1
|
Sheibani N, Arab SS, Kamalvand M. Designing a recombinant coat protein to reduce tobacco mosaic virus infection in plants. J Biomol Struct Dyn 2024:1-7. [PMID: 39589026 DOI: 10.1080/07391102.2024.2430456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 11/27/2024]
Abstract
The Tobacco Mosaic Virus (TMV) is a critical plant virus that can cause a significant drop in crop yield. To understand how recombinant coat-protein impacts the affinity and assembly of TMV's subunits, research is being conducted to assess the effect of recombinant protein on virus resistance. To develop a recombinant coat-protein that can lower TMV infection rates in plants, a design strategy was employed that involves creating defective viral subunits leading to incorrect assembly. This method is similar to using defective puzzle pieces that form incorrect connections resulting in disrupted viral assembly, ultimately affecting the production of mature virus particles. The study investigated the effect of mutations on one side of the Tobacco mosaic virus coat-protein using molecular modeling and dynamics simulation techniques. The simulation showed that the recombinant subunit had lower flexibility (between 0.15 to 0.20 nm) compared to the other subunits (between 0.45 to 0.75 nm), which was attributed to the smaller loop area. The study suggests an effective recombinant coat-protein with the potential to prevent virus infection by disrupting the coat-protein assembly process. This approach can be used to design a plant vaccine against viruses. Developing a recombinant protein can also provide benefits to plants such as protection from pests and enhancement of growth and productivity.
Collapse
Affiliation(s)
- Narjes Sheibani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Kamalvand
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
2
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
3
|
Sheibani N, Arab SS, Kamalvand M. The coat protein of tobacco mosaic virus as an anti-tobacco mosaic virus: a molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:13792-13797. [PMID: 36856083 DOI: 10.1080/07391102.2023.2183036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The Coat Protein (CP) of the Tobacco Mosaic Virus (TMV) executes an important duty in the protection of virus RNA. The interaction between the virus CP and host plant proteins induces infection in the host and creates dark and light green mosaics on crops, which disturb the growth and function of the plant. The interaction between the virus CP and the modified CP, expressed in transgenic plants, causes Coat Protein-Mediated Resistance (CP-MR), which reduces virus infection in transgenic plants. In this study, a model is suggested for resistance as "stop assembly of CP" in the virus. It is based on the fact that the CP, when mutated, acts as a dead-end in virus assembly. For evaluation of the model, we investigated the effect of four mutants including CBT28I, ABT42W, ABD77R, and ABT89W complexes on plant resistance against TMV infection by molecular dynamics simulation. Previous studies had shown the influence of such mutations on the CP-MR. The MD results of in the present study further confirmed the mentioned effect and demonstrated how the mutations could be the cause of CP-MR. The results are calculated by the RMSD, Rg, H-bond, and g-MMPBSA scripts. The change in binding energy between two chains is consistent with CP-MR such that with increase in binding energy, the affinity between two chains was reduced and the CP-MR increased. Based on this model, it is possible to design mutants with a high level of efficiency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Narjes Sheibani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Kamalvand
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
4
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
5
|
Wu Z, Ma G, Zhu H, Chen M, Huang M, Xie X, Li X. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8892-8900. [PMID: 35830295 DOI: 10.1021/acs.jafc.2c02888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coat proteins (CPs) of RNA plant viruses play a pivotal role in virus particle assembly, vector transmission, host identification, RNA replication, and intracellular and intercellular movement. Numerous compounds targeting CPs have been designed, synthesized, and screened for their antiviral activities. This review is intended to fill a knowledge gap where a comprehensive summary is needed for antiviral agent discovery based on plant viral CPs. In this review, major achievements are summarized with emphasis on plant viral CPs as biochemical targets and action mechanisms of antiviral agents. This review hopefully provides new insights and references for the further development of new safe and effective antiviral pesticides.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meiqing Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Xie
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Xu F, Guo S, Zhang W, Wang Y, Wei P, Chen S, Wu J. Trifluoromethylpyridine thiourea derivatives: design, synthesis and inhibition of the self-assembly of tobacco mosaic virus particles. PEST MANAGEMENT SCIENCE 2022; 78:1417-1427. [PMID: 34908221 DOI: 10.1002/ps.6758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Devastating plant virus diseases leading to bad harvests and lower quality of crops have made feeding the beyond seven billion population a huge challenge. Nevertheless, growing resistance and cross resistance of crop protection agents have made this challenge harder. Therefore, an efficient crop protection agent with novel structure and mode of action showing higher efficiency and eco-friendly is urgently needed. RESULTS The coat protein (CP) of a virus is a potential target for the discovery of new antiviral agents. Antiviral molecules can inhibit infection by obstructing the assembly of virus particles. A series of novel phthalamide-like thiourea derivatives containing trifluoromethylpyridine was designed and synthesized. Most of the compounds exhibited good antiviral activity against tobacco mosaic virus (TMV). Compound 7b showed notable curative, protective and inactivation activities against TMV. Its inactivation half-maximal effective concentration (EC50 ) value (20.5 μg mL-1 ) was better even than commercial ningnanmycin (23.2 μg mL-1 ). Compound 7b also had stronger TMV-CP binding ability than ningnanmycin and destroyed the external shape of TMV particles and hindered the self-assembly of TMV-CP and TMV-RNA. CONCLUSION These phthalamide-like thiourea derivatives especially compound 7b containing trifluoromethylpyridine are potential lead compounds and inhibitors of TMV particle self-assembly. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangzhou Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yanyan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Panpan Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shunhong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnology 2021; 19:348. [PMID: 34717656 PMCID: PMC8556785 DOI: 10.1186/s12951-021-01081-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
8
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
9
|
Lee H, Shahrivarkevishahi A, Lumata JL, Luzuriaga MA, Hagge LM, Benjamin CE, Brohlin OR, Parish CR, Firouzi HR, Nielsen SO, Lumata LL, Gassensmith JJ. Supramolecular and biomacromolecular enhancement of metal-free magnetic resonance imaging contrast agents. Chem Sci 2020; 11:2045-2050. [PMID: 32180926 PMCID: PMC7053506 DOI: 10.1039/c9sc05510j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further overcame the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.
