1
|
Ferreira LO, Padilha da Silveira E, Paz CA, Otake Hamoy MK, Barbosa GB, Santos MF, Conceição RM, Amaral ALG, Resende KD, Favacho Lopes DC, Hamoy M. Decreasing brain activity caused by acute administration of ketamine and alcohol - A randomized, controlled, observer-blinded experimental study. Front Pharmacol 2024; 15:1456009. [PMID: 39478968 PMCID: PMC11521905 DOI: 10.3389/fphar.2024.1456009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Substance abuse is a major public health problem. In recent years, ketamine, which is a parenteral anesthetic, has been consumed increasingly as an illicit drug together with alcohol, although little is known of how this association alters brain activity. The present study investigated the influence of progressive doses of ketamine, associated with alcohol, on electrophysiological activity. Methods For this, 72 late-adolescent (8-10-week-old) male Wistar rats received either ketamine only, at low (10 mg/kg), intermediate (20 mg/kg) or high (30 mg/kg) doses via intraperitoneal injection, or alcohol (2 mL/100 g) via oral gavage followed by ketamine (at low, intermediate, and high doses). Electroencephalograms (EEG) and electromyographic recordings were obtained 5 min after the final application of the drug. Results When administered alone, ketamine resulted in an increase in delta, theta, beta, and gamma brainwaves, with a more pronounced effect being detected at the highest dose (30 mg/kg) in the case of the delta, beta, and gamma waves. The amplitude of the alpha brainwaves was reduced at all doses of ketamine, but less intensively at the highest dose. When administered alone, alcohol reduced all the brainwaves, with the reduction in the alpha waves being exacerbated by ketamine at all doses, and that of the theta and beta waves being boosted at the lowest dose. The intermediate dose of ketamine (20 mg/kg) reverted the alcohol-induced reduction in the theta and gamma waves, whereas the high dose increased delta, theta, beta, and gamma bandpower. Discussion Overall, then, while ketamine enhances the depressant effects of alcohol on the alpha brainwave at all doses, a low dose intensified this effect on the theta and beta 175 waves, whereas a high dose produces neuronal hyperexcitability in the theta and 176 gamma bandpower.
Collapse
Affiliation(s)
- Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Esther Padilha da Silveira
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Clarissa A. Paz
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Maria K. Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Gabriela B. Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Murilo F. Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Raína M. Conceição
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Anthony Lucas G. Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Karina Dias Resende
- Department of Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
2
|
Ago Y, Yokoyama R, Asano S, Hashimoto H. Roles of the monoaminergic system in the antidepressant effects of ketamine and its metabolites. Neuropharmacology 2023; 223:109313. [PMID: 36328065 DOI: 10.1016/j.neuropharm.2022.109313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
While the molecular target of (R,S)-ketamine (ketamine) is thought to be the NMDA receptor, subanesthetic doses of ketamine have been known to modulate monoaminergic neurotransmission in the central nervous system. Although the involvement of the serotonergic system in the antidepressant effects of ketamine has been reported in most studies of this topic, some recent studies have reported that the dopaminergic system plays a key role in the effects of ketamine. Additionally, several lines of evidence suggest that the antidepressant-like effects of (R)-ketamine might be independent of the monoaminergic system. Ketamine metabolites also differ considerably in their ability to regulate monoamine neurotransmitters relative to (S)-ketamine and (R)-ketamine, while (2R,6R)-hydroxynorketamine might share common serotonergic signaling mechanisms with ketamine. In the current review, we summarize the effects of ketamine and its metabolites on monoamine neurotransmission in the brain and discuss the potential roles of the monoaminergic system in the mechanism of action of ketamine.
Collapse
Affiliation(s)
- Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Kobayashi NHC, Farias SV, Luz DA, Machado-Ferraro KM, da Conceição BC, da Silveira CCM, Fernandes LMP, Cartágenes SDC, Ferreira VMM, Fontes-Júnior EA, Maia CDSF. Ketamine plus Alcohol: What We Know and What We Can Expect about This. Int J Mol Sci 2022; 23:ijms23147800. [PMID: 35887148 PMCID: PMC9323326 DOI: 10.3390/ijms23147800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
Drug abuse has become a public health concern. The misuse of ketamine, a psychedelic substance, has increased worldwide. In addition, the co-abuse with alcohol is frequently identified among misusers. Considering that ketamine and alcohol share several pharmacological targets, we hypothesize that the consumption of both psychoactive substances may synergically intensify the toxicological consequences, both under the effect of drugs available in body systems and during withdrawal. The aim of this review is to examine the toxicological mechanisms related to ketamine plus ethanol co-abuse, as well the consequences on cardiorespiratory, digestive, urinary, and central nervous systems. Furthermore, we provide a comprehensive discussion about the probable sites of shared molecular mechanisms that may elicit additional hazardous effects. Finally, we highlight the gaps of knowledge in this area, which deserves further research.
Collapse
Affiliation(s)
- Natalia Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Diandra Araújo Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Kissila Márvia Machado-Ferraro
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Brenda Costa da Conceição
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Cinthia Cristina Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Vânia Maria Moraes Ferreira
- Laboratory of Psychobiology, Psychology Institute, University of Brasília, Campus Universitário Darcy Ribeiro—Asa Norte, Brasília 70910900, DF, Brazil;
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
- Correspondence: ; Tel.: +55-91-3201-7201
| |
Collapse
|
4
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
5
|
Hámor PU, Šírová J, Páleníček T, Zaniewska M, Bubeníková-Valešová V, Schwendt M. Chronic methamphetamine self-administration dysregulates 5-HT2A and mGlu2 receptor expression in the rat prefrontal and perirhinal cortex: Comparison to chronic phencyclidine and MK-801. Pharmacol Biochem Behav 2018; 175:89-100. [PMID: 30240581 PMCID: PMC6756482 DOI: 10.1016/j.pbb.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/16/2022]
Abstract
Chronic methamphetamine (meth) abuse often turns into a compulsive drug-taking disorder accompanied by persistent cognitive deficits and re-occurring psychosis. Possible common neurobiological substrates underlying meth-induced deficits and schizophrenia remain poorly understood. Serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors co-regulate psychosis-like behaviors and cognitive function in animals. Therefore, in the present study we examined the effects of chronic exposure to three different drugs known to produce persistent deficits in sensorimotor gating and cognition [meth, phencyclidine (PCP) and MK-801] on the expression of 5-HT2A and mGlu2 within the rat medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC) and perirhinal cortex (PRh). Adult male rats underwent 14 days of: (a) meth self-administration (6 h/day), (b) phencyclidine (PCP; 5 mg/kg, twice/day) administration, or (c) MK-801 (0.3 mg/kg, twice/day) administration. Seven days after the discontinuation of drug administration, tissues of interest were collected for protein expression analysis. We found that despite different pharmacological mechanism of action, chronic meth, PCP, and MK-801 similarly dysregulated 5-HT2A and mGlu2, as indicated by an increase in the 5-HT2A/mGlu2 expression ratio in the mPFC (all three tested drugs), PRh (meth and PCP), and dHPC (MK-801 only). Complementary changes in G-protein expression (increase in Gαq and decrease in Gαi) were also observed in the mPFC of meth animals. Finally, we found that 5-HT2A/mGlu2 cooperation can be mediated in part by the formation of the receptor heteromer in some, but not all cortical regions. In summary, these data suggest that a shift towards increased availability (and G-protein coupling) of cortical 5-HT2A vs. mGlu2 receptors may represent a common neurobiological mechanism underlying the emergence of psychosis and cognitive deficits observed in subjects with meth use disorder and schizophrenia.
Collapse
Affiliation(s)
- Peter U Hámor
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA
| | - Jana Šírová
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Magdalena Zaniewska
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, PL 31343, Poland; Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | - Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA.
| |
Collapse
|
6
|
Kehr J, Yoshitake T, Ichinose F, Yoshitake S, Kiss B, Gyertyán I, Adham N. Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology (Berl) 2018; 235:1593-1607. [PMID: 29637288 PMCID: PMC5920013 DOI: 10.1007/s00213-018-4874-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/06/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Aberrant glutamatergic, dopaminergic, and GABAergic neurotransmission has been implicated in schizophrenia. Cariprazine reverses the behavioral effects observed in the rat phencyclidine (PCP)-induced model of schizophrenia; however, little is known about its in vivo neurochemistry. OBJECTIVES The study aims to compare the effects of cariprazine and aripiprazole on PCP-induced changes in the extracellular levels of glutamate, dopamine, serotonin, noradrenaline, and GABA in the rat medial prefrontal cortex (mPFC), and on locomotor activation. METHODS Microdialysis was performed in awake rats with probes placed into the mPFC. Rats (n = 7/group) received vehicle (saline), cariprazine (0.05, 0.2, or 0.8 mg/kg), or aripiprazole (3 or 20 mg/kg) via gavage. After 60 min, 5 mg/kg PCP was administered intraperitoneally (i.p.). Samples were taken before drug administration, during pretreatment, and after PCP injection. Locomotor activity recording and microdialysis sampling occurred simultaneously. RESULTS PCP treatment increased extracellular levels of all the neurotransmitters tested except GABA, for which there were no significant changes. Cariprazine and aripiprazole dose-dependently inhibited the PCP-induced increases of tested neurotransmitters. Overall effects were significant for higher cariprazine doses and both aripiprazole doses for glutamate and noradrenaline, for higher cariprazine doses and 20 mg/kg aripiprazole for dopamine, and for 0.8 mg/kg cariprazine and 20 mg/kg aripiprazole for serotonin and locomotor activity. CONCLUSION Both cariprazine and aripiprazole dose-dependently attenuated PCP-induced hyperlocomotion and acute increases in glutamate, dopamine, noradrenaline, and serotonin levels in the mPFC; cariprazine was approximately 5-fold more potent than aripiprazole.
