PMC6969236 DOI: 10.1016/j.dcn.2018.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
Interest in the ontogeny of memory blossomed in the twentieth century following the initial observations that memories from infancy and early childhood are rapidly forgotten. The intense exploration of infantile amnesia in subsequent years has led to a thorough characterization of its psychological determinants, although the neurobiology of memory persistence has long remained elusive. By contrast, other phenomena in the ontogeny of memory like infantile generalization have received relatively less attention. Despite strong evidence for reduced memory specificity during ontogeny, infantile generalization is poorly understood from psychological and neurobiological perspectives. In this review, we examine the ontogeny of memory persistence and specificity in humans and nonhuman animals at the levels of behavior and the brain. To this end, we first describe the behavioral phenotypes associated with each phenomenon. Looking into the brain, we then discuss neurobiological mechanisms in the hippocampus that contribute to the ontogeny of memory. Hippocampal neurogenesis and critical period mechanisms have recently been discovered to underlie amnesia during early development, and at the same time, we speculate that similar processes may contribute to the early bias towards memory generalization.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada
| | | | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, M5G 1M1, Canada.
| |
Collapse
|
30
|
Semënov MV. Adult Hippocampal Neurogenesis Is a Developmental Process Involved in Cognitive Development. Front Neurosci 2019; 13:159. [PMID: 30894797 PMCID: PMC6415654 DOI: 10.3389/fnins.2019.00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mikhail V Semënov
- Bedford Division, New England Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States.,The Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
31
|
Lupo G, Gioia R, Nisi PS, Biagioni S, Cacci E. Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone. J Exp Neurosci 2019; 13:1179069519829040. [PMID: 30814846 PMCID: PMC6381424 DOI: 10.1177/1179069519829040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Paola Serena Nisi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Cell Kinetics in the Adult Neurogenic Niche and Impact of Diet-Induced Accelerated Aging. J Neurosci 2019; 39:2810-2822. [PMID: 30737307 PMCID: PMC6462444 DOI: 10.1523/jneurosci.2730-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis in the adult brain, a powerful mechanism for neuronal plasticity and brain repair, is altered by aging and pathological conditions, including metabolic disorders. The search for mechanisms and therapeutic solutions to alter neurogenesis requires understanding of cell kinetics within neurogenic niches using a high-throughput quantitative approach. The challenge is in the dynamic nature of the process and multiple cell types involved, each having several potential modes of division or cell fate. Here we show that cell kinetics can be revealed through a combination of the BrdU/EdU pulse-chase, based on the circadian pattern of DNA replication, and a differential equations model that describes time-dependent cell densities. The model is validated through the analysis of cell kinetics in the cerebellar neurogenic niche of normal young adult male zebrafish, with cells quantified in 2D (sections), and with neuronal fate and reactivation of stem cells confirmed in 3D whole-brain images (CLARITY). We then reveal complex alterations in cell kinetics associated with accelerated aging due to chronic high caloric intake. Low activity of neuronal stem cells in this condition persists 2 months after reverting to normal diet, and is accompanied by overproduction of transient amplifying cells, their accelerated cell death, and slow migration of postmitotic progeny. This combined experimental and mathematical approach should allow for relatively high-throughput analysis of early signs of pathological and age-related changes in neurogenesis, evaluation of specific therapeutic targets, and drug efficacy.SIGNIFICANCE STATEMENT Understanding normal cell kinetics of adult neurogenesis and the type of cells affected by a pathological process is needed to develop effective prophylactic and therapeutic measures directed at specific cell targets. Complex time-dependent mechanisms involved in the kinetics of multiple cell types require a combination of experimental and mathematical modeling approaches. This study demonstrates such a combined approach by comparing normal neurogenesis with that altered by diet-induced accelerated aging in adult zebrafish.
