1
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Shilenok I, Kobzeva K, Deykin A, Pokrovsky V, Patrakhanov E, Bushueva O. Obesity and Environmental Risk Factors Significantly Modify the Association between Ischemic Stroke and the Hero Chaperone C19orf53. Life (Basel) 2024; 14:1158. [PMID: 39337941 PMCID: PMC11433390 DOI: 10.3390/life14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The unique chaperone-like properties of C19orf53, discovered in 2020 as a "hero" protein, make it an intriguing subject for research in relation to ischemic stroke (IS). Our pilot study aimed to investigate whether C19orf53 SNPs are associated with IS. DNA samples from 2138 Russian subjects (947 IS and 1308 controls) were genotyped for 7 C19orf53 SNPs using probe-based PCR. Dominant (D), recessive (R), and log-additive (A) regression models in relation to the effect alleles (EA) were used to interpret associations. An increased risk of IS was associated with rs10104 (EA G; Pbonf(R) = 0.0009; Pbonf(A) = 0.0004), rs11666524 (EA A; Pbonf(R) = 0.003; Pbonf(A) = 0.02), rs346158 (EA C; Pbonf(R) = 0.006; Pbonf(A) = 0.045), and rs2277947 (EA A; Pbonf(R) = 0.002; Pbonf(A) = 0.01) in patients with obesity; with rs11666524 (EA A; Pbonf(R) = 0.02), rs346157 (EA G; Pbonf(R) = 0.036), rs346158 (EA C; Pbonf(R) = 0.005), and rs2277947 (EA A; Pbonf(R) = 0.02) in patients with low fruit and vegetable intake; and with rs10104 (EA G; Pbonf(R) = 0.03) and rs11666524 (EA A; Pbonf(R) = 0.048) in patients with low physical activity. In conclusion, our pilot study provides comprehensive genetic and bioinformatic evidence of the involvement of C19orf53 in IS risk.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladimir Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
3
|
Miao Z, Li C, Pang S, Du C, Wei N, Zhang Y. A ratiometric fluorescent probe based on a novel fluorophore with high selectivity for imaging cysteine in living cells. LUMINESCENCE 2024; 39:e4806. [PMID: 38881430 DOI: 10.1002/bio.4806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
As a biothiol, cysteine (Cys) is essential to both physiological and pathological processes and has been associated with many diseases, including neurological disorders, rheumatoid arthritis, and renal dysfunction. Therefore, the development of a high-performance probe for detecting Cys levels can help prevent and diagnose disease. In this study, a ratiometric fluorescent probe based on a novel fluorophore was developed for detecting Cys, and it showed high specificity and a rapid response time toward Cys. This probe demonstrates excellent biocompatibility and has been utilized effectively for the imaging of Cys in living cells.
Collapse
Affiliation(s)
- Zhuo Miao
- Departments of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Li
- Departments of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Shude Pang
- Departments of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Chenxi Du
- Departments of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Ningning Wei
- Departments of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Yanru Zhang
- Departments of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
4
|
Kaur G, Rani R, Raina J, Singh I. Recent Advancements and Future Prospects in NBD-Based Fluorescent Chemosensors: Design Strategy, Sensing Mechanism, and Biological Applications. Crit Rev Anal Chem 2024:1-41. [PMID: 38593050 DOI: 10.1080/10408347.2024.2337869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years, the field of Supramolecular Chemistry has witnessed tremendous progress owing to the development of versatile optical sensors for the detection of harmful biological analytes. Nitrobenzoxadiazole (NBD) is one such scaffold that has been exploited as fluorescent probes for selective recognition of harmful analytes and their optical imaging in various cell lines including HeLa, PC3, A549, SMMC-7721, MDA-MB-231, HepG2, MFC-7, etc. The NBD-derived molecular probes are majorly synthesized from the chloro derivative of NBD via nucleophilic aromatic substitution. This general NBD moiety ligation method to nucleophiles has been leveraged to develop various derivatives for sensing analytes. NBD-derived probes are extensively used as optical sensors because of remarkable properties like excellent stability, large Stoke's shift, high efficiency and stability, visible excitation, easy use, low cost, and high quantum yield. This article reviewed NBD-based probes for the years 2017-2023 according to the sensing of analyte(s), including cations, anions, thiols, and small molecules like hydrogen sulfide. The sensing mechanism, designing of the probe, plausible binding mechanism, and biological application of chemosensors are summarized. The real-time application of optical sensors has been discussed by various methods, such as paper strips, molecular logic gates, smartphone detection, development of test kits, etc. This article will update the researchers with the in vivo and in vitro biological applicability of NBD-based molecular probes and challenges the research fraternity to design, propose, and develop better chemosensors in the future possessing commercial utility.
Collapse
Affiliation(s)
- Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Richa Rani
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
5
|
Jaiswal V, Lee MJ, Chun JL, Park M, Lee HJ. 1-Deoxynojirimycin containing Morus alba leaf-based food modulates the gut microbiome and expression of genes related to obesity. BMC Vet Res 2024; 20:133. [PMID: 38570815 PMCID: PMC10988916 DOI: 10.1186/s12917-024-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Mi-Jin Lee
- Department of Companion Animal Industry, College of Health Sciences, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, Rural Development Administration, National Institute of Animal Science, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
6
|
Engin AB, Engin A. Tryptophan Metabolism in Obesity: The Indoleamine 2,3-Dioxygenase-1 Activity and Therapeutic Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:629-655. [PMID: 39287867 DOI: 10.1007/978-3-031-63657-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-β in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
7
|
Gillies NA, Milan AM, Cameron-Smith D, Mumme KD, Conlon CA, von Hurst PR, Haskell-Ramsay CF, Jones B, Roy NC, Coad J, Wall CR, Beck KL. Vitamin B and One-Carbon Metabolite Profiles Show Divergent Associations with Cardiometabolic Risk Markers but not Cognitive Function in Older New Zealand Adults: A Secondary Analysis of the REACH Study. J Nutr 2023; 153:3529-3542. [PMID: 37863266 DOI: 10.1016/j.tjnut.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Vitamin B inadequacies and elevated homocysteine status have been associated with impaired cognitive and cardiometabolic health with aging. There is, however, a scarcity of research investigating integrated profiles of one-carbon (1C) metabolites in this context, including metabolites of interconnected folate, methionine, choline oxidation, and transsulfuration pathways. OBJECTIVES The study aimed to examine associations between vitamins B and 1C metabolites with cardiometabolic health and cognitive function in healthy older adults, including the interactive effects of Apolipoprotein E-ε4 status. METHODS Three hundred and thirteen healthy participants (65-74 y, 65% female) were analyzed. Vitamins B were estimated according to dietary intake (4-d food records) and biochemical status (serum folate and vitamin B12). Fasting plasma 1C metabolites were quantified by liquid chromatography with tandem mass spectrometry. Measures of cardiometabolic health included biochemical (lipid panel, blood glucose) and anthropometric markers. Cognitive function was assessed by the Computerized Mental Performance Assessment System (COMPASS) and Montreal Cognitive Assessment (MoCA). Associations were analyzed using multivariate linear (COMPASS, cardiometabolic health) and Poisson (MoCA) regression modeling. RESULTS Over 90% of participants met dietary recommendations for riboflavin and vitamins B6 and B12, but only 78% of males and 67% of females achieved adequate folate intakes. Higher serum folate and plasma betaine and glycine concentrations were associated with favorable cardiometabolic markers, whereas higher plasma choline and homocysteine concentrations were associated with greater cardiometabolic risk based on body mass index and serum lipids concentration values (P< 0.05). Vitamins B and homocysteine were not associated with cognitive performance in this cohort, though higher glycine concentrations were associated with better global cognitive performance (P = 0.017), episodic memory (P = 0.016), and spatial memory (P = 0.027) scores. Apolipoprotein E-ε4 status did not modify the relationship between vitamins B or 1C metabolites with cognitive function in linear regression analyses. CONCLUSIONS Vitamin B and 1C metabolite profiles showed divergent associations with cardiometabolic risk markers and limited associations with cognitive performance in this cohort of healthy older adults.
Collapse
Affiliation(s)
- Nicola A Gillies
- The Liggins Institute, The University of Auckland, New Zealand; The Riddet Institute, New Zealand
| | - Amber M Milan
- The Liggins Institute, The University of Auckland, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand; AgResearch Ltd, Grasslands Research Centre, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, New Zealand; The Riddet Institute, New Zealand; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Australia
| | - Karen D Mumme
- School of Sport Exercise and Nutrition, Massey University, New Zealand
| | - Cathryn A Conlon
- School of Sport Exercise and Nutrition, Massey University, New Zealand
| | | | | | - Beatrix Jones
- Department of Statistics, University of Auckland, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand
| | - Nicole C Roy
- The Riddet Institute, New Zealand; The High-Value Nutrition National Science Challenge, New Zealand; Department of Human Nutrition, University of Otago, New Zealand
| | - Jane Coad
- College of Sciences, Massey University, New Zealand
| | - Clare R Wall
- Discipline of Nutrition and Dietetics, University of Auckland, Auckland, New Zealand
| | - Kathryn L Beck
- School of Sport Exercise and Nutrition, Massey University, New Zealand.
| |
Collapse
|
8
|
Vinknes KJ, Olsen T, Zaré HK, Bastani NE, Stolt E, Dahl AF, Cox RD, Refsum H, Retterstøl K, Åsberg A, Elshorbagy A. Cysteine-lowering treatment with mesna against obesity: Proof of concept and results from a human phase I, dose-finding study. Diabetes Obes Metab 2023; 25:3161-3170. [PMID: 37435697 PMCID: PMC11497255 DOI: 10.1111/dom.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
AIM To investigate whether mesna-sodium-2-mercaptoethane sulfonate) can reduce diet-induced fat gain in mice, and to assess the safety of single ascending mesna doses in humans to find the dose associated with lowering of plasma tCys by at least 30%. METHODS C3H/HeH mice were shifted to a high-fat diet ± mesna in drinking water; body composition was measured at weeks 0, 2 and 4. In an open, phase I, single ascending dose study, oral mesna (400, 800, 1200, 1600 mg) was administered to 17 men with overweight or obesity. Mesna and tCys concentrations were measured repeatedly for a duration of 48 hours postdosing in plasma, as well as in 24-hour urine. RESULTS Compared with controls, mesna-treated mice had lower tCys and lower estimated mean fat mass gain from baseline (week 2: 4.54 ± 0.40 vs. 6.52 ± 0.36 g; week 4: 6.95 ± 0.35 vs. 8.19 ± 0.34 g; Poverall = .002), but similar lean mass gain. In men with overweight, mesna doses of 400-1600 mg showed dose linearity and were well tolerated. Mesna doses of 800 mg or higher decreased plasma tCys by 30% or more at nadir (4h post-dosing). With increasing mesna dose, tCys AUC0-12h decreased (Ptrend < .001), and urine tCys excretion increased (Ptrend = .004). CONCLUSIONS Mesna reduces diet-induced fat gain in mice. In men with overweight, single oral doses of mesna (800-1600 mg) were well tolerated and lowered plasma tCys efficiently. The effect of sustained tCys-lowering by repeated mesna administration on weight loss in humans deserves investigation.
