1
|
Ahkami AH, Qafoku O, Roose T, Mou Q, Lu Y, Cardon ZG, Wu Y, Chou C, Fisher JB, Varga T, Handakumbura P, Aufrecht JA, Bhattacharjee A, Moran JJ. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics - Review and research perspectives. SOIL BIOLOGY & BIOCHEMISTRY 2024; 189:109253. [PMID: 39238778 PMCID: PMC11376622 DOI: 10.1016/j.soilbio.2023.109253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The soil region influenced by plant roots, i.e., the rhizosphere, is one of the most complex biological habitats on Earth and significantly impacts global carbon flow and transformation. Understanding the structure and function of the rhizosphere is critically important for maintaining sustainable plant ecosystem services, designing engineered ecosystems for long-term soil carbon storage, and mitigating the effects of climate change. However, studying the biological and ecological processes and interactions in the rhizosphere requires advanced integrated technologies capable of decoding such a complex system at different scales. Here, we review how emerging approaches in sensing, imaging, and computational modeling can advance our understanding of the complex rhizosphere system. Particularly, we provide our perspectives and discuss future directions in developing in situ rhizosphere sensing technologies that could potentially correlate local-scale interactions to ecosystem scale impacts. We first review integrated multimodal imaging techniques for tracking inorganic elements and organic carbon flow at nano- to microscale in the rhizosphere, followed by a discussion on the use of synthetic soil and plant habitats that bridge laboratory-to-field studies on the rhizosphere processes. We then describe applications of genetically encoded biosensors in monitoring nutrient and chemical exchanges in the rhizosphere, and the novel nanotechnology-mediated delivery approaches for introducing biosensors into the root tissues. Next, we review the recent progress and express our vision on field-deployable sensing technologies such as planar optodes for quantifying the distribution of chemical and analyte gradients in the rhizosphere under field conditions. Moreover, we provide perspectives on the challenges of linking complex rhizosphere interactions to ecosystem sensing for detecting biological traits across scales, which arguably requires using the best-available model predictions including the model-experiment and image-based modeling approaches. Experimental platforms relevant to field conditions like SMART (Sensors at Mesoscales with Advanced Remote Telemetry) soils testbed, coupled with ecosystem sensing and predictive models, can be effective tools to explore coupled ecosystem behavior and responses to environmental perturbations. Finally, we envision that with the advent of novel high-resolution imaging capabilities at nano- to macroscale, and remote biosensing technologies, combined with advanced computational models, future studies will lead to detection and upscaling of rhizosphere processes toward ecosystem and global predictions.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, England, SO17 1BJ
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yuxin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Chunwei Chou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Tamas Varga
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Jayde A Aufrecht
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - James J Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
- Michigan State University, Department of Integrative Biology and Department of Plant, Soil, and Microbial Sciences, East Lansing, MI, 48824, USA
| |
Collapse
|
2
|
Olmos-Ruiz R, Garcia-Gomez P, Carvajal M, Yepes-Molina L. Exploring membrane vesicles in citrus fruits: a comparative analysis of conventional and organic farming approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:235-248. [PMID: 37596244 DOI: 10.1002/jsfa.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 08/19/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Recently, vesicles derived from plant cell membranes have received attention for their potential use as active biomolecules and nanocarriers, and obtaining them from organic crops may be an interesting option because different farming systems can affect production, plant secondary metabolism and biochemistry of cell membranes. The present study aimed to determine how organic and conventional farming affects the mineral nutrition, gas exchange, CO2 fixation and biochemical composition of lemon fruits, which could have an impact on the different fractions of cell membranes in pulp and juice. RESULTS Organic trees had higher intrinsic water use efficiency (WUEi) but conventional trees had higher stomatal conductance (gs) and nitrogen use efficiency (NUtE). Also, organic lemons had significantly higher levels of some micronutrients (Ca, Cu, Fe and Zn). Second, the main differences in the membrane vesicles showed that organic pulp vesicles had a higher antioxidant activity and more oleic acid, whereas both types of vesicles from conventional lemons had more linoleic acid. CONCLUSION In conclusion, organic farming did not alter carbon fixation parameters but impacted nitrogen fixation and water uptake, and resulted in higher micronutrient levels in lemons. These mineral nutritional changes could be related to the higher production of membranes that showed suitable morphological traits and a high antioxidant activity, positively correlated with a high amount of oleic acid, which could have stronger cell protection characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Pablo Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
3
|
Galindo-Castañeda T, Hartmann M, Lynch JP. Location: root architecture structures rhizosphere microbial associations. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:594-604. [PMID: 37882632 PMCID: PMC10773995 DOI: 10.1093/jxb/erad421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.
Collapse
Affiliation(s)
| | - Martin Hartmann
- Department of Environmental Systems Service, ETH Zürich, 8092 Zurich, Switzerland
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Joseph Fernando EA, Selvaraj M, Uga Y, Busch W, Bowers H, Tohme J. Going deep: Roots, carbon, and analyzing subsoil carbon dynamics. MOLECULAR PLANT 2024; 17:1-3. [PMID: 38008936 DOI: 10.1016/j.molp.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/28/2023]
Affiliation(s)
| | - Michael Selvaraj
- Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Aprtado Aereo 6713, Cali 763537, Colombia
| | - Yusaku Uga
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki 305-0856, Japan
| | - Wolfgang Busch
- Wolfgang Busch, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hunt Bowers
- Earth Optics, Suite 840, Arlington, VA 22202, USA
| | - Joe Tohme
- Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Aprtado Aereo 6713, Cali 763537, Colombia
| |
Collapse
|
5
|
Dwibedi SK, Sahu SK, Pandey VC, Mahalik JK, Behera M. Effect of fly ash and vermicompost amendment on rhizospheric earthworm and nematode count and change in soil carbon pool of rice nursery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124520-124529. [PMID: 35441294 DOI: 10.1007/s11356-022-20157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Fly ash application to the soil at lower doses with organic substrates has been advocated by researchers due to its beneficial soil ameliorative properties. But its xenobiotic effects in presence of vermicompost have not yet been studied fully. The hypothesis of the present study was to ascertain the ameliorative effects of fly ash and vermicompost amendment on the soil nematode and earthworm count and change in the soil carbon pool of the rice nursery. The native soil, fly ash, and vermicompost at 0%, 20%, 40%, 60%, 80%, and 100% combinations (by weight) in triplicate were investigated under a factorial complete randomized design. The fly ash affected the earthworm survivability to an extent that the earthworms could not survive in fly ash of concentration greater than 20%. On the contrary, the concentration of vermicompost positively influenced the earthworm and nematode count in the rice rhizosphere. The population of nematodes viz. Rhabditis terricola and Dorylaimids in the rhizosphere of rice nursery was positively linked with the vermicompost concentration, while fly ash had antagonistic effects. The absence of nematodes and earthworms at a higher concentration of fly ash could be linked to the xenobiotic effects of fly ash. However, on mild addition of fly ash and vermicompost (20% each) to the native soil, the carbon stock increased positively to the maximum extent due to the larger surface area of fly ash and its xenobiotic effects limiting respirational carbon loss.
Collapse
Affiliation(s)
- Sanat Kumar Dwibedi
- College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Sanjat Kumar Sahu
- Post-Graduation Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Bhubaneswar, Odisha, India
| | - Vimal Chandra Pandey
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| | - Jayanta Kumar Mahalik
- College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | | |
Collapse
|
6
|
Zhang Z, Hao M, Yu Q, Dun X, Xu J, Gao P. The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163492. [PMID: 37062318 DOI: 10.1016/j.scitotenv.2023.163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0-20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial community. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bacterial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abundance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when studying the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.
Collapse
Affiliation(s)
- Zixu Zhang
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ming Hao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qinghui Yu
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingjian Dun
- Shandong Academy of Forestry, Ji'nan, Shandong 250014, China.