Collapse
Affiliation(s)
- Hamilton Lee
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Arezoo Shahrivarkevishahi
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Jenica L Lumata
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Candace E Benjamin
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Olivia R Brohlin
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Christopher R Parish
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
| | - Lloyd L Lumata
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA . ; www.twitter.com/gassensmith
- Department of Bioengineering , The University of Texas at Dallas , 800 West Campbell Rd. , Richardson , TX 75080 , USA
| |
Collapse
|
10
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Das PP, Macharia MW, Lin Q, Wong SM. In planta proximity-dependent biotin identification (BioID) identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126 kDa replicase. J Proteomics 2019; 204:103402. [PMID: 31158515 DOI: 10.1016/j.jprot.2019.103402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive, single-stranded RNA virus. It encodes two replicases (126 kDa and 183 kDa), a movement protein and a coat protein. These proteins interact with host proteins for successful infection. Some host proteins such as eEF1α, Tm-1, TOM1, 14-3-3 proteins directly interact with Tobamovirus replication proteins. There are host proteins in the virus replication complex which do not interact with viral replicases directly, such as pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase. We have used Proximity-dependent biotin identification (BioID) technique to screen for transient or weak protein interactions of host proteins and viral replicase in vivo. We transiently expressed BirA* tagged TMV 126 kDa replicase in TMV infected Nicotiana benthamiana plants. Among 18 host proteins, we identified NbSGT1 as a potential target for further characterization. Silencing of NbSGT1 in N. benthamiana plants increased its susceptibility to TMV infection, and overexpression of NbSGT1 increased resistance to TMV infection. There were weak interactions between NbSGT1 and TMV replicases but no interaction between them was found in Y2H assay. It suggests that the interaction might be transient or indirect. Therefore, the BioID technique is a valuable method to identify weak or transient/indirect interaction(s) between pathogen proteins and host proteins in plants. BIOLOGICAL SIGNIFICANCE: TMV is a well characterized positive-strand RNA virus model for study of virus-plant host interactions. It infects >350 plant species and is one of the significant pathogens of crop loss globally. Many host proteins are involved in TMV replication complex formation. To date there are few techniques available for identifying interacting host proteins to viral proteins. There is limited knowledge on transient or non-interacting host proteins during virus infection/replication. In this study, we used agroinfiltration-mediated in planta BioID technique to identify transiently or non-interacting host proteins to viral proteins in TMV-infected N. benthamiana plants. This technique allowed us to identify potential candidate proteins in the vicinity of TMV 126 kDa replicase. We have selected NbSGT1 and its overexpression suppresses TMV replication and increase plant resistance. NbSGT1 is believed to interact transiently or indirectly with TMV replicases in the presence of Hsp90/Hsp70. BioID is a novel and powerful technique to identify transiently or indirectly interacting proteins in the study of pathogen-host interactions.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Mercy Wairimu Macharia
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Haston JC, Rostad CA, Jerris RC, Milla SS, McCracken C, Pratt C, Wiley M, Prieto K, Palacios G, Shane AL, McElroy AK. Prospective Cohort Study of Next-Generation Sequencing as a Diagnostic Modality for Unexplained Encephalitis in Children. J Pediatric Infect Dis Soc 2019; 9:326-333. [PMID: 31107955 PMCID: PMC7457329 DOI: 10.1093/jpids/piz032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND Encephalitis is an inflammatory condition of the brain associated with long-term neurologic sequelae and even death in children. Although viruses are often implicated, an etiology is not identified in the majority of cases. Metagenomics-based next-generation sequencing (mNGS) is a high-throughput sequencing technique that can enhance the detection of novel or low-frequency pathogens. METHODS Hospitalized immunocompetent children aged 6 months to 18 years with encephalitis of unidentified etiology were eligible for enrollment. Demographic, historical, and clinical information was obtained, and residual blood and cerebrospinal fluid (CSF) samples were subjected to mNGS. Pathogens were identified by querying the sequence data against the NCBI GenBank database. RESULTS Twenty children were enrolled prospectively between 2013 and 2017. mNGS of CSF identified 7 nonhuman nucleic acid sequences of significant frequency in 6 patients, including that of Mycoplasma bovis, parvovirus B19, Neisseria meningitidis, and Balamuthia mandrillaris. mNGS also detected Cladophialophora species, tobacco mosaic virus, and human bocavirus, which were presumed to be contaminants or nonpathogenic organisms. One patient was found to have positive serology results for California encephalitis virus, but mNGS did not detect it. Patients for whom mNGS identified a diagnosis had a significantly higher CSF white blood cell count, a higher CSF protein concentration, and a lower CSF glucose level than patients for whom mNGS did not identify a diagnosis. CONCLUSION We describe here the results of a prospective cohort analysis to evaluate mNGS as a diagnostic tool for children with unexplained encephalitis. Although mNGS detected multiple nonpathogenic organisms, it also identified multiple pathogens successfully and was most useful in patients with a CSF abnormality.