Collapse
Affiliation(s)
- Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Nasser E. Bastani
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Anja F. Dahl
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Roger D. Cox
- MRC Harwell InstituteMammalian Genetics UnitHarwell CampusOxfordUK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive MedicineOslo University HospitalOsloNorway
| | - Anders Åsberg
- Department of Transplantation MedicineOslo University HospitalOsloNorway
- Department of PharmacyUniversity of OsloOsloNorway
| | - Amany Elshorbagy
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Physiology, Faculty of MedicineUniversity of AlexandriaAlexandriaEgypt
| |
Collapse
|
9
|
Tore EC, Eussen SJPM, Bastani NE, Dagnelie PC, Elshorbagy AK, Grootswagers P, Kožich V, Olsen T, Refsum H, Retterstøl K, Stehouwer CDA, Stolt ETK, Vinknes KJ, van Greevenbroek MMJ. The Associations of Habitual Intake of Sulfur Amino Acids, Proteins and Diet Quality with Plasma Sulfur Amino Acid Concentrations: The Maastricht Study. J Nutr 2023; 153:2027-2040. [PMID: 37164267 DOI: 10.1016/j.tjnut.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Plasma sulfur amino acids (SAAs), i.e., methionine, total cysteine (tCys), total homocysteine (tHcy), cystathionine, total glutathione (tGSH), and taurine, are potential risk factors for obesity and cardiometabolic disorders. However, except for plasma tHcy, little is known about how dietary intake modifies plasma SAA concentrations. OBJECTIVE To investigate whether the intake of SAAs and proteins or diet quality is associated with plasma SAAs. METHODS Data from a cross-sectional subset of The Maastricht Study (n = 1145, 50.5% men, 61 interquartile range: [55, 66] y, 22.5% with prediabetes and 34.3% with type 2 diabetes) were investigated. Dietary intake was assessed using a validated food frequency questionnaire. The intake of SAAs (total, methionine, and cysteine) and proteins (total, animal, and plant) was estimated from the Dutch and Danish food composition tables. Diet quality was assessed using the Dutch Healthy Diet Index, the Mediterranean Diet Score, and the Dietary Approaches to Stop Hypertension score. Fasting plasma SAAs were measured by liquid chromatography (LC) tandem mass spectrometry (MS) (LC/MS-MS). Associations were investigated with multiple linear regressions with tertiles of dietary intake measures (main exposures) and z-standardized plasma SAAs (outcomes). RESULTS Intake of total SAAs and total proteins was positively associated with plasma tCys and cystathionine. Associations were stronger in women and in those with normal body weight. Higher intake of cysteine and plant proteins was associated with lower plasma tHcy and higher cystathionine. Higher methionine intake was associated with lower plasma tGSH, whereas cysteine intake was positively associated with tGSH. Higher intake of methionine and animal proteins was associated with higher plasma taurine. Better diet quality was consistently related to lower plasma tHcy concentrations, but it was not associated with the other SAAs. CONCLUSION Targeted dietary modifications might be effective in modifying plasma concentrations of tCys, tHcy, and cystathionine, which have been associated with obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Elena C Tore
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pieter C Dagnelie
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Amany K Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, and General University Hospital in Prague, Czech Republic
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Coen DA Stehouwer
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Emma T K Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
10
|
Kalecký K, Bottiglieri T. Targeted metabolomic analysis in Parkinson's disease brain frontal cortex and putamen with relation to cognitive impairment. NPJ Parkinsons Dis 2023; 9:84. [PMID: 37270646 PMCID: PMC10239505 DOI: 10.1038/s41531-023-00531-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
We performed liquid chromatography tandem mass spectrometry analysis with the targeted metabolomic kit Biocrates MxP Quant 500, in human brain cortex (Brodmann area 9) and putamen, to reveal metabolic changes characteristic of Parkinson's disease (PD) and PD-related cognitive decline. This case-control study involved 101 subjects (33 PD without dementia, 32 PD with dementia (cortex only), 36 controls). We found changes associated with PD, cognitive status, levodopa levels, and disease progression. The affected pathways include neurotransmitters, bile acids, homocysteine metabolism, amino acids, TCA cycle, polyamines, β-alanine metabolism, fatty acids, acylcarnitines, ceramides, phosphatidylcholines, and several microbiome-derived metabolites. Previously reported levodopa-related homocysteine accumulation in cortex still best explains the dementia status in PD, which can be modified by dietary supplementation. Further investigation is needed to reveal the exact mechanisms behind this pathological change.
Collapse
Affiliation(s)
- Karel Kalecký
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76712, USA.
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, 75204, USA.
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| |
Collapse
|
11
|
Associations between plasma sulfur amino acids and specific fat depots in two independent cohorts: CODAM and The Maastricht Study. Eur J Nutr 2023; 62:891-904. [PMID: 36322288 PMCID: PMC9941263 DOI: 10.1007/s00394-022-03041-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/20/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE Sulfur amino acids (SAAs) have been associated with obesity and obesity-related metabolic diseases. We investigated whether plasma SAAs (methionine, total cysteine (tCys), total homocysteine, cystathionine and total glutathione) are related to specific fat depots. METHODS We examined cross-sectional subsets from the CODAM cohort (n = 470, 61.3% men, median [IQR]: 67 [61, 71] years) and The Maastricht Study (DMS; n = 371, 53.4% men, 63 [55, 68] years), enriched with (pre)diabetic individuals. SAAs were measured in fasting EDTA plasma with LC-MS/MS. Outcomes comprised BMI, skinfolds, waist circumference (WC), dual-energy X-ray absorptiometry (DXA, DMS), body composition, abdominal subcutaneous and visceral adipose tissues (CODAM: ultrasound, DMS: MRI) and liver fat (estimated, in CODAM, or MRI-derived, in DMS, liver fat percentage and fatty liver disease). Associations were examined with linear or logistic regressions adjusted for relevant confounders with z-standardized primary exposures and outcomes. RESULTS Methionine was associated with all measures of liver fat, e.g., fatty liver disease [CODAM: OR = 1.49 (95% CI 1.19, 1.88); DMS: OR = 1.51 (1.09, 2.14)], but not with other fat depots. tCys was associated with overall obesity, e.g., BMI [CODAM: β = 0.19 (0.09, 0.28); DMS: β = 0.24 (0.14, 0.34)]; peripheral adiposity, e.g., biceps and triceps skinfolds [CODAM: β = 0.15 (0.08, 0.23); DMS: β = 0.20 (0.12, 0.29)]; and central adiposity, e.g., WC [CODAM: β = 0.16 (0.08, 0.25); DMS: β = 0.17 (0.08, 0.27)]. Associations of tCys with VAT and liver fat were inconsistent. Other SAAs were not associated with body fat. CONCLUSION Plasma concentrations of methionine and tCys showed distinct associations with different fat depots, with similar strengths in the two cohorts.
Collapse
|
12
|
Nichenametla SN, Mattocks DAL, Cooke D, Midya V, Malloy VL, Mansilla W, Øvrebø B, Turner C, Bastani N, Sokolová J, Pavlíková M, Richie JP, Shoveller A, Refsum H, Olsen T, Vinknes KJ, Kožich V, Ables GP. Cysteine restriction-specific effects of sulfur amino acid restriction on lipid metabolism. Aging Cell 2022; 21:e13739. [PMID: 36403077 PMCID: PMC9741510 DOI: 10.1111/acel.13739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.
Collapse
Affiliation(s)
- Sailendra N. Nichenametla
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Dwight A. L. Mattocks
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Diana Cooke
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Vishal Midya
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Virginia L. Malloy
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Wilfredo Mansilla
- Department of Animal BioscienceUniversity of GuelphGuelphOntarioCanada
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Cheryl Turner
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Nasser E. Bastani
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in PragueCharles University‐First Faculty of MedicinePragueCzech Republic
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University ‐ Faculty of Mathematics and PhysicsPragueCzech Republic
| | - John P. Richie
- Departments of Public Health Sciences and PharmacologyPenn State University College of MedicineHersheyPennsylvaniaUSA
| | - Anna K. Shoveller
- Department of Animal BioscienceUniversity of GuelphGuelphOntarioCanada
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway,Department of PharmacologyUniversity of OxfordOxfordUK
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in PragueCharles University‐First Faculty of MedicinePragueCzech Republic
| | - Gene P. Ables
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| |
Collapse
|
13
|
Fu L, Wang Y, Hu YQ. Causal effects of B vitamins and homocysteine on obesity and musculoskeletal diseases: A Mendelian randomization study. Front Nutr 2022; 9:1048122. [PMID: 36505230 PMCID: PMC9731309 DOI: 10.3389/fnut.2022.1048122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Although homocysteine (Hcy) increases the risk of cardiovascular diseases, its effects on obesity and musculoskeletal diseases remain unclear. We performed a Mendelian randomization study to estimate the associations between Hcy and B vitamin concentrations and their effects on obesity and musculoskeletal-relevant diseases in the general population. Methods We selected independent single nucleotide polymorphisms of Hcy (n = 44,147), vitamin B12 (n = 45,576), vitamin B6 (n = 1864), and folate (n = 37,465) at the genome-wide significance level as instruments and applied them to the studies of summary-level data for fat and musculoskeletal phenotypes from the UK Biobank study (n = 331,117), the FinnGen consortium (n = 218,792), and other consortia. Two-sample Mendelian randomization (MR) approaches were utilized in this study. The inverse variance weighting (IVW) was adopted as the main analysis. MR-PRESSO, MR-Egger, the weighted median estimate, bidirectional MR, and multivariable MR were performed as sensitivity methods. Results Higher Hcy concentrations were robustly associated with an increased risk of knee osteoarthritis [odds ratio (OR) 1.119; 95% confidence interval (CI) 1.032-1.214; P = 0.007], hospital-diagnosed osteoarthritis (OR 1.178; 95% CI 1.012-1.37; P = 0.034), osteoporosis with pathological fracture (OR 1.597; 95% CI 1.036-2.46; P = 0.034), and soft tissue disorder (OR 1.069; 95% CI 1.001-1.141; P = 0.045) via an inverse variance weighting method and other MR approaches. Higher vitamin B12 levels were robustly associated with decreased body fat percentage and its subtypes (all P < 0.05). Bidirectional analyses showed no reverse causation. Multivariable MR analyses and other sensitivity analyses showed directionally similar results. Conclusions There exist significant causal effects of vitamin B12 in the serum and Hcy in the blood on fat and musculoskeletal diseases, respectively. These findings may have an important insight into the pathogenesis of obesity and musculoskeletal diseases and other possible future therapies.
