1
|
Chaves CRS, da Silva C, Salamandane A, Nogueira F. Mapping Antimalarial Drug Resistance in Mozambique: A Systematic Review of Plasmodium falciparum Genetic Markers Post-ACT Implementation. Int J Mol Sci 2024; 25:13645. [PMID: 39769406 PMCID: PMC11728251 DOI: 10.3390/ijms252413645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Malaria continues to be a significant public health burden in many tropical and subtropical regions. Mozambique ranks among the top countries affected by malaria, where it is a leading cause of morbidity and mortality, accounting for 29% of all hospital deaths in the general population and 42% of deaths amongst children under five. This review presents a comparative analysis of data on five critical genes associated with antimalarial drug resistance: pfmdr1, pfcrt, pfk13, pfdhfr, and pfdhps, along with the copy number variation (CNV) in genes pfmdr1 and pfpm2/3. These are genes associated with parasite response to antimalarials currently used to treat uncomplicated P. falciparum malaria in Mozambique. The review synthesizes data collected from published studies conducted in Mozambique after the introduction of artemisinin-based combination therapies (ACTs) (2006) up to June 2024, highlighting the presence or absence of mutations in these genes across Mozambique. We aimed at mapping the prevalence and distribution of these molecular markers across the country in order to contribute to the development of targeted interventions to sustain the efficacy of malaria treatments in Mozambique. Four databases were used to access the articles: PubMed, Science Direct, Scopus, and Google scholar. The search strategy identified 132 studies addressing malaria and antimalarial resistance. Of these, 112 were excluded for various reasons, leaving 20 studies to be included in this review. Children and pregnant women represent the majority of target groups in studies on all types of antimalarials. Most studies (87.5%) were conducted in the provinces of Maputo and Gaza. The primary alleles reported were pfcrt CVMNK, and in the most recent data, its wild-type form was found in the majority of patients. A low prevalence of mutations in the pfk13 gene was identified reflecting the effectiveness of ACTs. In pfk13, only mutation A578S was reported in Niassa and Tete. CNVs were observed in studies carried out in the south of Mozambique, with a frequency of 1.1-5.1% for pfmdr1 and a frequency of 1.1-3.4% for pfpm2. This review indicates that molecular markers linked to malaria resistance show considerable variation across provinces in Mozambique, with most up-to-date data accessible for Maputo and Gaza. In contrast, provinces such as Zambezia and Inhambane have limited data on several genes, while Nampula lacks data on all drug resistance markers.
Collapse
Affiliation(s)
- Celso Raul Silambo Chaves
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.R.S.C.); (C.d.S.)
| | - Clemente da Silva
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.R.S.C.); (C.d.S.)
| | - Acácio Salamandane
- Faculdade de Ciências de Saúde, Universidade Lúrio, Campus Universitário de Marrere, Nampula 4250, Mozambique;
| | - Fatima Nogueira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.R.S.C.); (C.d.S.)
| |
Collapse
|
2
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024; 37:e0010924. [PMID: 39404268 PMCID: PMC11629630 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N. J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K. Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Fathoni I, Ho TCS, Chan AHY, Leeper FJ, Matuschewski K, Saliba KJ. Identification and characterization of thiamine analogs with antiplasmodial activity. Antimicrob Agents Chemother 2024; 68:e0109624. [PMID: 39470204 PMCID: PMC11619390 DOI: 10.1128/aac.01096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024] Open
Abstract
Thiamine is metabolized into thiamine pyrophosphate (TPP), an essential enzyme cofactor. Previous work has shown that oxythiamine, a thiamine analog, is metabolized by thiamine pyrophosphokinase (TPK) into oxythiamine pyrophosphate within the malaria parasite Plasmodium falciparum and then inhibits TPP-dependent enzymes, killing the parasite in vitro and in vivo. To identify a more potent antiplasmodial thiamine analog, 11 commercially available compounds were tested against P. falciparum and P. knowlesi. Five active compounds were identified, but only N3-pyridyl thiamine (N3PT), a potent transketolase inhibitor and candidate anticancer lead compound, was found to suppress P. falciparum proliferation with an IC50 value 10-fold lower than that of oxythiamine. N3PT was active against P. knowlesi and was >17 times less toxic to human fibroblasts, as compared to oxythiamine. Increasing the extracellular thiamine concentration reduced the antiplasmodial activity of N3PT, consistent with N3PT competing with thiamine/TPP. A transgenic P. falciparum line overexpressing TPK was found to be hypersensitized to N3PT. Docking studies showed an almost identical binding mode in TPK between thiamine and N3PT. Furthermore, we show that [3H]thiamine accumulation, resulting from a combination of transport and metabolism, in isolated parasites is reduced by N3PT. Treatment of P. berghei-infected mice with 200 mg/kg/day N3PT reduced their parasitemia, prolonged their time to malaria symptoms, and appeared to be non-toxic to mice. Collectively, our studies are consistent with N3PT competing with thiamine for TPK binding and inhibiting parasite proliferation by reducing TPP production, and/or being converted into a TPP antimetabolite that inhibits TPP-dependent enzymes.
Collapse
Affiliation(s)
- Imam Fathoni
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Terence C. S. Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alex H. Y. Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Finian J. Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
4
|
Devi S, Negi S, Tandel N, Dalai SK, Tyagi RK. Oleuropein: a viable therapeutic option for malaria and cancer. Drug Discov Today 2024; 30:104254. [PMID: 39608487 DOI: 10.1016/j.drudis.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Oleuropein (OLP) holds promise as a therapeutic candidate for both Plasmodium falciparum infection and cancer. It modulates the phosphoinositide 3-kinase (PI3K)-Akt1 signaling pathway to regulate inflammation and restore immune homeostasis. Moreover, it influences the cell death/autophagy axis, along with increasing the antimalarial efficacy of artemisinin. Our findings indicate that the anti-breast-cancer effect of OLP could be mediated by regulating the balance of T helper 17 and regulatory T cells. Additionally, we discuss the use of hematopoietic-stem-cell-transplanted immunodeficient mice with a humanized immune system for validating the antimalarial activity, autophagy and anticancer activity of OLP.
Collapse
Affiliation(s)
- Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Nikunj Tandel
- CSIR-Centre For Cellular & Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Gujarat 382481, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Alghamdi JM, Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Recent Advances in the Treatment of Malaria. Pharmaceutics 2024; 16:1416. [PMID: 39598540 PMCID: PMC11597227 DOI: 10.3390/pharmaceutics16111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Malaria is still one of the major global health challenges affecting millions annually, particularly in non-Mediterranean Africa and Southeast Asia. Over the past two decades, substantial progress has been made in reducing malaria-related morbidity and mortality, primarily due to advancements in antimalarial therapeutics. This review provides a comprehensive overview of recent developments in malaria treatment, focusing on the evolution of drug therapies, mechanisms of action, and emerging resistance patterns. The cornerstone of current treatment strategies is artemisinin-based combination therapies (ACTs), which have proven highly effective against P. falciparum and P. vivax, the most prevalent malaria-causing parasites. However, the onset of artemisinin resistance, particularly in Southeast Asian countries, poses a significant threat to these gains. Additionally, other antimalarial classes, including quinine derivatives, 8-aminoquinolines, and antifolate drugs, are examined for their efficacy, resistance mechanisms, and future potential. This review also discusses the challenges associated with drug resistance, the genetic underpinnings of resistance in malaria parasites, and the implications for future treatment protocols. Furthermore, the review examines combinational therapies, such as triple artemisinin combination therapies (TACTs), and vaccines that are approved or in development to circumvent resistance issues. The need for continuous surveillance, innovative therapeutic strategies, and advances in novel antimalarial therapeutic agents is emphasized to sustain and further progress in the control of malaria and its eventual eradication.