Collapse
Affiliation(s)
- Jan Kehr
- Pronexus Analytical AB, Bromma, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Shimako Yoshitake
- Pronexus Analytical AB, Bromma, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Béla Kiss
- Pharmacological and Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - István Gyertyán
- Pharmacological and Safety Research, Gedeon Richter Plc, Budapest, Hungary
- MTA-SE NAP B Cognitive Translational Behavioral Pharmacology Group, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, MTA, Budapest, Hungary
| | | |
Collapse
|
7
|
Ghasemi M, Phillips C, Fahimi A, McNerney MW, Salehi A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci Biobehav Rev 2017; 80:555-572. [DOI: 10.1016/j.neubiorev.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
|
8
|
Mahmood D, Akhtar M, Jahan K, Goswami D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. J Basic Clin Physiol Pharmacol 2017; 27:463-71. [PMID: 27089413 DOI: 10.1515/jbcpp-2015-0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 03/05/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. METHODS The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. RESULTS Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. CONCLUSIONS The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.
Collapse
|
9
|
MK-801-induced deficits in social recognition in rats: reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav Pharmacol 2016; 26:748-65. [PMID: 26287433 DOI: 10.1097/fbp.0000000000000178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deficiencies in social activities are hallmarks of numerous brain disorders. With respect to schizophrenia, social withdrawal belongs to the category of negative symptoms and is associated with deficits in the cognitive domain. Here, we used the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) for induction of social withdrawal in rats and assessed the efficacy of several atypical antipsychotics with different pharmacological profiles as putative treatment. In addition, we reasoned that the marijuana constituent cannabidiol (CBD) may provide benefit or could be proposed as an adjunct treatment in combination with antipsychotics. Hooded Lister rats were tested in the three-chamber version for social interaction, with an initial novelty phase, followed after 3 min by a short-term recognition memory phase. No drug treatment affected sociability. However, distinct effects on social recognition were revealed. MK-801 reduced social recognition memory at all doses (>0.03 mg/kg). Predosing with aripiprazole dose-dependently (2 or 10 mg/kg) prevented the memory decline, but doses of 0.1 mg/kg risperidone or 1 mg/kg olanzapine did not. Intriguingly, CBD impaired social recognition memory (12 and 30 mg/kg) but did not rescue the MK-801-induced deficits. When CBD was combined with protective doses of aripiprazole (CBD-aripiprazole at 12 : or 5 : 2 mg/kg) the benefit of the antipsychotic was lost. At the same time, activity-related changes in behaviour were excluded as underlying reasons for these pharmacological effects. Collectively, the combined activity of aripiprazole on dopamine D2 and serotonin 5HT1A receptors appears to provide a significant advantage over risperidone and olanzapine with respect to the rescue of cognitive deficits reminiscent of schizophrenia. The differential pharmacological properties of CBD, which are seemingly beneficial in human patients, did not back-translate and rescue the MK-801-induced social memory deficit.
Collapse
|
10
|
Cascio MG, Zamberletti E, Marini P, Parolaro D, Pertwee RG. The phytocannabinoid, Δ⁹-tetrahydrocannabivarin, can act through 5-HT₁A receptors to produce antipsychotic effects. Br J Pharmacol 2016; 172:1305-18. [PMID: 25363799 DOI: 10.1111/bph.13000] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to address the questions of whether Δ(9)-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1 A receptors in vitro and (ii) induce any apparent 5-HT₁A receptor-mediated antipsychotic effects in vivo. EXPERIMENTAL APPROACH In vitro studies investigated the effect of THCV on targeting by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) of 5-HT₁A receptors in membranes obtained from rat brainstem or human 5-HT₁A CHO cells, using [(35)S]-GTPγS and 8-[(3)H]-OH-DPAT binding assays. In vivo studies investigated whether THCV induces signs of 5-HT₁A receptor-mediated antipsychotic effects in rats. KEY RESULTS THCV (i) potently, albeit partially, displaced 8-[(3) H]-OH-DPAT from specific binding sites in rat brainstem membranes; (ii) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of receptors in these membranes; (iii) produced concentration-related increases in 8-[(3)H]-OH-DPAT binding to specific sites in membranes of human 5-HT₁A receptor-transfected CHO cells; and (iv) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of these human 5-HT₁A receptors. In phencyclidine-treated rats, THCV, like clozapine (i) reduced stereotyped behaviour; (ii) decreased time spent immobile in the forced swim test; and (iii) normalized hyperlocomotor activity, social behaviour and cognitive performance. Some of these effects were counteracted by the 5-HT₁A receptor antagonist, WAY100635, or could be reproduced by the CB₁ antagonist, AM251. CONCLUSIONS AND IMPLICATIONS Our findings suggest that THCV can enhance 5-HT₁A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement. We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
11
|
McClatchy DB, Savas JN, Martínez-Bartolomé S, Park SK, Maher P, Powell SB, Yates JR. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex. Mol Psychiatry 2016; 21:205-15. [PMID: 25869802 PMCID: PMC4605830 DOI: 10.1038/mp.2015.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 01/09/2023]
Abstract
Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP downregulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this data set identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating.
Collapse
Affiliation(s)
| | - Jeffrey N. Savas
- Department of Chemical Physiology, The Scripps Research Institute
| | | | - Sung Kyu Park
- Department of Chemical Physiology, The Scripps Research Institute
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute
| | | | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute
- Corresponding Author:
| |
Collapse
|
12
|
Janhunen SK, Svärd H, Talpos J, Kumar G, Steckler T, Plath N, Lerdrup L, Ruby T, Haman M, Wyler R, Ballard TM. The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia. Psychopharmacology (Berl) 2015; 232:4059-83. [PMID: 26070547 DOI: 10.1007/s00213-015-3954-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Current treatments for schizophrenia have modest, if any, efficacy on cognitive dysfunction, creating a need for novel therapies. Their development requires predictive animal models. The N-methyl-D-aspartate (NMDA) hypothesis of schizophrenia indicates the use of NMDA antagonists, like subchronic phencyclidine (scPCP) to model cognitive dysfunction in adult animals. OBJECTIVES The objective of this study was to assess the scPCP model by (1) reviewing published findings of scPCP-induced neurochemical changes and effects on cognitive tasks in adult rats and (2) comparing findings from a multi-site study to determine scPCP effects on standard and touchscreen cognitive tasks. METHODS Across four research sites, the effects of scPCP (typically 5 mg/kg twice daily for 7 days, followed by at least 7-day washout) in adult male Lister Hooded rats were studied on novel object recognition (NOR) with 1-h delay, acquisition and reversal learning in Morris water maze and touchscreen-based visual discrimination. RESULTS Literature findings showed that scPCP impaired attentional set-shifting (ASST) and NOR in several labs and induced a variety of neurochemical changes across different labs. In the multi-site study, scPCP impaired NOR, but not acquisition or reversal learning in touchscreen or water maze. Yet, this treatment regimen induced locomotor hypersensitivity to acute PCP until 13-week post-cessation. CONCLUSIONS The multi-site study confirmed that scPCP impaired NOR and ASST only and demonstrated the reproducibility and usefulness of the touchscreen approach. Our recommendation, prior to testing novel therapeutics in the scPCP model, is to be aware that further work is required to understand the neurochemical changes and specificity of the cognitive deficits.
Collapse
Affiliation(s)
- Sanna K Janhunen
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland.
| | - Heta Svärd
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland
| | - John Talpos
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Gaurav Kumar
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Niels Plath
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Linda Lerdrup
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Trine Ruby
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Marie Haman
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger Wyler
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Theresa M Ballard
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
13
|
Mahmood D, Pillai KK, Khanam R, Jahan K, Goswami D, Akhtar M. The Effect of Subchronic Dosing of Ciproxifan and Clobenpropit on Dopamine and Histamine Levels in Rats. J Exp Neurosci 2015; 9:73-80. [PMID: 26379444 PMCID: PMC4556212 DOI: 10.4137/jen.s27244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate the effect of once daily for 7-day (subchronic treatment) dosing of histamine H3 receptor antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p), including clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively, on MK-801(0.2 mg/kg, i.p.)-induced locomotor activity, and dopamine and histamine levels in rats. Dopamine and histamine levels were measured in striatum and hypothalamus, respectively, of rat brain. Atypical and typical antipsychotics were used to serve as clinically relevant reference agents to compare the effects of the H3 receptor antagonists. MK-801-induced increase of horizontal activity was reduced with CPX and CBP. The attenuation of MK-801-induced locomotor hyperactivity produced by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised dopamine levels in the striatum, which was reduced in rats pretreated with CPX and CBP. CPZ also lowered striatal dopamine levels, though the decrease was less robust compared to CLZ, CPX and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increase in histamine levels in the hypothalamus compared to the MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.) counteracted the effects of CPX and CBP. In conclusion, the subchronic dosing of CPX/CBP suggests some antipsychotic-like activities as CPX/CBP counteracts the modulatory effects of MK-801 on dopamine and histamine levels and prevents MK-801-induced hyperlocomotor behaviors.