| | - Jingwei Xu
- Shandong Academy of Forestry, Ji'nan, Shandong 250014, China
| | - Peng Gao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement of Ministry of Agriculture, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
7
|
Singh I, Hussain M, Manjunath G, Chandra N, Ravikanth G. Regenerative agriculture augments bacterial community structure for a healthier soil and agriculture. FRONTIERS IN AGRONOMY 2023; 5:1134514. [PMID: 39071943 PMCID: PMC7616306 DOI: 10.3389/fagro.2023.1134514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Introduction Use of chemical fertilization and pesticides not only harm the environment but also have detrimental consequences on human health. In recent years, there has been a major emphasis worldwide on natural agriculture methods. Regenerative agriculture is known across the world as a combination of nature-friendly farming practices such as no-till, cover cropping, crop-rotation, agroforestry and use of organic home-based/farm-based ingredients to revive soil health. In India, a number of farmers are slowly adopting these practices using home-based mixtures and farmyard manure for soil rejuvenation and pest management. In order to evaluate the efficacy of the regenerative agriculture practices, this study compared conventional and regenerative agriculture plots for their soil bacterial and nutrient profiles. Methods Two crops - ragi (Finger millet, an old world cereal eaten in India) and vegetable (tomato/beans), and different lengths (≤3 and >5 years) of regenerative practices were additional metrics considered to understand variabilities due to crop-type and period of application. The common regenerative agriculture practices used by farmers in this study included a mix of practices such as mulching, minimal-till, inter-cropping, crop-rotation, along with application of farmyard manure and other home-based concoctions rich in nutrients and microbes for enriching the soil. Results We found that all regenerative practices were effective in bringing about an enrichment for soil bacteria with a more heterogeneous composition. Additionally, in regenerative vegetable (RV) versus conventional vegetable (CV) and barren land (BL) plots the relative percentage abundance of Actinobacteriota (RV-7.47%/ CV-6.24%/BL -7.02%) and Chloroflexi (RV-9.37%/ CV-6.63%/BL-8.75%) was slightly higher. In contrast, levels of Acidobacteriota (RV-8.1%/ CV-9.88%/BL-9.62%) was significantly lower. Similarly, regenerative ragi (RR) in comparison with conventional ragi (CR) and barren land (BL) plots saw higher representation of Firmicutes (RR-5.45%/ CR-2.38%/BL-1.45%) and Actinobacteriota (RR-11.53%/ CR-7.08%/BL-7.15%) and a concurrent reduction in Acidobacteriota (RR-6.91%/CR-7.39%/ BL-9.79%). The RV plots were found to be enriched for Plant Growth Promoting Rhizobacteria (PGPRs) - Pseudomonas sp. (RV-0.51%/CV-0.01%/BL-0.21%), and RR plots were enriched for Bacillus sp. (RR-1.35%/CR-0.95%/BL-0.61%), and Mesorhizobium sp. (0.30%/0.12%/0.21%), which are known to play significant roles in vegetable and ragi growth respectively. Discussion Interestingly, long-term regenerative agriculture was able to support good nutrient composition while enhancing Soil Organic Carbon (SOC) levels. In all, the regenerative agriculture practices were found to be effective in improving bacterial community structure and simultaneously improving soil health. We found that BL soil with eucalyptus plantation showed among the least bacterial diversity suggesting detrimental impact on soil health.
Collapse
Affiliation(s)
- Indira Singh
- Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
| | | | - G. Manjunath
- Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
| | | | - G. Ravikanth
- Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
| |
Collapse
|
8
|
Hirt H, Al-Babili S, Almeida-Trapp M, Martin A, Aranda M, Bartels D, Bennett M, Blilou I, Boer D, Boulouis A, Bowler C, Brunel-Muguet S, Chardon F, Colcombet J, Colot V, Daszkowska-Golec A, Dinneny JR, Field B, Froehlich K, Gardener CH, Gojon A, Gomès E, Gomez-Alvarez EM, Gutierrez C, Havaux M, Hayes S, Heard E, Hodges M, Alghamdi AK, Laplaze L, Lauersen KJ, Leonhardt N, Johnson X, Jones J, Kollist H, Kopriva S, Krapp A, Masson MLP, McCabe MF, Merendino L, Molina A, Moreno Ramirez JL, Mueller-Roeber B, Nicolas M, Nir I, Orduna IO, Pardo JM, Reichheld JP, Rodriguez PL, Rouached H, Saad MM, Schlögelhofer P, Singh KA, De Smet I, Stanschewski C, Stra A, Tester M, Walsh C, Weber APM, Weigel D, Wigge P, Wrzaczek M, Wulff BBH, Young IM. PlantACT! - how to tackle the climate crisis. TRENDS IN PLANT SCIENCE 2023; 28:537-543. [PMID: 36740490 DOI: 10.1016/j.tplants.2023.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 05/22/2023]
Abstract
Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.
Collapse
Affiliation(s)
- Heribert Hirt
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Salim Al-Babili
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Marilia Almeida-Trapp
- Core labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Antoine Martin
- IPSiM, Université Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Manuel Aranda
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dorothea Bartels
- University of Bonn, Molecular Physiology, Kirschallee 1, D-53115 Bonn, Germany
| | - Malcolm Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Ikram Blilou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Alix Boulouis
- UMR7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sophie Brunel-Muguet
- INRAE, Normandie Univ, UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, SFR Normandie Végétal (FED 4277), Esplanade de la Paix, 14032 Caen, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Vincent Colot
- Institute of Biology of the Ecole Normale Supérieure, Paris, France
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jose R Dinneny
- Stanford University, Department of Biology, Stanford, CA 94305, USA
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009 Marseille, France
| | - Katja Froehlich
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Catherine H Gardener
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alain Gojon
- IPSiM, Université Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Eric Gomès
- EGFV, Université Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | | | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS UMR7265, BIAM, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Edith Heard
- EMBL Heidelberg, Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Amal Khalaf Alghamdi
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Laurent Laplaze
- DIADE, Université de Montpellier, IRD, CIRAD, 34394 Montpellier cedex 5, France
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nathalie Leonhardt
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13108, France
| | - Xenie Johnson
- Photosynthesis and Environment Team (P&E), Institut de Biosciences et Biotechnologies d'Aix-Marseille (BIAM), UMR 7265 CNRS-CEA-Université Aix-Marseille II, CEA Cadarache Bat 156, 13108 St Paul lez Durance, France
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Mauricio Lopez-Portillo Masson
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Matthew F McCabe
- Climate and Livability Initiative, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Livia Merendino
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Jose L Moreno Ramirez
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bernd Mueller-Roeber
- University Potsdam, Institute for Biochemistry and Biology, Molecular Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Michael Nicolas
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands; Department of Plants Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ido Nir
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road, 68, Rishon LeZion, Israel; Stanford University, Department of Biology, Stanford, CA 94305, USA
| | - Izamar Olivas Orduna
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla-41092, Spain
| | - Jean-Philippe Reichheld
- Laboratoire Genome et Developpement des Plantes, Universite ́ Perpignan Via Domitia, 66860 Perpignan, France
| | - Pedro L Rodriguez
- Instituto de Biologia Molecular y Celular de Plantas Consejo Superior de Investigaciones Científicas-Univ, Politécnica Avd de los Naranjos, Edificio CPI, 8 ES-46022, Valencia, Spain
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Maged M Saad
- DARWIN21, Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Kirti A Singh
- DARWIN21, Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Clara Stanschewski
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alice Stra
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mark Tester
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Catherine Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Philip Wigge
- University Potsdam, Institute for Biochemistry and Biology, Molecular Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, Viikki Biocenter 3, PO Box 65, FIN-00014, Helsinki University, Finland
| | - Brande B H Wulff
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Iain M Young
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Carof M, Godinot O, Le Cadre E. Biodiversity-based cropping systems: A long-term perspective is necessary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156022. [PMID: 35588807 DOI: 10.1016/j.scitotenv.2022.156022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Biodiversity-based cropping systems are an interesting option to address the many challenges that agriculture faces. However, benefits of these systems should not obscure the fact that creating biodiversity-based cropping systems represents a major change for farmers. To address this challenge, we argue that designing biodiversity-based cropping systems requires transforming ecological concepts into technical opportunities. Indeed, integrating ecological concepts such as plant-soil feedback and plant functional traits more strongly into cropping system design offers promising opportunities for the provision of ecosystem services, such as pest and disease control, crop production (including crop yield stability), climate regulation and regulation of soil quality. Accordingly, we demonstrate that designing biodiversity-based cropping systems requires considering not only the short term but also the long term. This would ensure that the expected ecosystem services have enough time to build up and provide their full effects, that the cropping systems are resilient and that they avoid the limitations of short-term assessments, which do not sufficiently consider multi-year effects. Considering long-term consequences of system change - induced by biodiversity - is essential to identify potential trade-offs between ecosystem services, as well as agricultural obstacles to and mechanisms of change. Including farmers and other food-chain actors in cropping system design would help find acceptable compromises that consider not only the provision of ecosystem services, but also other dimensions related to economic viability, workload or the technical feasibility of crops, which are identified as major obstacles to crop diversification. This strategy represents an exciting research front for the development of agroecological cropping systems.
Collapse
|
11
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Zhang Z, Hao M, Li Y, Shao Z, Yu Q, He Y, Gao P, Xu J, Dun X. Effects of vegetation and terrain changes on spatial heterogeneity of soil C-N-P in the coastal zone protected forests at northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115472. [PMID: 35751271 DOI: 10.1016/j.jenvman.2022.115472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) are important indicators reflecting soil quality, and they can be used to effectively evaluate the effect of soil remediation. Many studies have evaluated the content of SOC, TN and TP in different ecosystems. However, after constructing protected forests for ecological restoration in the ecologically fragile coastal zone, the spatial distribution and influencing mechanism of SOC, TN and TP content is still uncertain. In this study, the spatial heterogeneity and influencing factors of SOC, TN and TP in surface (0-20 cm) soil were analyzed by traditional analysis and geostatistics. A total of 39 soil samples were collected under the coastal zone protected forest types including Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP), mixed PTP and QAC (QP) and Castanea mollissima BL (CMB) in the coastal zone protected forests in northern China. The results show that SOC, TN and TP content were defined as moderate variation, and they also show significant changes under different protected forest types (P < 0.05). The semivariance results indicate that SOC, TN and TP all exhibited strong spatial dependence class, with Range of 224 m, 229 m and 282 m respectively, which were more than the sampling scale of 200 m. The spatial prediction results showed that SOC, TN and TP content all appear in large areas of extremely low value in CMB, and its cross validation results showed that using vegetation and terrain factors as covariates in the spatial prediction of SOC, TN and TP can improve the prediction accuracy. The results of correlation analysis showed that the influencing factor for SOC and TN, and TP were NDVI and topographical changes, respectively. In general, vegetation and terrain factors as auxiliary factors can improved the accuracy of soil C-N-P spatial distribution prediction after afforestation in coastal zone.