Collapse
Affiliation(s)
- Liwan Fu
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China,*Correspondence: Liwan Fu
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China,Yue-Qing Hu
| |
Collapse
|
14
|
Katsouda A, Valakos D, Dionellis VS, Bibli SI, Akoumianakis I, Karaliota S, Zuhra K, Fleming I, Nagahara N, Havaki S, Gorgoulis VG, Thanos D, Antoniades C, Szabo C, Papapetropoulos A. MPST sulfurtransferase maintains mitochondrial protein import and cellular bioenergetics to attenuate obesity. J Exp Med 2022; 219:e20211894. [PMID: 35616614 PMCID: PMC9143789 DOI: 10.1084/jem.20211894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022] Open
Abstract
Given the clinical, economic, and societal impact of obesity, unraveling the mechanisms of adipose tissue expansion remains of fundamental significance. We previously showed that white adipose tissue (WAT) levels of 3-mercaptopyruvate sulfurtransferase (MPST), a mitochondrial cysteine-catabolizing enzyme that yields pyruvate and sulfide species, are downregulated in obesity. Here, we report that Mpst deletion results in fat accumulation in mice fed a high-fat diet (HFD) through transcriptional and metabolic maladaptation. Mpst-deficient mice on HFD exhibit increased body weight and inguinal WAT mass, reduced metabolic rate, and impaired glucose/insulin tolerance. At the molecular level, Mpst ablation activates HIF1α, downregulates subunits of the translocase of outer/inner membrane (TIM/TOM) complex, and impairs mitochondrial protein import. MPST deficiency suppresses the TCA cycle, oxidative phosphorylation, and fatty acid oxidation, enhancing lipid accumulation. Sulfide donor administration to obese mice reverses the HFD-induced changes. These findings reveal the significance of MPST for white adipose tissue biology and metabolic health and identify a potential new therapeutic target for obesity.
Collapse
Affiliation(s)
- Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sevasti Karaliota
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute/National Institutes of Health, Frederick, MD
| | - Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research Partner Site Rhein-Main, Frankfurt am Main, Germany
| | | | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G. Gorgoulis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
The association of serum sulfur amino acids and related metabolites with incident diabetes: a prospective cohort study. Eur J Nutr 2022; 61:3161-3173. [PMID: 35415822 DOI: 10.1007/s00394-022-02872-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
AIM Plasma total cysteine (tCys) is associated with fat mass and insulin resistance, whereas taurine is inversely related to diabetes risk. We investigated the association of serum sulfur amino acids (SAAs) and related amino acids (AAs) with incident diabetes. METHODS Serum AAs were measured at baseline in 2997 subjects aged ≥ 65 years. Diabetes was recorded at baseline and after 4 years. Logistic regression evaluated the association of SAAs [methionine, total homocysteine (tHcy), cystathionine, tCys, and taurine] and related metabolites [serine, total glutathione (tGSH), glutamine, and glutamic acid] with diabetes risk. RESULTS Among 2564 subjects without diabetes at baseline, 4.6% developed diabetes. Each SD increment in serum tCys was associated with a 68% higher risk (95% CI 1.27, 2.23) of diabetes [OR for upper vs. lower quartile 2.87 (1.39, 5.91)], after full adjustments (age, sex, other AAs, adiposity, eGFR, physical activity, blood pressure, diet and medication); equivalent ORs for cystathionine were 1.33 (1.08, 1.64) and 1.68 (0.85, 3.29). Subjects who were simultaneously in the upper tertiles of both cystathionine and tCys had a fivefold risk [OR = 5.04 (1.55, 16.32)] of diabetes compared with those in the lowest tertiles. Higher serine was independently associated with a lower risk of developing diabetes [fully adjusted OR per SD = 0.68 (0.54, 0.86)]. Glutamic acid and glutamine showed positive and negative associations, respectively, with incident diabetes in age- and sex-adjusted analysis, but only the glutamic acid association was independent of other confounders [fully adjusted OR per SD = 1.95 (1.19, 3.21); for upper quartile = 7.94 (3.04, 20.75)]. tGSH was inversely related to diabetes after adjusting for age and sex, but not other confounders. No consistent associations were observed for methionine, tHcy or taurine. CONCLUSION Specific SAAs and related metabolites show strong and independent associations with incident diabetes. This suggests that perturbations in the SAA metabolic pathway may be an early marker for diabetes risk.
Collapse
|
16
|
Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun 2022; 13:1096. [PMID: 35232994 PMCID: PMC8888704 DOI: 10.1038/s41467-022-28749-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis.
Collapse
|
17
|
Pavão ML, Ferin R, Lima A, Baptista J. Cysteine and related aminothiols in cardiovascular disease, obesity and insulin resistance. Adv Clin Chem 2022; 109:75-127. [DOI: 10.1016/bs.acc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Krijt J, Sokolová J, Šilhavý J, Mlejnek P, Kubovčiak J, Liška F, Malínská H, Hüttl M, Marková I, Křížková M, Stipanuk MH, Křížek T, Ditroi T, Nagy P, Kožich V, Pravenec M. High cysteine diet reduces insulin resistance in SHR-CRP rats. Physiol Res 2021; 70:687-700. [PMID: 34505526 PMCID: PMC8820534 DOI: 10.33549/physiolres.934736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Increased plasma total cysteine (tCys) has been associated with obesity and metabolic syndrome in human and some animal studies but the underlying mechanisms remain unclear. In this study, we aimed at evaluating the effects of high cysteine diet administered to SHR-CRP transgenic rats, a model of metabolic syndrome and inflammation. SHR-CRP rats were fed either standard (3.2 g cystine/kg diet) or high cysteine diet (HCD, enriched with additional 4 g L-cysteine/kg diet). After 4 weeks, urine, plasma and tissue samples were collected and parameters of metabolic syndrome, sulfur metabolites and hepatic gene expression were evaluated. Rats on HCD exhibited similar body weights and weights of fat depots, reduced levels of serum insulin, and reduced oxidative stress in the liver. The HCD did not change concentrations of tCys in tissues and body fluids while taurine in tissues and body fluids, and urinary sulfate were significantly increased. In contrast, betaine levels were significantly reduced possibly compensating for taurine elevation. In summary, increased Cys intake did not induce obesity while it ameliorated insulin resistance in the SHR-CRP rats, possibly due to beneficial effects of accumulating taurine.
Collapse
Affiliation(s)
- J Krijt
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Praha 4, Czech Republic. and Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Praha 2, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A Facile Probe for Fluorescence Turn-on and Simultaneous Naked-Eyes Discrimination of H 2S and biothiols (Cys and GSH) and Its Application. J Fluoresc 2021; 32:175-188. [PMID: 34687397 DOI: 10.1007/s10895-021-02838-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Hydrogen sulfide and biothiol molecules such as Cys and GSH acted important roles in many physiological processes. To simultaneously detect and distinguish them was quite necessary by a suitable fluorescent probe. A novel chemosensor 4-(4-(benzo[d]thiazol-2-yl)-2-methoxyphenoxy)-7-nitrobenzo[c][1,2,5]oxadiazole (BMNO) was designed to detect H2S/Cys/GSH using the combination of nitrobenzofurazan (NBD) and benzothiazole fluorophores linked by a facile ether bond. The probe BMNO was developed for simultaneous identification of H2S, Cys and GSH. Noticeably, the color changes (from colorless to light purple, light orange and light yellow) of probe BMNO solutions for sensing H2S, Cys and GSH could be observed by naked eyes, respectively. The probe BMNO exhibited high selectivity and sensitivity for H2S, Cys and GSH showing distinct optical signal with detection limit as low as 0.15 μM, 0.03 μM and 0.14 μM, respectively. The sensing mechanism was clarified by spectrum analysis and some controlled experiments. In addition, these outstanding properties of probe BMNO enabled its practical applications in detection H2S in beer, and in cell imaging for Cys and GSH as well.
Collapse
|
20
|
Muresan AA, Rusu A, Roman G, Bala C. METABOLOMIC ANALYSIS OF NORMAL WEIGHT, HEALTHY AND UNHEALTHY OBESITY: AMINO ACID CHANGE ACROSS THE SPECTRUM OF METABOLIC WELLBEING IN WOMEN. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:427-431. [PMID: 35747872 DOI: 10.4183/aeb.2021.427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Context Obesity is a complex and heterogeneous disorder with multiple phenotypes described. Although metabolomic biomarkers of obesity have been extensively studied, biomarkers of obesity phenotypes and differences between these phenotypes and normal-weight (NW) persons have been less investigated. Objective The objective of this cross-sectional analysis was to investigate serum amino acids (AA) as markers of metabolic alterations in obesity phenotypes and NW. Design Cross-sectional. Subjects and Methods By targeted metabolomics we analyzed serum samples of 70 women using ultrahigh-performance liquid chromatography/mass spectrometry. Participants were divided into 3 groups: NW, metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). Results Five AAs were significantly different between study groups: cysteine, methionine, asparagine, glutamine, and lysine (p-value <0.05 and variable importance in the projection >1). Cysteine increased linearly with metabolic unwellness from NW to MUHO. Lysine and glutamine were significantly higher, and asparagine was significantly lower in NW and MHO than in MUHO. Conclusions By trend and group analysis we identified specific changes in serum AAs along with the progression of metabolically unwellness.
Collapse
Affiliation(s)
- A A Muresan
- "Iuliu Hatieganu" University of Medicine and Pharmacy - Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| | - A Rusu
- "Iuliu Hatieganu" University of Medicine and Pharmacy - Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| | - G Roman
- "Iuliu Hatieganu" University of Medicine and Pharmacy - Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| | - C Bala
- "Iuliu Hatieganu" University of Medicine and Pharmacy - Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino Acids 2021; 53:1623-1634. [PMID: 34519922 PMCID: PMC8521515 DOI: 10.1007/s00726-021-03071-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Plasma cysteine is associated with human obesity, but it is unknown whether this is mediated by reduced, disulfide (cystine and mixed-disulfides) or protein-bound (bCys) fractions. We investigated which cysteine fractions are associated with adiposity in vivo and if a relevant fraction influences human adipogenesis in vitro. In the current study, plasma cysteine fractions were correlated with body fat mass in 35 adults. Strong positive correlations with fat mass were observed for cystine and mixed disulfides (r ≥ 0.61, P < 0.001), but not the quantitatively major form, bCys. Primary human preadipocytes were differentiated in media containing cystine concentrations varying from 10-50 μM, a range similar to that in plasma. Increasing extracellular cystine (10-50 μM) enhanced mRNA expression of PPARG2 (to sixfold), PPARG1, PLIN1, SCD1 and CDO1 (P = 0.042- < 0.001). Adipocyte lipid accumulation and lipid-droplet size showed dose-dependent increases from lowest to highest cystine concentrations (P < 0.001), and the malonedialdehyde/total antioxidant capacity increased, suggesting increased oxidative stress. In conclusion, increased cystine concentrations, within the physiological range, are positively associated with both fat mass in healthy adults and human adipogenic differentiation in vitro. The potential role of cystine as a modifiable factor regulating human adipocyte turnover and metabolism deserves further study.