Collapse
Affiliation(s)
- Julia C Haston
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | | | - Sarah S Milla
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Courtney McCracken
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Catherine Pratt
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland,College of Public Health, University of Nebraska Medical Center, Omaha
| | - Michael Wiley
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland,College of Public Health, University of Nebraska Medical Center, Omaha
| | - Karla Prieto
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland,College of Public Health, University of Nebraska Medical Center, Omaha
| | - Gustavo Palacios
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland
| | - Andi L Shane
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Anita K McElroy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia,Department of Pediatrics, University of Pittsburgh, Pennsylvania,Correspondence: A. K. McElroy, MD, PhD, University of Pittsburgh, Department of Pediatrics, 3501 Fifth Ave, Pittsburgh, PA 15261 ()
| |
Collapse
|
13
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
14
|
Das PP, Lin Q, Wong SM. Comparative proteomics of Tobacco mosaic virus-infected Nicotiana tabacum plants identified major host proteins involved in photosystems and plant defence. J Proteomics 2019; 194:191-199. [PMID: 30503828 DOI: 10.1016/j.jprot.2018.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive single-stranded RNA virus. Its 5' end ORF codes for the replicase proteins, namely 126 kDa and 183 kDa, respectively. These proteins interact with many host proteins to form a virus replication complex (VRC). This study aims to dissect the proteome profile of TMV-infected Nicotiana tabacum in host cellular and molecular pathways. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyse the differential global proteomic profile of TMV infected and mock infected plants. Out of 1897 total proteins, we identified 407 differentially abundant proteins and grouped them into three functional categories, namely metabolism, cellular processes and signalling processing. Our results showed that photosynthesis, carbon metabolism, plant defence, protein synthesis, and protein processing in the endoplasmic reticulum were significantly altered. Carbon metabolism and photosynthesis were present in very low abundance, whereas accumulation of reactive oxygen species and misfolded proteins lead to the accumulation of thioredoxin H-type 1. In conclusion, we identified several key host proteins that are involved in TMV infection/replication in N. tabacum plants. SIGNIFICANCE OF THE STUDY: TMV is one of the most widely studied plant virus. It is used as a tool to study host-virus interaction. There are several host proteins reported that facilitate VRC formation and replication of TMV. However, there is limited knowledge in the expression regulation of these host proteins upon TMV infection. This study is the first report that investigates the response of host protein expression involved in TMV infection through a quantitative proteomics technique iTRAQ, combined with LC-MS/MS analysis. We used TMV-infected Nicotiana tabacum plants to investigate the effects of TMV infection on host proteins. Our results revealed differential abundance of proteins involving various pathways in protein translation, protein processing, photosynthesis and plant defence. There was a high abundance of thioredoxin H-type 1, a protein that counters oxidative stress and accelerated regulation of fatty acid synthesis to provide additional lipid molecules for VRC formation. There was a significant reduction in abundance of psaA and psbB proteins in the photosynthetic pathways. Our results identified key candidate host proteins involved in TMV-infected N. tabacum for functional studies in future.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
15
|
Gao F, Liu X, Du Z, Hou H, Wang X, Wang F, Yang J. Bayesian phylodynamic analysis reveals the dispersal patterns of tobacco mosaic virus in China. Virology 2019; 528:110-117. [PMID: 30594790 DOI: 10.1016/j.virol.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 01/18/2023]
Abstract
Tobacco mosaic virus (TMV) is widespread in China and causes considerable economic losses to tobacco production. The molecular epidemiology of this virus is, however, poorly understood. In this study, we sequenced the genomes of 51 TMV isolates from five tobacco-producing regions in China and investigated the dispersal patterns of this virus. Our phylogenetic analysis showed that TMV might have been introduced to China in the early 1900s, probably first to southwest China. However, TMV then moved to the north of the country, where it expanded. The north became the main seeding region for the subsequent movements of the virus within China. The north-to-south movement of TMV coincides with a shift of major tobacco-producing areas from north to south in this century, suggesting a link between human activities and the dispersal of TMV in China.
Collapse
Affiliation(s)
- Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaowei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Han Hou
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China
| | - Xiaoyan Wang
- Foxcroft School, Middleburg, VA 20118, United States
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China.
| | - Jinguang Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China.
| |
Collapse
|
16
|
Sharma Y, Srivastava N, Bala K. Neuroprotective ability of TMV coat protein on rat PC-12 cells and it’s in silico study with LRRK2 receptor. Neurol Res 2018; 40:1028-1039. [DOI: 10.1080/01616412.2018.1515840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yash Sharma
- Center of Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nidhi Srivastava
- Center of Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kumud Bala
- Center of Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
17
|
Dharmarwardana M, Martins AF, Chen Z, Palacios PM, Nowak CM, Welch RP, Li S, Luzuriaga MA, Bleris L, Pierce BS, Sherry AD, Gassensmith JJ. Nitroxyl Modified Tobacco Mosaic Virus as a Metal-Free High-Relaxivity MRI and EPR Active Superoxide Sensor. Mol Pharm 2018; 15:2973-2983. [PMID: 29771534 PMCID: PMC6078806 DOI: 10.1021/acs.molpharmaceut.8b00262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Superoxide overproduction is known to occur in multiple disease states requiring critical care; yet, noninvasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by "click conjugating" paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced in vivo to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species-in particular, superoxide-and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for T1 contrast at low field (<3.0 T) and T2 contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for a "quenchless fluorescent" bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.
Collapse
Affiliation(s)
- Madushani Dharmarwardana
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - André F. Martins
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhuo Chen
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Philip M. Palacios
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Chance M. Nowak
- Department of Biological Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Raymond P. Welch
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Shaobo Li
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael A. Luzuriaga
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Leonidas Bleris
- Department of Biological Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - A. Dean Sherry
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
18
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Sankaran N. On the historical significance of Beijerinck and his contagium vivum fluidum for modern virology. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2018; 40:41. [PMID: 30003445 DOI: 10.1007/s40656-018-0206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
This paper considers the foundational role of the contagium vivum fluidum-first proposed by the Dutch microbiologist Martinus Beijerinck in 1898-in the history of virology, particularly in shaping the modern virus concept, defined in the 1950s. Investigating the cause of mosaic disease of tobacco, previously shown to be an invisible and filterable entity, Beijerinck concluded that it was neither particulate like the bacteria implicated in certain infectious diseases, nor soluble like the toxins and enzymes responsible for symptoms in others. He offered a completely new explanation, proposing that the agent was a "living infectious fluid" whose reproduction was intimately linked to that of its host cell. Difficult to test at the time, the contagium vivum fluidum languished in obscurity for more than three decades. Subsequent advances in technologies prompted virus researchers of the 1930s and 1940s-the first to separate themselves from bacteriologists-to revive the idea. They found in it both the seeds for their emerging virus concept and a way to bring hitherto opposing thought styles about the nature of viruses and life together in consensus. Thus, they resurrected Beijerinck as the founding father, and contagium vivum fluidum as the core concept of their discipline.