Collapse
|
33
|
Morris DC, Zhang ZG, Chopp M. Thymosin β4 for the treatment of acute stroke: neurorestorative or neuroprotective? Expert Opin Biol Ther 2019; 18:149-158. [PMID: 30063858 DOI: 10.1080/14712598.2018.1484100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Thymosin β4 (Tβ4) is a 5K peptide which influences cellular migration by inhibiting organization of the actin-cytoskeleton. Treatment of acute stroke presently involves use of rt-PA and/or endovascular treatment with thrombectomy, both of which have time limitations. Therefore, development of a treatment beyond these times is necessary as most stroke patients present beyond these time limits. A drug which could be administered within 24 h from symptom onset would provide substantial benefit. AREAS COVERED This review summarizes the data and results of two in-vivo studies testing Tβ4 in an embolic stroke model of young and aged rats. In addition, we describe in-vitro investigations of the neurorestorative and neuroprotective properties of Tβ4 in a variety of neuroprogenitor and oligoprogenitor cell models. EXPERT OPINION Tβ4 acts as a neurorestorative agent when employed in a young male rat model of embolic stroke while in an aged model it acts a neuroprotectant. However evaluation of Tβ4 as a treatment of stroke requires further preclinical evaluation in females and in males and females with comorbidities such as, hypertension and diabetes in models of embolic stroke to further define the mechanism of action and potential as a treatment of stroke in humans.
Collapse
Affiliation(s)
- Daniel C Morris
- a Department of Emergency Medicine , Henry Ford Health Systems , Detroit , MI , USA
| | - Zheng G Zhang
- b Department of Neurology , Henry Ford Health Systems , Detroit , MI , USA
| | - Michael Chopp
- b Department of Neurology , Henry Ford Health Systems , Detroit , MI , USA.,c Department of Physics , Oakland University , Rochester , MI , USA
| |
Collapse
|
34
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
35
|
Abstract
The high prevalence of diseases leading to brain injury disability makes it extremely relevant to study the various mechanisms of neurorehabilitation, among which neurogenesis has recently received a great attention. Over the past 20 years, there has been ample evidence for neurogenesis in the adult animal brain. Despite the fact that the prenatal development of the human brain has been thoroughly studied, the number of works on the process by which new neurons form in the adult human brain is not so large. This review devoted to the investigations of neurogenesis in the adult human brain includes data on changes in neurogenesis with age in neurodegenerative diseases, strokes, epilepsy, various addictions, traumatic injuries, and natural and drug regulation. The conclusion lists the issues on which there is an agreement or conflicting views in the literature and indicates the unanswered aspects of the problem.
Collapse
Affiliation(s)
- A A Perminova
- V.A. Almazov National Medical Research Center, Ministry of Health of Russia, Saint Petersburg, Russia
| | - V A Zinserling
- V.A. Almazov National Medical Research Center, Ministry of Health of Russia, Saint Petersburg, Russia; Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
36
|
Smith K, Semënov MV. The impact of age on number and distribution of proliferating cells in subgranular zone in adult mouse brain. IBRO Rep 2018; 6:18-30. [PMID: 30582065 PMCID: PMC6297242 DOI: 10.1016/j.ibror.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023] Open
Abstract
The mouse brain retains an ability to produce hippocampal granule neurons during the mouse’s entire lifespan. The neurons are produced in the subgranular zone (SGZ) located on the inner surface of the granule cell layer in the dentate gyrus (DG). In our study, we used a point cloud approach to characterize how the production and distribution of neural precursors for new hippocampal neurons change in the mouse brain relative to age. We found that the production of neural precursors decreases 64 fold from the age of 30 days to the age of 2.5 years. Within the SGZ the decline of cell proliferation continues during entire mouse life. We reconstructed the distribution of proliferating cells along the longitudinal axis of the SGZ and found that the highest number of proliferating cells are located approximately 0.75 mm from the dorsomedial end of the SGZ that corresponds to the most dorsal part of the DG in the mouse brain. The distribution of proliferating cells in the SGZ showed no apparent aggregations, periodicity or any other readily identifiable spatial characteristics. Proliferating cells in the SGZ tended to be located separately from other proliferating cells. About two thirds of them have no closely located other proliferating cells, and the remaining third is located in small clusters comprised of 2 or 3 proliferating cells. Based on our measurements, we calculated that from the age of 30 days to the age of 2.5 years 1.5 million neural precursors are produced in the SGZ.