Collapse
Affiliation(s)
- D Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - K K Pillai
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - R Khanam
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - K Jahan
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - D Goswami
- Ranbaxy Research Laboratories Ltd., Gurgoan, Haryana, India
| | - M Akhtar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| |
Collapse
|
14
|
Bagewadi HG, Ak AK, Shivaramegowda RM. An Experimental Study to Evaluate the Effect of Memantine in Animal Models of Anxiety in Swiss Albino Mice. J Clin Diagn Res 2015; 9:FF01-5. [PMID: 26435964 DOI: 10.7860/jcdr/2015/13233.6287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Due to the adverse effects produced by the present conventional medicines for anxiety disorders, research for newer drugs is still desirable. From the literature it is evident that NMDA receptors play a key role in animal models of anxiety. AIM The present study is done to evaluate the antianxiety effect of memantine in swiss albino mice. MATERIALS AND METHODS The experimental study was conducted from November 2014 to January 2015. Animals were divided into four groups. Twelve mice were randomly allotted in each group. Animals in the first group received normal saline as a control 10ml/kg, lorazepam 0.5mg/kg was administered to second group, memantine 3mg/kg as a test drug was given to the third group and memantine 3mg/kg + lorazepam 0.5mg/kg was administered to the fourth group. All the drugs were given for 7 consecutive days by intraperitoneal route. RESULTS Results were analyzed by one-way ANOVA followed by Post-hoc Tukey's test. On the 1(st) day, memantine treated group did not show statistical significant anxiolytic effect in both the behavioural paradigms when compared to control group. On the 8(th) day, the animals showed significant decrease p<0.001 in step down latency period in shock free zone (185.4±3.87 Vs 278.3±5.49), significant increase p<0.001 in step down errors (6.8±0.78 Vs 1.4±0.19) and significant increase p<0.001 in total time spent in shock zone (32.1±2.22 Vs 5.6±0.6). In open field test, on 8(th) day the animals treated with memantine when compared to control group, showed significant increase p<0.001 in number of squares crossed (112.7± 2.69 Vs 83.2±2.96), time spent in central square (11.5±1.26 Vs 3.4±0.65), no. of rearings (32.4±2.61 Vs 17±1.81) and significant decrease p<0.001 in freezing time (15.2±1.12 Vs 20.2±2.29). Memantine showed synergistic antianxiety effect when combined with lorazepam. CONCLUSION Memantine showed significant anxiolytic effect in open field and passive avoidance response tests which are commonly used experimental models to assess anxiety states in animals.
Collapse
Affiliation(s)
- Harish G Bagewadi
- Assistant Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| | - Afzal Khan Ak
- Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| | - Rekha M Shivaramegowda
- Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| |
Collapse
|
15
|
O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models. Pharmacol Ther 2015; 150:47-80. [DOI: 10.1016/j.pharmthera.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
16
|
Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, Caraci F. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:313570. [PMID: 24757497 PMCID: PMC3976923 DOI: 10.1155/2014/313570] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA) in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries' diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.
Collapse
Affiliation(s)
- Giuseppe Grosso
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Fabio Galvano
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Stefano Marventano
- Department of "G.F. Ingrassia", Section of Hygiene and Public Health, University of Catania, Via S. Sofia 85, 95123 Catania, Italy
| | - Michele Malaguarnera
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124 Catania, Italy ; IRCCS Associazione Oasi Maria S.S.-Institute for Research on Mental Retardation and Brain Aging, Via Conte Ruggiero 73, Enna, 94018 Troina, Italy
| |
Collapse
|
17
|
Jafari S, Huang XF, Andrews JL, Fernandez-Enright F. In vivo pharmacological evaluations of novel olanzapine analogues in rats: a potential new avenue for the treatment of schizophrenia. PLoS One 2013; 8:e80979. [PMID: 24349027 PMCID: PMC3859487 DOI: 10.1371/journal.pone.0080979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/17/2013] [Indexed: 11/18/2022] Open
Abstract
Olanzapine (Olz) is one of the most effective antipsychotic drugs commonly used for treating schizophrenia. Unfortunately, Olz administration is associated with severe weight gain and metabolic disturbances. Both patients and clinicians are highly interested in the development of new antipsychotics which are as effective as atypical antipsychotics but which have a lower propensity to induce metabolic side effects. In the present study, we examined two new derivatives of Olz; OlzEt (2-ethyl-4-(4'-methylpiperazin-1'-yl)-10Hbenzo[b]thieno[2,3-e][1,4]diazepine), and OlzHomo (2-ethyl-4-(4'-methyl-1',4'-diazepan-1'-yl)-10H-benzo[b]thieno[2,3-e] [1,4]diazepine), for their tendency to induce weight gain in rats. Weight gain and metabolic changes were measured in female Sprague Dawley rats. Animals were treated orally with Olz, OlzEt, OlzHomo (3 or 6 mg/kg/day), or vehicle (n = 8), three times daily at eight-hour intervals for 5 weeks. Furthermore, a phencyclidine (PCP)-treated rat model was used to examine the prevention of PCP-induced hyperlocomotor activity relevant for schizophrenia therapy. Male Sprague Dawley rats were pre-treated with a single dose (3 mg/kg/day) of Olz, OlzEt, OlzHomo, or vehicle (n = 12), for 2 weeks. Locomotor activity was recorded following a subcutaneous injection with either saline or PCP (10 mg/kg). Olz was found to induce weight gain, hyperphagia, visceral fat accumulation, and metabolic changes associated with reduced histamatergic H1 receptor density in the hypothalamus of treated rats. In contrast, OlzEt and OlzHomo presented promising antipsychotic effects, which did not induce weight gain or fat deposition in the treated animals. Behavioural analysis showed OlzEt to attenuate PCP-induced hyperactivity to a level similar to that of Olz; however, OlzHomo showed a lower propensity to inhibit these stereotyped behaviours. Our data suggest that the therapeutic effectiveness of OlzHomo may be delivered at a higher dose than that of Olz and OlzEt. Overall, OlzEt and OlzHomo may offer a better pharmacological profile than Olz for treating patients with schizophrenia. Clinical trials are needed to test this hypothesis.
Collapse
Affiliation(s)
- Somayeh Jafari
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | - Jessica L. Andrews
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
| | - Francesca Fernandez-Enright
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- * E-mail:
| |
Collapse
|
18
|
Adams WK, Halberstadt AL, van den Buuse M. Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses. Front Pharmacol 2013; 4:109. [PMID: 24009584 PMCID: PMC3756227 DOI: 10.3389/fphar.2013.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/09/2013] [Indexed: 11/21/2022] Open
Abstract
Antagonism of N-methyl-D-aspartate (NMDA) receptors by phencyclidine (PCP) is thought to underlie its ability to induce a schizophrenia-like syndrome in humans, yet evidence indicates it has a broader pharmacological profile. Our previous lesion studies highlighted a role for serotonergic projections from the median, but not dorsal, raphe nucleus in mediating the hyperlocomotor effects of PCP, without changing the action of the more selective NMDA receptor antagonist, MK-801. Here we compared locomotor responses to PCP and MK-801 in rats that were administered 5,7-dihydroxytryptamine (5,7-DHT) into either the dorsal or ventral hippocampus, which are preferentially innervated by median and dorsal raphe, respectively. Dorsal hippocampus lesions potentiated PCP-induced hyperlocomotion (0.5, 2.5 mg/kg), but not the effect of MK-801 (0.1 mg/kg). Ventral hippocampus lesions did not alter the hyperlocomotion elicited by either compound. Given that PCP and MK-801 may induce different spatiotemporal patterns of locomotor behavior, together with the known role of the dorsal hippocampus in spatial processing, we also assessed whether the 5,7-DHT-lesions caused any qualitative differences in locomotor responses. Treatment with PCP or MK-801 increased the smoothness of the path traveled (reduced spatial d) and decreased the predictability of locomotor patterns within the chambers (increased entropy). 5,7-DHT-lesions of the dorsal hippocampus did not alter the effects of PCP on spatial d or entropy – despite potentiating total distance moved – but caused a slight reduction in levels of MK-801-induced entropy. Taken together, serotonergic lesions targeting the dorsal hippocampus unmask a functional differentiation of the hyperlocomotor effects of PCP and MK-801. These findings have implications for studies utilizing NMDA receptor antagonists in modeling glutamatergic dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Wendy K Adams
- Behavioural Neuroscience Laboratory, Florey Institute for Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia ; Centre for Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | | |
Collapse
|
19
|
Prevention of the phencyclidine-induced impairment in novel object recognition in female rats by co-administration of lurasidone or tandospirone, a 5-HT(1A) partial agonist. Neuropsychopharmacology 2012; 37:2175-83. [PMID: 22739469 PMCID: PMC3422483 DOI: 10.1038/npp.2012.64] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypoglutamatergic function may contribute to cognitive impairment in schizophrenia (CIS). Subchronic treatment with the N-methyl-D-aspartate receptor antagonist, phencyclidine (PCP), induces enduring deficits in novel object recognition (NOR) in rodents. Acute treatment with atypical antipsychotic drugs (APDs), which are serotonin (5-HT)(2A)/dopamine D(2) antagonists, but not typical APDs, eg, haloperidol, reverses the PCP-induced NOR deficit in rats. We have tested the ability of lurasidone, an atypical APD with potent 5-HT(1A) partial agonist properties, tandospirone, a selective 5-HT(1A) partial agonist, haloperidol, a D(2) antagonist, and pimavanserin, a 5-HT(2A) inverse agonist, to prevent the development of the PCP-induced NOR deficit. Rats were administered lurasidone (0.1 or 1 mg/kg), tandospirone (5 mg/kg), pimavanserin (3 mg/kg), or haloperidol (1 mg/kg) b.i.d. 30 min before PCP (2 mg/kg, b.i.d.) for 7 days (day1-7), followed by a 7-day washout (day 8-14). Subchronic treatment with PCP induced an enduring NOR deficit. Lurasidone (1 mg/kg) but not 0.1 mg/kg, which is effective to acutely reverse the deficit due to subchronic PCP, or tandospirone, but not pimavanserin or haloperidol, significantly prevented the PCP-induced NOR deficit on day 15. The ability of lurasidone co-treatment to prevent the PCP-induced NOR deficit was enduring and still present at day 22. The preventive effect of lurasidone was blocked by WAY100635, a selective 5-HT(1A) antagonists, further evidence for the importance of 5-HT(1A) receptor stimulation in the NOR deficit produced by subchronic PCP. Further study is needed to determine whether these results concerning mechanism and dosage can be the basis for prevention of the development of CIS in at risk populations.