Collapse
Affiliation(s)
- Jawaher M. Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh 13242, Saudi Arabia;
| | - Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
6
|
Tadege G, Dagne A, Bizuneh GK, Abebe D, Nureye D. Efficacy of Albizia malacophylla (A.Rich.) Walp. (Leguminosae) methanol (80%) leaf extract and solvent fractions against Plasmodium berghei-induced malaria in mice model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118413. [PMID: 38824975 DOI: 10.1016/j.jep.2024.118413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Getnet Tadege
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Northwest, Ethiopia.
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Northwest, Ethiopia
| | - Gizachew Kassahun Bizuneh
- Department of Pharmacognosy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Northwest, Ethiopia.
| | - Dejen Nureye
- School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia; School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Southwest, Ethiopia
| |
Collapse
|
7
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Tripathi J, Stoklasa M, Nayak S, En Low K, Qian Hui Lee E, Duong Tien QH, Rénia L, Malleret B, Bozdech Z. The artemisinin-induced dormant stages of Plasmodium falciparum exhibit hallmarks of cellular quiescence/senescence and drug resilience. Nat Commun 2024; 15:7485. [PMID: 39209862 PMCID: PMC11362153 DOI: 10.1038/s41467-024-51846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Recrudescent infections with the human malaria parasite, Plasmodium falciparum, presented traditionally the major setback of artemisinin-based monotherapies. Although the introduction of artemisinin combination therapies (ACT) largely solved the problem, the ability of artemisinin to induce dormant parasites still poses an obstacle for current as well as future malaria chemotherapeutics. Here, we use a laboratory model for induction of dormant P. falciparum parasites and characterize their transcriptome, drug sensitivity profile, and cellular ultrastructure. We show that P. falciparum dormancy requires a ~ 5-day maturation process during which the genome-wide gene expression pattern gradually transitions from the ring-like state to a unique form. The transcriptome of the mature dormant stage carries hallmarks of both cellular quiescence and senescence, with downregulation of most cellular functions associated with growth and development and upregulation of selected metabolic functions and DNA repair. Moreover, the P. falciparum dormant stage is considerably more resistant to antimalaria drugs compared to the fast-growing asexual stages. Finally, the irregular cellular ultrastructure further suggests unique properties of this developmental stage of the P. falciparum life cycle that should be taken into consideration by malaria control strategies.
Collapse
Affiliation(s)
- Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| | - Michal Stoklasa
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Erica Qian Hui Lee
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Quang Huy Duong Tien
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Laurent Rénia
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 636921, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Benoit Malleret
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Tukwasibwe S, Garg S, Katairo T, Asua V, Kagurusi BA, Mboowa G, Crudale R, Tumusiime G, Businge J, Alula D, Kasozi J, Wadembere I, Ssewanyana I, Arinaitwe E, Nankabirwa JI, Nsobya SL, Kamya MR, Greenhouse B, Dorsey G, Bailey JA, Briggs J, Conrad MD, Rosenthal PJ. Varied Prevalence of Antimalarial Drug Resistance Markers in Different Populations of Newly Arrived Refugees in Uganda. J Infect Dis 2024; 230:497-504. [PMID: 38874098 PMCID: PMC11326807 DOI: 10.1093/infdis/jiae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Uganda Christian University, Mukono, Uganda
| | - Shreeya Garg
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Gerald Mboowa
- Infectious Diseases Institute, Kampala, Uganda
- Africa Centers for Disease Control and Prevention, Addis Ababa, Ethiopia
| | | | | | | | - David Alula
- Medical Teams International, Kampala, Uganda
| | - Julius Kasozi
- United Nations High Commissioner for Refugees, Kampala, Uganda
| | | | | | | | - Joaniter I Nankabirwa
- Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses R Kamya
- Makerere University, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jessica Briggs
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Ishengoma DS, Gosling R, Martinez-Vega R, Beshir KB, Bailey JA, Chimumbwa J, Sutherland C, Conrad MD, Tadesse FG, Juliano JJ, Kamya MR, Mbacham WF, Ménard D, Rosenthal PJ, Raman J, Tatarsky A, Tessema SK, Fidock DA, Djimde AA. Urgent action is needed to confront artemisinin partial resistance in African malaria parasites. Nat Med 2024; 30:1807-1808. [PMID: 38710833 DOI: 10.1038/d41591-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
|
11
|
Krstulović L, Rastija V, Pessanha de Carvalho L, Held J, Rajić Z, Živković Z, Bajić M, Glavaš-Obrovac L. Design, Synthesis, Antitumor, and Antiplasmodial Evaluation of New 7-Chloroquinoline-Benzimidazole Hybrids. Molecules 2024; 29:2997. [PMID: 38998949 PMCID: PMC11243327 DOI: 10.3390/molecules29132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Newly synthesized 7-chloro-4-aminoquinoline-benzimidazole hybrids were characterized by NMR and elemental analysis. Compounds were tested for their effects on the growth of the non-tumor cell line MRC-5 (human fetal lung fibroblasts) and carcinoma (HeLa and CaCo-2), leukemia, and lymphoma (Hut78, THP-1, and HL-60) cell lines. The obtained results, expressed as the concentration at which 50% inhibition of cell growth is achieved (IC50 value), show that the tested compounds affect cell growth differently depending on the cell line and the applied dose (IC50 ranged from 0.2 to >100 µM). Also, the antiplasmodial activity of these hybrids was evaluated against two P. falciparum strains (Pf3D7 and PfDd2). The tested compounds showed potent antiplasmodial activity, against both strains, at nanomolar concentrations. Quantitative structure-activity relationship (QSAR) analysis resulted in predictive models for antiplasmodial activity against the 3D7 strain (R2 = 0.886; Rext2 = 0.937; F = 41.589) and Dd2 strain (R2 = 0.859; Rext2 = 0.878; F = 32.525) of P. falciparum. QSAR models identified the structural features of these favorable effects on antiplasmodial activities.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia;
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia;
| | - Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstrasse 27, D-72074 Tuebingen, Germany; (L.P.d.C.); (J.H.)
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstrasse 27, D-72074 Tuebingen, Germany; (L.P.d.C.); (J.H.)
- Partner Site Tuebingen, German Center for Infection Research (DZIF),Wilhelmstrasse 27, D-72074 Tuebingen, Germany
| | - Zrinka Rajić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia;
| | - Zorislava Živković
- General County Hospital of Našice, Bana Jelačića 10, HR-31500 Našice, Croatia;
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia;
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
12
|
Maiti M, Roy U. Space-time clusters and co-occurrence of Plasmodium vivax and Plasmodium falciparum malaria in West Bengal, India. Malar J 2024; 23:189. [PMID: 38880891 PMCID: PMC11181534 DOI: 10.1186/s12936-024-05015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Malaria, a prominent vector borne disease causing over a million annual cases worldwide, predominantly affects vulnerable populations in the least developed regions. Despite their preventable and treatable nature, malaria remains a global public health concern. In the last decade, India has faced a significant decline in malaria morbidity and mortality. As India pledged to eliminate malaria by 2030, this study examined a decade of surveillance data to uncover space-time clustering and seasonal trends of Plasmodium vivax and Plasmodium falciparum malaria cases in West Bengal. METHODS Seasonal and trend decomposition using Loess (STL) was applied to detect seasonal trend and anomaly of the time series. Univariate and multivariate space-time cluster analysis of both malaria cases were performed at block level using Kulldorff's space-time scan statistics from April 2011 to March 2021 to detect statistically significant space-time clusters. RESULTS From the time series decomposition, a clear seasonal pattern is visible for both malaria cases. Statistical analysis indicated considerable high-risk P. vivax clusters, particularly in the northern, central, and lower Gangetic areas. Whereas, P. falciparum was concentrated in the western region with a significant recent transmission towards the lower Gangetic plain. From the multivariate space-time scan statistics, the co-occurrence of both cases were detected with four significant clusters, which signifies the regions experiencing a greater burden of malaria cases. CONCLUSIONS Seasonal trends from the time series decomposition analysis show a gradual decline for both P. vivax and P. falciparum cases in West Bengal. The space-time scan statistics identified high-risk blocks for P. vivax and P. falciparum malaria and its co-occurrence. Both malaria types exhibit significant spatiotemporal variations over the study area. Identifying emerging high-risk areas of P. falciparum malaria over the Gangetic belt indicates the need for more research for its spatial shifting. Addressing the drivers of malaria transmission in these diverse clusters demands regional cooperation and strategic strategies, crucial steps towards overcoming the final obstacles in malaria eradication.