Collapse
Affiliation(s)
- Karen Smith
- New England Geriatric Research Education and Clinical Center, Bedford Division, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Mikhail V Semënov
- New England Geriatric Research Education and Clinical Center, Bedford Division, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States.,The Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
37
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Age-related changes in Ki-67 and DCX expression in the BALB/ c mouse (Mus Musculus) brain. Int J Dev Neurosci 2018; 72:36-47. [PMID: 30472241 DOI: 10.1016/j.ijdevneu.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Several studies have identified age as one of the strongest regulators of neurogenesis in the mammalian brain. However, previous age-related studies focused mainly on changes in neurogenesis during different stages of adulthood and did not describe changes in neurogenesis through the different life history stages of the animal. The aim of this study was therefore to determine time course changes in neurogenesis in the male BALB/c mouse brain at postnatal ages 1 week to 12 weeks, spanning juvenile, sub adult and adult life history stages. To achieve this, Ki-67 and DCX immunohistochemistry was used to assess changes in cell proliferation and neuronal incorporation respectively. Ki-67 expression was mainly observed in the olfactory bulb, rostral migratory stream, sub ventricular zone of lateral ventricle and the sub granular zone of the dentate gyrus. In addition, fewer Ki-67 positive cells were also observed in the neocortex, cerebellum and tectum. DCX was expressed in similar regions as Ki-67 except for the cerebellum and tectum. Expression of both Ki-67 and DCX sharply decreased with advancing age or life history stages in the sub ventricular zone, rostral migratory stream and sub granular zone of the BALB/c mouse brain. Neurogenesis therefore persists throughout all life history stages in the BALB/c mouse brain although it decreases with age.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa; Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, 2094, Johannesburg, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2190, South Africa.
| |
Collapse
|
38
|
Abstract
Brain expression of klotho was first described with the initial discovery of the klotho gene. The prominent age-regulating effects of klotho are attributed to regulation of ion homeostasis through klotho function in the kidney. However, recent advances identified brain functions and cell populations, including adult hippocampal neural progenitors, which require klotho. As well, both human correlational studies and mouse models of disease show that klotho is protective against multiple neurological and psychological disorders. This review focuses on current knowledge as to how the klotho protein effects the brain.
Collapse
Affiliation(s)
- Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ann M Laszczyk
- Department of Cell and Developmental Biology, University of Michigan, Zina Pitcher Pl, Ann Arbor, MI, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Takeuchi H, Kameda M, Yasuhara T, Sasaki T, Toyoshima A, Morimoto J, Kin K, Okazaki M, Umakoshi M, Kin I, Kuwahara K, Tomita Y, Date I. Long-Term Potentiation Enhances Neuronal Differentiation in the Chronic Hypoperfusion Model of Rats. Front Aging Neurosci 2018. [PMID: 29527162 PMCID: PMC5829584 DOI: 10.3389/fnagi.2018.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several reports have shown that long-term potentiation (LTP) per se effectively enhances neurogenesis in the hippocampus of intact animals. If LTP can enhance neurogenesis in chronic hypoperfusion, this approach could potentially become a new therapeutic strategy for the restoration of cognitive function and for prevention from deterioration of mild cognitive impairment (MCI). Using an in vivo LTP model of rats, we examined whether LTP per se can enhance neurogenesis in hypoperfusion rats that underwent permanent bilateral common carotid artery occlusion (permanent 2-vessel occlusion, P2VO). High frequency stimulation (HFS) in the subacute phase after P2VO enhanced hippocampal cell proliferation and neurogenesis. However, most enhanced cell proliferation and neurogenesis was seen in the hypoperfusion rats that received HFS and for which LTP could finally be induced. In contrast, the same effect was not seen in the LTP induction in the chronic phase. The present findings, which reveal that most enhanced neurogenesis was seen in hypoperfusion rats for which LTP could be finally induced, could explain the ability of LTP-like activities such as learning paradigms and environmental stimuli to increase the rate of neurogenesis in the hippocampus even under hypoperfusion conditions. Moreover, the present findings, which reveal that LTP induction in the chronic phase after P2VO could not effectively enhance neurogenesis in the hypoperfusion rats, could indicate that patients with MCI and even middle-aged healthy control individuals should start LTP-like activities as early as possible and continue with these activities to prevent age-related deterioration of hippocampal function.