Collapse
|
20
|
Kusljic S, Van Den Buuse M. Differential role of serotonin projections from the dorsal and median raphe nuclei in phencyclidine-induced hyperlocomotion and fos-like immunoreactivity in rats. Synapse 2012; 66:885-92. [DOI: 10.1002/syn.21580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/07/2022]
|
21
|
Linck VM, Bessa MM, Herrmann AP, Iwu MM, Okunji CO, Elisabetsky E. 5-HT2A/C receptors mediate the antipsychotic-like effects of alstonine. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:29-33. [PMID: 21925231 DOI: 10.1016/j.pnpbp.2011.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/11/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.
Collapse
Affiliation(s)
- V M Linck
- Laboratório de Etnofarmacologia, Depto de Farmacologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500/202, 90050-170, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
Agnoli L, Carli M. Dorsal-striatal 5-HT₂A and 5-HT₂C receptors control impulsivity and perseverative responding in the 5-choice serial reaction time task. Psychopharmacology (Berl) 2012; 219:633-45. [PMID: 22113450 DOI: 10.1007/s00213-011-2581-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/07/2011] [Indexed: 12/29/2022]
Abstract
RATIONAL Prefrontal cortex (PFC) and dorsal striatum are part of the neural circuit critical for executive attention. The relationship between 5-HT and aspects of attention and executive control is complex depending on experimental conditions and the level of activation of different 5-HT receptors within the nuclei of corticostriatal circuitry. OBJECTIVE The present study investigated which 5-HT(2A) and 5-HT(2C) receptors in the dorsomedial-striatum (dm-STR) contribute to executive attention deficit induced by blockade of NMDA receptors in the PFC. MATERIALS AND RESULTS Executive attention was assessed by the five-choice serial reaction time task (5-CSRTT), which provides indices of attention (accuracy) and those of executive control over performance such as premature (an index of impulsivity) and perseverative responding. The effects of targeted infusion in dm-STR of 100 and 300 ng/μl doses of the selective 5-HT(2A) antagonist M100907 and 1 and 3 μg/μl doses of 5-HT(2C) agonist Ro60-0175 was examined in animals injected with 50 ng/μl dose of a competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-phosphonic acid (CPP) in the mPFC. Blockade of NMDA receptors impaired accuracy as well as executive control as shown by increased premature and perseverative responding. The CPP-induced premature and perseverative over-responding were dose-dependently prevented by both M100907 and Ro60-0175. Both drugs partially removed the CPP-induced accuracy deficit but only at the highest dose tested. CONCLUSIONS It is suggested that in the dorsal striatum, 5-HT by an action on 5-HT(2A) and 5-HT(2C) receptors may integrate the glutamate corticostriatal inputs critical for different aspects of the 5-CSRT task performance.
Collapse
Affiliation(s)
- Laura Agnoli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri", via G. La Masa 19, Milan 20156, Italy
| | | |
Collapse
|
23
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
24
|
Santana N, Troyano-Rodriguez E, Mengod G, Celada P, Artigas F. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry 2011; 69:918-27. [PMID: 21251645 DOI: 10.1016/j.biopsych.2010.10.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/04/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Noncompetitive N-methyl-D-aspartate receptor antagonists are widely used as pharmacological models of schizophrenia. Their neurobiological actions are still poorly understood, although the prefrontal cortex (PFC) appears as a key target area. METHODS We examined the effect of phencyclidine (PCP) on neuronal activity of the mediodorsal (MD) and centromedial (CM) thalamic nuclei, reciprocally connected with the PFC, using extracellular recordings (n = 50 neurons from 35 Wistar rats) and c-fos expression. RESULTS Phencyclidine (.25 mg/kg intravenous [IV]) markedly disorganized the activity of MD/CM neurons, increasing (424%) and decreasing (41%) the activity of 57% and 20% of the recorded neurons, respectively (23% remained unaffected). Phencyclidine reduced delta oscillations (.15-4 Hz) as assessed by recording local field potentials. The subsequent clozapine administration (1 mg/kg IV) reversed PCP effects on neuronal discharge and delta oscillations. Double in situ hybridization experiments revealed that PCP (10 mg/kg intraperitoneal [IP]) markedly increased c-fos expression in glutamatergic neurons of several cortical areas (prefrontal, somatosensory, retrosplenial, entorhinal) and in thalamic nuclei, including MD/CM. Phencyclidine also increased c-fos expression in the amygdala; yet, it had a small effect in the hippocampus. Phencyclidine did not increase c-fos expression in gamma-aminobutyric acidergic cells except in hippocampus, amygdala, somatosensory, and retrosplenial cortices. Clozapine (5 mg/kg IP) had no effect by itself but significantly prevented PCP-induced c-fos expression. CONCLUSIONS Phencyclidine likely exerts its psychotomimetic action by increasing excitatory neurotransmission in thalamo-cortico-thalamic networks involving, among others, PFC, retrosplenial, and somatosensory cortices. The antipsychotic action of clozapine includes, among other actions, an attenuation of the neuronal hyperactivity in thalamocortical networks.
Collapse
Affiliation(s)
- Noemí Santana
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Egashira N, Shirakawa A, Okuno R, Mishima K, Iwasaki K, Oishi R, Fujiwara M. Role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. Pharmacol Biochem Behav 2011; 99:52-8. [PMID: 21504759 DOI: 10.1016/j.pbb.2011.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/25/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
We previously reported that systemic administration of the endocannabinoid anandamide inhibited the head-twitches induced by the hallucinogenic drug 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice, which is mediated via the activation of 5-HT(2A) receptors. Endocannabinoid and glutamatergic systems have been suggested to modulate the function of 5-HT(2A) receptors. In the present study, we further investigated the role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. An anandamide transport inhibitor AM404 (0.3-3mg/kg, i.p.), a fatty acid amide hydrolase inhibitor URB597 (0.1-10mg/kg, i.p.), a glutamate release inhibitor riluzole (0.3 and 1mg/kg, i.p.), a natural glutamate analog l-glutamylethylamide (theanine, 1 and 3mg/kg, p.o.) and an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist NBQX (0.01-0.3mg/kg, i.p.) significantly inhibited DOI-induced head-twitch response. The AMPA receptor positive modulator aniracetam (30 or 100mg/kg, p.o.) reversed inhibition of head-twitch response by NBQX and URB597. These findings indicated that endocannabinoid and glutamatergic systems participate in the mechanism of action of DOI to induce head-twitch response.