Collapse
|
22
|
de Oliveira Leite L, Costa Dias Pitangueira J, Ferreira Damascena N, Ribas de Farias Costa P. Homocysteine levels and cardiovascular risk factors in children and adolescents: systematic review and meta-analysis. Nutr Rev 2021; 79:1067-1078. [PMID: 33351941 DOI: 10.1093/nutrit/nuaa116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Studies have indicated that homocysteine levels are nontraditional markers for cardiovascular disease. The onset of atherosclerotic disease begins in childhood and adolescence; thus, prevention of its risk factors should occur early. OBJECTIVE This systematic review and meta-analysis was conducted to summarize the association between high homocysteine levels and traditional cardiovascular risk factors in children and adolescents. DATA SOURCES This systematic review and meta-analysis were developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the protocol was submitted to PROSPERO. Only observational studies in children and adolescents with homocysteine levels as an exposure variable and cardiovascular risk factors as outcome variables were included and searched in the following electronic bibliographic databases: PubMed/MEDLINE, Web of Science, Embase, Latin American and Caribbean Literature in Health Sciences, Ovid and Scopus. DATA EXTRACTION Two authors independently extracted data from eligible studies. The methodological quality of the studies was assessed using the Newcastle-Ottawa scale. DATA ANALYSIS Seven studies were included in the systematic review; they were published from 1999 to 2017, predominantly were of a cross-sectional design, and mainly evaluated adolescents. In the meta-analysis (n = 6), cross-sectional studies (n = 3) identified that high homocysteine levels were positive and weakly correlated with overweight in children and adolescents (odds ratio, 1.08; 95%CI, 1.04-1.11). CONCLUSION High homocysteine levels were weakly associated with overweight in children and adolescents in the reviewed cross-sectional studies. However, for the other traditional cardiovascular risk factors, the findings, although important, were inconclusive. Additional robust longitudinal studies are recommended to be conducted to better identify these associations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018086252.
Collapse
|
23
|
Gillies NA, Franzke B, Wessner B, Schober-Halper B, Hofmann M, Oesen S, Tosevska A, Strasser EM, Roy NC, Milan AM, Cameron-Smith D, Wagner KH. Nutritional supplementation alters associations between one-carbon metabolites and cardiometabolic risk profiles in older adults: a secondary analysis of the Vienna Active Ageing Study. Eur J Nutr 2021; 61:169-182. [PMID: 34240265 PMCID: PMC8783863 DOI: 10.1007/s00394-021-02607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022]
Abstract
Purpose Cardiovascular diseases and cognitive decline, predominant in ageing populations, share common features of dysregulated one-carbon (1C) and cardiometabolic homeostasis. However, few studies have addressed the impact of multifaceted lifestyle interventions in older adults that combine both nutritional supplementation and resistance training on the co-regulation of 1C metabolites and cardiometabolic markers. Methods 95 institutionalised older adults (83 ± 6 years, 88.4% female) were randomised to receive resistance training with or without nutritional supplementation (Fortifit), or cognitive training (control for socialisation) for 6 months. Fasting plasma 1C metabolite concentrations, analysed by liquid chromatography coupled with mass spectrometry, and cardiometabolic parameters were measured at baseline and the 3- and 6-month follow-ups. Results Regardless of the intervention group, choline was elevated after 3 months, while cysteine and methionine remained elevated after 6 months (mixed model time effects, p < 0.05). Elevated dimethylglycine and lower betaine concentrations were correlated with an unfavourable cardiometabolic profile at baseline (spearman correlations, p < 0.05). However, increasing choline and dimethylglycine concentrations were associated with improvements in lipid metabolism in those receiving supplementation (regression model interaction, p < 0.05). Conclusion Choline metabolites, including choline, betaine and dimethylglycine, were central to the co-regulation of 1C metabolism and cardiometabolic health in older adults. Metabolites that indicate upregulated betaine-dependent homocysteine remethylation were elevated in those with the greatest cardiometabolic risk at baseline, but associated with improvements in lipid parameters following resistance training with nutritional supplementation. The relevance of how 1C metabolite status might be optimised to protect against cardiometabolic dysregulation requires further attention. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02607-y.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Department of Sports Medicine, Exercise Physiology and Prevention, University of Vienna, Vienna, Austria
| | - Barbara Schober-Halper
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marlene Hofmann
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Stefan Oesen
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Anela Tosevska
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.,Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Strasser
- Institute for Physical Medicine and Rehabilitation, Kaiser Franz Josef Hospital - Social Medical Center South, Vienna, Austria
| | - Nicole C Roy
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Food, Nutrition and Health, AgResearch, Hamilton, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Food, Nutrition and Health, AgResearch, Hamilton, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. .,Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Rose P, Moore PK, Whiteman M, Kirk C, Zhu YZ. Diet and Hydrogen Sulfide Production in Mammals. Antioxid Redox Signal 2021; 34:1378-1393. [PMID: 33372834 DOI: 10.1089/ars.2020.8217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: In recent times, it has emerged that some dietary sulfur compounds can act on mammalian cell signaling systems via their propensity to release hydrogen sulfide (H2S). H2S plays important biochemical and physiological roles in the heart, gastrointestinal tract, brain, kidney, and immune systems of mammals. Reduced levels of H2S in cells and tissues correlate with a spectrum of pathophysiological conditions, including heart disease, diabetes, obesity, and altered immune function. Recent Advances: In the last decade, researchers have now begun to explore the mechanisms by which dietary-derived sulfur compounds, in addition to cysteine, can act as sources of H2S. This research has led to the identified several compounds, organic sulfides, isothiocyanates, and inorganic sulfur species including sulfate that can act as potential sources of H2S in mammalian cells and tissues. Critical Issues: We have summarised progress made in the identification of dietary factors that can impact on endogenous H2S levels in mammals. We also describe current research focused on how some sulfur molecules present in dietary plants, and associated chemical analogues, act as sources of H2S, and discuss the biological properties of these molecules as studied in a range of in vitro and in vivo systems. Future Directions: The identification of sulfur compounds in edible plants that can act as novel H2S releasing molecules is intriguing. Research in this area could inform future studies exploring the impact of diet on H2S levels in mammalian systems. Despite recent progress, additional work is needed to determine the mechanisms by which H2S is released from these molecules following ingestions of dietary plants in humans, whether the amounts of H2S produced is of physiological significance following the metabolism of these compounds in vivo, and if diet could be used to manipulated H2S levels in humans. Importantly, this will lead to a better understanding of the biological significance of H2S generated from dietary sources, and this information could be used in the development of plant breeding initiatives to increase the levels of H2S releasing sulfur compounds in crops, or inform dietary intervention strategies that could be used to alter the levels of H2S in humans.
Collapse
Affiliation(s)
- Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom.,State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Whiteman
- College of Medicine and Health, University of Exeter Medical School, Exeter, United Kingdom
| | - Charlotte Kirk
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
25
|
Stolt E, Olsen T, Elshorbagy A, Kožich V, van Greevenbroek M, Øvrebø B, Thoresen M, Refsum H, Retterstøl K, Vinknes KJ. Sulfur amino acid restriction, energy metabolism and obesity: a study protocol of an 8-week randomized controlled dietary intervention with whole foods and amino acid supplements. J Transl Med 2021; 19:153. [PMID: 33858441 PMCID: PMC8051033 DOI: 10.1186/s12967-021-02824-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Background Dietary sulfur amino acid (SAA) restriction is an established animal model for increasing lifespan and improving metabolic health. Data from human studies are limited. In the study outlined in this protocol, we will evaluate if dietary SAA restriction can reduce body weight and improve resting energy expenditure (REE) and parameters related to metabolic health. Method/design Men and women (calculated sample size = 60), aged 18–45 years, with body mass index of 27–35 kg/m2 will be included in a double-blind 8-week dietary intervention study. The participants will be randomized in a 1:1 manner to a diet with either low or high SAA. Both groups will receive an equal base diet consisting of low-SAA plant-based whole foods and an amino acid supplement free of SAA. Contrasting SAA contents will be achieved using capsules with or without methionine and cysteine (SAAhigh, total diet SAA ~ 50–60 mg/kg body weight/day; SAAlow, total diet SAA ~ 15–25 mg/kg body weight/day). The primary outcome is body weight change. Data and material collection will also include body composition (dual X-ray absorptiometry), resting energy expenditure (whole-room indirect calorimetry) and samples of blood, urine, feces and adipose tissue at baseline, at 4 weeks and at study completion. Measures will be taken to promote and monitor diet adherence. Data will be analyzed using linear mixed model regression to account for the repeated measures design and within-subject correlation. Discussion The strength of this study is the randomized double-blind design. A limitation is the restrictive nature of the diet which may lead to poor compliance. If this study reveals a beneficial effect of the SAAlow diet on body composition and metabolic health, it opens up for new strategies for prevention and treatment of overweight, obesity and its associated disorders. Trial registration ClinicalTrials.gov: NCT04701346, Registration date: January 8th, 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02824-3.
Collapse
Affiliation(s)
- Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway.
| | - Amany Elshorbagy
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway.,Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Bente Øvrebø
- Department of Sports Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway.,The Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannveien 9, 0372, Oslo, Norway
| |
Collapse
|
26
|
Hurley MM, Murlanova K, Macias LK, Sabir AI, O'Brien SC, Bhasin H, Tamashiro KL, Pletnikov MV, Moran TH. Activity-based anorexia disrupts systemic oxidative state and induces cortical mitochondrial fission in adolescent female rats. Int J Eat Disord 2021; 54:639-645. [PMID: 33368559 DOI: 10.1002/eat.23453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Patients with Anorexia Nervosa (AN) display increased levels of oxidative stress that correlates with disease severity. Unfortunately, the biological ramifications of AN-induced oxidative stress on the brain are largely unknown. Our lab uses the preclinical activity-based anorexia (ABA) paradigm to model symptoms of AN. The goal of the present study was to determine how ABA experience affects oxidative state and its consequences in adolescent female rats. METHOD We compared systemic glutathione and cysteine plasma concentrations and medial prefrontal cortex (mPFC) mitochondrial fission in ABA animals at maximum weight loss or following 10-days of weight recovery to levels in age-matched sedentary (SED) control rats. RESULTS ABA animals at maximum weight loss had significantly lower plasma levels of cysteine and glutathione compared to SED controls. Additionally, ABA animals at max weight loss have significantly more mPFC mitochondrial fission. There were no significant differences in plasma analyte levels or mitochondrial fission between weight recovered ABA animals and SED controls. DISCUSSION These data suggest that ABA experience results in oxidative stress that is remedied after weight restoration. The long-lasting ramifications of transient periods of increased oxidative stress are unknown and can lead to significant consequences on brain function and behavior.