Collapse
Affiliation(s)
- Meghna Maiti
- Department of Geography, University of Calcutta, Kolkata, 700019, India.
| | - Utpal Roy
- Department of Geography, University of Calcutta, Kolkata, 700019, India
| |
Collapse
|
13
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
14
|
Small-Saunders JL, Sinha A, Bloxham TS, Hagenah LM, Sun G, Preiser PR, Dedon PC, Fidock DA. tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum. Nat Microbiol 2024; 9:1483-1498. [PMID: 38632343 PMCID: PMC11153160 DOI: 10.1038/s41564-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Plasmodium falciparum artemisinin (ART) resistance is driven by mutations in kelch-like protein 13 (PfK13). Quiescence, a key aspect of resistance, may also be regulated by a yet unidentified epigenetic pathway. Transfer RNA modification reprogramming and codon bias translation is a conserved epitranscriptomic translational control mechanism that allows cells to rapidly respond to stress. We report a role for this mechanism in ART-resistant parasites by combining tRNA modification, proteomic and codon usage analyses in ring-stage ART-sensitive and ART-resistant parasites in response to drug. Post-drug, ART-resistant parasites differentially hypomodify mcm5s2U on tRNA and possess a subset of proteins, including PfK13, that are regulated by Lys codon-biased translation. Conditional knockdown of the terminal s2U thiouridylase, PfMnmA, in an ART-sensitive parasite background led to increased ART survival, suggesting that hypomodification can alter the parasite ART response. This study describes an epitranscriptomic pathway via tRNA s2U reprogramming that ART-resistant parasites may employ to survive ART-induced stress.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ameya Sinha
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Talia S Bloxham
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Das A, Rajkhowa S, Sinha S, Zaki MEA. Unveiling potential repurposed drug candidates for Plasmodium falciparum through in silico evaluation: A synergy of structure-based approaches, structure prediction, and molecular dynamics simulations. Comput Biol Chem 2024; 110:108048. [PMID: 38471353 DOI: 10.1016/j.compbiolchem.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The rise of drug resistance in Plasmodium falciparum, rendering current treatments ineffective, has hindered efforts to eliminate malaria. To address this issue, the study employed a combination of Systems Biology approach and a structure-based pharmacophore method to identify a target against P. falciparum. Through text mining, 448 genes were extracted, and it was discovered that plasmepsins, found in the Plasmodium genus, play a crucial role in the parasite's survival. The metabolic pathways of these proteins were determined using the PlasmoDB genomic database and recreated using CellDesigner 4.4.2. To identify a potent target, Plasmepsin V (PF13_0133) was selected and examined for protein-protein interactions (PPIs) using the STRING Database. Topological analysis and global-based methods identified PF13_0133 as having the highest centrality. Moreover, the static protein knockout PPIs demonstrated the essentiality of PF13_0133 in the modeled network. Due to the unavailability of the protein's crystal structure, it was modeled and subjected to a molecular dynamics simulation study. The structure-based pharmacophore modeling utilized the modeled PF13_0133 (PfPMV), generating 10 pharmacophore hypotheses with a library of active and inactive compounds against PfPMV. Through virtual screening, two potential candidates, hesperidin and rutin, were identified as potential drugs which may be repurposed as potential anti-malarial agents.
Collapse
Affiliation(s)
- Abhichandan Das
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Subrata Sinha
- Department of Computational Sciences, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
17
|
Thu AM, Phyo AP, Pateekhum C, Rae JD, Landier J, Parker DM, Delmas G, Watthanaworawit W, McLean ARD, Arya A, Reyes A, Li X, Miotto O, Soe K, Ashley EA, Dondorp A, White NJ, Day NP, Anderson TJC, Imwong M, Nosten F, Smithuis F. Molecular markers of artemisinin resistance during falciparum malaria elimination in Eastern Myanmar. Malar J 2024; 23:138. [PMID: 38720269 PMCID: PMC11078751 DOI: 10.1186/s12936-024-04955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.
Collapse
Affiliation(s)
- Aung Myint Thu
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Chanapat Pateekhum
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Jade D Rae
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jordi Landier
- IRD, Aix Marseille Univ, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology & Biostatistics, University of California, Irvine, CE, 92617, USA
| | - Gilles Delmas
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Alistair R D McLean
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar
| | - Ann Arya
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Kyaw Soe
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tim J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, P. O. Box 10400, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Frank Smithuis
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar
| |
Collapse
|
18
|
Sharma P, Tandel N, Kumar R, Negi S, Sharma P, Devi S, Saxena K, Chaudhary NR, Saini S, Kumar R, Chandel BS, Sijwali PS, Tyagi RK. Oleuropein activates autophagy to circumvent anti-plasmodial defense. iScience 2024; 27:109463. [PMID: 38562521 PMCID: PMC10982566 DOI: 10.1016/j.isci.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Antimalarial drug resistance and unavailability of effective vaccine warrant for newer drugs and drug targets. Hence, anti-inflammatory activity of phyto-compound (oleuropein; OLP) was determined in antigen (LPS)-stimulated human THP-1 macrophages (macrophage model of inflammation; MMI). Reduction in the inflammation was controlled by the PI3K-Akt1 signaling to establish the "immune-homeostasis." Also, OLP treatment influenced the cell death/autophagy axis leading to the modulated inflammation for extended cell survival. The findings with MII prompted us to detect the antimalarial activity of OLP in the wild type (3D7), D10-expressing GFP-Atg18 parasite, and chloroquine-resistant (Dd2) parasite. OLP did not show the parasite inhibition in the routine in vitro culture of P. falciparum whereas OLP increased the antimalarial activity of artesunate. The molecular docking of autophagy-related proteins, investigations with MMI, and parasite inhibition assays indicated that the host activated the autophagy to survive OLP pressure. The challenge model of P. berghei infection showed to induce autophagy for circumventing anti-plasmodial defenses.
Collapse
Affiliation(s)
- Praveen Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad 382481, India
| | - Rajinder Kumar
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Prakriti Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Kanika Saxena
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, India
| | - Neil Roy Chaudhary
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sheetal Saini
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Bharat Singh Chandel
- Department of Animal Biotechnology, College of Veterinary Science and AH, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506, India
| | - Puran S. Sijwali
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Lucky AB, Wang C, Li X, Liang X, Muneer A, Miao J. Transforming the CRISPR/dCas9-based gene regulation technique into a forward screening tool in Plasmodium falciparum. iScience 2024; 27:109602. [PMID: 38617559 PMCID: PMC11015506 DOI: 10.1016/j.isci.2024.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/11/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
It is a significant challenge to assess the functions of many uncharacterized genes in human malaria parasites. Here, we present a genetic screening tool to assess the contribution of essential genes from Plasmodium falciparum by the conditional CRISPR-/deadCas9-based interference and activation (i/a) systems. We screened both CRISPRi and CRISPRa sets, consisting of nine parasite lines per set targeting nine genes via their respective gRNAs. By conducting amplicon sequencing of gRNA loci, we identified the contribution of each targeted gene to parasite fitness upon drug (artemisinin, chloroquine) and stress (starvation, heat shock) treatment. The screening was highly reproducible, and the screening libraries were easily generated by transfection of mixed plasmids expressing different gRNAs. We demonstrated that this screening is straightforward, robust, and can provide a fast and efficient tool to study essential genes that have long presented a bottleneck in assessing their functions using existing genetic tools.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Azhar Muneer
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Legru A, Batista FA, Puszko AK, Bouillon A, Maurel M, Martinez M, Ejjoummany A, Ortega Varga L, Adler P, Méchaly A, Hadjadj M, Sosnowski P, Hopfgartner G, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Insights from structure-activity relationships and the binding mode of peptidic α-ketoamide inhibitors of the malaria drug target subtilisin-like SUB1. Eur J Med Chem 2024; 269:116308. [PMID: 38503166 DOI: 10.1016/j.ejmech.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 μM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 μM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.