Collapse
Affiliation(s)
- Nobuaki Egashira
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
McLean SL, Neill JC, Idris NF, Marston HM, Wong EH, Shahid M. Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat. Behav Brain Res 2010; 214:240-7. [DOI: 10.1016/j.bbr.2010.05.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/18/2010] [Accepted: 05/21/2010] [Indexed: 12/29/2022]
|
27
|
Information processing deficits and nitric oxide signalling in the phencyclidine model of schizophrenia. Psychopharmacology (Berl) 2010; 212:643-51. [PMID: 20802999 DOI: 10.1007/s00213-010-1992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/04/2010] [Indexed: 12/22/2022]
Abstract
RATIONALE Schizophrenia-like cognitive deficits induced by phencyclidine (PCP), a drug commonly used to model schizophrenia in experimental animals, are attenuated by nitric oxide (NO) synthase inhibitors. Furthermore, PCP increases NO levels and sGC/cGMP signalling in the prefrontal cortex in rodents. Hence, a cortical NO/sGC/cGMP signalling pathway may constitute a target for novel pharmacological therapies in schizophrenia. OBJECTIVES The objective of this study was to further investigate the role of NO signalling for a PCP-induced deficit in pre-attentive information processing. MATERIALS AND METHODS Male Sprague-Dawley rats were surgically implanted with NO-selective amperometric microsensors aimed at the prefrontal cortex, ventral hippocampus or nucleus accumbens, and NO levels and prepulse inhibition (PPI) were simultaneously assessed. RESULTS PCP treatment increased NO levels in the prefrontal cortex and ventral hippocampus, but not in the nucleus accumbens. The increase in NO levels was not temporally correlated to the deficit in PPI induced by PCP. Furthermore, pretreatment with the neuronal NO synthase inhibitor N-propyl-L-arginine dose-dependently attenuated both the increase in prefrontal cortex NO levels and the deficit in PPI. CONCLUSIONS These findings support a demonstrated role of NO in the behavioural and neurochemical effects of PCP. Furthermore, this effect is brain region-specific and mainly involves the neuronal isoform of NOS. However, a temporal correlation between a PCP-induced disruption of PPI and an increase in prefrontal cortex NO levels was not demonstrated, suggesting that the interaction between PCP and the NO system is more complex than previously thought.
Collapse
|
28
|
Müller N, Myint AM, Schwarz MJ. Inflammatory biomarkers and depression. Neurotox Res 2010; 19:308-18. [PMID: 20658274 DOI: 10.1007/s12640-010-9210-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 11/28/2022]
Abstract
Antidepressants, predominantly serotonin- and/or noradrenaline reuptake inhibiting drugs have several shortcomings. The exact pathophysiological mechanisms leading to serotonergic-, noradrenergic- or dopaminergic dysfunction are still unclear. An inflammatory mechanism has been postulated and will be discussed here including possible therapeutic advantages of cyclooxygenase-2 (COX-2) inhibitors. Differences in the activation of the enzyme indoleamine 2,3-dioxygenase (IDO) and in the tryptophan-kynurenine metabolism resulting in an increased tryptophan and serotonin degradation and probably in an increased production of quinolinic acid might play a key role in major depression (MD). These differences are associated with an imbalance in the glutamatergic neurotransmission, which may contribute to an overweight of N-methyl-D: -aspartate agonism in MD. The immunological imbalance results in an increased prostaglandin E₂ production and probably also in an increased COX-2 expression. Although there is strong evidence for the view that the interactions of the immune system, IDO, the serotonergic system and the glutamatergic neurotransmission play a key role in MD, several gaps, e.g. the roles of genetics, disease course, sex, different psychopathological states, etc., have to be bridged by intense further research. There were already hints that anti-inflammatory therapy might have beneficial effects in MD. COX-2 inhibitors, however, have been tested in animal models and in preliminary clinical studies showing favourable effects compared to placebo in MD. The effects of COX-2 inhibition in the CNS as well as the different components of the inflammatory system, the kynurenine-metabolism and the glutamatergic neurotransmission, however, still need careful further scientific evaluation including clinical studies in bigger samples of patients.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336 München, Germany.
| | | | | |
Collapse
|
29
|
Amitai N, Markou A. Effects of metabotropic glutamate receptor 2/3 agonism and antagonism on schizophrenia-like cognitive deficits induced by phencyclidine in rats. Eur J Pharmacol 2010; 639:67-80. [PMID: 20371228 DOI: 10.1016/j.ejphar.2009.12.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 11/19/2009] [Accepted: 12/07/2009] [Indexed: 10/19/2022]
Abstract
Dysregulation of glutamate neurotransmission may play a role in cognitive deficits in schizophrenia. Manipulation of glutamate signaling using drugs acting at metabotropic glutamate receptors has been suggested as a novel approach to treating schizophrenia-related cognitive dysfunction. We examined how the metabotropic glutamate receptor 2/3 agonist LY379268 and the metabotropic glutamate receptor 2/3 antagonist LY341495 altered phencyclidine-induced disruptions in performance in the 5-choice serial reaction time task. This test assesses multiple cognitive modalities characteristically impaired in schizophrenia that are disrupted by phencyclidine administration. Acute LY379268 alone did not affect 5-choice serial reaction time task performance, except for nonspecific response suppression at high doses. Acute LY379268 administration exacerbated phencyclidine-induced disruption of attentional performance in this task, while acute LY341495 did not alter 5-choice serial reaction time task performance during phencyclidine exposure. Chronic LY341495 impaired attentional performance in the 5-choice serial reaction time task by itself, but attenuated phencyclidine-induced excessive timeout responding. The mixed effects of metabotropic glutamate receptor 2/3 agonism and antagonism on cognitive performance under baseline conditions and after disruption with phencyclidine demonstrate that different aspects of cognition may respond differently to a given pharmacological manipulation, indicating that potential antipsychotic or pro-cognitive medications need to be tested for their effects on a range of cognitive modalities. Our findings also suggest that additional mechanisms, besides cortical glutamatergic transmission, may be involved in certain cognitive dysfunctions in schizophrenia.
Collapse
Affiliation(s)
- Nurith Amitai
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
30
|
Pozzi L, Greco B, Sacchetti G, Leoni G, Invernizzi RW, Carli M. Blockade of serotonin 2A receptors prevents PCP-induced attentional performance deficit and CREB phosphorylation in the dorsal striatum of DBA/2 mice. Psychopharmacology (Berl) 2010; 208:387-99. [PMID: 19997843 DOI: 10.1007/s00213-009-1738-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
RATIONAL AND OBJECTIVE Functional opposition between N-methyl-D-aspartate and 5-HT(2A) receptors may be a neural mechanism supporting cognitive functions. These systems converge on an intracellular signaling pathway that involves protein kinase A-dependent phosphorylation of different proteins including cyclic adenosine monophosphate response element binding (CREB). Thus, we tested whether selective 5-HT(2A) receptor antagonist, M100907, might abolish phencyclidine (PCP)-induced attentional performance deficit by preventing its effects on transduction mechanisms leading to CREB phosphorylation. METHODS Using the five-choice serial reaction time task, the ability of subcutaneous injections of 2.5 and 10 microg/kg of M100907 to abolish the effects of an intraperitoneal injection of 1.5 mg/kg PCP on attentional performance as measured by accuracy (percentage of correct responses) and anticipatory and perseverative responding was assessed in DBA/2 mice. The effects of PCP, M100907, and their combination on S(133)-CREB and T(34)-DARPP32 phosphorylation in the dorsal striatum and prefrontal cortex (PFC) of behaviorally naïve mice were examined using Western blotting technique. RESULTS PCP reduced accuracy and increased anticipatory and perseverative responses as well as it increased S(133)-CREB phosphorylation in the dorsal striatum but not in the PFC. Ten microg/kg M100907 abolished the PCP-induced attentional performance deficits and the increase in S(133)-CREB but not T(34)-DARPP32 phosphorylation. By itself, M100907 had no effect on attentional performance or phospho-S(133)-CREB and phospho-T(34)-DARPP32. Interestingly, the effect of PCP on phospho-S(133)-CREB but not on phospho-T(34)-DARPP32 was dependent on endogenous 5-HT. CONCLUSIONS The data indicate that blockade of 5-HT(2A) receptors may exert beneficial effects on cognitive deficits through a mechanism linked to striatal S(133)-CREB phosphorylation.