Collapse
|
20
|
Le DHT, Hu H, Commandeur U, Steinmetz NF. Chemical addressability of potato virus X for its applications in bio/nanotechnology. J Struct Biol 2017. [PMID: 28647539 DOI: 10.1016/j.jsb.2017.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potato virus X (PVX), a type member of the plant virus potexvirus group, offers a unique nanotechnology platform based on its high aspect ratio and flexible filamentous shape. The PVX platform has already been engineered and studied for its uses in imaging, drug delivery, and immunotherapies. While genetic engineering procedures are well established for PVX, there is limited information about chemical conjugation strategies for functionalizing PVX, partly due to the lack of structural information of PVX at high resolution. To overcome these challenges, we built a structural model of the PVX particle based on the available structures from pepino mosaic virus (PepMV), a close cousin of PVX. Using the model and a series of chemical conjugation experiments, we identified and probed the addressability of cysteine side chains. Chemical reactivity of cysteines was confirmed using Michael-addition and thiol-selective probes, including fluorescent dyes and biotin tags. LC/MS/MS was used to map Cys 121 as having the highest selectivity for modification. Finally, building on the availability of two reactive groups, the newly identified Cys and previously established Lys side chains, we prepared multifunctional PVX nanoparticles by conjugating Gd-DOTA for magnetic resonance imaging (MRI) to lysines and fluorescent dyes for optical imaging to cysteines. The resulting functionalized nanofilament could have applications in dual-modal optical-MRI imaging applications. These results further extend the understanding of the chemical properties of PVX and enable development of novel multifunctional platforms in bio/nanotechnology.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Ulrich Commandeur
- Department of Molecular Biotechnology, RWTH-Aachen University, Aachen 52064, Germany
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA; Department of Materials Science and Engineering, Case Western Reserve University School of Engineering, 10900 Euclid Ave., Cleveland, OH 44106, USA; Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, 10900 Euclid Ave., Cleveland, OH 44106, USA; Division of General Medical Sciences-Oncology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Characterization of Viral Exposures in United States Occupational Environments. EXPOSURE TO MICROBIOLOGICAL AGENTS IN INDOOR AND OCCUPATIONAL ENVIRONMENTS 2017. [PMCID: PMC7122517 DOI: 10.1007/978-3-319-61688-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are considered to be the most abundant biological particles and have the capability to infect all forms of life leading to a variety of diseases. American workers in specific occupational environments are threatened by viral exposures, highlighting the importance to recognize the type and risk of exposure, as well as the preventive measures that can be taken to reduce the risk of exposure. For example, healthcare workers can potentially be exposed to air and blood-borne pathogens, such as hepatitis and the human immunodeficiency virus. These types of exposures have led to the development of preventive equipment and regulations intended to reduce viral exposures in occupational settings. This chapter will discuss the characteristics of viruses and the occupationally relevant viruses of which people in varying occupations can potentially encounter. Regulatory guidelines and protective strategies will also be reviewed.
Collapse
|
22
|
Makarov VV, Kalinina NO. Structure and Noncanonical Activities of Coat Proteins of Helical Plant Viruses. BIOCHEMISTRY (MOSCOW) 2016; 81:1-18. [PMID: 26885578 DOI: 10.1134/s0006297916010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.
Collapse
Affiliation(s)
- V V Makarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
23
|
Eleta-Lopez A, Calò A. Key factors of scanning a plant virus with AFM in air and aqueous solution. Microsc Res Tech 2016; 80:18-29. [DOI: 10.1002/jemt.22741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Aitziber Eleta-Lopez
- Self-Assembly Group; CIC nanoGUNE, Tolosa Hiribidea 76, Donostia-San Sebastian, Basque Country; 20018 Spain
| | - Annalisa Calò
- Nanoscience Iniciative; CUNY Advanced Science Research Center ASRC; 85 St. Nicholas Terrace New York New York 10031
| |
Collapse
|
24
|
Abstract
Tobacco mosaic virus and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5'-terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan ,
| | - Masayuki Ishikawa
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan ,
| |
Collapse
|
25
|
Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:613-29. [PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.
Collapse
Affiliation(s)
- Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fabian J Eber
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Carlos Azucena
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Alexander Förste
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Alexander M Bittner
- CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Sabine Eiben
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fania C Geiger
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| |
Collapse
|
26
|
Wu H, Chen Y, Zhou Q, Wang R, Xia B, Ma D, Luo K, Liu Q. Translocation of Rigid Rod-Shaped Virus through Various Solid-State Nanopores. Anal Chem 2016; 88:2502-10. [DOI: 10.1021/acs.analchem.5b04905] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwen Wu
- State
Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yuhao Chen
- CAS
Key Laboratory of Soft Matter Chemistry and Department of Polymer
Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qizhao Zhou
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Rongliang Wang
- State
Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, China
| | - Baicheng Xia
- CAS
Key Laboratory of Soft Matter Chemistry and Department of Polymer
Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dejun Ma
- State
Key Laboratory of Elemento-Organic Chemistry and Department of Chemical
Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China
| | - Kaifu Luo
- CAS
Key Laboratory of Soft Matter Chemistry and Department of Polymer
Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Quanjun Liu
- State
Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
27
|
Niehl A, Appaix F, Boscá S, van der Sanden B, Nicoud JF, Bolze F, Heinlein M. Fluorescent Tobacco mosaic virus-Derived Bio-Nanoparticles for Intravital Two-Photon Imaging. FRONTIERS IN PLANT SCIENCE 2016; 6:1244. [PMID: 26793221 PMCID: PMC4710741 DOI: 10.3389/fpls.2015.01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-photon intravital imaging has become a powerful tool to investigate the healthy and diseased brain vasculature in living animals. Although agents for multi-photon fluorescence microscopy of the microvasculature are available, issues related to stability, bioavailability, toxicity, cost or chemical adaptability remain to be solved. In particular, there is a need for highly fluorescent dyes linked to particles that do not cross the blood brain barrier (BBB) in brain diseases like tumor or stroke to estimate the functional blood supply. Plant virus particles possess a number of distinct advantages over other particles, the most important being the multi-valency of chemically addressable sites on the particle surface. This multi-valency, together with biological compatibility and inert nature, makes plant viruses ideal carriers for in vivo imaging agents. Here, we show that the well-known Tobacco mosaic virus is a suitable nanocarrier for two-photon dyes and for intravital imaging of the mouse brain vasculature.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Florence Appaix