Collapse
Affiliation(s)
- Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Ariel Méchaly
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France.
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
21
|
Somé AF, Conrad MD, Kabré Z, Fofana A, Yerbanga RS, Bazié T, Neya C, Somé M, Kagambega TJ, Legac J, Garg S, Bailey JA, Ouédraogo JB, Rosenthal PJ, Cooper RA. Ex vivo drug susceptibility and resistance mediating genetic polymorphisms of Plasmodium falciparum in Bobo-Dioulasso, Burkina Faso. Antimicrob Agents Chemother 2024; 68:e0153423. [PMID: 38411062 PMCID: PMC10989024 DOI: 10.1128/aac.01534-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.
Collapse
Affiliation(s)
- A. Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Melissa D. Conrad
- Department of Medicine, University of California, San Francisco, California, USA
| | - Zachari Kabré
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Aminata Fofana
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - R. Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Thomas Bazié
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Catherine Neya
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Myreille Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Tegawinde Josue Kagambega
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Shreeya Garg
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
22
|
Liu Q, Wang Y, Deng J, Yan W, Qin C, Du M, Liu M, Liu J. Association of temperature and precipitation with malaria incidence in 57 countries and territories from 2000 to 2019: A worldwide observational study. J Glob Health 2024; 14:04021. [PMID: 38385445 PMCID: PMC10882640 DOI: 10.7189/jogh.14.04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Background The transmission of malaria is known to be affected by climatic factors. However, existing studies on the impact of temperature and precipitation on malaria incidence offer no clear-cut conclusions, and there is a lack of research on a global scale. We aimed to estimate the association of temperature and precipitation with malaria incidence globally from 2000 to 2019. Methods We used meteorological data from the National Centers for Environmental Information and malaria incidence data from the Global Burden of Disease Study 2019 to calculate effect sizes through quasi-Poisson generalised linear models while controlling for confounders. Results 231.4 million malaria cases occurred worldwide in 2019. National annual average temperature and precipitation were associated with malaria incidence, with an increase in the age-standardised incidence rate (ASIR) of 2.01% (95% confidence interval (CI) = 2.00, 2.02) and 6.04% (95% CI = 6.00, 6.09) following one unit increase of national annual average temperature and precipitation. In subgroup analysis, we found that malaria incidence in Asian countries was most affected by temperature, while the incidence in African countries was most affected by precipitation (P < 0.05). Stratified by age, children under five were most affected by both temperature and precipitation (P < 0.05). We additionally found that the impact of the national annual average temperature on malaria incidence increased over time (P < 0.05). Conclusions We advocate for a comprehensive approach to malaria prevention, focussed on addressing the impact of climate factors through international collaboration, adaptive measures, and targeted interventions for vulnerable populations.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Haidian District, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Haidian District, Beijing, China
- Institute for Global Health and Development, Peking University, Haidian District, Beijing, China
| |
Collapse
|
23
|
Liu J, Fike KR, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2024; 121:e2320262121. [PMID: 38349879 PMCID: PMC10895272 DOI: 10.1073/pnas.2320262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | | | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
24
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
25
|
Hagenah LM, Dhingra SK, Small-Saunders JL, Qahash T, Willems A, Schindler KA, Rangel GW, Gil-Iturbe E, Kim J, Akhundova E, Yeo T, Okombo J, Mancia F, Quick M, Roepe PD, Llinás M, Fidock DA. Additional PfCRT mutations driven by selective pressure for improved fitness can result in the loss of piperaquine resistance and altered Plasmodium falciparum physiology. mBio 2024; 15:e0183223. [PMID: 38059639 PMCID: PMC10790694 DOI: 10.1128/mbio.01832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.
Collapse
Affiliation(s)
- Laura M. Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Tarrick Qahash
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andreas Willems
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel W. Rangel
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emiliya Akhundova
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
- Area Neuroscience - Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Viana Dos Santos MB, Costa Gontijo D, Alves do Nascimento MF, de Paula RC, Bezerra Bellei JC, Raimundo FO, Gorza Scopel KK, de Oliveira AB, Veras Mourão RH. In Vitro and in Vivo Antimalarial Activity, Cytotoxicity and Phytochemical HRMS 2 Profile of Plants from the Western Pará State, Brazilian Amazonia. Chem Biodivers 2024; 21:e202301082. [PMID: 38012088 DOI: 10.1002/cbdv.202301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Ethnopharmacology and botanical taxonomy are valid criteria used to selecting plants for antimalarial bioprospection purposes. Based on these two criteria, ethanol extracts of 11 plants from Santarém City vicinities, Western Pará State, Brazilian Amazonia, had their in vitro antiplasmodial activity against chloroquine-resistant Plasmodium falciparum (W2 clone) assessed by the PfLDH method, whereas their cytotoxicity to HepG2-A16 cells was assessed through MTT assay. Acmella oleracea, Siparuna krukovii and Trema micrantha extracts disclosed the highest rate of parasite growth inhibition (90 %) in screening tests. In vivo antimalarial assays were conducted with these extracts against Plasmodium berghei (NK 65 strain) infected mice. Inhibition rate of parasite multiplication ranged from 41.4 % to 60.9 % at the lowest extract dose (25 mg/kg). HPLC-ESI-HRMS2 analyses allowed the putative identification of alkylamides, fatty acids, flavonoid glycosides and alkaloids in ethanol extracts deriving from these three plant species. Results pointed towards A. oleracea flowers ethanol extract as the most promising potential candidate to preclinical studies aiming the development of antimalarial phytomedicine.
Collapse
Affiliation(s)
- Maria Beatriz Viana Dos Santos
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Douglas Costa Gontijo
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
- Divisão de Química Orgânica, Instituto de Química, Universidade de Brasília, s/n, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Maria Fernanda Alves do Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Renata Cristina de Paula
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Jessica Correia Bezerra Bellei
- Department of Parasitology, Microbiology and Immunology and Programa de Pós-Graduação em Ciências Biológicas, Research Centre of Parasitology, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900, Juiz de Fora, MG, Brazil
| | - Felipe Oliveira Raimundo
- Department of Parasitology, Microbiology and Immunology and Programa de Pós-Graduação em Ciências Biológicas, Research Centre of Parasitology, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900, Juiz de Fora, MG, Brazil
| | - Kézia Katiani Gorza Scopel
- Department of Parasitology, Microbiology and Immunology and Programa de Pós-Graduação em Ciências Biológicas, Research Centre of Parasitology, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900, Juiz de Fora, MG, Brazil
| | - Alaíde Braga de Oliveira
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
27
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
28
|
Yang B, Cheng Z, Luo L, Cheng K, Gan S, Shi Y, Liu C, Wang D. Comparative analysis of codon usage patterns of Plasmodium helical interspersed subtelomeric (PHIST) proteins. Front Microbiol 2023; 14:1320060. [PMID: 38156001 PMCID: PMC10752978 DOI: 10.3389/fmicb.2023.1320060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Plasmodium falciparum is a protozoan parasite that causes the most severe form of malaria in humans worldwide, which is predominantly found in sub-Saharan Africa, where it is responsible for the majority of malaria-related deaths. Plasmodium helical interspersed subtelomeric (PHIST) proteins are a family of proteins, with a conserved PHIST domain, which are typically located at the subtelomeric regions of the Plasmodium falciparum chromosomes and play crucial roles in the interaction between the parasite and its human host, such as cytoadherence, immune evasion, and host cell remodeling. However, the specific utilization of synonymous codons by PHIST proteins in Plasmodium falciparum is still unknown. Methods Codon usage bias (CUB) refers to the unequal usage of synonymous codons during translation, resulting in over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact various cellular processes, including protein expression levels and genetic variation. To investigate this, the CUB of 88 PHIST protein coding sequences (CDSs) from 5 subgroups were analyzed in this study. Results The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis identified a higher occurrence of AT-ended codons (AGA and UUA) in PHIST proteins of Plasmodium falciparum. The average effective number of codons (ENC) for these PHIST proteins was 36.69, indicating a weak codon preference among them, as it was greater than 35. Additionally, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) revealed the influence of base composition and codon usage indices on codon usage bias, with GC1 having a significant impact in this study. Furthermore, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis provided additional evidence that natural selection plays a crucial role in determining codon bias in PHIST proteins. Conclusion In conclusion, this study has enhanced our understanding of the characteristics of codon usage and genetic evolution in PHIST proteins, thereby providing data foundation for further research on antimalarial drugs or vaccines.