Collapse
Affiliation(s)
- Matthew M Hurley
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kateryna Murlanova
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey K Macias
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aliasgher I Sabir
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shannon C O'Brien
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harshit Bhasin
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kellie L Tamashiro
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Sampson CM, Dimet AL, Neelakantan H, Ogunseye KO, Stevenson HL, Hommel JD, Watowich SJ. Combined nicotinamide N-methyltransferase inhibition and reduced-calorie diet normalizes body composition and enhances metabolic benefits in obese mice. Sci Rep 2021; 11:5637. [PMID: 33707534 PMCID: PMC7952898 DOI: 10.1038/s41598-021-85051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
Obesity is a large and growing global health problem with few effective therapies. The present study investigated metabolic and physiological benefits of nicotinamide N-methyltransferase inhibitor (NNMTi) treatment combined with a lean diet substitution in diet-induced obese mice. NNMTi treatment combined with lean diet substitution accelerated and improved body weight and fat loss, increased whole-body lean mass to body weight ratio, reduced liver and epididymal white adipose tissue weights, decreased liver adiposity, and improved hepatic steatosis, relative to a lean diet substitution alone. Importantly, combined lean diet and NNMTi treatment normalized body composition and liver adiposity parameters to levels observed in age-matched lean diet control mice. NNMTi treatment produced a unique metabolomic signature in adipose tissue, with predominant increases in ketogenic amino acid abundance and alterations to metabolites linked to energy metabolic pathways. Taken together, NNMTi treatment's modulation of body weight, adiposity, liver physiology, and the adipose tissue metabolome strongly support it as a promising therapeutic for obesity and obesity-driven comorbidities.
Collapse
Affiliation(s)
- Catherine M Sampson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch At Galveston, Galveston, TX, USA
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrea L Dimet
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Kehinde O Ogunseye
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch At Galveston, Galveston, TX, USA
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
28
|
Dong L, Si-Jia W, Bo G, Lei S, Guang-Yue L. Theoretical study on the sensing mechanism of a coumarin-based fluorescent probe for biological thiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119268. [PMID: 33310616 DOI: 10.1016/j.saa.2020.119268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The sensing mechanism of a reported fluorescence probe for cysteine, homocysteine and glutathione (Yin et al., 2018) has been investigated by time-dependent density functional theory. Experimental absorption and emission spectra of the probe before and after thiol addition were reproduced well by theoretical calculations, which validated the rationality of the method. Optimized geometries showed that the probe molecule had distinctly different geometries in its ground and excited states. It corresponded to the photoisomerization process and explained the weak fluorescence of the probe molecule. Moreover, by the potential energy curve scan, photoisomerization was further confirmed to be a spontaneous process with a barrier that barely existed. Frontier orbital analysis indicated that this photoinduced isomerization of the probe molecule derived from the antibonding character for lowest unoccupied molecular orbital at its CC double bond. In contrast, probe-thiol complexes exhibited similar geometries in their ground and excited states, which was responsible for the strong fluorescence of the probe with thiols. Due to distinct excited-processes, the probe can be used to sense thiols by monitoring the fluorescent change.
Collapse
Affiliation(s)
- Liu Dong
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Wang Si-Jia
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Gong Bo
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Shi Lei
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| | - Li Guang-Yue
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| |
Collapse
|
29
|
Pérez LM, Hooshmand B, Mangialasche F, Mecocci P, Smith AD, Refsum H, Inzitari M, Fratiglioni L, Rizzuto D, Calderón-Larrañaga A. Glutathione Serum Levels and Rate of Multimorbidity Development in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:1089-1094. [PMID: 31086967 PMCID: PMC7243585 DOI: 10.1093/gerona/glz101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 12/12/2022] Open
Abstract
We aimed to investigate the association between baseline levels of total serum glutathione (tGSH) and rate of chronic disease accumulation over time. The study population (n = 2,596) was derived from a population-based longitudinal study on ≥60-year-olds living in Stockholm. Participants were clinically assessed at baseline, 3- and 6-year follow-ups. Multimorbidity was measured as the number of chronic conditions from a previously built list of 60 diseases. Linear mixed models were applied to analyze the association between baseline tGSH levels and the rate of multimorbidity development over 6 years. We found that at baseline, participants with ≥4 diseases had lower tGSH levels than participants with no chronic conditions (3.3 vs 3.6 µmol/L; p < .001). At follow-up, baseline levels of tGSH were inversely associated with the rate of multimorbidity development (β * time: -0.044, p < .001) after adjusting for age, sex, education, levels of serum creatinine, C-reactive protein, albumin, body mass index, smoking, and time of dropout or death. In conclusion, serum levels of tGSH are inversely associated with multimorbidity development; the association exists above and beyond the link between tGSH and specific chronic conditions. Our findings support the hypothesis that tGSH is a biomarker of multisystem dysregulation that eventually leads to multimorbidity.
Collapse
Affiliation(s)
- Laura M Pérez
- Aging Research Center, NVS Department, Karolinska Institutet, Stockholm University, Sweden.,Hospital Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Spain
| | - Babak Hooshmand
- Aging Research Center, NVS Department, Karolinska Institutet, Stockholm University, Sweden.,Department of Neurology, Ulm University Hospital, Germany
| | - Francesca Mangialasche
- Aging Research Center, NVS Department, Karolinska Institutet, Stockholm University, Sweden.,Division of Clinical geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Italy
| | - A David Smith
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Marco Inzitari
- Hospital Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| | - Laura Fratiglioni
- Aging Research Center, NVS Department, Karolinska Institutet, Stockholm University, Sweden.,Stockholm Gerontology Research Center, Sweden
| | - Debora Rizzuto
- Aging Research Center, NVS Department, Karolinska Institutet, Stockholm University, Sweden
| | | |
Collapse
|
30
|
Rodgers M, Migdal AL, Rodríguez TG, Chen ZZ, Nath AK, Gerszten RE, Kasid N, Toschi E, Tripaldi J, Heineman B, Phan M, Ngo L, Maratos-Flier E, Dushay J. Weight Loss Outcomes Among Early High Responders to Exenatide Treatment: A Randomized, Placebo Controlled Study in Overweight and Obese Women. Front Endocrinol (Lausanne) 2021; 12:742873. [PMID: 34867786 PMCID: PMC8635796 DOI: 10.3389/fendo.2021.742873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE As there is significant heterogeneity in the weight loss response to pharmacotherapy, one of the most important clinical questions in obesity medicine is how to predict an individual's response to pharmacotherapy. The present study examines patterns of weight loss among overweight and obese women who demonstrated early robust response to twice daily exenatide treatment compared to those treated with hypocaloric diet and matched placebo injections. METHODS We randomized 182 women (BMI 25-48 kg/m2) to treatment with exenatide alone or matched placebo injections plus hypocaloric diet. In both treatment groups, women who demonstrated ≥ 5% weight loss at 12 weeks were characterized as high responders and those who lost ≥10% of body weight were classified as super responders. Our primary outcome was long-term change in body weight among early high responders to either treatment. An exploratory metabolomic analysis was also performed. RESULTS We observed individual variability in weight loss with both exenatide and hypocaloric diet plus placebo injections. There was a trend toward a higher percentage of subjects who achieved ≥ 5% weight loss with exenatide compared to diet (56% of those treated with exenatide, 76% of those treated with diet, p = 0.05) but no significant difference in those who achieved ≥ 10% weight loss (23% of individuals treated with exenatide and 36% of those treated with diet, p = 0.55). In both treatment groups, higher weight loss at 3 months of treatment predicted super responder status (diet p=0.0098, exenatide p=0.0080). Both treatment groups also demonstrated similar peak weight loss during the study period. We observed lower cysteine concentrations in the exenatide responder group (0.81 vs 0.48 p < 0.0001) and a trend toward higher levels of serotonin, aminoisobutyric acid, anandamide, and sarcosine in the exenatide super responder group. CONCLUSION In a population of early high responders, longer term weight loss with exenatide treatment is similar to that achieved with a hypocaloric diet. CLINICAL TRIAL REGISTRATION www.clinicaltrialsgov, identifier NCT01590433.
Collapse
|
31
|
Hung TKW, Dong TS, Chen Z, Elashoff D, Sinsheimer JS, Jacobs JP, Lagishetty V, Vora P, Stains J, Mayer EA, Gupta A. Understanding the Heterogeneity of Obesity and the Relationship to the Brain-Gut Axis. Nutrients 2020; 12:nu12123701. [PMID: 33266058 PMCID: PMC7761087 DOI: 10.3390/nu12123701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/26/2022] Open
Abstract
Obesity is best understood as a multifactorial metabolic imbalances disorder. In a cross-sectional study, we aimed to explore sociodemographic and dietary determinants of obesity in relation to brain-gut homeostasis among overweight and obese individuals. Multivariate logistic regression models were used to examine obesity and its association with sociodemographic and dietary factors. Biological variables examined included the gut microbiome, fecal amino acid metabolites and brain structural volumes. Among 130 participants, there were higher odds of obesity if individuals were Hispanic (adjusted odds ratio (aOR) 1.56, p = 0.014). Compared to non-Hispanics, Hispanics differed in gut microbial composition (p = 0.046) with lower microbial species richness (Chao1) (p = 0.032) and evenness (Shannon) (p = 0.0029). Fourteen of the twenty fecal amino acids including branch-chain- and aromatic- amino acids were increased among Hispanics (q < 0.05). Brain structural volumes in reward regions were decreased in Hispanics (pallidum, q = 0.036; brainstem, q = 0.011). Correlation patterns suggest complex brain-gut interactions differ by Hispanic ethnicity. In conclusion, Hispanics expressed a unique brain-gut microbial signature, which was associated with obesity despite sociodemographic and dietary differences. Addressing ethnic disparities guided by biologic phenotypes may unlock novel understanding of obesity heterogeneity and treatment strategies.
Collapse
Affiliation(s)
- Tony K. W. Hung
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Tien S. Dong
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA 90095, USA
- UCLA Microbiome Center, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| | - Zixi Chen
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA 90095, USA
| | - David Elashoff
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Janet S. Sinsheimer
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA 90095, USA
- UCLA Microbiome Center, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA 90095, USA
| | - Venu Lagishetty
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- UCLA Microbiome Center, Los Angeles, CA 90095, USA
| | - Priten Vora
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA 90095, USA
| | - Jean Stains
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA 90095, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA 90095, USA
- UCLA Microbiome Center, Los Angeles, CA 90095, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA 90095, USA
- Ahmanson-Lovelace Brain Mapping Center, UCLA, Los Angeles, CA 90095, USA
| | - Arpana Gupta
- Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; (T.K.W.H.); (T.S.D.); (Z.C.); (D.E.); (J.P.J.); (V.L.); (P.V.); (J.S.); (E.A.M.)