- Two-Photon Microscopy Platform, Grenoble Institut des Neurosciences, Institut National de la Santé et de la Recherche Médicale U836, Université Grenoble AlpesGrenoble, France
| | - Sonia Boscá
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| | | | - Jean-François Nicoud
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 Centre National de la Recherche Scientifique-Université de StrasbourgIllkirch, France
| | - Frédéric Bolze
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 Centre National de la Recherche Scientifique-Université de StrasbourgIllkirch, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| |
Collapse
|
28
|
Ren L, Robertson WD, Reimer R, Heinze C, Schneider C, Eggert D, Truschow P, Hansen NO, Kroetz P, Zou J, Miller RJD. Towards instantaneous cellular level bio diagnosis: laser extraction and imaging of biological entities with conserved integrity and activity. NANOTECHNOLOGY 2015; 26:284001. [PMID: 26111866 DOI: 10.1088/0957-4484/26/28/284001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The prospect for spatial imaging with mass spectroscopy at the level of the cell requires new means of cell extraction to conserve molecular structure. To this aim, we demonstrate a new laser extraction process capable of extracting intact biological entities with conserved biological function. The method is based on the recently developed picosecond infrared laser (PIRL), designed specifically to provide matrix-free extraction by selectively exciting the water vibrational modes under the condition of ultrafast desorption by impulsive vibrational excitation (DIVE). The basic concept is to extract the constituent protein structures on the fastest impulsive limit for ablation to avoid excessive thermal heating of the proteins and to use strongly resonant 1-photon conditions to avoid multiphoton ionization and degradation of the sample integrity. With various microscope imaging and biochemical analysis methods, nanoscale single protein molecules, viruses, and cells in the ablation plume are found to be morphologically and functionally identical with their corresponding controls. This method provides a new means to resolve chemical activity within cells and is amenable to subcellular imaging with near-field approaches. The most important finding is the conserved nature of the extracted biological material within the laser ablation plume, which is fully consistent with in vivo structures and characteristics.
Collapse
Affiliation(s)
- L Ren
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu N, Chen Y, Peng B, Lin Y, Wang Q, Su Z, Zhang W, Li H, Shen J. Single-molecule force spectroscopy study on the mechanism of RNA disassembly in tobacco mosaic virus. Biophys J 2014; 105:2790-800. [PMID: 24359751 DOI: 10.1016/j.bpj.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/22/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022] Open
Abstract
To explore the disassembly mechanism of tobacco mosaic virus (TMV), a model system for virus study, during infection, we have used single-molecule force spectroscopy to mimic and follow the process of RNA disassembly from the protein coat of TMV by the replisome (molecular motor) in vivo, under different pH and Ca(2+) concentrations. Dynamic force spectroscopy revealed the unbinding free-energy landscapes as that at pH 4.7 the disassembly process is dominated by one free-energy barrier, whereas at pH 7.0 the process is dominated by one barrier and that there exists a second barrier. The additional free-energy barrier at longer distance has been attributed to the hindrance of disordered loops within the inner channel of TMV, and the biological function of those protein loops was discussed. The combination of pH increase and Ca(2+) concentration drop could weaken RNA-protein interactions so much that the molecular motor replisome would be able to pull and disassemble the rest of the genetic RNA from the protein coat in vivo. All these facts provide supporting evidence at the single-molecule level, to our knowledge for the first time, for the cotranslational disassembly mechanism during TMV infection under physiological conditions.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China; School of Chemistry and Material Science, Liaoning Shihua University, Fushun, P. R. China
| | - Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Bo Peng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina.
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China.
| | - Hongbin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiacong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
30
|
McCormick AA, Palmer KE. Genetically engineered Tobacco mosaic virus as nanoparticle vaccines. Expert Rev Vaccines 2014; 7:33-41. [DOI: 10.1586/14760584.7.1.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Bruckman MA, Steinmetz NF. Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV). Methods Mol Biol 2014; 1108:173-85. [PMID: 24243249 DOI: 10.1007/978-1-62703-751-8_13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Viral nanoparticles derived from tobacco mosaic virus (TMV) find applications in various fields. We report the purification and chemical modification of TMV which is a hollow rod-shaped plant viral nanoparticle with modifiable interior and exterior surfaces. We describe methods to isolate TMV from its tobacco plant host for spatially controlled interior and exterior chemical modification and to characterize the resulting TMV hybrid materials.
Collapse
Affiliation(s)
- Michael A Bruckman
- Departments of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
32
|
Balique F, Colson P, Barry AO, Nappez C, Ferretti A, Moussawi KA, Ngounga T, Lepidi H, Ghigo E, Mege JL, Lecoq H, Raoult D. Tobacco mosaic virus in the lungs of mice following intra-tracheal inoculation. PLoS One 2013; 8:e54993. [PMID: 23383021 PMCID: PMC3559775 DOI: 10.1371/journal.pone.0054993] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
Plant viruses are generally considered incapable of infecting vertebrates. Accordingly, they are not considered harmful for humans. However, a few studies questioned the certainty of this paradigm. Tobacco mosaic virus (TMV) RNA has been detected in human samples and TMV RNA translation has been described in animal cells. We sought to determine if TMV is detectable, persists, and remains viable in the lung tissues of mice following intratracheal inoculation, and we attempted to inoculate mouse macrophages with TMV. In the animal model, mice were intratracheally inoculated with 10(11) viral particles and were sacrificed at different time points. The virus was detected in the mouse lungs using immunohistochemistry, electron microscopy, real-time RT-PCR and sequencing, and its viability was studied with an infectivity assay on plants. In the cellular model, the culture medium of murine bone marrow derived macrophages (BMDM) was inoculated with different concentrations of TMV, and the virus was detected with real-time RT-PCR and immunofluorescence. In addition, anti-TMV antibodies were detected in mouse sera with ELISA. We showed that infectious TMV could enter and persist in mouse lungs via the intratracheal route. Over 14 days, the TMV RNA level decreased by 5 log(10) copies/ml in the mouse lungs and by 3.5 log(10) in macrophages recovered from bronchoalveolar lavage. TMV was localized to lung tissue, and its infectivity was observed on plants until 3 days after inoculation. In addition, anti-TMV antibody seroconversions were observed in the sera from mice 7 days after inoculation. In the cellular model, we observed that TMV persisted over 15 days after inoculation and it was visualized in the cytoplasm of the BMDM. This work shows that a plant virus, Tobacco mosaic virus, could persist and enter in cells in mammals, which raises questions about the potential interactions between TMV and human hosts.