Collapse
Affiliation(s)
- Zixu Zhang
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming Hao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yongqiang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Ziqing Shao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qinghui Yu
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuan He
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Peng Gao
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Forestry College, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jingwei Xu
- Shandong Academy of Forestry, Ji'nan, Shandong, 250014, China
| | - Xingjian Dun
- Shandong Academy of Forestry, Ji'nan, Shandong, 250014, China
| |
Collapse
|
13
|
Panchal P, Preece C, Peñuelas J, Giri J. Soil carbon sequestration by root exudates. TRENDS IN PLANT SCIENCE 2022; 27:749-757. [PMID: 35606255 DOI: 10.1016/j.tplants.2022.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Root exudates are well-known 'labile' sources of soil carbon that can prime microbial activity. Recent investigations suggest that the stability of labile carbon inputs in soil mostly depends upon the physical, chemical, and biological properties of the surroundings. Here, we propose that, in some ecosystems, such as forests and grasslands, root exudates can function as a source of soil organic carbon (SOC) that can be stabilized through various mechanisms leading to long-term sequestration. Increasing soil carbon sequestration is important for capturing atmospheric CO2 and combating climate change issues. Thus, there is an urgent need to preserve existing ecosystems and to adopt strategies such as afforestation, reforestation, and establishment of artificial grasslands to foster carbon sequestration through higher root exudate inputs in the soil.
Collapse
Affiliation(s)
- Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Catherine Preece
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, BE-2610 Wilrijk, Belgium; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
14
|
Rangarajan H, Hadka D, Reed P, Lynch JP. Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:38-53. [PMID: 35426959 PMCID: PMC9544003 DOI: 10.1111/tpj.15774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 05/11/2023]
Abstract
Root phenotypes are avenues to the development of crop cultivars with improved nutrient capture, which is an important goal for global agriculture. The fitness landscape of root phenotypes is highly complex and multidimensional. It is difficult to predict which combinations of traits (phene states) will create the best performing integrated phenotypes in various environments. Brute force methods to map the fitness landscape by simulating millions of phenotypes in multiple environments are computationally challenging. Evolutionary optimization algorithms may provide more efficient avenues to explore high dimensional domains such as the root phenotypic space. We coupled the three-dimensional functional-structural plant model, SimRoot, to the Borg Multi-Objective Evolutionary Algorithm (MOEA) and the evolutionary search over several generations facilitated the identification of optimal root phenotypes balancing trade-offs across nutrient uptake, biomass accumulation, and root carbon costs in environments varying in nutrient availability. Our results show that several combinations of root phenes generate optimal integrated phenotypes where performance in one objective comes at the cost of reduced performance in one or more of the remaining objectives, and such combinations differed for mobile and non-mobile nutrients and for maize (a monocot) and bean (a dicot). Functional-structural plant models can be used with multi-objective optimization to identify optimal root phenotypes under various environments, including future climate scenarios, which will be useful in developing the more resilient, efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Patrick Reed
- Civil and Environmental EngineeringCornell UniversityIthacaNew YorkUSA
| | - Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
15
|
Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers. Sci Rep 2022; 12:5952. [PMID: 35396458 PMCID: PMC8993804 DOI: 10.1038/s41598-022-09737-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/17/2022] [Indexed: 01/04/2023] Open
Abstract
Comprehensive climate change mitigation necessitates soil carbon (C) storage in cultivated terrestrial ecosystems. Deep-rooted perennial crops may help to turn agricultural soils into efficient C sinks, especially in deeper soil layers. Here, we compared C allocation and potential stabilization to 150 cm depth from two functionally distinct deep-rooted perennials, i.e., lucerne (Medicago sativa L.) and intermediate wheatgrass (kernza; Thinopyrum intermedium), representing legume and non-legume crops, respectively. Belowground C input and stabilization was decoupled from nitrogen (N) fertilizer rate in kernza (100 and 200 kg mineral N ha−1), with no direct link between increasing mineral N fertilization, rhizodeposited C, and microbial C stabilization. Further, both crops displayed a high ability to bring C to deeper soil layers and remarkably, the N2-fixing lucerne showed greater potential to induce microbial C stabilization than the non-legume kernza. Lucerne stimulated greater microbial biomass and abundance of N cycling genes in rhizosphere soil, likely linked to greater amino acid rhizodeposition, hence underlining the importance of coupled C and N for microbial C stabilization efficiency. Inclusion of legumes in perennial cropping systems is not only key for improved productivity at low fertilizer N inputs, but also appears critical for enhancing soil C stabilization, in particular in N limited deep subsoils.
Collapse
|
16
|
Lynch JP, Mooney SJ, Strock CF, Schneider HM. Future roots for future soils. PLANT, CELL & ENVIRONMENT 2022; 45:620-636. [PMID: 34725839 PMCID: PMC9299599 DOI: 10.1111/pce.14213] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 05/12/2023]
Abstract
Mechanical impedance constrains root growth in most soils. Crop cultivation changed the impedance characteristics of native soils, through topsoil erosion, loss of organic matter, disruption of soil structure and loss of biopores. Increasing adoption of Conservation Agriculture in high-input agroecosystems is returning cultivated soils to the soil impedance characteristics of native soils, but in the low-input agroecosystems characteristic of developing nations, ongoing soil degradation is generating more challenging environments for root growth. We propose that root phenotypes have evolved to adapt to the altered impedance characteristics of cultivated soil during crop domestication. The diverging trajectories of soils under Conservation Agriculture and low-input agroecosystems have implications for strategies to develop crops to meet global needs under climate change. We present several root ideotypes as breeding targets under the impedance regimes of both high-input and low-input agroecosystems, as well as a set of root phenotypes that should be useful in both scenarios. We argue that a 'whole plant in whole soil' perspective will be useful in guiding the development of future crops for future soils.
Collapse
Affiliation(s)
- Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sacha J. Mooney
- School of BiosciencesUniversity of NottinghamLeicestershireUK
| | - Christopher F. Strock
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Hannah M. Schneider
- Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
17
|
Beillouin D, Cardinael R, Berre D, Boyer A, Corbeels M, Fallot A, Feder F, Demenois J. A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon. GLOBAL CHANGE BIOLOGY 2022; 28:1690-1702. [PMID: 34873793 DOI: 10.1111/gcb.15998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Major drivers of gains or losses in soil organic carbon (SOC) include land management, land-use change, and climate change. Thousands of original studies have focused on these drivers of SOC change and are now compiled in a growing number of meta-analyses. To critically assess the research efforts in this domain, we retrieved and characterized 192 meta-analyses of SOC stocks or concentrations. These meta-analyses comprise more than 13,200 original studies conducted from 1910 to 2020 in 150 countries. First, we show that, despite a growing number of studies over time, the geographical coverage of studies is limited. For example, the effect of land management, land-use change, and climate change on SOC has been only occasionally studied in North and Central Africa, and in the Middle East and Central Asia. Second, the meta-analyses investigated a limited number of land management practices, mostly mineral fertilization, organic amendments, and tillage. Third, the meta-analyses demonstrated relatively low quality and transparency. Lastly, we discuss the mismatch between the increasing number of studies and the need for more local, reusable, and diversified knowledge on how to preserve high SOC stocks or restore depleted SOC stocks.
Collapse
Affiliation(s)
- Damien Beillouin
- CIRAD, UPR HortSys, Montpellier, France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| | - Rémi Cardinael
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR AIDA, Harare, Zimbabwe
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, Zimbabwe
| | - David Berre
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR AIDA, Bobo-Dioulasso, Burkina Faso
- CIRDES, USPAE, Bobo-Dioulasso, Burkina Faso
| | | | - Marc Corbeels
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- IITA, International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Abigail Fallot
- CIRAD, UMR SENS, Montpellier, France
- SENS, Univ Montpellier, CIRAD, Montpellier, France
| | - Frédéric Feder
- CIRAD, UPR Recyclage et Risque, Montpellier, France
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Julien Demenois
- AIDA, Univ Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR AIDA, Montpellier, France
| |
Collapse
|
18
|
Vinci G, Piccolo A, Bridoux M. Complementary ESI and APPI high resolution mass spectrometry unravel the molecular complexity of a soil humeome. Anal Chim Acta 2022; 1194:339398. [DOI: 10.1016/j.aca.2021.339398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/25/2021] [Accepted: 12/23/2021] [Indexed: 11/01/2022]
|
19
|
Schäfer ED, Ajmera I, Farcot E, Owen MR, Band LR, Lynch JP. In silico evidence for the utility of parsimonious root phenotypes for improved vegetative growth and carbon sequestration under drought. FRONTIERS IN PLANT SCIENCE 2022; 13:1010165. [PMID: 36466274 PMCID: PMC9713484 DOI: 10.3389/fpls.2022.1010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 05/11/2023]
Abstract
Drought is a primary constraint to crop yields and climate change is expected to increase the frequency and severity of drought stress in the future. It has been hypothesized that crops can be made more resistant to drought and better able to sequester atmospheric carbon in the soil by selecting appropriate root phenotypes. We introduce OpenSimRoot_v2, an upgraded version of the functional-structural plant/soil model OpenSimRoot, and use it to test the utility of a maize root phenotype with fewer and steeper axial roots, reduced lateral root branching density, and more aerenchyma formation (i.e. the 'Steep, Cheap, and Deep' (SCD) ideotype) and different combinations of underlying SCD root phene states under rainfed and drought conditions in three distinct maize growing pedoclimatic environments in the USA, Nigeria, and Mexico. In all environments where plants are subjected to drought stress the SCD ideotype as well as several intermediate phenotypes lead to greater shoot biomass after 42 days. As an additional advantage, the amount of carbon deposited below 50 cm in the soil is twice as great for the SCD phenotype as for the reference phenotype in 5 out of 6 simulated environments. We conclude that crop growth and deep soil carbon deposition can be improved by breeding maize plants with fewer axial roots, reduced lateral root branching density, and more aerenchyma formation.