Collapse
Affiliation(s)
- Hayato Takeuchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhiko Toyoshima
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
40
|
Hollands C, Tobin MK, Hsu M, Musaraca K, Yu TS, Mishra R, Kernie SG, Lazarov O. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease by compromising hippocampal inhibition. Mol Neurodegener 2017; 12:64. [PMID: 28886753 PMCID: PMC5591545 DOI: 10.1186/s13024-017-0207-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The molecular mechanism underlying progressive memory loss in Alzheimer's disease is poorly understood. Neurogenesis in the adult hippocampus is a dynamic process that continuously changes the dentate gyrus and is important for hippocampal plasticity, learning and memory. However, whether impairments in neurogenesis affect the hippocampal circuitry in a way that leads to memory deficits characteristic of Alzheimer's disease is unknown. Controversial results in that regard were reported in transgenic mouse models of amyloidosis. METHODS Here, we conditionally ablated adult neurogenesis in APPswe/PS1ΔE9 mice by crossing these with mice expressing nestin-driven thymidine kinase (δ-HSV-TK). RESULTS These animals show impairment in performance in contextual conditioning and pattern separation tasks following depletion of neurogenesis. Importantly, these deficits were not observed in age-matched APPswe/PS1ΔE9 or δ-HSV-TK mice alone. Furthermore, we show that cognitive deficits were accompanied by the upregulation of hyperphosphorylated tau in the hippocampus and in immature neurons specifically. Interestingly, we observed upregulation of the immediate early gene Zif268 (Egr-1) in the dentate gyrus, CA1 and CA3 regions of the hippocampus following learning in the neurogenesis-depleted δ-HSV-TK mice. This may suggest overactivation of hippocampal neurons in these areas following depletion of neurogenesis. CONCLUSIONS These results imply that neurogenesis plays an important role in the regulation of inhibitory circuitry of the hippocampus. This study suggests that deficits in adult neurogenesis may contribute to cognitive impairments, tau hyperphosphorylation in new neurons and compromised hippocampal circuitry in Alzheimer's disease.
Collapse
Affiliation(s)
- Carolyn Hollands
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Matthew Kyle Tobin
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Michael Hsu
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Kianna Musaraca
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Tzong-Shiue Yu
- Department of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Rachana Mishra
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Steven G Kernie
- Department of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
41
|
Bermudez-Hernandez K, Lu YL, Moretto J, Jain S, LaFrancois JJ, Duffy AM, Scharfman HE. Hilar granule cells of the mouse dentate gyrus: effects of age, septotemporal location, strain, and selective deletion of the proapoptotic gene BAX. Brain Struct Funct 2017; 222:3147-3161. [PMID: 28314928 PMCID: PMC5601016 DOI: 10.1007/s00429-017-1391-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
The dentate gyrus (DG) principal cells are glutamatergic granule cells (GCs), and they are located in a compact cell layer. However, GCs are also present in the adjacent hilar region, but have been described in only a few studies. Therefore, we used the transcription factor prospero homeobox 1 (Prox1) to quantify GCs at postnatal day (PND) 16, 30, and 60 in a common mouse strain, C57BL/6J mice. At PND16, there was a large population of Prox1-immunoreactive (ir) hilar cells, with more in the septal than temporal hippocampus. At PND30 and 60, the size of the hilar Prox1-ir cell population was reduced. Similar numbers of hilar Prox1-expressing cells were observed in PND30 and 60 Swiss Webster mice. Prox1 is usually considered to be a marker of postmitotic GCs. However, many Prox1-ir hilar cells, especially at PND16, were not double-labeled with NeuN, a marker typically found in mature neurons. Most hilar Prox1-positive cells at PND16 co-expressed doublecortin (DCX) and calretinin, markers of immature GCs. Double-labeling with a marker of actively dividing cells, Ki67, was not detected. These results suggest that, surprisingly, a large population of cells in the hilus at PND16 are immature GCs (Type 2b and Type 3 cells). We also asked whether hilar Prox1-ir cell numbers are modifiable. To examine this issue, we conditionally deleted the proapoptotic gene BAX in Nestin-expressing cells at a time when there are numerous immature GCs in the hilus, PND2-8. When these mice were examined at PND60, the numbers of Prox1-ir hilar cells were significantly increased compared to control mice. However, deletion of BAX did not appear to change the proportion that co-expressed NeuN, suggesting that the size of the hilar Prox1-expressing population is modifiable. However, deleting BAX, a major developmental disruption, does not appear to change the proportion that ultimately becomes neurons.