Collapse
Affiliation(s)
- Fanny Balique
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, Montfavet, France
| | - Philippe Colson
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
- * E-mail:
| | - Abdoulaye Oury Barry
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Claude Nappez
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Audrey Ferretti
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Khatoun Al Moussawi
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Tatsiana Ngounga
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Hubert Lepidi
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Eric Ghigo
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, Montfavet, France
| | - Didier Raoult
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
33
|
Li X, Song B, Hu D, Wang Z, Zeng M, Yu D, Chen Z, Jin L, Yang S. The development and application of new crystallization method for tobacco mosaic virus coat protein. Virol J 2012; 9:279. [PMID: 23171808 PMCID: PMC3560112 DOI: 10.1186/1743-422x-9-279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although tobacco mosaic virus (TMV) coat protein (CP) has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. METHODS In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His) tags or glutathione-S-transferase (GST) tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32) and TMV-CP incorporated His-tags (WT-His-TMV-CP12) simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. RESULTS The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19). The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. CONCLUSION A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N-terminus of TMV-CP. It indicated that short peptides influenced the resolution of TMV-CP crystals.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Mengjiao Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Dandan Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Linhong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| |
Collapse
|
34
|
Abstract
Virtually all studies of structure and assembly of viral filaments have been made on plant and bacterial viruses. Structures have been determined using fiber diffraction methods at high enough resolution to construct reliable molecular models or several of the rigid plant tobamoviruses (related to tobacco mosaic virus, TMV) and the filamentous bacteriophages including Pf1 and fd. Lower-resolution structures have been determined for a number of flexible filamentous plant viruses using fiber diffraction and cryo-electron microscopy. Virions of filamentous viruses have numerous mechanical functions, including cell entry, viral disassembly, viral assembly, and cell exit. The plant viruses, which infect multicellular organisms, also use virions or virion-like assemblies for transport within the host. Plant viruses are generally self-assembling; filamentous bacteriophage assembly is combined with secretion from the host cell, using a complex molecular machine. Tobamoviruses and other plant viruses disassemble concomitantly with translation, by various mechanisms and involving various viral and host assemblies. Plant virus movement within the host also makes use of a variety of viral proteins and modified host assemblies.
Collapse
|
35
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 584] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee SY, Lim JS, Harris MT. Synthesis and application of virus-based hybrid nanomaterials. Biotechnol Bioeng 2011; 109:16-30. [DOI: 10.1002/bit.23328] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/17/2011] [Accepted: 08/31/2011] [Indexed: 12/13/2022]
|
37
|
Bruckman MA, Soto CM, McDowell H, Liu JL, Ratna BR, Korpany KV, Zahr OK, Blum AS. Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS NANO 2011; 5:1606-16. [PMID: 21361370 DOI: 10.1021/nn1025719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A common challenge in nanotechnology is the fabrication of materials with well-defined nanoscale structure and properties. Here we report that a genetically engineered tobacco mosaic virus (TMV) coat protein (CP), to which a hexahistidine (His) tag was incorporated, can self-assemble into disks, hexagonally packed arrays of disks, stacked disks, helical rods, fibers, and elongated rafts. The insertion of a His tag to the C-terminus of TMV-CP was shown to significantly affect the self-assembly in comparison to the wild type, WT-TMV-CP. Furthermore, the His tag interactions attributed to the alternative self-assembly of His-TMV-CP can be controlled through ethanol and nickel-nitrilotriacetic acid (Ni-NTA) additions as monitored with atomic force microscopy.
Collapse
Affiliation(s)
- Michael A Bruckman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Liu N, Peng B, Lin Y, Su Z, Niu Z, Wang Q, Zhang W, Li H, Shen J. Pulling Genetic RNA out of Tobacco Mosaic Virus Using Single-Molecule Force Spectroscopy. J Am Chem Soc 2010; 132:11036-8. [DOI: 10.1021/ja1052544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Bo Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Yuan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Zhaohui Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Zhongwei Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Qian Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Hongbin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Jiacong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| |
Collapse
|
40
|
Colson P, Richet H, Desnues C, Balique F, Moal V, Grob JJ, Berbis P, Lecoq H, Harlé JR, Berland Y, Raoult D. Pepper mild mottle virus, a plant virus associated with specific immune responses, Fever, abdominal pains, and pruritus in humans. PLoS One 2010; 5:e10041. [PMID: 20386604 PMCID: PMC2850318 DOI: 10.1371/journal.pone.0010041] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, metagenomic studies have identified viable Pepper mild mottle virus (PMMoV), a plant virus, in the stool of healthy subjects. However, its source and role as pathogen have not been determined. METHODS AND FINDINGS 21 commercialized food products containing peppers, 357 stool samples from 304 adults and 208 stool samples from 137 children were tested for PMMoV using real-time PCR, sequencing, and electron microscopy. Anti-PMMoV IgM antibody testing was concurrently performed. A case-control study tested the association of biological and clinical symptoms with the presence of PMMoV in the stool. Twelve (57%) food products were positive for PMMoV RNA sequencing. Stool samples from twenty-two (7.2%) adults and one child (0.7%) were positive for PMMoV by real-time PCR. Positive cases were significantly more likely to have been sampled in Dermatology Units (p<10(-6)), to be seropositive for anti-PMMoV IgM antibodies (p = 0.026) and to be patients who exhibited fever, abdominal pains, and pruritus (p = 0.045, 0.038 and 0.046, respectively). CONCLUSIONS Our study identified a local source of PMMoV and linked the presence of PMMoV RNA in stool with a specific immune response and clinical symptoms. Although clinical symptoms may be imputable to another cofactor, including spicy food, our data suggest the possibility of a direct or indirect pathogenic role of plant viruses in humans.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Marseille, France