Collapse
Affiliation(s)
- Ernst D. Schäfer
- Department of Plant Science, Pennysylvania State University, State College, PA, United States
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ishan Ajmera
- Department of Plant Science, Pennysylvania State University, State College, PA, United States
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Markus R. Owen
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Leah R. Band
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan P. Lynch
- Department of Plant Science, Pennysylvania State University, State College, PA, United States
- *Correspondence: Jonathan P. Lynch,
| |
Collapse
|
20
|
Lynch JP. Harnessing root architecture to address global challenges. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:415-431. [PMID: 34724260 PMCID: PMC9299910 DOI: 10.1111/tpj.15560] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 05/06/2023]
Abstract
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Collapse
Affiliation(s)
- Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
21
|
Zhang Z, Gao P, Li T, Dong X, Zhang J, Shao Z, Xu J, Dun X. Carbon isotopic measurements from coastal zone protected forests in northern China: Soil carbon decomposition assessment and its influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113649. [PMID: 34474259 DOI: 10.1016/j.jenvman.2021.113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Panting protected forests to increase soil carbon sequestration is an effective means of reducing carbon emissions. Soil organic carbon (SOC) decomposition is one of the main indicators of soil carbon sequestration. However, SOC decomposition and its influencing factors in protected forests have not been fully characterized, especially in coastal zones. In this paper, coastal zone protected forest stands composed of Quercus acutissima Carruth (QAC), Pinus thunbergii Parl (PTP) and mixed PTP and QAC (MF) were selected as the research objects. The trends of the SOC decomposition rate were characterized by the beta (β) value, and the influencing factors were further explored with structural equation models. The results were as follows: The SOC content decreased from leaf to litter and then to the soil profile at all sites, while the δ13C value increased. The β value ranged from -3.12 to -5.76, with an average of -3.81. The β value was positively correlated with the diversity and richness of soil bacteria, supporting the hypothesis that the increase in δ13C with depth was mainly caused by isotope fractionation in the process of microbial SOC decomposition. The structural equation model showed that nitrogen and the availability of nitrogen have a strong ability to explain the value of β, which indicates that nitrogen-based edaphic variables play an important role in affecting SOC decomposition. The SOC decomposition rate in PTP was higher than that in QAC and MF. The results of this study indicate that the prediction of SOC decomposition based on the β value is suitable for coastal zone protected forests. The incorporation of edaphic variables into global carbon cycle models may enhance the predictions of SOC dynamics in coastal zone protected forests.
Collapse
Affiliation(s)
- Zixu Zhang
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Peng Gao
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China.
| | - Teng Li
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Xuede Dong
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Jiachen Zhang
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Ziqing Shao
- Shandong Agricultural University, Forestry College, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong, 271018, China
| | - Jingwei Xu
- Shandong Academy of Forestry, Ji'nan, Shandong, 250014, China.
| | - Xingjian Dun
- Shandong Academy of Forestry, Ji'nan, Shandong, 250014, China
| |
Collapse
|
22
|
Yaffar D, Wood TE, Reed SC, Branoff BL, Cavaleri MA, Norby RJ. Experimental warming and its legacy effects on root dynamics following two hurricane disturbances in a wet tropical forest. GLOBAL CHANGE BIOLOGY 2021; 27:6423-6435. [PMID: 34469626 PMCID: PMC9293463 DOI: 10.1111/gcb.15870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/02/2021] [Indexed: 06/01/2023]
Abstract
Tropical forests are expected to experience unprecedented warming and increases in hurricane disturbances in the coming decades; yet, our understanding of how these productive systems, especially their belowground component, will respond to the combined effects of varied environmental changes remains empirically limited. Here we evaluated the responses of root dynamics (production, mortality, and biomass) to soil and understory warming (+4°C) and after two consecutive tropical hurricanes in our in situ warming experiment in a tropical forest of Puerto Rico: Tropical Responses to Altered Climate Experiment (TRACE). We collected minirhizotron images from three warmed plots and three control plots of 12 m2 . Following Hurricanes Irma and María in September 2017, the infrared heater warming treatment was suspended for repairs, which allowed us to explore potential legacy effects of prior warming on forest recovery. We found that warming significantly reduced root production and root biomass over time. Following hurricane disturbance, both root biomass and production increased substantially across all plots; the root biomass increased 2.8-fold in controls but only 1.6-fold in previously warmed plots. This pattern held true for both herbaceous and woody roots, suggesting that the consistent antecedent warming conditions reduced root capacity to recover following hurricane disturbance. Root production and mortality were both related to soil ammonium nitrogen and microbial biomass nitrogen before and after the hurricanes. This experiment has provided an unprecedented look at the complex interactive effects of disturbance and climate change on the root component of a tropical forested ecosystem. A decrease in root production in a warmer world and slower root recovery after a major hurricane disturbance, as observed here, are likely to have longer-term consequences for tropical forest responses to future global change.
Collapse
Affiliation(s)
- Daniela Yaffar
- Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Tana E. Wood
- USDA Forest Service International Institute of Tropical ForestryRío PiedrasPuerto Rico
| | - Sasha C. Reed
- Southwest Biological Science CenterU.S. Geological SurveyMoabUtahUSA
| | - Benjamin L. Branoff
- Gulf Ecosystem Measurement and Modeling DivisionEnvironment Protection AgencyGulf BreezeFloridaUSA
| | - Molly A. Cavaleri
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMichiganUSA
| | - Richard J. Norby
- Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
23
|
Yang X, Liu D, Lu H, Weston DJ, Chen JG, Muchero W, Martin S, Liu Y, Hassan MM, Yuan G, Kalluri UC, Tschaplinski TJ, Mitchell JC, Wullschleger SD, Tuskan GA. Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. BIODESIGN RESEARCH 2021; 2021:9798714. [PMID: 37849951 PMCID: PMC10521660 DOI: 10.34133/2021/9798714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2023] Open
Abstract
A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Haiwei Lu
- Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
24
|
Assessing the Contribution of Citrus Orchards in Climate Change Mitigation through Carbon Sequestration in Sargodha District, Pakistan. SUSTAINABILITY 2021. [DOI: 10.3390/su132212412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adopting agroforestry practices in many developing countries is essential to combat climate change and diversify farm incomes. This study investigated the above and below-ground biomass and soil carbon of a citrus-based intercropping system in six sites (subdivisions: Bhalwal, Kot Momin, Sahiwal, Sargodha, Shahpur and Silanwali) of District Sargodha, Southeast Pakistan. Tree biomass production and carbon were assessed by allometric equations through a non-destructive approach whereas, soil carbon was estimated at 0–15 cm and 15–30 cm depths. Above and below-ground biomass differed significantly, and the maximum mean values (16.61 Mg ha−1 & 4.82 Mg ha−1) were computed in Shahpur due to greater tree basal diameter. Tree carbon stock fluctuated from 6.98 Mg C ha−1 to 10.28 Mg C ha−1 among selected study sites. The surface soil (0–15 cm) had greater bulk density, organic carbon, and soil carbon stock than the subsoil (15–30 cm) in the whole study area. The total carbon stock of the ecosystem ranged from 25.07 Mg C ha−1 to 34.50 Mg C ha−1 across all study sites, respectively. The above findings enable us to better understand and predict the carbon storage potential of fruit-based agroforestry systems like citrus. Moreover, measuring carbon with simple techniques can produce trustworthy outcomes that enhance the participation of underdeveloped nations in several payment initiatives such as REDD+.