Collapse
Affiliation(s)
- Laura Pozzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri", via Giuseppe La Masa 19, 20156 Milan, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Labonte B, Bambico FR, Gobbi G. Potentiation of excitatory serotonergic responses by MK-801 in the medial prefrontal cortex. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:383-97. [DOI: 10.1007/s00210-009-0446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/30/2009] [Indexed: 12/26/2022]
|
32
|
Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI. Subchronic Effects of Phencyclidine on Dopamine and Serotonin Receptors: Implications for Schizophrenia. J Mol Neurosci 2009; 38:227-35. [PMID: 19455435 DOI: 10.1007/s12031-009-9204-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/13/2009] [Indexed: 12/26/2022]
Affiliation(s)
- Yong Kee Choi
- Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA, USA
| | | | | | | | | |
Collapse
|
33
|
Szewczyk B, Poleszak E, Wlaź P, Wróbel A, Blicharska E, Cichy A, Dybała M, Siwek A, Pomierny-Chamioło L, Piotrowska A, Brański P, Pilc A, Nowak G. The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:323-9. [PMID: 19150479 DOI: 10.1016/j.pnpbp.2008.12.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/30/2008] [Accepted: 12/15/2008] [Indexed: 12/30/2022]
Abstract
Recent preclinical data indicated the antidepressant-like activity of zinc in different tests and models of depression. The present study investigates the involvement of the serotonergic system in zinc activity in the forced swim test (FST) in mice and rats. The combined treatment of sub-effective doses of zinc (hydroaspartate, 2.5 mg Zn/kg) and citalopram (15 mg/kg), fluoxetine (5 mg/kg) but not with reboxetine (2.5 mg/kg) significantly reduces the immobility time in the FST in mice. These treatments had no influence on the spontaneous locomotor activity. Moreover, while the antidepressant-like effect of zinc (5 mg/kg) in the FST was significantly blocked by pretreatment with inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA, 3x200 mg/kg), 5HT-2(A/C) receptor antagonist, ritanserin (4 mg/kg) or 5HT-1A receptor antagonist, WAY 1006335 (0.1 mg/kg), the zinc-induced reduction in the locomotor activity was not affected by these serotonin modulator agents. These results indicate the specific involvement of the serotonergic system in antidepressant but not the motion behavior of zinc in mice. Also, an increase in the swimming but not climbing parameter of the rat FST observed following zinc administration (2.5 and 5 mg Zn/kg) indicates the serotonin pathway participation. This present data indicates that the antidepressant-like activity of zinc observed in the FST involves interaction with the serotonergic system.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pavuluri MN, Henry DB, Moss M, Mohammed T, Carbray JA, Sweeney JA. Effectiveness of lamotrigine in maintaining symptom control in pediatric bipolar disorder. J Child Adolesc Psychopharmacol 2009; 19:75-82. [PMID: 19232025 PMCID: PMC2692234 DOI: 10.1089/cap.2008.0107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this study was to test the effectiveness and safety of lamotrigine in maintenance of manic and depressive symptom control in pediatric bipolar disorder (PBD). METHODS A 14-week open trial was conducted with 46 subjects presenting with mania or hypomania. Lamotrigine was slowly titrated to a therapeutic dose over an 8-week period, during which acute symptoms were stabilized using second-generation antipsychotics (SGA), followed by a 6-week lamotrigine monotherapy phase. RESULTS The response rate on manic symptoms (Young Mania Rating Score [YMRS] <12) was 72%, on depressive symptoms was 82% (Children's Depression Rating Scale-Revised [CDRS-R] <40), and the remission rate was 56% at the 14-week end point, on an average end-point lamotrigine dose of 1.8 mg/lb. There was further reduction in depressive symptoms during the lamotrigine maintenance phase. Benign rash was noted in 6.4% of patients. Out of half of the subjects who were in remission at 8 week, 3 subjects (23%) relapsed by week 14. CONCLUSION Lamotrigine monotherapy appears to be effective in maintaining symptom control of manic and depressive symptoms in PBD and shows minimal adverse effects, although a future double-blind controlled trial is needed to confirm this finding. Portal of entry for lamotrigine treatment can be during acute illness and can sustain symptom control after establishing mood stabilization.
Collapse
Affiliation(s)
- Mani N. Pavuluri
- University of Illinois at Chicago, Chicago, Illinois
- Dr. Henry served as the statistical expert on this manuscript
- This research was funded by NIH-MO1-RR-13987 and GlaxoSmithKline-NeuroHealth
| | - David B. Henry
- University of Illinois at Chicago, Chicago, Illinois
- Dr. Henry served as the statistical expert on this manuscript
- This research was funded by NIH-MO1-RR-13987 and GlaxoSmithKline-NeuroHealth
| | - Melissa Moss
- University of Illinois at Chicago, Chicago, Illinois
- Dr. Henry served as the statistical expert on this manuscript
- This research was funded by NIH-MO1-RR-13987 and GlaxoSmithKline-NeuroHealth
| | - Tahseen Mohammed
- University of Illinois at Chicago, Chicago, Illinois
- Dr. Henry served as the statistical expert on this manuscript
- This research was funded by NIH-MO1-RR-13987 and GlaxoSmithKline-NeuroHealth
| | - Julie A. Carbray
- University of Illinois at Chicago, Chicago, Illinois
- Dr. Henry served as the statistical expert on this manuscript
- This research was funded by NIH-MO1-RR-13987 and GlaxoSmithKline-NeuroHealth
| | - John A. Sweeney
- University of Illinois at Chicago, Chicago, Illinois
- Dr. Henry served as the statistical expert on this manuscript
- This research was funded by NIH-MO1-RR-13987 and GlaxoSmithKline-NeuroHealth
| |
Collapse
|
35
|
Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2009; 60:358-403. [PMID: 18922967 DOI: 10.1124/pr.107.00107] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various lines of evidence indicate the presence of progressive pathophysiological processes occurring within the brains of patients with schizophrenia. By modulating chemical neurotransmission, antipsychotic drugs may influence a variety of functions regulating neuronal resilience and viability and have the potential for neuroprotection. This article reviews the current literature describing preclinical and clinical studies that evaluate the efficacy of antipsychotic drugs, their mechanism of action and the potential of first- and second-generation antipsychotic drugs to exert effects on cellular processes that may be neuroprotective in schizophrenia. The evidence to date suggests that although all antipsychotic drugs have the ability to reduce psychotic symptoms via D(2) receptor antagonism, some antipsychotics may differ in other pharmacological properties and their capacities to mitigate and possibly reverse cellular processes that may underlie the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jeffrey A Lieberman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, 1051 Riverside Dr., Unit 4, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Calcagno E, Carli M, Baviera M, Invernizzi RW. Endogenous serotonin and serotonin2Creceptors are involved in the ability of M100907 to suppress cortical glutamate release induced by NMDA receptor blockade. J Neurochem 2009; 108:521-32. [DOI: 10.1111/j.1471-4159.2008.05789.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Boulougouris V, Glennon JC, Robbins TW. Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 2008; 33:2007-19. [PMID: 17957219 DOI: 10.1038/sj.npp.1301584] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin (5-hydroxytryptamine, or 5-HT) is strongly implicated in the ability to shift behavior in response to changing stimulus-reward contingencies. However, there is little information on the contribution of different 5-HT receptors in reversal learning. Thus, we investigated the effects of systemic administration of the 5-HT(2A) antagonist M100907 (0, 0.01, 0.03, and 0.1 mg/kg, i.p.) and the 5-HT(2C) antagonist SB 242084 (0, 0.1, 0.3, and 1.0 mg/kg, i.p.) on the performance of an instrumental two-lever spatial discrimination and serial spatial reversal learning task, where both levers were presented and only one was reinforced. The rat was required to respond on the reinforced lever under a fixed ratio 3 schedule of reinforcement. Following attainment of criterion, a series of within-session reversals was presented. Neither M100907 nor SB 242084 altered performance during spatial discrimination and retention of the previously reinforced contingencies. M100907 significantly impaired reversal learning by increasing both trials to criterion (only at the highest dose) and incorrect responses to criterion in Reversal 1, a pattern of behavior manifested as increased perseverative responding on the previously reinforced lever. In contrast, SB 242084 improved reversal learning by decreasing trials and incorrect responses to criterion in Reversal 1, with significantly fewer perseverative responses. These data support the view that 5-HT(2A) and 5-HT(2C) receptors have distinct roles in cognitive flexibility and response inhibition. The improved performance in reversal learning observed following 5-HT(2C) receptor antagonism suggests these receptors may offer the potential for therapeutic advances in a number of neuropsychiatric disorders where cognitive deficits are a feature, including obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Vasileios Boulougouris
- Department of Experimental Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
38
|
|
39
|
Prefrontal cortex lesions cause only minor effects on the hyperlocomotion induced by MK-801 and its reversal by clozapine. Int J Neuropsychopharmacol 2008; 11:519-32. [PMID: 18248688 DOI: 10.1017/s1461145708008432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-competitive NMDA receptor antagonist MK-801 elicits a behavioural syndrome in rodents characterized by hyperlocomotion and stereotypies, which is antagonized by antipsychotic drugs. NMDA receptor antagonists increase prefrontal cortex (PFC) activity in rodents, as assessed by electrophysiological and neurochemical measures. The increase in glutamate outflow induced by systemic MK-801 administration in the medial PFC (mPFC) is prevented by the local administration of clozapine (Clz). In the present study, we examine whether a PFC lesion alters the behavioural syndrome induced by MK-801 in rats and the Clz-induced antagonism of MK-801 actions. We evaluated the hyperlocomotion, stereotypies and other behavioural changes induced by MK-801 in the open field and the effect of electrolytic lesions of the mPFC, and of cortical transection on the behavioural syndrome induced by MK-801 and its reversal by Clz. MK-801 (0.1-0.2 mg/kg i.p.) reduced rearings but only the higher dose induced hyperlocomotion. At this dose, MK-801 also increased disorganized movements, head weavings, and induced ataxia signs. An electrolytic lesion of the mPFC markedly reduced the number of rearings pre-treatment but caused a very slight attenuation of MK-801-induced hyperlocomotion. Cortical transection did not significantly alter MK-801 effects. Clz administration (1 mg/kg s.c.) significantly attenuated hyperlocomotion, head weavings and ataxia signs induced by MK-801 but did not prevent the decrease in rearings. The effect of Clz was essentially unaffected by electrolytic lesions of the mPFC. These results show that MK-801-induced motor syndrome and its reversal by Clz are mostly independent on PFC integrity.