| | - Hervé Richet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Christelle Desnues
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Fanny Balique
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche (UR) 407, Unité de Pathologie Végétale, Montfavet, France
| | - Valérie Moal
- Centre de Néphrologie et Transplantation Rénale, Centre Hospitalo-Universitaire Conception, Marseille, France
| | - Jean-Jacques Grob
- Service de Dermatologie, Centre Hospitalo-Universitaire Sainte-Marguerite, Marseille, France
| | - Philippe Berbis
- Service de Dermatologie, Centre Hospitalo-Universitaire Nord, Marseille, France
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche (UR) 407, Unité de Pathologie Végétale, Montfavet, France
| | - Jean-Robert Harlé
- Service de Médecine Interne, Centre Hospitalo-Universitaire Conception, Marseille, France
| | - Yvon Berland
- Centre de Néphrologie et Transplantation Rénale, Centre Hospitalo-Universitaire Conception, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Marseille, France
- * E-mail:
| |
Collapse
|
41
|
Bruckman MA, Liu J, Koley G, Li Y, Benicewicz B, Niu Z, Wang Q. Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00634c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Biological and molecular characterization of a crucifer Tobamovirus infecting oilseed rape. Biochem Genet 2009; 47:451-61. [PMID: 19449162 DOI: 10.1007/s10528-009-9244-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
In China, the tobamovirus that infects oilseed rape has been misdiagnosed as Tobacco mosaic virus (TMV) based on its morphological similarity and serological relatedness. Recently, a tobamovirus has been isolated from oilseed rape in China, which we named Youcai mosaic virus Br (YoMV-Br), according to its biological and molecular characteristics. It had strong infectivity to Cruciferae but less to Solanaceae, Leguminosae, and Cucurbitaceae, and its virion morphology was consistent with that of the tobamoviruses. At high concentrations, it serologically cross reacted with TMV antiserum. The 3' terminal sequence (2,283 nucleotides) of YoMV-Br was determined, including the 3' noncoding region, the CP and MP genes, and the C-terminal part of the replicase gene. Between the MP and CP genes, 77 nucleotides overlapped. Compared with homologous regions of 21 recognized species of Tobamovirus, YoMV-Br had a much higher identity to crucifer species than to other tobamoviruses. Phylogenetic analysis demonstrated that YoMV-Br was closely related to the YoMV cluster of tobamoviruses and distantly to TMV, so that they likely belong to different strains of the same species.
Collapse
|
43
|
Zhang GY, Chen M, Guo JM, Xu TW, Li LC, Xu ZS, Ma YZ, Chen XP. Isolation and characteristics of the CN gene, a tobacco mosaic virus resistance N gene homolog, from tobacco. Biochem Genet 2009; 47:301-14. [PMID: 19191020 DOI: 10.1007/s10528-009-9229-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 10/23/2008] [Indexed: 11/24/2022]
Abstract
Nicotiana rustica L. HZNH, a native Chinese tobacco germplasm, displays a hypersensitive response (HR) and systemic acquired resistance following infection with tobacco mosaic virus (TMV). A resistance gene, CN, cloned from HZNH plants, was homologous to the N and NH genes identified in other Nicotiana species. The CN coding region (3423 bp) shares 93.63% and 86.50% nucleotide identity with N and NH, respectively. Whereas the five CN exon sequences are highly homologous with those of N and NH, the four introns differ significantly in length and sequence. Sequence analysis revealed that CN belongs to the TIR/NBS/LRR gene class. Expression of CN was up-regulated after TMV infection and was temperature sensitive. Organ-specific expression analysis suggested that CN transcripts accumulated at high levels in leaves, low levels in stems, and minimal levels in roots. When CN was inserted into TMV-susceptible N. tabacum cv. K326 plants by Agrobacterium-mediated transformation, the transgenic plants displayed HR and systemic HR due to uninhibited movement of the virus.
Collapse
Affiliation(s)
- Gai-Yun Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 2008; 9:2073-88. [PMID: 19281527 DOI: 10.1111/j.1600-0854.2008.00824.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell-to-cell movement of Tobacco mosaic virus through plasmodesmata (PD) requires virus-encoded movement protein (MP). The MP targets PD through the endoplasmic reticulum (ER)/actin network, whereas the intercellular movement of the viral RNA genome has been correlated with the association of the MP with mobile, microtubule-proximal particles in cells at the leading front of infection as well as the accumulation of the protein on the microtubule network during later infection stages. To understand how the associations of MP with ER and microtubules are functionally connected, we applied multiple marker three-dimensional confocal and time-lapse video microscopies to Nicotiana benthamiana cells expressing fluorescent MP, fluorescent RNA and fluorescent cellular markers. We report the reconstitution of MP-dependent RNA transport to PD in a transient assay. We show that transiently expressed MP occurs in association with small particles as observed during infection. The same MP accumulates in PD and mediates the transport of its messenger RNA transcript to the pore. In the cellular cortex, the particles occur at microtubule-proximal sites and can undergo ER-associated and latrunculin-sensitive movements between such sites. These and other observations suggest that the microtubule network performs anchorage and release functions for controlling the assembly and intracellular movement of MP-containing RNA transport particles in association with the ER.
Collapse
Affiliation(s)
- Adrian Sambade
- Department of Integrative Virology, Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The technological advances predicted (or, perhaps, demanded) for the twenty-first century are intimately linked to the crystallochemically controlled synthesis of high-performance functional materials. To answer the new hendiatris of ‘smaller, faster, better’, the manufacture of these materials as nanoparticles has become a scientific
noblesse oblige
. Direct incorporation into the next generation of electronic devices will necessitate anisotropic forms of these materials, be they nanowires, nanotapes or nanotubes. Chemists have recently discovered that, in addition to the classical methods of anisotropic growth, new routes allow more complex materials to be synthesized in these morphologies. This review describes, using a series of examples, how the morphology of functional materials can be controlled using templated growth mediated by a biopolymer. By involving a biopolymer in the synthetic protocol, anisotropic nanoparticles and assemblages of even quite complex materials can be generated in syntheses that are simple, elegant and highly specific.