Collapse
|
25
|
Aguilar JJ, Moore M, Johnson L, Greenhut RF, Rogers E, Walker D, O’Neil F, Edwards JL, Thystrup J, Farrow S, Windle JB, Benfey PN. Capturing in-field root system dynamics with RootTracker. PLANT PHYSIOLOGY 2021; 187:1117-1130. [PMID: 34618063 PMCID: PMC8566282 DOI: 10.1093/plphys/kiab352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Optimizing root system architecture offers a promising approach to developing stress tolerant cultivars in the face of climate change, as root systems are critical for water and nutrient uptake as well as mechanical stability. However, breeding for optimal root system architecture has been hindered by the difficulty in measuring root growth in the field. Here, we describe the RootTracker, a technology that employs impedance touch sensors to monitor in-field root growth over time. Configured in a cylindrical, window shutter-like fashion around a planted seed, 264 electrodes are individually charged multiple times over the course of an experiment. Signature changes in the measured capacitance and resistance readings indicate when a root has touched or grown close to an electrode. Using the RootTracker, we have measured root system dynamics of commercial maize (Zea mays) hybrids growing in both typical Midwest field conditions and under different irrigation regimes. We observed rapid responses of root growth to water deficits and found evidence for a "priming response" in which an early water deficit causes more and deeper roots to grow at later time periods. Genotypic variation among hybrid maize lines in their root growth in response to drought indicated a potential to breed for root systems adapted for different environments. Thus, the RootTracker is able to capture changes in root growth over time in response to environmental perturbations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Philip N Benfey
- Hi Fidelity Genetics, Durham, NC USA
- Duke University, Department of Biology, Durham, NC, USA and Howard Hughes Medical Institute (HHMI)
| |
Collapse
|
26
|
Poeplau C, Don A, Schneider F. Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils. GLOBAL CHANGE BIOLOGY 2021; 27:4921-4934. [PMID: 34228862 DOI: 10.1111/gcb.15787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The ratio of soil organic carbon stock (SOC) to annual carbon input gives an estimate of the mean residence time of organic carbon that enters the soil (MRTOC ). It indicates how efficiently biomass can be transformed into SOC, which is of particular relevance for mitigating climate change by means of SOC storage. There have been few comprehensive studies of MRTOC and their drivers, and these have mainly been restricted to the global scale, on which climatic drivers dominate. This study used the unique combination of regional-scale cropland and grassland topsoil (0-30 cm) SOC stock data and average site-specific OC input data derived from the German Agricultural Soil Inventory to elucidate the main drivers of MRTOC . Explanatory variables related to OC input composition and other soil-forming factors were used to explain the variability in MRTOC by means of a machine-learning approach. On average, OC entering German agricultural topsoils had an MRT of 21.5 ± 11.6 years, with grasslands (29.0 ± 11.2 years, n = 465) having significantly higher MRTOC than croplands (19.4 ± 10.7, n = 1635). This was explained by the higher proportion of root-derived OC inputs in grassland soils, which was the most important variable for explaining MRTOC variability at a regional scale. Soil properties such as clay content, soil group, C:N ratio and groundwater level were also important, indicating that MRTOC is driven by a combination of site properties and OC input composition. However, the great importance of root-derived OC inputs indicated that MRTOC can be actively managed, with maximization of root biomass input to the soil being a straightforward means to extend the time that assimilated C remains in the soil and consequently also increase SOC stocks.
Collapse
Affiliation(s)
| | - Axel Don
- Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Florian Schneider
- Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
| |
Collapse
|
27
|
Mitchell E, Scheer C, Rowlings D, Cotrufo F, Conant RT, Grace P. Important constraints on soil organic carbon formation efficiency in subtropical and tropical grasslands. GLOBAL CHANGE BIOLOGY 2021; 27:5383-5391. [PMID: 34288295 DOI: 10.1111/gcb.15807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
More than 10% of Australia's 49 M ha of grassland is considered degraded, prompting widespread interest in the management of these ecosystems to increase soil carbon (C) sequestration-with an emphasis on long-lived C storage. We know that management practices that increase plant biomass also increase C inputs to the soil, but we lack a quantitative understanding of the fate of soil C inputs into different soil organic carbon (SOC) fractions that have fundamentally different formation pathways and persistence in the soil. Our understanding of the factors that constrain SOC formation in these fractions is also limited, particularly within tropical climates. We used isotopically labelled residue (13 C) to determine the fate of residue C inputs into short-lived particulate organic matter (POM) and more persistent mineral-associated organic matter (MAOM) across a broad climatic gradient (ΔMAT 10°C) with varying soil properties. Climate was the primary driver of aboveground residue mass loss which corresponded to higher residue-derived POM formation. In contrast, MAOM formation efficiency was constrained by soil properties. The differential controls on POM and MAOM formation highlight that a targeted approach to grassland restoration is required; we must identify priority regions for improved grazing management in soils that have a relatively high silt+clay content and cation exchange capacity, with a low C saturation in the silt+clay fraction to deliver long-term SOC sequestration.
Collapse
Affiliation(s)
- Elaine Mitchell
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Clemens Scheer
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Rowlings
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | - Peter Grace
- Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Egelberg J, Pena N, Rivera R, Andruk C. Assessing the geographic specificity of pH prediction by classification and regression trees. PLoS One 2021; 16:e0255119. [PMID: 34379630 PMCID: PMC8357141 DOI: 10.1371/journal.pone.0255119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Soil pH effects a wide range of critical biogeochemical processes that dictate plant growth and diversity. Previous literature has established the capacity of classification and regression trees (CARTs) to predict soil pH, but limitations of CARTs in this context have not been fully explored. The current study collected soil pH, climatic, and topographic data from 100 locations across New York’s Temperate Deciduous Forests (in the United States of America) to investigate the extrapolative capacity of a previously developed CART model as compared to novel CART and random forest (RF) models. Results showed that the previously developed CART underperformed in terms of predictive accuracy (RRMSE = 14.52%) when compared to a novel tree (RRMSE = 9.33%), and that a novel random forest outperformed both models (RRMSE = 8.88%), though its predictions did not differ significantly from the novel tree (p = 0.26). The most important predictors for model construction were climatic factors. These findings confirm existing reports that CART models are constrained by the spatial autocorrelation of geographic data and encourage the restricted application of relevant machine learning models to regions from which training data was collected. They also contradict previous literature implying that random forests should meaningfully boost the predictive accuracy of CARTs in the context of soil pH.
Collapse
Affiliation(s)
- Jacob Egelberg
- Department of Biochemistry, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Nina Pena
- Department of Science, New Rochelle High School, New Rochelle, New York, United States of America
| | - Rachel Rivera
- Department of Science, New Rochelle High School, New Rochelle, New York, United States of America
| | - Christina Andruk
- Department of Biology, Iona College, New Rochelle, New York, United States of America
| |
Collapse
|
29
|
Lombardi M, De Gara L, Loreto F. Determinants of root system architecture for future-ready, stress-resilient crops. PHYSIOLOGIA PLANTARUM 2021; 172:2090-2097. [PMID: 33905535 PMCID: PMC8360026 DOI: 10.1111/ppl.13439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 06/02/2023]
Abstract
Climate change hampers food safety and food security. Crop breeding has been boosting superior quantity traits such as yield, but roots have often been overlooked in spite of their role in the whole plant physiology. New evidence is emerging on the relevance of root system architecture in coping with the environment. Here, we review determinants of root system architecture, mainly based on studies on Arabidopsis, and we discuss how breeding for appropriate root architecture may help obtain plants that are better adapted or resilient to abiotic and biotic stresses, more productive, and more efficient for soil and water use. We also highlight recent advances in phenotyping high-tech platforms and genotyping techniques that may further help to understand the mechanisms of root development and how roots control relationships between plants and soil. An integrated approach is proposed that combines phenotyping and genotyping information via bioinformatic analyses and reveals genetic control of root system architecture, paving the way for future research on plant breeding.
Collapse
Affiliation(s)
- Marco Lombardi
- Department of Science and Technology for Humans and the EnvironmentCampus Bio‐Medico University of RomeVia Alvaro del Portillo 21Rome00128Italy
- Department of Biology, Agriculture, and Food SciencesNational Research Council of Italy (CNR‐DISBA)Piazzale Aldo Moro 7Rome00185Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the EnvironmentCampus Bio‐Medico University of RomeVia Alvaro del Portillo 21Rome00128Italy
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food SciencesNational Research Council of Italy (CNR‐DISBA)Piazzale Aldo Moro 7Rome00185Italy
- Department of BiologyUniversity Federico IIvia CinthiaNaples80126Italy
| |
Collapse
|
30
|
Preliminary Application of Ground-Penetrating Radar for Reconstruction of Root System Architecture in Moso Bamboo. REMOTE SENSING 2021. [DOI: 10.3390/rs13142816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Root system architecture (RSA) refers to the geometric features and topology of the root system. Ground-penetrating radar (GPR) is a possible method of RSA reconstruction. However, because the topology of the root system is not directly accessible by GPR, GPR-based reconstruction must be complemented by manual connection of root points, resulting in limited accuracy. In this study, we used both GPR and direct excavation to obtain 3D coordinates (XYZ coordinates) and diameters of moso bamboo rhizomes on an orthogonal grid. A score function for selecting the best-connected root points was developed using rhizome diameter, depth, extension angle, and measured line spacing, which was then used to recover the topology of discrete root points. Based on the recovered topology, the 3D RSA of the rhizomes was reconstructed using a smoothing function. Based on the excavation data, the reconstructed RSA was generally consistent with the measured RSA, with 78.13% of root points correctly connected. The reconstructed RSA based on GPR data thus provided a rough approximation of the measured RSA, with errors arising due to missing root points and rhizome displacement. The proposed algorithm for reconstructing 3D RSA further enriches the application of ground-penetrating radar to root detection.