Collapse
Affiliation(s)
- Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Ziwen Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Like Luo
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Kuo Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
29
|
Waithera MW, Sifuna MW, Kimani SK, Takei M. Drug selection pressure and fitness cost for artemether-resistant Plasmodium berghei ANKA parasites in vivo. Int J Antimicrob Agents 2023; 62:107012. [PMID: 37865152 DOI: 10.1016/j.ijantimicag.2023.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND The clinical use of artemisinin-based combination therapies is threatened by increasing failure rates due to the emergence and spread of multiple drug resistance genes in most human Plasmodium strains. The aim of this study was to generate artemether-resistant (AMR) parasites from Plasmodium berghei ANKA (AMS), and determine their fitness cost. METHODS Artemether resistance was generated by increasing drug pressure doses gradually for 9 months. Effective doses (ED50 and ED90) were determined using the 4-day suppressive test, and the indices of resistance (I) at 50% and 90% (I50 and I90) were determined using the ratio of either ED50 or ED90 of AMR to AMS, respectively. The stability of the AMR parasites was evaluated by: five drug-free passages (5DFPs), 3 months of cryopreservation (CP), and drug-free serial passages (DFSPs) for 4 months. Analysis of variance was used to compare differences in growth rates between AMR and AMS with 95% confidence intervals. RESULTS ED50 and ED90 of AMS were 0.61 and 3.43 mg/kg/day respectively. I50 and I90 after 20 cycles of artemether selection pressure were 19.67 and 21.45, respectively; 5DFP values were 39.16 and 15.27, respectively; 3-month CP values were 29.36 and 10.79, respectively; and DFSP values were 31.34 and 12.29, respectively. The mean parasitaemia value of AMR (24.70% ± 3.60) relative to AMS (37.66% ± 3.68) at Day 7 post infection after DFSPs revealed a fitness cost of 34.41%. CONCLUSION A moderately stable AMRP. berghei line was generated. Known and unknown mutations may be involved in modulating artemether resistance, and therefore molecular investigations are recommended.
Collapse
Affiliation(s)
- Milka Wambui Waithera
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Division of Fundamental Engineering, Chiba University, Chiba, Japan.
| | - Martin Wekesa Sifuna
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Division of Fundamental Engineering, Chiba University, Chiba, Japan
| | | | - Masahiro Takei
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Division of Fundamental Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
30
|
Si W, Zhao Y, Qin X, Huang Y, Yu J, Liu X, Li Y, Yan X, Zhang Q, Sun J. What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence? Parasit Vectors 2023; 16:421. [PMID: 37974285 PMCID: PMC10652512 DOI: 10.1186/s13071-023-06024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.
Collapse
Affiliation(s)
- Wenwen Si
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuemeng Zhao
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xixi Qin
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yixuan Huang
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jing Yu
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiao Liu
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yanna Li
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoli Yan
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qingfeng Zhang
- School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Jun Sun
- School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
31
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Ansbro MR, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Fairhurst RM, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. SCIENCE ADVANCES 2023; 9:eadi2364. [PMID: 37939186 PMCID: PMC10631731 DOI: 10.1126/sciadv.adi2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Davin Hong
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leila S. Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E. Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan R. Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
32
|
Mafethe O, Ntseane T, Dongola TH, Shonhai A, Gumede NJ, Mokoena F. Pharmacophore Model-Based Virtual Screening Workflow for Discovery of Inhibitors Targeting Plasmodium falciparum Hsp90. ACS OMEGA 2023; 8:38220-38232. [PMID: 37867657 PMCID: PMC10586269 DOI: 10.1021/acsomega.3c04494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
Plasmodium falciparum causes the most lethal and widespread form of malaria. Eradication of malaria remains a priority due to the increasing number of cases of drug resistance. The heat shock protein 90 of P. falciparum (PfHsp90) is a validated drug target essential for parasite survival. Most PfHsp90 inhibitors bind at the ATP binding pocket found in its N-terminal domain, abolishing the chaperone's activities, which leads to parasite death. The challenge is that the NTD of PfHsp90 is highly conserved, and its disruption requires selective inhibitors that can act without causing off-target human Hsp90 activities. We endeavored to discover selective inhibitors of PfHsp90 using pharmacophore modeling, virtual screening protocols, induced fit docking (IFD), and cell-based and biochemical assays. The pharmacophore model (DHHRR), composed of one hydrogen bond donor, two hydrophobic groups, and two aromatic rings, was used to mine commercial databases for initial hits, which were rescored to 20 potential hits using IFD. Eight of these compounds displayed moderate to high activity toward P. falciparum NF54 (i.e., IC50s ranging from 6.0 to 0.14 μM) and averaged >10 in terms of selectivity indices toward CHO and HepG2 cells. Additionally, four compounds inhibited PfHsp90 with greater selectivity than a known inhibitor, harmine, and bound to PfHsp90 with weak to moderate affinity. Our findings support the use of a pharmacophore model to discover diverse chemical scaffolds such as FM2, FM6, F10, and F11 exhibiting anti-Plasmodium activities and serving as valuable new PfHsp90 inhibitors. Optimization of these hits may enable their development into potent leads for future antimalarial drugs.
Collapse
Affiliation(s)
- Ofentse Mafethe
- Department
of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Tlhalefo Ntseane
- Department
of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | | | - Addmore Shonhai
- Department
of Biochemistry and Microbiology, University
of Venda, Thohoyandou 0950, South Africa
| | - Njabulo Joyfull Gumede
- Department
of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University (WSU), Private Bag X01, Umthatha, Eastern Cape 4099, South Africa
| | - Fortunate Mokoena
- Department
of Biochemistry, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
33
|
Fola AA, Feleke SM, Mohammed H, Brhane BG, Hennelly CM, Assefa A, Crudal RM, Reichert E, Juliano JJ, Cunningham J, Mamo H, Solomon H, Tasew G, Petros B, Parr JB, Bailey JA. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat Microbiol 2023; 8:1911-1919. [PMID: 37640962 PMCID: PMC10522486 DOI: 10.1038/s41564-023-01461-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Diagnosis and treatment of Plasmodium falciparum infections are required for effective malaria control and are pre-requisites for malaria elimination efforts; hence we need to monitor emergence, evolution and spread of drug- and diagnostics-resistant parasites. We deep sequenced key drug-resistance mutations and 1,832 SNPs in the parasite genomes of 609 malaria cases collected during a diagnostic-resistance surveillance study in Ethiopia. We found that 8.0% (95% CI 7.0-9.0) of malaria cases were caused by P. falciparum carrying the candidate artemisinin partial-resistance kelch13 (K13) 622I mutation, which was less common in diagnostic-resistant parasites mediated by histidine-rich proteins 2 and 3 (pfhrp2/3) deletions than in wild-type parasites (P = 0.03). Identity-by-descent analyses showed that K13 622I parasites were significantly more related to each other than to wild type (P < 0.001), consistent with recent expansion and spread of this mutation. Pfhrp2/3-deleted parasites were also highly related, with evidence of clonal transmissions at the district level. Of concern, 8.2% of K13 622I parasites also carried the pfhrp2/3 deletions. Close monitoring of the spread of combined drug- and diagnostic-resistant parasites is needed.