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA 90095, USA
- UCLA Microbiome Center, Los Angeles, CA 90095, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
32
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
33
|
Schwinger C, Chowdhury R, Sharma S, Bhandari N, Taneja S, Ueland PM, Strand TA. Association of Plasma Total Cysteine and Anthropometric Status in 6-30 Months Old Indian Children. Nutrients 2020; 12:nu12103146. [PMID: 33076294 PMCID: PMC7602373 DOI: 10.3390/nu12103146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
High-quality protein has been associated with child growth; however, the role of the amino acid cysteine remains unclear. The aim was to measure the extent to which plasma total cysteine (tCys) concentration is associated with anthropometric status in children aged 6–30 months living in New Delhi, India. The study was a prospective cohort study including 2102 children. We calculated Z-scores for height-for-age (HAZ), weight-for-height (WHZ), or weight-for-age (WAZ) according to the WHO Child Growth Standards. We used multiple regression models to estimate the association between tCys and the anthropometric indices. A high proportion of the children were categorized as malnourished at enrolment; 41% were stunted (HAZ ≤ −2), 19% were wasted (WHZ ≤ −2) and 42% underweight (WAZ ≤ −2). Plasma total cysteine (tCys) was significantly associated with HAZ, WHZ and WAZ after adjusting for relevant confounders (p < 0.001). Low tCys (≤25th percentile) was associated with a decrease of 0.28 Z-scores for HAZ, 0.10 Z-scores for WHZ, and 0.21 Z-scores for WAZ compared to being >25th percentile. In young Indian children from low-to-middle socioeconomic neighborhoods, a low plasma total cysteine concentration was associated with an increased risk of poor anthropometric status.
Collapse
Affiliation(s)
- Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Correspondence: ; Tel.: +47-5558-9733
| | - Ranadip Chowdhury
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Society for Applied Studies, New Delhi 110016, India;
| | - Shakun Sharma
- Department of Child Health, Institute of Medicine, Tribuhvan University, Kathmandu 44613, Nepal;
| | - Nita Bhandari
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Society for Applied Studies, New Delhi 110016, India;
| | - Sunita Taneja
- Society for Applied Studies, New Delhi 110016, India;
| | - Per M. Ueland
- Department of Clinical Science, University of Bergen,5020 Bergen, Norway;
| | - Tor A. Strand
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Catherine Schwinger, Årstadveien 21, 5009 Bergen, Norway; (R.C.); (N.B.); (T.A.S.)
- Department of Research, Innlandet Hospital Trust, 2618 Lillehammer, Norway
| |
Collapse
|
34
|
Arora N, Strand TA, Chandyo RK, Elshorbagy A, Shrestha L, Ueland PM, Ulak M, Schwinger C. Association of Maternal Plasma Total Cysteine and Growth among Infants in Nepal: A Cohort Study. Nutrients 2020; 12:E2849. [PMID: 32957568 PMCID: PMC7551827 DOI: 10.3390/nu12092849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cysteine is a semi-essential amino acid that has been positively associated with growth in children. However, transgenerational effects remain unclear. The aim of this analysis was to assess whether maternal plasma total cysteine (tCys) concentration is associated with various growth indicators in infants living in peri-urban settings in Bhaktapur, Nepal. We used data from the 561 mothers enrolled in an ongoing randomized controlled trial. We built linear regression models to evaluate the associations between maternal tCys and birth weight, length-for-age Z-scores (LAZ) and weight-for-length Z-scores (WLZ) at birth and six months of age. Maternal tCys was inversely associated with birth weight among boys after adjusting for confounders (p < 0.05). In addition, there was a negative association between maternal tCys and LAZ at birth (p < 0.01). No associations between maternal tCys and the other anthropometric indicators were found significant, although there was a tendency for maternal tCys to be associated positively with WLZ at birth among girls (p < 0.10). This is a first study evaluating transgenerational relation of tCys on growth in infants. Further, larger and more comprehensive studies are needed to determine if and how maternal tCys alters child growth.
Collapse
Affiliation(s)
- Nikhil Arora
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway;
| | - Tor A. Strand
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (T.A.S.); (M.U.)
- Department of Research, Innlandet Hospital Trust, 2609 Lillehammer, Norway
| | - Ram K. Chandyo
- Department of Community Medicine, Kathmandu Medical College, Kathmandu 44600, Nepal;
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt; or
- Department of Pharmacology, University of Oxford, Oxford OX13QT, UK
| | - Laxman Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Per M. Ueland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway;
| | - Manjeswori Ulak
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (T.A.S.); (M.U.)
- Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Catherine Schwinger
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; (T.A.S.); (M.U.)
| |
Collapse
|
35
|
Olsen T, Turner C, Øvrebø B, Bastani NE, Refsum H, Vinknes KJ. Postprandial effects of a meal low in sulfur amino acids and high in polyunsaturated fatty acids compared to a meal high in sulfur amino acids and saturated fatty acids on stearoyl CoA-desaturase indices and plasma sulfur amino acids: a pilot study. BMC Res Notes 2020; 13:379. [PMID: 32778150 PMCID: PMC7419218 DOI: 10.1186/s13104-020-05222-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Objective The sulfur amino acid (SAA) cysteine is positively related, whereas polyunsaturated fatty acids (PUFAs) are inversely related to activity of the lipogenic enzyme stearoyl-CoA desaturase (SCD). High SCD activity promotes obesity in animals, and plasma activity indices positively associates with fat mass in humans. SCD may thus be a target for dietary intervention with SAA restriction and PUFA enrichment with unknown potential benefits for body composition. We randomized ten healthy individuals to a meal restricted in SAAs and enriched with PUFAs (Cys/Metlow + PUFA) (n = 5) or a meal enriched in SAA and saturated fatty acids (Cys/Methigh + SFA) (n = 5). We measured plasma SCD activity indices (SCD16 and SCD18) and SAAs response hourly from baseline and up to 4 h postprandial. Results SCD16 was unchanged whereas SCD18 tended to increase in the Cys/Metlow + PUFA compared to the Cys/Methigh + SFA group (ptime*group interaction = 0.08). Plasma concentrations of total cysteine fractions including free and reduced cysteine decreased in the Cys/Metlow + PUFA compared to the Cys/Methigh + SFA group (both ptime*group interaction < 0.001). In conclusion, a meal low in SAA but high in PUFAs reduced plasma cysteine fractions but not SCD activity indices. This pilot study can be useful for the design and diet composition of future dietary interventions that targets SCD and SAA. Trial registration ClinicalTrials.gov: NCT02647970, registration date: 6 January 2016
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Medical Biosciences, University of Oslo, 0372, Oslo, Norway. .,Institute of Medical Biosciences, Domus Medica, Sognsvannsveien 9, 0372, Oslo, Norway.
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Bente Øvrebø
- Department of Nutrition, Institute of Medical Biosciences, University of Oslo, 0372, Oslo, Norway.,Øvrebø Nutrition, 0550, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Medical Biosciences, University of Oslo, 0372, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Medical Biosciences, University of Oslo, 0372, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Medical Biosciences, University of Oslo, 0372, Oslo, Norway
| |
Collapse
|
36
|
Elshorbagy AK, Graham I, Refsum H. Body mass index determines the response of plasma sulfur amino acids to methionine loading. Biochimie 2020; 173:107-113. [DOI: 10.1016/j.biochi.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
|
37
|
Olsen T, Øvrebø B, Haj-Yasein N, Lee S, Svendsen K, Hjorth M, Bastani NE, Norheim F, Drevon CA, Refsum H, Vinknes KJ. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: a double-blind randomized controlled pilot study. J Transl Med 2020; 18:122. [PMID: 32160926 PMCID: PMC7065370 DOI: 10.1186/s12967-020-02288-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dietary restriction of methionine and cysteine is a well-described model that improves metabolic health in rodents. To investigate the translational potential in humans, we evaluated the effects of dietary methionine and cysteine restriction on cardiometabolic risk factors, plasma and urinary amino acid profile, serum fibroblast growth factor 21 (FGF21), and subcutaneous adipose tissue gene expression in women with overweight and obesity in a double-blind randomized controlled pilot study. Methods Twenty women with overweight or obesity were allocated to a diet low (Met/Cys-low, n = 7), medium (Met/Cys-medium, n = 7) or high (Met/Cys-high, n = 6) in methionine and cysteine for 7 days. The diets differed only by methionine and cysteine content. Blood and urine were collected at day 0, 1, 3 and 7 and subcutaneous adipose tissue biopsies were taken at day 0 and 7. Results Plasma methionine and cystathionine and urinary total cysteine decreased, whereas FGF21 increased in the Met/Cys-low vs. Met/Cys-high group. The Met/Cys-low group had increased mRNA expression of lipogenic genes in adipose tissue including DGAT1. When we excluded one participant with high fasting insulin at baseline, the Met/Cys-low group showed increased expression of ACAC, DGAT1, and tendencies for increased expression of FASN and SCD1 compared to the Met/Cys-high group. The participants reported satisfactory compliance and that the diets were moderately easy to follow. Conclusions Our data suggest that dietary methionine and cysteine restriction may have beneficial effects on circulating biomarkers, including FGF21, and influence subcutaneous adipose tissue gene expression. These results will aid in the design and implementation of future large-scale dietary interventions with methionine and cysteine restriction. Trial registration ClinicalTrials.gov Identifier: NCT03629392, registration date: 14/08/2018 https://clinicaltrials.gov/ct2/show/NCT03629392.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway.
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Nadia Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, OUS HF Aker Sykehus, Postboks 4959, Nydalen, 0424, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Postboks 1046, Blindern, 0317, Oslo, Norway
| |
Collapse
|
38
|
Segovia-Siapco G, Khayef G, Pribis P, Oda K, Haddad E, Sabaté J. Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study. Nutrients 2019; 12:E110. [PMID: 31906138 PMCID: PMC7019331 DOI: 10.3390/nu12010110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Protein plays a crucial role in the growth and development of adolescents. However, being a secondary energy source, protein's role in obesity has been sidelined. We examined whether intake of protein (total, animal, plant), branched-chain (BCAAs), and sulfur-containing (SCAAs) amino acids are associated with general body and central obesity and body composition in a cross-sectional study among healthy adolescents. Students aged 12-18 years old (n = 601) in schools near two major Adventist universities in California and Michigan provided dietary data via a validated web-based food frequency questionnaire (FFQ) and anthropometric data during school visits. Intakes of total, animal, and plant proteins, and BCAAs and SCAAs were derived from FFQ data. We defined general body obesity with body-mass-index-for-age (BMIz) z-scores and central obesity with waist-to-height ratios (WHtR). After full adjustment for covariates, multiple regression analyses showed significant positive associations between intakes of total protein (β = 0.101, 95% CI: 0.041, 0.161), animal protein (β = 0.118, 95% CI: 0.057, 0.178), BCAAs (β = 0.056, 95% CI: 0.025, 0.087), and SCAAs (β = 0.025, 95% CI: 0.012, 0.038) with general body adiposity. Animal protein (β = 0.017, 95% CI: 0.001, 0.033) and SCAAs (β = 0.004, 95% CI: 0.000, 0.008) were also associated with central obesity. Total and animal protein and BCAA and SCAA were also significantly associated with fat mass. Our findings suggest that high protein intake may pose a possible detriment to adolescent health. Longitudinal and safety evaluation studies are recommended.