Collapse
|
31
|
Messina C, McDonald D, Poffenbarger H, Clark R, Salinas A, Fang Y, Gho C, Tang T, Graham G, Hammer GL, Cooper M. Reproductive resilience but not root architecture underpins yield improvement under drought in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5235-5245. [PMID: 34037765 PMCID: PMC8272564 DOI: 10.1093/jxb/erab231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Because plants capture water and nutrients through roots, it was proposed that changes in root systems architecture (RSA) might underpin the 3-fold increase in maize (Zea mays L.) grain yield over the last century. Here we show that both RSA and yield have changed with decades of maize breeding, but not the crop water uptake. Results from X-ray phenotyping in controlled environments showed that single cross (SX) hybrids have smaller root systems than double cross (DX) hybrids for root diameters between 2465 µm and 181µm (P<0.05). Soil water extraction measured under field conditions ranged between 2.6 mm d-1 and 2.9 mm d-1 but were not significantly different between SX and DX hybrids. Yield and yield components were higher for SX than DX hybrids across densities and irrigation (P<0.001). Taken together, the results suggest that changes in RSA were not the cause of increased water uptake but an adaptation to high-density stands used in modern agriculture. This adaptation may have contributed to shift in resource allocation to the ear and indirectly improved reproductive resilience. Advances in root physiology and phenotyping can create opportunities to maintain long-term genetic gain in maize, but a shift from ideotype to crop and production system thinking will be required.
Collapse
Affiliation(s)
- Carlos Messina
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Dan McDonald
- Phenotype Screening Corporation, 4028 Papermill Road, Knoxville, TN 37909, USA
| | | | - Randy Clark
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Andrea Salinas
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Yinan Fang
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Carla Gho
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Tom Tang
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Geoff Graham
- Corteva Agriscience, 7250 NW 62nd Ave, Johnston, IA 50310, USA
| | - Graeme L Hammer
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD 4072, Australia
| | - Mark Cooper
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Win EP, Win KK, Bellingrath-Kimura SD, Oo AZ. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. PLoS One 2021; 16:e0253755. [PMID: 34191848 PMCID: PMC8244889 DOI: 10.1371/journal.pone.0253755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
The study is focused on impact of manure application, rice varieties and water management on greenhouse gas (GHG) emissions from paddy rice soil in pot experiment. The objectives of this study were a) to assess the effect of different types of manure amendments and rice varieties on greenhouse gas emissions and b) to determine the optimum manure application rate to increase rice yield while mitigating GHG emissions under alternate wetting and drying irrigation in paddy rice production. The first pot experiment was conducted at the Department of Agronomy, Yezin Agricultural University, Myanmar, in the wet season from June to October 2016. Two different organic manures (compost and cow dung) and control (no manure), and two rice varieties; Manawthukha (135 days) and IR-50 (115 days), were tested. The results showed that cumulative CH4 emission from Manawthukha (1.084 g CH4 kg-1 soil) was significantly higher than that from IR-50 (0.683 g CH4 kg-1 soil) (P<0.0046) with yield increase (P<0.0164) because of the longer growth duration of the former. In contrast, higher cumulative nitrous oxide emissions were found for IR-50 (2.644 mg N2O kg-1 soil) than for Manawthukha (2.585 mg N2O kg-1 soil). However, IR-50 showed less global warming potential (GWP) than Manawthukha (P<0.0050). Although not significant, the numerically lowest CH4 and N2O emissions were observed in the cow dung manure treatment (0.808 g CH4 kg-1 soil, 2.135 mg N2O kg-1 soil) compared to those of the control and compost. To determine the effect of water management and organic manures on greenhouse gas emissions, second pot experiments were conducted in Madaya township during the dry and wet seasons from February to October 2017. Two water management practices {continuous flooding (CF) and alternate wetting and drying (AWD)} and four cow dung manure rates {(1) 0 (2) 2.5 t ha-1 (3) 5 t ha-1 (4) 7.5 t ha-1} were tested. The different cow dung manure rates did not significantly affect grain yield or greenhouse gas emissions in this experiment. Across the manure treatments, AWD irrigation significantly reduced CH4 emissions by 70% during the dry season and 66% during the wet season. Although a relative increase in N2O emissions under AWD was observed in both rice seasons, the global warming potential was significantly reduced in AWD compared to CF in both seasons (P<0.0002, P<0.0000) according to reduced emission in CH4. Therefore, AWD is the effective mitigation practice for reducing GWP without compromising rice yield while manure amendment had no significant effect on GHG emission from paddy rice field. Besides, AWD saved water about 10% in dry season and 19% in wet season.
Collapse
Affiliation(s)
- Ei Phyu Win
- Department of Agronomy, Yezin Agricultural University, Yezin, Myanmar
- * E-mail:
| | - Kyaw Kyaw Win
- Department of Agronomy, Yezin Agricultural University, Yezin, Myanmar
| | | | - Aung Zaw Oo
- Institute for Agro-Environmental Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc Natl Acad Sci U S A 2021; 118:2022666118. [PMID: 34155124 DOI: 10.1073/pnas.2022666118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plants remove carbon dioxide from the atmosphere through photosynthesis. Because agriculture's productivity is based on this process, a combination of technologies to reduce emissions and enhance soil carbon storage can allow this sector to achieve net negative emissions while maintaining high productivity. Unfortunately, current row-crop agricultural practice generates about 5% of greenhouse gas emissions in the United States and European Union. To reduce these emissions, significant effort has been focused on changing farm management practices to maximize soil carbon. In contrast, the potential to reduce emissions has largely been neglected. Through a combination of innovations in digital agriculture, crop and microbial genetics, and electrification, we estimate that a 71% (1,744 kg CO2e/ha) reduction in greenhouse gas emissions from row crop agriculture is possible within the next 15 y. Importantly, emission reduction can lower the barrier to broad adoption by proceeding through multiple stages with meaningful improvements that gradually facilitate the transition to net negative practices. Emerging voluntary and regulatory ecosystems services markets will incentivize progress along this transition pathway and guide public and private investments toward technology development. In the difficult quest for net negative emissions, all tools, including emission reduction and soil carbon storage, must be developed to allow agriculture to maintain its critical societal function of provisioning society while, at the same time, generating environmental benefits.
Collapse
|
34
|
Jansson C, Faiola C, Wingler A, Zhu XG, Kravchenko A, de Graaff MA, Ogden AJ, Handakumbura PP, Werner C, Beckles DM. Crops for Carbon Farming. FRONTIERS IN PLANT SCIENCE 2021; 12:636709. [PMID: 34149744 PMCID: PMC8211891 DOI: 10.3389/fpls.2021.636709] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
Agricultural cropping systems and pasture comprise one third of the world's arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.
Collapse
Affiliation(s)
- Christer Jansson
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Celia Faiola
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alexandra Kravchenko
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Marie-Anne de Graaff
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Aaron J. Ogden
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | | | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
35
|
Panchal P, Miller AJ, Giri J. Organic acids: versatile stress-response roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4038-4052. [PMID: 33471895 DOI: 10.1093/jxb/erab019] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 05/15/2023]
Abstract
Organic acids (OAs) are central to cellular metabolism. Many plant stress responses involve the exudation of OAs at the root-soil interface, which can improve soil mineral acquisition and toxic metal tolerance. Because of their simple structure, the low-molecular-weight OAs are widely studied. We discuss the conventional roles of OAs, and some newly emerging roles in plant stress tolerance. OAs are more versatile in their role in plant stress tolerance and are more efficient chelating agents than other acids, such as amino acids. Root OA exudation is important in soil carbon sequestration. These functions are key processes in combating climate change and helping with more sustainable food production. We briefly review the mechanisms behind enhanced biosynthesis, secretion, and regulation of these activities under different stresses, and provide an outline of the transgenic approaches targeted towards the enhanced production and secretion of OAs. A recurring theme of OAs in plant biology is their role as 'acids' modifying pH, as 'chelators' binding metals, or as 'carbon sources' for microbes. We argue that these multiple functions are key factors for understanding these molecules' important roles in plant stress biology. Finally, we discuss how the functions of OAs in plant stress responses could be used, and identify the important unanswered questions.