Collapse
Affiliation(s)
- Keria Bermudez-Hernandez
- New York University Langone Medical Center, 227 East 30th Street, 7th Floor, One Park Avenue, New York, NY, 10016, USA.
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Yi-Ling Lu
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Jillian Moretto
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Swati Jain
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - John J LaFrancois
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Aine M Duffy
- New York University Langone Medical Center, 227 East 30th Street, 7th Floor, One Park Avenue, New York, NY, 10016, USA
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Helen E Scharfman
- New York University Langone Medical Center, 227 East 30th Street, 7th Floor, One Park Avenue, New York, NY, 10016, USA
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| |
Collapse
|
42
|
Pistikova A, Brozka H, Bencze M, Radostova D, Vales K, Stuchlik A. The effect of hypertension on adult hippocampal neurogenesis in young adult spontaneously hypertensive rats and Dahl rats. Physiol Res 2017; 66:881-887. [PMID: 28730828 DOI: 10.33549/physiolres.933562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The dentate gyrus of the hippocampus is one of the few places in the brain where neurogenesis occurs in adulthood. Nowadays, an increasing number of children and young adults are affected by hypertension, one of the factors in the development of cerebrovascular diseases and age-related cognitive deficits. Since these cognitive deficits are often hippocampus-dependent, it is possible that hypertension exerts this effect via decreasing adult neurogenesis which has been shown to be essential for a range of cognitive tasks. We used spontaneously hypertensive rats, which develop hypertension in the first weeks of life. Half of them were treated with the antihypertensive drug captopril. We found that the drug-induced lowering of blood pressure in this period did not affect the rate of adult neurogenesis. In a second experiment, we used another animal model of hypertension - salt-sensitive and salt-resistant strains of Dahl rats. A high-salt diet induces hypertension in the salt-sensitive strain, but not in the salt-resistant strain. The high-salt diet led to salt-induced hypertension, but did not affect the level of adult neurogenesis in the dentate gyrus of the hippocampus. We conclude that hypertension does not significantly affect the rate of hippocampal neurogenesis in young adult rats.
Collapse
Affiliation(s)
- A Pistikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. or
| | | | | | | | | | | |
Collapse
|
43
|
Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle. Semin Cell Dev Biol 2017. [PMID: 28630025 DOI: 10.1016/j.semcdb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology.
Collapse
Affiliation(s)
| | - Antonio Martinez-Nicolas
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
44
|
ALCAR promote adult hippocampal neurogenesis by regulating cell-survival and cell death-related signals in rat model of Parkinson's disease like-phenotypes. Neurochem Int 2017; 108:388-396. [PMID: 28577987 DOI: 10.1016/j.neuint.2017.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the nigrostriatal pathway that leading to progressive motor and nonmotor symptoms. The formation of newborn neurons in the adult hippocampus is affected by many factors such as anxiety, depression and impairment in learning and memory that are commonly observed nonmotor symptoms in PD, indicating the role of adult neurogenesis in PD pathophysiology. Acetyl-l-carnitine (ALCAR), regulate mitochondrial metabolism and has been reported to improve cognitive functions in different neurodegenerative disorders through an unknown mechanism. For the first time, we investigated the effect of ALCAR on adult neurogenesis in the 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes and also explored the possible underlying mechanism of action. A single unilateral administration of 6-OHDA into the medial forebrain bundle reduced neural progenitor cell (NPC) proliferation, long-term survival and neuronal differentiation in the hippocampus. Interestingly, chronic treatment with ALCAR (100 mg/kg/day, i.p) potentially enhanced proliferation, long term survival and neuronal differentiation of NPCs in rat model of PD-like phenotypes. ALCAR treatment stimulates cell survival related signals (AKT and BCL-2) by inhibiting cell death related cues (GSK-3β and BAX) which might be responsible for a neuroprotective effect of ALCAR in rat model of PD-like phenotypes. We conclude that ALCAR exerts neuroprotective effects against 6-OHDA-induced impairment in hippocampal neurogenesis by regulating cell survival and cell death-related signals.