Collapse
Affiliation(s)
- Gina Segovia-Siapco
- School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (K.O.); (E.H.); (J.S.)
| | - Golandam Khayef
- Don B. Huntley College of Agriculture, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Peter Pribis
- Department of Individual, Family & Community Education, Nutrition and Dietetics Program, College of Education, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Keiji Oda
- School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (K.O.); (E.H.); (J.S.)
| | - Ella Haddad
- School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (K.O.); (E.H.); (J.S.)
| | - Joan Sabaté
- School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; (K.O.); (E.H.); (J.S.)
| |
Collapse
|
39
|
Li M, Kang N, Zhang C, Liang W, Zhang G, Jia J, Yao Q, Shuang S, Dong C. A turn-on fluorescence probe for cysteine/homocysteine based on the nucleophilic-induced rearrangement of benzothiazole thioether. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117262. [PMID: 31212195 DOI: 10.1016/j.saa.2019.117262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
A fluorescent probe, 4-(benzothiazole-2-ylthio)-7-nitro-2,1,3-benzoxadiazole (TBT-NBD) was developed for cysteine (Cys) and homocysteine (Hcy). The reaction mechanism was based on the Cys/Hcy-induced nucleophilic substitution of benzothiazole thioether then Smiles rearrangement reaction to form corresponding amino-nitrobenzoxadiazole, which emitted yellow-green fluorescence and guaranteed the high selectivity for Cys/Hcy over glutathione (GSH). TBT-NBD could detect Cys/Hcy within 5 min in the presence of high concentration of GSH and other amino acids. Moreover, TBT-NBD had been exploited to identify intracellular Cys/Hcy in living cells in light of its low toxicity.
Collapse
Affiliation(s)
- Miao Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Na Kang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinping Jia
- Science Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Qingjia Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
40
|
Creatinine, total cysteine and uric acid are associated with serum retinol in patients with cardiovascular disease. Eur J Nutr 2019; 59:2383-2393. [PMID: 31502058 PMCID: PMC7413901 DOI: 10.1007/s00394-019-02086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Purpose We hypothesized that biomarkers and dietary factors related to cardiovascular disease risk were associated with serum retinol and evaluated these potential associations in patients with suspected coronary artery disease (CAD). Methods We used cross-sectional data from 4116 patients hospitalised for suspected CAD. Dietary data were obtained from a subgroup of 1962 patients using a food frequency questionnaire. Potential biomarkers and dietary factors were explored using linear regression modelling adjusted for age and sex. Regression coefficients and corresponding confidence intervals (CI) are given as % change in serum retinol per unit change in the predictors. Analyses were performed in the total population and in strata of serum retinol tertiles. Results In age- and sex-adjusted models, serum creatinine (standardized β: 0.38, 95% CI [0.35, 0.42]), plasma total cysteine (0.26, [0.23, 0.29]), serum uric acid (0.30, [0.26, 0.33]) and plasma neopterin (0.22, [0.18, 0.25]) were positively associated, whereas plasma serine (− 0.15, [− 0.18, − 0.12]) and serum C-reactive protein (− 0.15, [− 0.18, − 0.12]) were inversely associated with serum retinol. When we included the significant biomarkers in a multivariate model, the model explained 33% of the variability (R2 = 0.33) in serum retinol. The results were similar in the lower and upper tertiles of serum retinol. Weak or no associations were observed for dietary factors. Conclusions In patients with suspected CAD, concentrations of creatinine, cysteine and uric acid were positively associated with serum retinol. Future studies should assess whether retinol concentrations are influenced by metabolic alterations in patients at risk of cardiovascular disease.
Collapse
|
41
|
Hypercysteinemia, A Potential Risk Factor for Central Obesity and Related Disorders in Azores, Portugal. J Nutr Metab 2019; 2019:1826780. [PMID: 31321096 PMCID: PMC6609363 DOI: 10.1155/2019/1826780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023] Open
Abstract
In Azores, the standardized mortality rate for coronary artery disease (CAD) is nearly the double when compared to mainland Portugal. The aim of this study was to compare the prevalence of conventional CAD risk factors, as well as the plasma aminothiol profile (and its major determinants), between two groups of healthy subjects from Ponta Delgada (in Azores) and Lisbon (in mainland) cities, searching for precocious biomarker(s) of the disease. The study groups consisted of 101 healthy volunteers from Ponta Delgada (PDL) and 121 from Lisbon, aged 20–69 years. No differences in the prevalence of classical CAD risk factors were found between the study groups, except in physical inactivity and related central obesity, which were both higher in PDL men than in those from Lisbon. Hypercysteinemia, which seems to result from sulfur-rich amino acid diets and/or vitamin B12 malabsorption, revealed to be significantly more prevalent in PDL vs. Lisbon subjects (18% vs. 4%, P=0.001), namely, in male gender. Moreover, plasma Cys levels predicted waist circumference (β coefficient = 0.102, P=0.032) and concomitant central obesity and were also associated with insulin resistance. Nevertheless, hyperhomocysteinemia prevalence was similar in both groups, despite the fact that PDL subjects exhibited a higher rate of vitamin B12 deficiency compared to those from Lisbon (19% vs. 6%, P=0.003). Owing to the nature of this study design, a cause-effect relationship between high plasma Cys levels and central obesity or CAD risk could not be derived, but results strongly suggest that hypercysteinemia is a potential risk factor for metabolic disorders, i.e., obesity and insulin resistance, and CAD in Azores, a hypothesis that asks for confirmation through further large prospective studies.
Collapse
|
42
|
Dai Y, Xue T, Zhang X, Misal S, Ji H, Qi Z. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:365-374. [PMID: 30921659 DOI: 10.1016/j.saa.2019.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Cysteine(Cys) is tightly related to physiological and pathological of human, and the imbalance of concentration of cysteine in the intracellular are associated with many diseases. Here, a novel NIR fluorescent probe TCF-Cys was designed and synthesized, and both the optimal excitation and emission wavelength of them were between 650 and 900 nm, that within the "optical window" of biological tissues. In aqueous solution, TCF-Cys, which with an acrylate extremity as a recognizing unit, exhibited excellent "turn-on" fluorescence response for Cys superior to other amino acids and thiols with a limit of detection of 0.1323 μM. Moreover, as an excellent naked-eye colorimetric indicator, TCF-Cys could effectively distinguishing the Cys, Hcy and GSH in aqueous solution through color change. Then, the response mechanism of TCF-Cys for Cys was revealed by TLC, 1H NMR, HPLC, HRMS and DFT calculation. Finally, TCF-Cys was successfully employed to fluorescence specifically map of exogenous and endogenous Cys in living cells and zebrafish with low toxicity.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Tianzi Xue
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiuxuan Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saima Misal
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
43
|
A New Quinone Based Fluorescent Probe for High Sensitive and Selective Detection of Biothiols and Its Application in Living Cell Imaging. Int J Anal Chem 2019; 2019:7536431. [PMID: 31093288 PMCID: PMC6481154 DOI: 10.1155/2019/7536431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/28/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022] Open
Abstract
In view of the vital role of biothiols in many physiological processes, the development of simple and efficient probe for the detection of biothiols is of great medical significance. In this work, we demonstrate the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), which respond rapidly to biothiols especially to glutathione, as a new fluorescent probe for the selective detection and bioimaging of biothiols. This new fluorescent probe can distinguish glutathione from cysteine and homocysteine easily under physiological concentration and detect glutathione quickly within three minutes. This probe exhibits high selectivity to biothiols and the detection limit was determined to be 3.08 × 10−9 M for glutathione, 8.55 × 10−8 M for cysteine, and 2.17 × 10−9 M for homocysteine, respectively. The sensing mechanism was further explored by density functional theory (DFT) and nuclear magnetic resonance (NMR) experiment; results showed that the interaction forces between the probe and biothiols were electrostatic interaction. In addition, the probe has been successfully applied to the detection of biothiols in Eca9706 cells by fluorescence confocal imaging technology.
Collapse
|
44
|
van Lee L, Crozier SR, Aris IM, Tint MT, Sadananthan SA, Michael N, Quah PL, Robinson SM, Inskip HM, Harvey NC, Barker M, Cooper C, Velan SS, Lee YS, Fortier MV, Yap F, Gluckman PD, Tan KH, Shek LP, Chong YS, Godfrey KM, Chong MFF. Prospective associations of maternal choline status with offspring body composition in the first 5 years of life in two large mother-offspring cohorts: the Southampton Women's Survey cohort and the Growing Up in Singapore Towards healthy Outcomes cohort. Int J Epidemiol 2019; 48:433-444. [PMID: 30649331 PMCID: PMC6751083 DOI: 10.1093/ije/dyy291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Choline status has been positively associated with weight and fat mass in animal and human studies. As evidence examining maternal circulating choline concentrations and offspring body composition in human infants/children is lacking, we investigated this in two cohorts. METHODS Maternal choline concentrations were measured in the UK Southampton Women's Survey (SWS; serum, n = 985, 11 weeks' gestation) and Singapore Growing Up Towards healthy Outcomes (GUSTO); n = 955, 26-28 weeks' gestation) mother-offspring cohorts. Offspring anthropometry was measured at birth and up to age 5 years. Body fat mass was determined using dual-energy x-ray absorptiometry at birth and age 4 years for SWS; and using air-displacement plethysmography at birth and age 5 years for GUSTO. Linear-regression analyses were performed, adjusting for confounders. RESULTS In SWS, higher maternal choline concentrations were associated with higher neonatal total body fat mass {β = 0.60 standard deviation [SD]/5 µmol/L maternal choline [95% confidence interval (CI) 0.04-1.16]} and higher subscapular skinfold thickness [β = 0.55 mm/5 µmol/L (95% CI, 0.12-1.00)] at birth. In GUSTO, higher maternal choline concentrations were associated with higher neonatal body mass index-for-age z-score [β = 0.31 SD/5 µmol/L (0.10-0.51)] and higher triceps [β = 0.38 mm/5 µmol/L (95% CI, 0.11-0.65)] and subscapular skinfold thicknesses [β = 0.26 mm/5 µmol/L (95% CI, 0.01-0.50)] at birth. No consistent trends were observed between maternal choline and offspring gain in body mass index, skinfold thicknesses, abdominal circumference, weight, length/height and adiposity measures in later infancy and early childhood. CONCLUSION Our study provides evidence that maternal circulating choline concentrations during pregnancy are positively associated with offspring BMI, skinfold thicknesses and adiposity at birth, but not with growth and adiposity through infancy and early childhood to the age of 5 years.