Collapse
Affiliation(s)
- Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anthony J Miller
- Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
36
|
Hirte J, Walder F, Hess J, Büchi L, Colombi T, van der Heijden MG, Mayer J. Enhanced root carbon allocation through organic farming is restricted to topsoils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143551. [PMID: 33190899 DOI: 10.1016/j.scitotenv.2020.143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Soils store significant amounts of carbon (C) and thus can play a critical role for mitigating climate change. Crop roots represent the main C source in agricultural soils and are particularly important for long-term C storage in agroecosystems. To evaluate the potential of different farming systems to contribute to soil C sequestration and thus climate change mitigation, it is of great importance to gain a better understanding of the factors influencing root C allocation and distribution. So far, it is still unclear how root C allocation varies among farming systems and whether the choice of management practices can help to enhance root C inputs. In this study, we compared root C allocation in three main arable farming systems, namely organic, no-till, and conventional farming. We assessed root biomass, vertical root distribution to 0.75 m soil depth, and root-shoot ratios in 24 winter wheat fields. We further evaluated the relative importance of the farming system compared to site conditions and quantified the contribution of individual management practices and pedoclimatic drivers. Farming system explained one third of the variation in topsoil root biomass and root-shoot ratios, both being strongly positively related to weed biomass and soil organic C content and negatively to mineral nitrogen fertilization intensity. Root C allocation was significantly higher in organic farming as illustrated by an increase in root biomass (+40%) and root-shoot ratios (+60%) compared to conventional farming. By contrast, the overall impact of no-till was low. The importance of pedoclimatic conditions increased substantially with soil depth and deep root biomass was largely controlled by precipitation and soil texture, while the impact of management was close to zero. Our findings highlight the potential of organic farming in promoting root C inputs to topsoils and thereby contributing to soil organic matter build-up and improved soil quality in agroecosystems.
Collapse
Affiliation(s)
- Juliane Hirte
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
| | - Florian Walder
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
| | - Julia Hess
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland
| | - Lucie Büchi
- Agroscope, Plant Production Systems, Route de Duillier 50, CH-1260 Nyon, Switzerland; University of Greenwich, Natural Resources Institute, Central Avenue, UK-ME4 4TB Chatham, United Kingdom of Great Britain and Northern Ireland
| | - Tino Colombi
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland; Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, SE-750 07 Uppsala, Sweden
| | - Marcel G van der Heijden
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland; University of Zürich, Department for Plant and Microbial Biology, CH-8057 Zurich, Switzerland; Utrecht University, Plant-Microbe Interactions, Department of Biology, NL-3508 TB Utrecht, the Netherlands
| | - Jochen Mayer
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland
| |
Collapse
|
37
|
Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031084. [PMID: 33530500 PMCID: PMC7908559 DOI: 10.3390/ijerph18031084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Climate change represents a serious threat to life in earth. Agriculture releases significant emissions of greenhouse gases (GHG), but also offers low-cost opportunities to mitigate GHG emissions. This paper assesses agricultural GHG emissions in Aragon, one important and representative region for agriculture in Spain. The Marginal Abatement Cost Curve (MACC) approach is used to analyze the abatement potential and cost-efficiency of mitigation measures under several scenarios, with and without taking into account the interaction among measures and their transaction costs. The assessment identifies the environmental and economic outcomes of different combinations of measures, including crop, livestock and forest measures. Some of these measures are win-win, with pollution abatement at negative costs to farmers. Moreover, we develop future mitigation scenarios for agriculture toward the year 2050. Results highlight the trade-offs and synergies between the economic and environmental outcomes of mitigation measures. The biophysical processes underlying mitigation efforts are assessed taking into account the significant effects of interactions between measures. Interactions reduce the abatement potential and worsen the cost-efficiency of measures. The inclusion of transaction costs provides a better ranking of measures and a more accurate estimation of implementation costs. The scenario analysis shows how the combinations of measures could reduce emissions by up to 75% and promote sustainable agriculture in the future.
Collapse
|
38
|
|
39
|
Snapp S. A Mini-Review on Overcoming a Calorie-Centric World of Monolithic Annual Crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.540181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Breia R, Conde A, Conde C, Fortes AM, Granell A, Gerós H. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:508-516. [PMID: 32688295 DOI: 10.1016/j.plaphy.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 05/23/2023]
Abstract
The Early-Response to Dehydration six-like (ERD6l) is one of the largest families of sugar transporters in plants, however, is also one of the less studied with very few members characterized. In this work, we identified 18 members of the grapevine ERD6l family, analyzed their promoters and putative topology and additionally functionally characterized the member VvERD6l13. VvERD6l13 was strongly up-regulated in grape berries infected with Botrytis cinerea and Erysiphe necator in cv. Trincadeira and Carignan, respectively, suggesting an important role in grape berry-pathogen interaction, as we had hypothesized. In Cabernet Sauvignon Berry suspension cultured cells, VvERD6l13 was also up-regulated, by 4-fold, 48 h after elicitation with mycelium extract of B. cinerea. Besides being expressed in grape berries from various developmental stages, VvERD6l13 is also expressed in leaves, canes, flowers and, noticeably, in roots. Using tobacco and an hxt-null Saccharomyces cerevisiae strain as heterologous expression models, we showed that VvERD6l13 is localized at the plasma membrane and mediates the H+-dependent transport of sucrose (Km = 33 mM) thus confirming VvERD6l13 as a bona fide sugar transporter involved in sugar mobilization in grapevine and transcriptionally induced in response to biotic stress.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Carlos Conde
- i3S-Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135, Porto, Portugal
| | - Ana Margarida Fortes
- University of Lisbon, Lisbon Science Faculty, BioISI, Campo Grande, 1749-016, Lisbon, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
41
|
Hou D, Bolan NS, Tsang DCW, Kirkham MB, O'Connor D. Sustainable soil use and management: An interdisciplinary and systematic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138961. [PMID: 32353725 PMCID: PMC7182530 DOI: 10.1016/j.scitotenv.2020.138961] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Soil is a key component of Earth's critical zone. It provides essential services for agricultural production, plant growth, animal habitation, biodiversity, carbon sequestration and environmental quality, which are crucial for achieving the United Nations' Sustainable Development Goals (SDGs). However, soil degradation has occurred in many places throughout the world due to factors such as soil pollution, erosion, salinization, and acidification. In order to achieve the SDGs by the target date of 2030, soils may need to be used and managed in a manner that is more sustainable than is currently practiced. Here we show that research in the field of sustainable soil use and management should prioritize the multifunctional value of soil health and address interdisciplinary linkages with major issues such as biodiversity and climate change. As soil is the largest terrestrial carbon pool, as well as a significant contributor of greenhouse gases, much progress can be made toward curtailing the climate crisis by sustainable soil management practices. One identified option is to increase soil organic carbon levels, especially with recalcitrant forms of carbon (e.g., biochar application). In general, soil health is primarily determined by the actions of the farming community. Therefore, information management and knowledge sharing are necessary to improve the sustainable behavior of practitioners and end-users. Scientists and policy makers are important actors in this social learning process, not only to disseminate evidence-based scientific knowledge, but also in generating new knowledge in close collaboration with farmers. While governmental funding for soil data collection has been generally decreasing, newly available 5G telecommunications, big data and machine learning based data collection and analytical tools are maturing. Interdisciplinary studies that incorporate such advances may lead to the formation of innovative sustainable soil use and management strategies that are aimed toward optimizing soil health and achieving the SDGs.
Collapse
Affiliation(s)
- Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mary B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Pramanik P, Phukan M. Assimilating atmospheric carbon dioxide in tea gardens of northeast India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109912. [PMID: 31818737 DOI: 10.1016/j.jenvman.2019.109912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 05/29/2023]
Abstract
Carbon dioxide (CO2) is the most important greenhouse gas in the atmosphere and phyto-assimilation is the most effective technique to mitigate global warming effect of CO2 gas in the atmosphere. Tea is an evergreen perennial plant and cultivated worldwide under subtropical humid climatic condition for harvesting its tender shoots. Tea bushes of different cultivars and ages are grown in combination to minimize possible adverse effect of biotic and abiotic stresses; hence distribution of tea plantation in a tea garden is complex in nature. Large shade trees are also an integral part of tea garden. Those plantations in tea garden have huge potential to capture atmospheric CO2; however, ability of tea bushes to mitigate global warming while producing tea shoots is not quantified before. The objective of this study was to quantify the potential of tea plantation to mitigate greenhouse effect (global warming mitigation potential, GWMP) due to assimilation of atmospheric CO2 gas. High yielding TV23 cultivar assimilated significantly higher amount of CO2 as compared to quality tea producing cultivars (S3A/3) and mature 25-30 years old tea bushes absorb more CO2 from the atmosphere as compared to younger tea bushes. Considering the mixed population of cultivars in tea gardens, overall, tea bushes sequestrated 5134.4 ± 831.6 kg CO2 ha-1 yr-1 in their biomass and had GWMP 3.47 ± 0.64 kg CO2 KMTH-1 yr-1. Shade trees sequestrated 4037.4 ± 589.9 kg CO2 ha yr-1 from the atmosphere. Hence, the GWMP of whole plantation ((both tea bushes and shade trees) was 6.19 ± 1.7 kg CO2 KMTH-1 yr-1. In this study, tea bushes sequestrated 52.7-61.3% of the total CO2 sequestrated by the plantations in tea garden. This study enabled to understand that tea bushes play significant role in mitigating global warming by assimilating and sequestrating atmospheric CO2 and the estimated value of global warming mitigation potential may be used for direct estimation of C sequestration by plantations in tea garden using its productivity value.