Collapse
|
40
|
Müller N, Schwarz MJ. A psychoneuroimmunological perspective to Emil Kraepelins dichotomy: schizophrenia and major depression as inflammatory CNS disorders. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 2:97-106. [PMID: 18516521 DOI: 10.1007/s00406-008-2012-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Kraepelinian classification of psychiatric disorders, in particular the dichotomy of dementia praecox and manic-depressive psychosis is under discussion since a long time. In recent years, not only new research in the fields of psychopathology and clinical outcome, but also findings of biological markers in the areas of neurophysiology, neuroendocrinology, psychoneuroimmunology, genetics, or psychopharmacology show a big overlap between both groups of disorders. This overlap of symptoms and markers of both disorders intensified the discussion and the proposals for new criteria for the classification of psychiatric disorders. By means of findings from the field of psychoneuroimmunology and inflammation it will be shown that different pathological mechanisms in depression and schizophrenia may lead to the same final common pathway of inflammation. These mechanisms include the immunological balance between type-1 and type-2 immune activation which influences the tryptophan-degradating enzyme indoleamine 2,3-dioxygenase (IDO) in the CNS in opposite ways, leading to an altered availability of tryptophan and serotonin, and a disturbance of the kynurenine metabolism with an imbalance in favor of the production of the NMDA-receptor agonist quinolinic acid in depression and of the NMDA-receptor antagonist kynurenic acid in schizophrenia. In both disorders, however, an increased production of prostaglandin E2 and increased expression of cyclo-oxygenase-2 reflect a slight inflammatory process taking place probably in different regions of the CNS. Albeit this common inflammatory pathway--inflammation is a general pathway of the body as answer to a lot of different noxae and pathogens--the Kraepelinian dichotomy is important with respect to pathological mechanisms and therapeutic approaches, not only for further research in understanding the exact pathological mechanisms but also for the development of preventive strategies in high risk individuals and in patients. Opposite pathways regarding the immune activation, the neurotoxic versus neuroprotective kynurenine metabolites and the agonistic versus antagonistic effects on the NMDA receptor and the glutamatergic neurotransmission show despite a possible therapeutic advantage of anti-inflammatory therapy in both disorders that the Kraepelinian dichotomy still has a significant value from a biologic-psychiatric point of view.
Collapse
Affiliation(s)
- Norbert Müller
- Hospital for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität, Nubbaumstr. 7, 80336, Munich, Germany.
| | | |
Collapse
|
41
|
Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 2008; 32:1014-23. [PMID: 18471877 DOI: 10.1016/j.neubiorev.2008.03.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/18/2008] [Accepted: 03/28/2008] [Indexed: 01/17/2023]
Abstract
The research of the glutamatergic system in schizophrenia has advanced with the use of non-competitive antagonists of glutamate NMDA receptors (phencyclidine, ketamine, and dizocilpine), which change both human and animal behaviour and induce schizophrenia-like manifestations. Models based on both acute and chronic administration of these substances in humans and rats show phenomenological validity and are suitable for searching for new substances with antipsychotic effects. Nevertheless, pathophysiology of schizophrenia remains unexplained. In the light of the neurodevelopmental model of schizophrenia based on early administration of NMDA receptor antagonists it seems that increased cellular destruction by apoptosis or changes in function of glutamatergic NMDA receptors in the early development of central nervous system are decisive for subsequent development of psychosis, which often does not manifest itself until adulthood. Chronic administration of antagonists initializes a number of adaptation mechanisms, which correlate with findings obtained in patients with schizophrenia; therefore, this model is also suitable for research into pathophysiology of this disease.
Collapse
|
42
|
Sano K, Mishima K, Koushi E, Orito K, Egashira N, Irie K, Takasaki K, Katsurabayashi S, Iwasaki K, Uchida N, Egawa T, Kitamura Y, Nishimura R, Fujiwara M. Delta 9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience 2007; 151:320-8. [PMID: 18083311 DOI: 10.1016/j.neuroscience.2007.10.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/26/2007] [Accepted: 11/01/2007] [Indexed: 11/30/2022]
Abstract
Delta(9)-tetrahydrocannabinol (THC) has been reported to induce catalepsy-like immobilization, but the mechanism underlying this effect remains unclear. In the present study, in order to fully understand the neural circuits involved, we determined the brain sites involved in the immobilization effect in rats. THC dose-dependently induced catalepsy-like immobilization. THC-induced catalepsy-like immobilization is mechanistically different from that induced by haloperidol (HPD), because unlike HPD-induced catalepsy, animals with THC-induced catalepsy became normal again following sound and air-puff stimuli. THC-induced catalepsy was reversed by SR141716, a selective cannabinoid CB(1) receptor antagonist. Moreover, THC-induced catalepsy was abolished by lesions in the nucleus accumbens (NAc) and central amygdala (ACE) regions. On the other hand, HPD-induced catalepsy was suppressed by lesions in the caudate putamen (CP), substantia nigra (SN), globus pallidus (GP), ACE and lateral hypothalamus (LH) regions. Bilateral microinjection of THC into the NAc region induced catalepsy-like immobilization. This THC-induced catalepsy was inhibited by serotonergic drugs such as 5-hydroxy-L-tryptophan (5-HTP), a 5-HT precursor, and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a 5-HT receptor agonist, as well as by anti-glutamatergic drugs such as MK-801 and amantadine, an N-methyl-d-aspartate (NMDA) receptor antagonist. THC significantly decreased 5-HT and glutamate release in the NAc, as shown by in vivo microdialysis. SR141716 reversed and MK-801 inhibited this decrease in 5-HT and glutamate release. These findings suggest that the THC-induced catalepsy is mechanistically different from HPD-induced catalepsy and that the catalepsy-like immobilization induced by THC is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.
Collapse
Affiliation(s)
- K Sano
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma 8-19-1, Fukuoka City, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12:988-1000. [PMID: 17457312 DOI: 10.1038/sj.mp.4002006] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beside the well-known deficiency in serotonergic neurotransmission as pathophysiological correlate of major depression (MD), recent evidence points to a pivotal role of increased glutamate receptor activation as well. However, cause and interaction of these neurotransmitter alterations are not understood. In this review, we present a hypothesis integrating current concepts of neurotransmission and hypothalamus-pituitary-adrenal (HPA) axis dysregulation with findings on immunological alterations and alterations in brain morphology in MD. An immune activation including increased production of proinflammatory cytokines has repeatedly been described in MD. Proinflammatory cytokines such as interleukin-2, interferon-gamma, or tumor necrosis factor-alpha activate the tryptophan- and serotonin-degrading enzyme indoleamine 2,3-dioxygenase (IDO). Depressive states during inflammatory somatic disorders are also associated with increased proinflammatory cytokines and increased consumption of tryptophan via activation of IDO. An enhanced consumption of serotonin and its precursor tryptophan through IDO activation could well explain the reduced availability of serotonergic neurotransmission in MD. An increased activation of IDO and its subsequent enzyme kynurenine monooxygenase by proinflammatory cytokines, moreover, leads to an enhanced production of quinolinic acid, a strong agonist of the glutamatergic N-methyl-D-aspartate receptor. In inflammatory states of the central nervous system, IDO is mainly activated in microglial cells, which preferentially metabolize tryptophan to the NMDA receptor agonist quinolinic acid, whereas astrocytes - counteracting this metabolism due to the lack of an enzyme of this metabolism - have been observed to be reduced in MD. Therefore the type 1/type 2 immune response imbalance, associated with an astrocyte/microglia imbalance, leads to serotonergic deficiency and glutamatergic overproduction. Astrocytes are further strongly involved in re-uptake and metabolic conversion of glutamate. The reduced number of astrocytes could contribute to both, a diminished counterregulation of IDO activity in microglia and an altered glutamatergic neurotransmission. Further search for antidepressant agents should take into account anti-inflammatory drugs, for example, cyclooxygenase-2 inhibitors, might exert antidepressant effects by acting on serotonergic deficiency, glutamatergic hyperfunction and antagonizing neurotoxic effects of quinolinic acid.