Collapse
Affiliation(s)
- Linde van Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
| | - Izzuddin M Aris
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mya T Tint
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Navin Michael
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Phaik Ling Quah
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Sian M Robinson
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Mary Barker
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Sendhil S Velan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Fabian Yap
- Duke-NUS Medical School, Singapore, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Liggings Institute, University of Auckland, New Zealand
| | - Kok Hian Tan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Lynette P Shek
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Mary FF Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Clinical Nutrition Research Centre, Agency for Science, Technology, and Research, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
45
|
Leroux M, Lemery T, Boulet N, Briot A, Zakaroff A, Bouloumié A, Andrade F, Pérez-Matute P, Arbones-Mainar JM, Carpéné C. Effects of the amino acid derivatives, β-hydroxy-β-methylbutyrate, taurine, and N-methyltyramine, on triacylglycerol breakdown in fat cells. J Physiol Biochem 2019; 75:263-273. [PMID: 30919256 DOI: 10.1007/s13105-019-00677-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 01/28/2023]
Abstract
Various amino acid (AA) metabolites are used as supplements to facilitate metabolic control and enhance responsiveness of insulin-sensitive tissues. β-hydroxy-β-methylbutyrate (HMB) is a leucine metabolite proposed to prevent muscle wasting and to mitigate insulin resistance. Taurine, commonly added to energizing drinks, is a metabolite of methionine and cysteine present in bile juice, and proposed to be involved in lipid digestion and to be pro-lipolytic in adipocytes. N-methyltyramine (NMT) is a phenylalanine metabolite found in orange juices at 0.1-3 ppm while its effects on lipid mobilization remain controversial. Here, the putative lipolytic effects of these AA metabolites were studied and it was tested whether they could enhance insulin antilipolytic response in adipocytes. Release of glycerol and non-esterified fatty acids (NEFAs) was measured after a 2-h incubation of adipocytes obtained from control and diet-induced obese mice or from obese patients. In mouse, none of the tested AA derivatives was lipolytic from 1 μM to 1 mM. These compounds did not improve insulin antilipolytic effect or isoprenaline lipolytic action, except for 1 mM NMT that impaired triacylglycerol breakdown in obese mice. In human adipocytes, HMB and taurine were not lipolytic, while NMT weakly activated glycerol and NEFA release at 1 mM. However, 100 μM NMT impaired isoprenaline-stimulated lipolysis in a manner that was hardly added to insulin antilipolytic effect. Since none of these AA derivatives acutely helped or replaced insulin antilipolytic effect in adipocytes, the present in vitro observations do not support their proposed insulin-sensitizing properties. Moreover, NMT, HMB, and taurine were not notably lipolytic.
Collapse
Affiliation(s)
- Mélanie Leroux
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Tristan Lemery
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Anaïs Briot
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Alexia Zakaroff
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Anne Bouloumié
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France.,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France
| | - Fernando Andrade
- Metabolomics Platform, BioCruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón. Zaragoza, Spain. CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, I2MC, CHU Rangueil, BP84225, 1 avenue Jean Poulhès, 31432, Toulouse cedex 4, France. .,University of Toulouse, Paul Sabatier University, UMR1048, Toulouse, France.
| |
Collapse
|
46
|
Šilhavý J, Krijt J, Sokolová J, Zídek V, Mlejnek P, Šimáková M, Škop V, Trnovská J, Oliyarnyk O, Marková I, Hüttl M, Malínská H, Kazdová L, Liška F, Kožich V, Pravenec M. Dissecting the role of Folr1 and Folh1 genes in the pathogenesis of metabolic syndrome in spontaneously hypertensive rats. Physiol Res 2019; 67:657-662. [PMID: 30113208 DOI: 10.33549/physiolres.933932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased levels of plasma cysteine predispose to obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed mutated Folr1 (folate receptor 1) on chromosome 1 as a quantitative trait gene associated with reduced folate levels, hypercysteinemia and metabolic disturbances. The Folr1 gene is closely linked to the Folh1 (folate hydrolase 1) gene which codes for an enzyme involved in the hydrolysis of dietary polyglutamyl folates in the intestine. In the current study, we obtained evidence that Folh1 mRNA of the BN (Brown Norway) origin is weakly but significantly expressed in the small intestine. Next we analyzed the effects of the Folh1 alleles on folate and sulfur amino acid levels and consecutively on glucose and lipid metabolism using SHR-1 congenic sublines harboring either Folr1 BN and Folh1 SHR alleles or Folr1 SHR and Folh1 BN alleles. Both congenic sublines when compared to SHR controls, exhibited significantly reduced folate clearance and lower plasma cysteine and homocysteine levels which was associated with significantly decreased serum glucose and insulin concentrations and reduced adiposity. These results strongly suggest that, in addition to Folr1, the Folh1 gene also plays an important role in folate and sulfur amino acid levels and affects glucose and lipid metabolism in the rat.
Collapse
Affiliation(s)
- J Šilhavý
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bai Y, Wu MX, Ma QJ, Wang CY, Sun JG, Tian MJ, Li JS. A FRET-based ratiometric fluorescent probe for highly selective detection of cysteine based on a coumarin–rhodol derivative. NEW J CHEM 2019. [DOI: 10.1039/c9nj03375k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A ratiometric fluorescent probe for detecting cysteine was designed and synthesized based on the fluorescence resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Ming-Xia Wu
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Qiu-Juan Ma
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Chun-Yan Wang
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jing-Guo Sun
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Mei-Ju Tian
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jian-Sheng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| |
Collapse
|
48
|
Olsen T, Øvrebø B, Turner C, Bastani NE, Refsum H, Vinknes KJ. Combining Dietary Sulfur Amino Acid Restriction with Polyunsaturated Fatty Acid Intake in Humans: A Randomized Controlled Pilot Trial. Nutrients 2018; 10:nu10121822. [PMID: 30477080 PMCID: PMC6315936 DOI: 10.3390/nu10121822] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Dietary and plasma total cysteine (tCys) have been associated with adiposity, possibly through interaction with stearoyl–CoA desaturase (SCD), which is an enzyme that is involved in fatty acid and energy metabolism. We evaluated the effect of a dietary intervention with low cysteine and methionine and high polyunsaturated fatty acids (PUFAs) on plasma and urinary sulfur amino acids and SCD activity indices. Fourteen normal-weight healthy subjects were randomized to a seven-day diet low in cysteine and methionine and high in PUFAs (Cys/Metlow + PUFA), or high in saturated fatty acids (SFA), cysteine, and methionine (Cys/Methigh + SFA). Compared with the Cys/Methigh + SFA group, plasma methionine and cystathionine decreased (p-values < 0.05), whereas cystine tended to increase (p = 0.06) in the Cys/Metlow + PUFA group. Plasma total cysteine (tCys) was not significantly different between the groups. Urinary cysteine and taurine decreased in the Cys/Metlow + PUFA group compared with the Cys/Methigh + SFA group (p-values < 0.05). Plasma SCD-activity indices were not different between the groups, but the change in cystine correlated with the SCD-16 index in the Cys/Metlow + PUFA group. A diet low in methionine and cysteine decreased plasma methionine and urinary cysteine and taurine. Plasma tCys was unchanged, suggesting that compensatory mechanisms are activated during methionine and cysteine restriction to maintain plasma tCys.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
- Øvrebø Nutrition, 0550 Oslo, Norway.
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
| |
Collapse
|
49
|
Abstract
Background Little data is available on gamma-glutamyltransferase (GGT) and body fat distribution in healthy individuals. We examined whether GGT within normal range is prospectively associated with total body fat (TF) and regional body fat distribution. Methods We included 62 patients who were presented at Eureka Health and Research Foundation Clinic. GGT was measured by enzymatic photometry method. TF, android fat (AF), gynoid fat (GF) and android/gynoid ratio (A/G ratio) was assessed using Dual-energy X-ray absorptiometry. Regression coefficients and 95% Confidence Intervals were calculated using multivariate linear regression models adjusting for confounders. Results Mean value of GGT of the study population was 21.64U/L (ranging from 6 to 48 U/L). There was no association between GGT and TF. Increased GGT was associated with higher AF (top tertile relative to the lowest: ß=0.35; 95% CI: 0.19, 0.52), lower GF(top tertile relative to the lowest: ß=-0.48; 95%CI: -0.69,.-0.27) and higher AF/GF ratio (top tertile relative to the lowest: ß=0.04; 95%CI: 0.03, 0.06). Conclusions This study suggests that an increase in GGT concentrations is a sensitive and early biomarker of unfavorable body fat distribution.
Collapse
Affiliation(s)
- Viko Coku
- Eureka Health and Research Foundation Clinic, Tirana, Albania
| | - Xike Shkembi
- Eureka Health and Research Foundation Clinic, Tirana, Albania
| |
Collapse
|
50
|
Mostafa T, Rashed L, Nabil N, Abo-Sief AF, Mohamed MM, Omar MS. Cavernosal hydrogen sulfide levels are associated with nitric oxide and hemeoxygenase levels in diabetic rats. Int J Impot Res 2018; 31:105-110. [PMID: 30291313 DOI: 10.1038/s41443-018-0084-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023]
Abstract
Penile erection is a neuromuscular event modulated by psyche, hormones as well as neurotransmitters. This pre-clinical study aimed to assess hydrogen sulfide (H2S) relationship with nitric oxide (NO) and hemeoxygenase (HO) in the cavernous tissues of diabetic rats. Overall, 90 adult male rats were investigated (6 groups, n = 15 each). They were subdivided into the following groups; untreated rats, rats treated with H2S donor/inhibitor, induced diabetic rats, diabetic rats treated with H2S donor/inhibitor. At the 6th week, the rats were killed to assess cavernous tissue cGMP, NO, H2S, HO enzyme activity levels. The rats treated with H2S donor showed increased mean cavernous tissue cGMP, NO, H2S, and HO enzyme activity levels whereas induced diabetic rats and rats treated with H2S inhibitor showed significant decreases in these parameters compared with the untreated rats. On the other hands, diabetic rats treated with H2S donor showed elevated mean cavernous tissue cGMP, NO, H2S, and HO enzyme activity levels whereas diabetic rats treated with H2S inhibitor showed significant decreases in these parameters compared with diabetic rats. Cavernous tissue H2S levels exhibited significant positive correlations with the cavernous tissue levels cGMP, NO, and HO enzyme activity levels. From these results, it could be concluded that cavernous tissues H2S plays a role of male sexual health by affecting cavernous tissues NO and HO enzyme activity in general and in diabetics in particular.
Collapse
Affiliation(s)
- Taymour Mostafa
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Laila Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashaat Nabil
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed F Abo-Sief
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai M Mohamed
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maroa S Omar
- Department of Andrology, Sexology & STIs, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|