Collapse
Affiliation(s)
- Simon R Hall
- School of Chemistry, University of BristolBristol BS81TS, UK
| |
Collapse
|
46
|
Wang X, Niu Z, Li S, Wang Q, Li X. Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes. J Biomed Mater Res A 2008; 87:8-14. [DOI: 10.1002/jbm.a.31617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Allmaier G, Laschober C, Szymanski WW. Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles-protein complexes, lipoparticles, and viruses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1062-8. [PMID: 18585927 DOI: 10.1016/j.jasms.2008.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 05/11/2023]
Abstract
Differential mobility analysis (DMA) is a technique suited for size analysis as well as preparative collection of airborne nanosized airborne particles. In the recent decade, the analysis of intact viruses, proteins, DNA fragments, polymers, and inorganic nanoparticles was possible when combining this method with a nano-electrospray charge-reduction source for producing aerosols from a sample solution/suspensions. Mass analysis of high molecular weight noncovalent complexes is also possible with this methodology due to the linear correlation of the electrophoretic mobility diameter and the molecular mass. In this work, we present the analysis (size and molecular mass) of high molecular weight multimers (noncovalent functional homocomplex) of Jack bean urease in a mass range from 275 kDa up to 2.5 MDa, with mainly present tri- and hexamers but also higher oligomers of the 91 kDa monomer subunit. In a second experiment, the size analysis of intact very-low-density (approximately 35 nm), low-density ( approximately 22 nm) and high-density lipoparticles (approximately 10 nm), which are heterocomplexes consisting of cholesterol, lipids, and proteins in different ratios, is presented. Results from mobility analysis were in excellent agreement with particle diameters found in literature. The last presented experiment demonstrates size analysis of a rod-like virus and selective sampling of a selected size fraction of electrosprayed, singly-charged tobacco mosaic virus particles. Sampling and subsequent transmission electron microscopic investigations of a specific size fraction (40 nm electrophoretic mobility diameter) revealed the folding of virus particles during the electrospray and charge reduction (electrical stress) as well as solvent evaporation (mechanical stress) process, leading to an observed geometry of 150 (length) x 35 (width) nm (average cylindrical geometry of unsprayed intact virus 300 x 18 nm).
Collapse
Affiliation(s)
- Günter Allmaier
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, Vienna, Austria.
| | | | | |
Collapse
|
48
|
Shadwick FS, Doran PM. Propagation of plant viruses in hairy root cultures: a potential method for in vitro production of epitope vaccines and foreign proteins. Biotechnol Bioeng 2007; 96:570-83. [PMID: 16900508 DOI: 10.1002/bit.21126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hairy roots were used as an in vitro culture system for the propagation of wild-type and transgenic plant viruses. Tobacco mosaic virus (TMV) was added to the liquid culture medium at the same time as root inoculation. Hairy root growth was unaffected by viral infection. Maximum concentrations of TMV in Nicotiana benthamiana hairy roots were 1-2 orders of magnitude greater than in suspended N. benthamiana cells and reached levels of 1-2 mg g(-1) dry weight or 20-28% total soluble protein. Virus accumulated in the roots initially with a constant doubling time of about 1.0 day; subsequent reductions in viral growth rate were correlated with a significant decline in infectivity relative to the inoculum virus. The morphological integrity of the viral particles was maintained during propagation in hairy roots. The contribution to the overall viral titer of passive association of virus with the biomass, for example, by surface adsorption, was negligible compared with active viral replication. N. benthamiana hairy roots were also infected with a TMV-based viral vector developed to express green fluorescent protein (GFP). This vector was about 260-fold less infectious than wild-type TMV and accumulated much more slowly in the roots. Maximum levels of TMV-GFP in the biomass were about 65-fold lower than for TMV. This work demonstrates that hairy root cultures are a feasible means for in vitro propagation of wild-type and transgenic plant viruses under conditions that allow a high degree of environmental containment and control.
Collapse
Affiliation(s)
- Fiona S Shadwick
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
49
|
Abstract
Tobacco mosaic virus (TMV) has had an illustrious history for more than 100 years, dating to Beijerinck's description of the mosaic disease of tobacco as a contagium vivum fluidum and the modern usage of the word "virus." Since then, TMV has been acknowledged as a preferred didactic model and a symbolic model to illuminate the essential features that define a virus. TMV additionally emerged as a prototypic model to investigate the biology of host plants, namely tobacco. TMV also exemplifies how a model system furthers novel, and often unexpected, developments in biology and virology. Today, TMV is used as a tool to study host-pathogen interactions and cellular trafficking, and as a technology to express valuable pharmaceutical proteins in tobacco. The history of TMV illustrates how pragmatic strategies to control an economically important disease of tobacco have had unexpected and transforming effects across platforms that impinge on plant health and public health.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA.
| |
Collapse
|
50
|
Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423:760-2. [PMID: 12802336 DOI: 10.1038/nature01683] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 04/14/2003] [Indexed: 11/08/2022]
Abstract
Plant genome stability is known to be affected by various abiotic environmental conditions, but little is known about the effect of pathogens. For example, exposure of maize plants to barley stripe mosaic virus seems to activate transposable elements and to cause mutations in the non-infected progeny of infected plants. The induction by barley stripe mosaic virus of an inherited effect may mean that the virus has a non-cell-autonomous influence on genome stability. Infection with Peronospora parasitica results in an increase in the frequency of somatic recombination in Arabidopsis thaliana; however, it is unclear whether effects on recombination require the presence of the pathogen or represent a systemic plant response. It is also not clear whether the changes in the frequency of somatic recombination can be inherited. Here we report a threefold increase in homologous recombination frequency in both infected and non-infected tissue of tobacco plants infected with either tobacco mosaic virus or oilseed rape mosaic virus. These results indicate the existence of a systemic recombination signal that also results in an increased frequency of meiotic and/or inherited late somatic recombination.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| | | | | | | | | | | | | |
Collapse
|