Collapse
Affiliation(s)
- N Müller
- Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany.
| | | |
Collapse
|
44
|
Müller N, Schwarz M. Immunologische Aspekte bei depressiven Störungen. DER NERVENARZT 2007; 78:1261-73. [DOI: 10.1007/s00115-007-2311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
López-Gil X, Babot Z, Amargós-Bosch M, Suñol C, Artigas F, Adell A. Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 2007; 32:2087-97. [PMID: 17356574 DOI: 10.1038/sj.npp.1301356] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The administration of noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine and ketamine has been shown to increase the extracellular concentration of glutamate and serotonin (5-HT) in the medial prefrontal cortex (mPFC). In the present work, we used in vivo microdialysis to examine the effects of the more potent noncompetitive NMDA receptor antagonist, MK-801, on the efflux of glutamate and 5-HT in the mPFC, and whether the MK-801-induced changes in the cortical efflux of both transmitters could be blocked by clozapine and haloperidol given systemically or intra-mPFC. The systemic, but not the local administration of MK-801, induced an increased efflux of 5-HT and glutamate, which suggests that the NMDA receptors responsible for these effects are located outside the mPFC, possibly in GABAergic neurons that tonically inhibit glutamatergic inputs to the mPFC. The MK-801-induced increases of extracellular glutamate and 5-HT were dependent on nerve impulse and the activation of mPFC AMPA/kainate receptors as they were blocked by tetrodotoxin and NBQX, respectively. Clozapine and haloperidol blocked the MK-801-induced increase in glutamate, whereas only clozapine was able to block the increased efflux of 5-HT. The local effects of clozapine and haloperidol paralleled those observed after systemic administration, which emphasizes the relevance of the mPFC as a site of action of these antipsychotic drugs in offsetting the neurochemical effects of MK-801. The ability of clozapine to block excessive cortical 5-HT efflux elicited by MK-801 might be related to the superior efficacy of this drug in treating negative/cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Xavier López-Gil
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Large CH. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 2007; 21:283-301. [PMID: 17591656 DOI: 10.1177/0269881107077712] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine and phencyclidine, induce perceptual abnormalities, psychosis-like symptoms, and mood changes in healthy humans and patients with schizophrenia. The similarity between NMDA receptor antagonist-induced psychosis and schizophrenia has led to the widespread use of the drugs to provide models to aid the development of novel treatments for the disorder. This review investigates the predictive validity of NMDA receptor antagonist models based on a range of novel treatments that have now reached clinical trials. Furthermore, it considers the extent to which the different hypotheses that have been proposed to account for the psychotomimetic effects of NMDA receptor antagonist have been validated by the results of these trials. Finally, the review discusses some of the caveats associated with use of the models and some suggestions as to how a greater use of translational markers might ensure progress in understanding the relationship between the models and schizophrenia.
Collapse
Affiliation(s)
- Charles H Large
- Psychiatry CEDD, GlaxoSmithKline, Via Fleming 4, 37135 Verona, Italy.
| |
Collapse
|
47
|
Poleszak E. Modulation of antidepressant-like activity of magnesium by serotonergic system. J Neural Transm (Vienna) 2007; 114:1129-34. [PMID: 17447000 DOI: 10.1007/s00702-007-0714-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Accepted: 03/04/2007] [Indexed: 12/15/2022]
Abstract
The influence of magnesium on the action of antidepressants drugs with different pharmacological profiles citalopram, reboxetine and tianeptine, was investigated in the forced swim test (FST) in mice. Magnesium (10 mg Mg/kg) given with reboxetine (2.5 mg/kg) did not change the behavior of animals in the FST. A synergistic effect was seen when magnesium (10 mg Mg/kg) was given jointly with citalopram (15 mg/kg) or tianeptine (20 mg/kg) in the FST, without accompanying changes in locomotor activity. Moreover, the antidepressant-like effect of magnesium (30 mg Mg/kg) was significantly reduced by pretreatment of mice with an inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA, 200 mg/kg). Thus, the antidepressant-like action of magnesium in the FST seems to involve an interaction with serotonergic system.
Collapse
Affiliation(s)
- E Poleszak
- Department of Pharmacology and Pharmacodynamics, Skubiszewski Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
48
|
Bubeníková-Valesová V, Votava M, Pálenícek T, Horácek J. The opposite effect of a low and a high dose of serotonin-1A agonist on behavior induced by MK-801. Neuropharmacology 2007; 52:1071-8. [PMID: 17196227 DOI: 10.1016/j.neuropharm.2006.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 11/09/2006] [Accepted: 11/12/2006] [Indexed: 11/28/2022]
Abstract
The purpose of the present study was to investigate the opposite effect of the pre- and postsynaptic serotonin-1A (5-HT(1A)) receptors on the psychotic-like behavior induced by a non-competitive antagonist of the NMDA receptor, dizocilpine (MK-801). Male Wistar rats received two doses (0.025mg/kg and 1mg/kg) of 5-HT(1A) receptor agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin) and/or MK-801 in two different doses, 0.1mg/kg or 0.3mg/kg. We measured sensorimotor gating by testing prepulse inhibition of acoustic startle response (PPI) and locomotor activity of rats. We found an opposite effect of the low and high 5-HT(1A) receptor agonist doses on MK-801 induced deficit in PPI and hyperlocomotion in habituated rats. The low dose of 8-OH-DPAT, which preferentially acts on presynaptic 5-HT(1A) receptors, restored the deficit in PPI and hyperlocomotion in MK-801 (0.1mg/kg)-treated habituated rats. However, the high dose of 8-OH-DPAT, which activates both pre- and postsynaptic 5-HT(1A) receptors, decreased PPI and increased locomotor activity after administration of the low dose of MK-801. Administration of 8-OH-DPAT itself dose-dependently decreased PPI. However, only the high dose of 8-OH-DPAT increased spontaneous locomotor activity of rats. Our results indicate that there is an interaction between the NMDA and 5-HT(1A) receptors. In addition, these findings could indicate that activation of the 5-HT(1A) autoreceptor could be effective as a treatment in schizophrenia, but full potent agonism of the receptor could worsen the psychotic symptoms.
Collapse
|
49
|
Amargós-Bosch M, Adell A, Artigas F. Antipsychotic drugs reverse the AMPA receptor-stimulated release of 5-HT in the medial prefrontal cortex. J Neurochem 2007; 102:550-61. [PMID: 17394545 DOI: 10.1111/j.1471-4159.2007.04532.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. PFC neuronal activity is modulated by monoaminergic receptors for which antipsychotic drugs display moderate-high affinity, such as 5-HT(2A) and alpha(1)-adrenoceptors. Conversely, PFC pyramidal neurons project to and modulate the activity of raphe serotonergic neurons and serotonin (5-HT) release. Under the working hypothesis that atypical antipsychotic drugs may partly exert their action in PFC, we assessed their action on the in vivo 5-HT release evoked by increasing glutamatergic transmission in rat medial PFC (mPFC). This was achieved by applying S-AMPA in mPFC (reverse dialysis) or by disinhibiting thalamic excitatory afferents to mPFC with bicuculline. The application of haloperidol, chlorpromazine, clozapine and olanzapine in mPFC by reverse dialysis (but not reboxetine or diazepam) reversed the S-AMPA-evoked local 5-HT release. Likewise, the local (in mPFC) or systemic administration of these antipsychotic drugs reversed the increased prefrontal 5-HT release produced by thalamic disinhibition. These effects were shared by the 5-HT(2A) receptor antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin. However, raclopride (DA D2 antagonist) had very modest effects. These results suggest that, besides their action in limbic striatum, antipsychotic drugs may attenuate glutamatergic transmission in PFC, possibly by interacting with 5-HT(2A) and/or alpha(1)-adrenoceptors.
Collapse
Affiliation(s)
- Mercè Amargós-Bosch
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona CSIC, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|
50
|
Arif M, Chikuma T, Ahmed MM, Yoshida S, Kato T. Suppressive effect of clozapine but not haloperidol on the increases of neuropeptide-degrading enzymes and glial cells in MK-801-treated rat brain regions. Neurosci Res 2006; 57:248-58. [PMID: 17141345 DOI: 10.1016/j.neures.2006.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/24/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces neurotoxicity in adult rodent brain, and causes schizophrenia-like psychosis and cognitive dysfunction. Since neuropeptides and neuropeptide-degrading enzymes play important roles in cognitive function, we examined whether or not MK-801-induced schizophrenia-like psychosis is co-related with the changes of these enzymes in rat brain regions. In the present study, we investigated the effect of systemic treatment with MK-801 (0.5mg/kg) on neuropeptide-degrading enzymes, prolyl oligopeptidase (POP) and thimet oligopeptidase (EP 24.15), and glial marker proteins GFAP and CD11b in rat brain regions. The levels of POP and EP 24.15 activities increased significantly three days after treatment with MK-801 in the posterior cingulate/retrosplenial cortices (PC/RSC). Since atypical neuroleptic clozapine but not typical neuroleptic haloperidol prevents the MK-801-induced schizophrenia-like symptoms, we further examined the pretreated effects of the neuroleptics. Clozapine, but not haloperidol, significantly attenuated MK-801-induced changes in the levels of the neuropeptide-degrading enzymes. Immunohistochemical studies on GFAP and CD11b showed the increase in the PC/RSC of MK-801-treated rat brain and the pretreatment with clozapine suppressed these changes. Double immunostain experiments of EP 24.15 and GFAP antibodies demonstrated some co-localization of the neuropeptidase with astrocytes. The present findings suggest that change of neuropeptidases in the brain is in part correlated with changes of glial cells, and may play an important role in the control of schizophrenia-like psychotic disorders.
Collapse
Affiliation(s)
- Mohammad Arif
- Laboratory of Natural Information Science/Molecular Recognition, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Yokohama, Japan
| | | | | | | | | |
Collapse
|