Collapse
Affiliation(s)
- Abebe A Fola
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | | | | | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca M Crudal
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Emily Reichert
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jonathan B Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
35
|
de Haan F, Amaratunga C, Thi VAC, Orng LH, Vonglokham M, Quang TN, Lek D, Boon WPC, Dondorp AM, Moors EHM. Strategies for deploying triple artemisinin-based combination therapy in the Greater Mekong Subregion. Malar J 2023; 22:261. [PMID: 37674172 PMCID: PMC10483751 DOI: 10.1186/s12936-023-04666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND This is a qualitative study to identify implementation challenges for deploying triple artemisinin-based combination therapy (TACT) in the Greater Mekong Subregion (GMS) of Southeast Asia and to explore strategies to overcome these challenges. METHODS In-depth interviews were conducted in three countries that have repeatedly been confronted with ACT failures: Cambodia, Vietnam, and Lao PDR. Thirty-nine key stakeholders in the healthcare systems in these countries were interviewed. One participatory workshop was conducted in Cambodia, where scenarios for potential TACT deployment were discussed. RESULTS The results section is organized around four strategic themes that emerged from the data: policy support, data and evidence, logistics and operation, and downstream engagement. The study revealed that countries in the GMS currently rely on ACT to eliminate Plasmodium falciparum malaria by 2025. TACT is, however, considered to be a useful backup strategy in case of future treatment failures and to prevent the re-establishment of malaria. The study showed that a major challenge ahead is to engage decision makers and healthcare providers into deploying TACT, given the low case incidence of falciparum malaria in the GMS. Interview respondents were also skeptical whether healthcare providers would be willing to engage in new therapies for a disease they hardly encounter anymore. Hence, elaborate information dissemination strategies were considered appropriate and these strategies should especially target village malaria workers. Respondents proposed several regulatory and programmatic strategies to anticipate the formation of TACT markets in the GMS. These strategies include early dossier submission to streamline regulatory procedures, early stakeholder engagement strategies to shorten implementation timelines, and inclusion of TACT as second-line therapy to accelerate their introduction in case they are urgently needed. CONCLUSIONS This paper presents a qualitative study to identify implementation challenges for deploying TACT in the GMS and to explore strategies to overcome these challenges. The findings could benefit researchers and decision makers in strategizing towards potential future deployment of TACT in the GMS to combat artemisinin and partner drug resistance.
Collapse
Affiliation(s)
- Freek de Haan
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
| | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Van Anh Cao Thi
- The University of North Carolina Project in Vietnam, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Long Heng Orng
- Mahidol Oxford Tropical Medicine Research Unit, Epidemiology Department, Mahidol University, Bangkok, Thailand
| | - Manithong Vonglokham
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao PDR
| | - Thieu Nguyen Quang
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Wouter P C Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ellen H M Moors
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Oboh-Imafidon MA, Zimmerman PA. Plasmodium vivax in Sub-Saharan Africa: An Advancing Threat to Malaria Elimination? Am J Trop Med Hyg 2023; 109:497-498. [PMID: 37640286 PMCID: PMC10484284 DOI: 10.4269/ajtmh.23-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Mary Aigbiremo Oboh-Imafidon
- Postdoctoral Research Fellow I, Malaria Population Biology, Disease Control and Elimination Theme, Medical Research Council, The Gambia Unit at London School of Hygiene and Tropical Medicine, Serrekunda, Gambia
| | - Peter A. Zimmerman
- Professor of International Health, Genetics and Biology, The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Sharma S, Ali ME. How do the mutations in PfK13 protein promote anti-malarial drug resistance? J Biomol Struct Dyn 2023; 41:7329-7338. [PMID: 36153000 DOI: 10.1080/07391102.2022.2120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Plasmodium falciparum develops resistance to artemisinin upon exposure to the anti-malarial drug. Various mutations in the Plasmodium falciparum Kelch13 (PfK13) protein such as Y493H, R539T, I543T and C580Y have been associated with anti-malarial drug resistance. These mutations impede the regular ubiquitination process that eventually invokes drug resistance. However, the relationship between the mutation and the mechanism of drug resistance has not yet been fully elucidated. The comparative protein dynamics are studied by performing the classical molecular dynamics (MD) simulations and subsequent analysis of the trajectories adopting root-mean-square fluctuations, the secondary-structure predictions and the dynamical cross-correlation matrix analysis tools. Here, we observed that the mutations in the Kelch-domain do not have any structural impact on the mutated site; however, it significantly alters the overall dynamics of the protein. The loop-region of the BTB-domain especially for Y493H and C580Y mutants is found to have the enhanced dynamical fluctuations. The enhanced fluctuations in the BTB-domain could affect the protein-protein (PfK13-Cullin) binding interactions in the ubiquitination process and eventually lead to anti-malarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| |
Collapse
|
38
|
Conrad MD, Asua V, Garg S, Giesbrecht D, Niaré K, Smith S, Namuganga JF, Katairo T, Legac J, Crudale RM, Tumwebaze PK, Nsobya SL, Cooper RA, Kamya MR, Dorsey G, Bailey JA, Rosenthal PJ. Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda. N Engl J Med 2023; 389:722-732. [PMID: 37611122 PMCID: PMC10513755 DOI: 10.1056/nejmoa2211803] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
BACKGROUND Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Melissa D Conrad
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Victor Asua
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Shreeya Garg
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - David Giesbrecht
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Karamoko Niaré
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Sawyer Smith
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Jane F Namuganga
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Thomas Katairo
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Jennifer Legac
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Rebecca M Crudale
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Patrick K Tumwebaze
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Samuel L Nsobya
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Roland A Cooper
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Moses R Kamya
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Grant Dorsey
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Jeffrey A Bailey
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| | - Philip J Rosenthal
- From the University of California, San Francisco, San Francisco (M.D.C., S.G., J.L., G.D., P.J.R.); the Infectious Diseases Research Collaboration (V.A., J.F.N., T.K., P.K.T., S.L.N., M.R.K.) and Makerere University (M.R.K.) - both in Kampala, Uganda; the University of Tübingen, Tübingen, Germany (V.A.); Brown University, Providence, RI (D.G., K.N., S.S., R.M.C., J.A.B.); and Dominican University of California, San Rafael (R.A.C.)