Collapse
|
45
|
Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Involvement of progranulin in modulating neuroinflammatory responses but not neurogenesis in the hippocampus of aged mice. Exp Gerontol 2017; 95:1-8. [PMID: 28479389 DOI: 10.1016/j.exger.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
It is well established that adult neurogenesis in the hippocampus declines with age. Our previous studies have suggested that progranulin (PGRN) has a facilitative effect on hippocampal neurogenesis. We have also shown that PGRN plays a role in suppressing excessive neuroinflammatory responses in the cortex and thalamus after brain injury and aging, respectively. However, the roles of PGRN in modulating neurogenesis and neuroinflammatory responses in the hippocampus of aged animals are not yet understood. In the present study, we investigated neurogenesis and neuroinflammation-related responses in the hippocampus of young (15-week-old) and old (135-week-old) wild-type and PGRN-deficient male mice. Neurogenesis in the dentate gyrus of the hippocampus markedly declined with age, and there was no significant difference between the genotype. The number of CD68-positive activated microglia and the expression of lysosomal genes in the hippocampus were significantly increased with age, and PGRN deficiency further increased them. The expression of pro-inflammatory genes was also increased with age, and PGRN deficiency significantly enhanced some of them. These results suggest that PGRN deficiency exacerbates neuroinflammatory responses related to activated microglia in aged animals, while PGRN may not counteract the decline of hippocampal neurogenesis with age.
Collapse
Affiliation(s)
- Yanbo Ma
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Department of Animal Physiology, College of Animal Science, Henan University of Science and Technology, Luoyang 471003, China
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
46
|
Fan X, Wheatley EG, Villeda SA. Mechanisms of Hippocampal Aging and the Potential for Rejuvenation. Annu Rev Neurosci 2017; 40:251-272. [PMID: 28441118 DOI: 10.1146/annurev-neuro-072116-031357] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The past two decades have seen remarkable progress in our understanding of the multifactorial drivers of hippocampal aging and cognitive decline. Recent findings have also raised the possibility of functional rejuvenation in the aged hippocampus. In this review, we aim to synthesize the mechanisms that drive hippocampal aging and evaluate critically the potential for rejuvenation. We discuss the functional changes in synaptic plasticity and regenerative potential of the aged hippocampus, followed by mechanisms of microglia aging, and assess the cross talk between these proaging processes. We then examine proyouth interventions that demonstrate significant promise in reversing age-related impairments in the hippocampus and, finally, attempt to look ahead toward novel therapeutics for brain aging.
Collapse
Affiliation(s)
- Xuelai Fan
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| | - Elizabeth G Wheatley
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94143
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94143
| |
Collapse
|
47
|
Tan HM, Wills TJ, Cacucci F. The development of spatial and memory circuits in the rat. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016. [DOI: 10.10.1002/wcs.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui Min Tan
- Singapore Institute for Clinical SciencesSingapore
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, Division of BiosciencesUniversity College LondonLondonUK
| |
Collapse
|
48
|
Tan HM, Wills TJ, Cacucci F. The development of spatial and memory circuits in the rat. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [DOI: 10.1002/wcs.1424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Min Tan
- Singapore Institute for Clinical SciencesSingapore
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, Division of BiosciencesUniversity College LondonLondonUK
| |
Collapse
|
49
|
Yamada J, Hatabe J, Tankyo K, Jinno S. Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice. Neuropharmacology 2016; 111:92-106. [DOI: 10.1016/j.neuropharm.2016.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
|
50
|
de Miranda AS, Zhang CJ, Katsumoto A, Teixeira AL. Hippocampal adult neurogenesis: Does the immune system matter? J Neurol Sci 2016; 372:482-495. [PMID: 27838002 DOI: 10.1016/j.jns.2016.10.052] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/28/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Laboratory of Neurobiology "Conceição Machado", Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Cun-Jin Zhang
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Neurology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Atsuko Katsumoto
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Antônio Lúcio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|