| |
Collapse
|
39
|
Biabi MFAB, Fogang B, Essangui E, Maloba F, Donkeu C, Keumoe R, Cheteug G, Magoudjou N, Slam C, Kemleu S, Efange N, Perraut R, Nsango SE, Eboumbou Moukoko CE, Assam JPA, Etoa FX, Lamb T, Ayong L. High Prevalence of Polyclonal Plasmodium falciparum Infections and Association with Poor IgG Antibody Responses in a Hyper-Endemic Area in Cameroon. Trop Med Infect Dis 2023; 8:390. [PMID: 37624328 PMCID: PMC10459087 DOI: 10.3390/tropicalmed8080390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023] Open
Abstract
Malaria remains a major public health problem worldwide, with eradication efforts thwarted by drug and insecticide resistance and the lack of a broadly effective malaria vaccine. In continuously exposed communities, polyclonal infections are thought to reduce the risk of severe disease and promote the establishment of asymptomatic infections. We sought to investigate the relationship between the complexity of P. falciparum infection and underlying host adaptive immune responses in an area with a high prevalence of asymptomatic parasitaemia in Cameroon. A cross-sectional study of 353 individuals aged 2 to 86 years (median age = 16 years) was conducted in five villages in the Centre Region of Cameroon. Plasmodium falciparum infection was detected by multiplex nested PCR in 316 samples, of which 278 were successfully genotyped. Of these, 60.1% (167/278) were polyclonal infections, the majority (80.2%) of which were from asymptomatic carriers. Host-parasite factors associated with polyclonal infection in the study population included peripheral blood parasite density, participant age and village of residence. The number of parasite clones per infected sample increased significantly with parasite density (r = 0.3912, p < 0.0001) but decreased with participant age (r = -0.4860, p < 0.0001). Parasitaemia and the number of clones per sample correlated negatively with total plasma levels of IgG antibodies to three highly reactive P. falciparum antigens (MSP-1p19, MSP-3 and EBA175) and two soluble antigen extracts (merozoite and mixed stage antigens). Surprisingly, we observed no association between the frequency of polyclonal infection and susceptibility to clinical disease as assessed by the recent occurrence of malarial symptoms or duration since the previous fever episode. Overall, the data indicate that in areas with the high perennial transmission of P. falciparum, parasite polyclonality is dependent on underlying host antibody responses, with the majority of polyclonal infections occurring in persons with low levels of protective anti-plasmodial antibodies.
Collapse
Affiliation(s)
- Marie Florence A Bite Biabi
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biochemistry, Faculty of Science, University of Douala, Douala BP 2701, Cameroon
| | - Balotin Fogang
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde BP 812, Cameroon
| | - Estelle Essangui
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala BP 2701, Cameroon
| | - Franklin Maloba
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
| | - Christiane Donkeu
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde BP 812, Cameroon
| | - Rodrigue Keumoe
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde BP 812, Cameroon
| | - Glwadys Cheteug
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Medical Laboratory Sciences, Faculty of Science, University of Buea, Buea BP 63, Cameroon
| | - Nina Magoudjou
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde BP 812, Cameroon
| | - Celine Slam
- Department of Pathology, School of Medicine, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA;
| | - Sylvie Kemleu
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
| | - Noella Efange
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biochemistry, Faculty of Science, University of Buea, Buea BP 63, Cameroon
| | - Ronald Perraut
- Centre Pasteur du Cameroun Annex, Garoua BP 921, Cameroon;
| | - Sandrine Eveline Nsango
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala BP 2701, Cameroon
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala BP 2701, Cameroon
| | - Jean Paul Assam Assam
- Department of Microbiology, Faculty of Science, University of Yaounde I, Yaounde BP 812, Cameroon; (J.P.A.A.); (F.-X.E.)
| | - François-Xavier Etoa
- Department of Microbiology, Faculty of Science, University of Yaounde I, Yaounde BP 812, Cameroon; (J.P.A.A.); (F.-X.E.)
| | - Tracey Lamb
- Department of Pathology, School of Medicine, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA;
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaounde BP 1274, Cameroon; (M.F.A.B.B.); (B.F.); (E.E.); (F.M.); (C.D.); (R.K.); (G.C.); (N.M.); (S.K.); (N.E.); (S.E.N.); (C.E.E.M.)
| |
Collapse
|
40
|
Kreutzfeld O, Tumwebaze PK, Okitwi M, Orena S, Byaruhanga O, Katairo T, Conrad MD, Rasmussen SA, Legac J, Aydemir O, Giesbrecht D, Forte B, Campbell P, Smith A, Kano H, Nsobya SL, Blasco B, Duffey M, Bailey JA, Cooper RA, Rosenthal PJ. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline. Microbiol Spectr 2023; 11:e0523622. [PMID: 37158739 PMCID: PMC10269555 DOI: 10.1128/spectrum.05236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- University of California, San Francisco, San Francisco, California, USA
| | | | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D. Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Peter Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alasdair Smith
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Hiroki Kano
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Vanheer LN, Mahamar A, Manko E, Niambele SM, Sanogo K, Youssouf A, Dembele A, Diallo M, Maguiraga SO, Phelan J, Osborne A, Spadar A, Smit MJ, Bousema T, Drakeley C, Clark TG, Stone W, Dicko A, Campino S. Genome-wide genetic variation and molecular surveillance of drug resistance in Plasmodium falciparum isolates from asymptomatic individuals in Ouélessébougou, Mali. Sci Rep 2023; 13:9522. [PMID: 37308503 DOI: 10.1038/s41598-023-36002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.
Collapse
Affiliation(s)
- Leen N Vanheer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Emilia Manko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - William Stone
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
42
|
White NJ. The Antimalarial Activity of Tafenoquine in Falciparum Malaria. Clin Infect Dis 2023; 76:1928-1929. [PMID: 36794679 DOI: 10.1093/cid/ciad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
43
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543338. [PMID: 37398288 PMCID: PMC10312498 DOI: 10.1101/2023.06.02.543338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Davin Hong
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Melanie J Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Kurt E Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Satish K Dhingra
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Jessica L Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Anna Y Burkhard
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
44
|
Gomez GM, D’Arrigo G, Sanchez CP, Berger F, Wade RC, Lanzer M. PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport. PLoS Pathog 2023; 19:e1011436. [PMID: 37285379 PMCID: PMC10281575 DOI: 10.1371/journal.ppat.1011436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/20/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.
Collapse
Affiliation(s)
- Guillermo M. Gomez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Giulia D’Arrigo
- Molecular and Cellular Modelling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| | - Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Fiona Berger
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modelling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
45
|
Choubey D, Deshmukh B, Rao AG, Kanyal A, Hati AK, Roy S, Karmodiya K. Genomic analysis of Indian isolates of Plasmodium falciparum: Implications for drug resistance and virulence factors. Int J Parasitol Drugs Drug Resist 2023; 22:52-60. [PMID: 37269630 PMCID: PMC10248731 DOI: 10.1016/j.ijpddr.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
The emergence of drug resistance to frontline treatments such as Artemisinin-based combination therapy (ACT) is a major obstacle to the control and eradication of malaria. This problem is compounded by the inherent genetic variability of the parasites, as many established markers of resistance do not accurately predict the drug-resistant status. There have been reports of declining effectiveness of ACT in the West Bengal and Northeast regions of India, which have traditionally been areas of drug resistance emergence in the country. Monitoring the genetic makeup of a population can help to identify the potential for drug resistance markers associated with it and evaluate the effectiveness of interventions aimed at reducing the spread of malaria. In this study, we performed whole genome sequencing of 53 isolates of Plasmodium falciparum from West Bengal and compared their genetic makeup to isolates from Southeast Asia (SEA) and Africa. We found that the Indian isolates had a distinct genetic makeup compared to those from SEA and Africa, and were more similar to African isolates, with a high prevalence of mutations associated with antigenic variation genes. The Indian isolates also showed a high prevalence of markers of chloroquine resistance (mutations in Pfcrt) and multidrug resistance (mutations in Pfmdr1), but no known mutations associated with artemisinin resistance in the PfKelch13 gene. Interestingly, we observed a novel L152V mutation in PfKelch13 gene and other novel mutations in genes involved in ubiquitination and vesicular transport that have been reported to support artemisinin resistance in the early stages of ACT resistance in the absence of PfKelch13 polymorphisms. Thus, our study highlights the importance of region-specific genomic surveillance for artemisinin resistance and the need for continued monitoring of resistance to artemisinin and its partner drugs.
Collapse
Affiliation(s)
- Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Anjani Gopal Rao
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Amiya Kumar Hati
- Department of Medical Entomology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Somenath Roy
- Department of Human Physiology, Vidyasagar University, Paschim Medinipur, West Bengal, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
46
|
Previti S, Ettari R, Di Chio C, Legac J, Bogacz M, Zimmer C, Schirmeister T, Rosenthal PJ, Zappalà M. Influence of amino acid size at the P3 position of N-Cbz-tripeptide Michael acceptors targeting falcipain-2 and rhodesain for the treatment of malaria and human african trypanosomiasis. Bioorg Chem 2023; 137:106587. [PMID: 37163812 DOI: 10.1016/j.bioorg.2023.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
In recent decades, several structure-activity relationship (SAR) studies provided potent inhibitors of the cysteine proteases falcipain-2 (FP-2) and rhodesain (RD) from Plasmodium falciparum and Trypanosoma brucei rhodesiense, respectively. Whilst the roles of the warhead and residues targeting the P1 and P2 pockets of the proteases were extensively investigated, the roles of the amino acids occupying the S3 pocket were not widely assessed. Herein we report the synthesis and biological evaluation of a set of novel Michael acceptors bearing amino acids of increasing size at the P3 site (1a-g/2a-g, SPR20-SPR33) against FP-2, RD, P. falciparum, and T. brucei. Overall, the Michael acceptors bearing small amino acids at the P3 site exhibited the most potent inhibitory properties towards FP-2. In contrast, analogues with bulky residues at the P3 position were very potent rhodesain inhibitors. In cell based assays, single-digit micromolar EC50 values against the two protozoa were observed. These findings can be a starting point for the development of peptide-based FP-2 and RD inhibitors.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA 94143, United States
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, 07743 Jena, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128 Mainz, Germany
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, United States
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
47
|
Liu J, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537066. [PMID: 37131712 PMCID: PMC10153170 DOI: 10.1101/2023.04.17.537066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using a novel assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, are the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically-relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| |
Collapse
|
48
|
Okombo J, Kumar M, Redhi D, Wicht KJ, Wiesner L, Egan TJ, Chibale K. Pyrido-Dibemequine Metabolites Exhibit Improved Druglike Features, Inhibit Hemozoin Formation in Plasmodium falciparum, and Synergize with Clinical Antimalarials. ACS Infect Dis 2023; 9:653-667. [PMID: 36802523 DOI: 10.1021/acsinfecdis.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Structural modification of existing chemical scaffolds to afford new molecules able to circumvent drug resistance constitutes one of the rational approaches to antimalarial drug discovery. Previously synthesized compounds based on the 4-aminoquinoline core hybridized with a chemosensitizing dibenzylmethylamine side group showed in vivo efficacy in Plasmodium berghei-infected mice despite low microsomal metabolic stability, suggesting a contribution from their pharmacologically active metabolites. Here, we report on a series of these dibemequine (DBQ) metabolites with low resistance indices against chloroquine-resistant parasites and improved metabolic stability in liver microsomes. The metabolites also exhibit improved pharmacological properties including lower lipophilicity, cytotoxicity, and hERG channel inhibition. Using cellular heme fractionation experiments, we also demonstrate that these derivatives inhibit hemozoin formation by causing a buildup of toxic "free" heme in a similar manner to chloroquine. Finally, assessment of drug interactions also revealed synergy between these derivatives and several clinically relevant antimalarials, thus highlighting their potential interest for further development.
Collapse
Affiliation(s)
- John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Devasha Redhi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Kathryn J Wicht
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Holistic Drug Discovery and Development (H3D) Centre, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Holistic Drug Discovery and Development (H3D) Centre, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| |
Collapse
|
49
|
Whalen ME, Kajubi R, Goodwin J, Orukan F, Colt M, Huang L, Richards K, Wang K, Li F, Mwebaza N, Aweeka FT, Parikh S. The Impact of Extended Treatment With Artemether-lumefantrine on Antimalarial Exposure and Reinfection Risks in Ugandan Children With Uncomplicated Malaria: A Randomized Controlled Trial. Clin Infect Dis 2023; 76:443-452. [PMID: 36130191 PMCID: PMC9907485 DOI: 10.1093/cid/ciac783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Artemether-lumefantrine (AL) is the most widely used artemisinin-based combination therapy in Sub-Saharan Africa and is threatened by the emergence of artemisinin resistance. Dosing is suboptimal in young children. We hypothesized that extending AL duration will improve exposure and reduce reinfection risks. METHODS We conducted a prospective, randomized, open-label pharmacokinetic/pharmacodynamic study of extended duration AL in children with malaria in high-transmission rural Uganda. Children received 3-day (standard 6-dose) or 5-day (10-dose) AL with sampling for artemether, dihydroartemisinin, and lumefantrine over 42-day clinical follow-up. Primary outcomes were (1) comparative pharmacokinetic parameters between regimens and (2) recurrent parasitemia analyzed as intention-to-treat. RESULTS A total of 177 children aged 16 months to 16 years were randomized, contributing 227 total episodes. Terminal median lumefantrine concentrations were significantly increased in the 5-day versus 3-day regimen on days 7, 14, and 21 (P < .001). A predefined day 7 lumefantrine threshold of 280 ng/mL was strongly predictive of recurrence risk at 28 and 42 days (P < .001). Kaplan-Meier estimated 28-day (51% vs 40%) and 42-day risk (75% vs 68%) did not significantly differ between 3- and 5-day regimens. No significant toxicity was seen with the extended regimen. CONCLUSIONS Extending the duration of AL was safe and significantly enhanced overall drug exposure in young children but did not lead to significant reductions in recurrent parasitemia risk in our high-transmission setting. However, day 7 levels were strongly predictive of recurrent parasitemia risk, and those in the lowest weight-band were at higher risk of underdosing with the standard 3-day regimen. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov number NCT03453840.
Collapse
Affiliation(s)
- Meghan E Whalen
- Department of Clinical Pharmacy, University of California-San Francisco, San Francisco General Hospital, San Francisco, California, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - McKenzie Colt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California-San Francisco, San Francisco General Hospital, San Francisco, California, USA
| | - Kacey Richards
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Kaicheng Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Fangyong Li
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda.,Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Francesca T Aweeka
- Department of Clinical Pharmacy, University of California-San Francisco, San Francisco General Hospital, San Francisco, California, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
50
|
Wicht KJ, Small-Saunders JL, Hagenah LM, Mok S, Fidock DA. Mutant PfCRT Can Mediate Piperaquine Resistance in African Plasmodium falciparum With Reduced Fitness and Increased Susceptibility to Other Antimalarials. J Infect Dis 2022; 226:2021-2029. [PMID: 36082431 PMCID: PMC9704436 DOI: 10.1093/infdis/jiac365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Additional therapeutic strategies could benefit efforts to reverse the recent increase in malaria cases in sub-Saharan Africa, which mostly affects young children. A primary candidate is dihydroartemisinin + piperaquine (DHA + PPQ), which is effective for uncomplicated malaria treatment, seasonal malaria chemoprevention, and intermittent preventive treatment. In Southeast Asia, Plasmodium falciparum parasites acquired PPQ resistance, mediated primarily by mutations in the P falciparum chloroquine resistance transporter PfCRT. The recent emergence in Africa of DHA-resistant parasites creates an imperative to assess whether PPQ resistance could emerge in African parasites with distinct PfCRT isoforms. METHODS We edited 2 PfCRT mutations known to mediate high-grade PPQ resistance in Southeast Asia into GB4 parasites from Gabon. Gene-edited clones were profiled in antimalarial concentration-response and fitness assays. RESULTS The PfCRT F145I mutation mediated moderate PPQ resistance in GB4 parasites but with a substantial fitness cost. No resistance was observed with the PfCRT G353V mutant. Both edited clones became significantly more susceptible to amodiaquine, chloroquine, and quinine. CONCLUSIONS A single PfCRT mutation can mediate PPQ resistance in GB4 parasites, but with a growth defect that may preclude its spread without further genetic adaptations. Our findings support regional use of drug combinations that exert opposing selective pressures on PfCRT.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| |
Collapse
|