Collapse
Affiliation(s)
- Prabhat Pramanik
- Department of Soils, Tocklai Tea Research Institute, Tea Research Association, Jorhat, 785008, Assam, India.
| | - Manabjyoti Phukan
- Department of Soils, Tocklai Tea Research Institute, Tea Research Association, Jorhat, 785008, Assam, India
| |
Collapse
|
43
|
Li JP, Ma HB, Xie YZ, Wang KB, Qiu KY. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China. Sci Rep 2019; 9:16088. [PMID: 31695091 PMCID: PMC6834601 DOI: 10.1038/s41598-019-52631-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
Fencing for grazing exclusion has been widely found to have an impact on grassland soil organic carbon (SOC) and total nitrogen (TN), but little is known about the impact of fenced grassland on the changes in deep soil carbon (C) and nitrogen (N) stocks in temperate grasslands. We studied the influence of 30 years fencing on vegetation and deep soil characteristics (0-500 cm) in the semi-arid grasslands of northern China. The results showed that fencing significantly increased the aboveground biomass (AGB), litter biomass (LB), total biomass, vegetation coverage and height, and soil water content and the SOC and TN in the deep soil. The belowground biomass (BGB) did not significantly differ between the fenced and grazed grassland. However, fencing significantly decreased the root/shoot ratio, forbs biomass, pH, and soil bulk density. Meanwhile, fencing has significantly increased the C and N stocks in the AGB and LB but not in the BGB. After 30 years of fencing, the C and N stocks significantly increased in the 0-500 cm soil layer. The accumulation of SOC mainly occurred in the deep layers (30-180 cm), and the accumulation of TN occurred in the soil layers of 0 to 60 cm and 160 to 500 cm. Our results indicate that fencing is an effective way to improve deep soil C and N stocks in temperate grassland of northwest China. There were large C and N stocks in the soil layers of 100 to 500 cm in the fenced grasslands, and their dynamics should not be ignored.
Collapse
Affiliation(s)
- Jian-Ping Li
- School of Agriculture, Ningxia University, Yinchuan, China.
| | - Hong-Bin Ma
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ying-Zhong Xie
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Kai-Bo Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Kai-Yang Qiu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
44
|
Penk MR, Perrin PM, Waldren S. Above- to Belowground Vegetation Biomass Ratio in Temperate North-East Atlantic Saltmarshes Increases Strongly with Soil Nitrogen Gradient. Ecosystems 2019. [DOI: 10.1007/s10021-019-00428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Gorh D, Baruah KK. Estimation of methane and nitrous oxide emission from wetland rice paddies with reference to global warming potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16331-16344. [PMID: 30977006 DOI: 10.1007/s11356-019-05026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Methane (CH4) and nitrous oxide (N2O) are two important greenhouse gases (GHG) and contribute largely to global warming and climate change. The impact of physiological characteristics of rice genotypes on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A 2-year field experiment was conducted with eight summer rice varieties: Dinanath, Joymoti, Kanaklata, Swarnabh, IR 64, Tapaswami (modern varieties), Number 9, and Jagilee Boro (indigenous varieties) for two successive seasons (December-June, 2015-2016 and December-June, 2016-2017) to estimate their GWP and GHGI. The GWP of the rice varieties ranged from 841.52 to 1288.67 kg CO2-equiv. ha-1 and GHGI from 0.184 to 0.854 kg CO2-equiv. kg-1 grain yield. Significant differences (p < 0.05) in seasonal GHG emission, GWP, GHGI, CEE (carbon equivalent emission), photosynthetic efficiency, stomatal conductance, transpiration rate, and grain productivity among the rice varieties were observed during the investigation. A good correlation of GWP (p < 0.01) was recorded with rate of stomatal conductance and transpiration rate of the varieties. The present study reveals a strong relationship between plant biomass (p < 0.01) with GWP and CEE of the rice varieties. The variety IR 64 and Number 9 are identified as the most suitable variety with lowest GWP (909.85 and 876.68 kg CO2-equiv. ha-1 respectively) and GHGI (0.192 and 0.227 kg CO2-equiv. kg-1 grain yield respectively) accompanied by higher grain productivity (4839 and 3867 kg ha-1 respectively). Observations from the study suggest that agricultural productivity and GHG mitigation can be simultaneously achieved by proper selection of rice genotypes.
Collapse
Affiliation(s)
- Dipti Gorh
- Department of Environmental Science, Tezpur University, Napaam, Assam, 784028, India
| | - Kushal Kumar Baruah
- Department of Environmental Science, Tezpur University, Napaam, Assam, 784028, India.
| |
Collapse
|
46
|
Nayak AK, Rahman MM, Naidu R, Dhal B, Swain CK, Nayak AD, Tripathi R, Shahid M, Islam MR, Pathak H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:890-912. [PMID: 30790762 DOI: 10.1016/j.scitotenv.2019.02.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
This review covers the current and emerging analytical methods used in laboratory, field, landscape and regional contexts for measuring soil organic carbon (SOC) sequestration in agricultural soil. Soil depth plays an important role in estimating SOC sequestration. Selecting appropriate sampling design, depth of soil, use of proper analytical methods and base line selection are prerequisites for estimating accurately the soil carbon stocks. Traditional methods of wet digestion and dry combustion (DC) are extensively used for routine laboratory analysis; the latter is considered to be the "gold standard" and superior to the former for routine laboratory analysis. Recent spectroscopic techniques can measure SOC stocks in laboratory and in-situ even up to a deeper depth. Aerial spectroscopy using multispectral and/or hyperspectral sensors located on aircraft, unmanned aerial vehicles (UAVs) or satellite platforms can measure surface soil organic carbon. Although these techniques' current precision is low, the next generation hyperspectral sensor with improved signal noise ratio will further improve the accuracy of prediction. At the ecosystem level, carbon balance can be estimated directly using the eddy-covariance approach and indirectly by employing agricultural life cycle analysis (LCA). These methods have tremendous potential for estimating SOC. Irrespective of old or new approaches, depending on the resources and research needed, they occupy a unique place in soil carbon and climate research. This paper highlights the overview, potential limitations of various scale-dependent techniques for measuring SOC sequestration in agricultural soil.
Collapse
Affiliation(s)
- A K Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - B Dhal
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - C K Swain
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - A D Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - R Tripathi
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Mohammad Shahid
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Mohammad Rafiqul Islam
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - H Pathak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India
| |
Collapse
|
47
|
Viglizzo EF, Ricard MF, Taboada MA, Vázquez-Amábile G. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:531-542. [PMID: 30682606 DOI: 10.1016/j.scitotenv.2019.01.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 05/21/2023]
Abstract
Assuming a steady state between carbon (C) gains and losses, greenhouse gases (GHG) inventories that follow a widely used simplified procedure (IPCC Tier 1) tend to underestimate the capacity of soils in grazing-land to sequester C. In this study we compared the C balance reported by (i) national inventories that followed the simplified method (Tier 1) of IPCC (1996/2006), with (ii) an alternative estimation derived from the meta-analysis of science-based, peer-reviewed data. We used the global databases (i) EDGAR 4.2 to get data on GHG emissions due to land conversion and livestock/crop production, and (ii) HYDE 3.1 to obtain historical series on land-use/land cover (LULC). In terms of sequestration, our study was focused on C storage as soil organic carbon (SOC) in rural lands of four countries (Argentina, Brazil, Paraguay and Uruguay) within the so-called MERCOSUR region. Supported by a large body of scientific evidence, we hypothesized that C gains and losses in grazing lands are not in balance and that C gains tend to be higher than C losses at low livestock densities. We applied a two-way procedure to test our hypothesis: i) a theoretical one based on the annual conversion of belowground biomass into SOC; and ii) an empirical one supported by peer-reviewed data on SOC sequestration. Average figures from both methods were combined with LULC data to reassess the net C balance in the study countries. Our results show that grazing lands generate C surpluses that could not only offset rural emissions, but could also partially or totally offset the emissions of non-rural sectors. The potential of grazing lands to sequester and store soil C should be reconsidered in order to improve assessments in future GHG inventory reports.
Collapse
Affiliation(s)
- E F Viglizzo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Mendoza 109, L6302EPA, Santa Rosa, La Pampa, Argentina; GPS Grupo de Países Productores del Sur, Billinghurst 2564-4° floor, C1425DTZ Ciudad Autónoma de Buenos Aires, Argentina; Universidad Austral, Paraguay 1950, S2000FZF Rosario, Santa Fe, Argentina.
| | - M F Ricard
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Mendoza 109, L6302EPA, Santa Rosa, La Pampa, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, L6300 La Pampa, Argentina
| | - M A Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Mendoza 109, L6302EPA, Santa Rosa, La Pampa, Argentina; Instituto de Suelos, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, B1686, Hurlingham, Buenos Aires, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, C1417DSE Buenos Aires, Argentina
| | - G Vázquez-Amábile
- Asociación Argentina de Consorcios Regionales de Experimentación Agrícola, Av. Córdoba 1233-5° floor, C1055AAC Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, Diagonal 113 N°469-3° floor, B1900 La Plata, Argentina
| |
Collapse
|
48
|
Handakumbura PP, Stanfill B, Rivas-Ubach A, Fortin D, Vogel JP, Jansson C. Metabotyping as a Stopover in Genome-to-Phenome Mapping. Sci Rep 2019; 9:1858. [PMID: 30755686 PMCID: PMC6372633 DOI: 10.1038/s41598-019-38483-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
Predicting phenotypic expression from genomic and environmental information is arguably the greatest challenge in today's biology. Being able to survey genomic content, e.g., as single-nucleotide polymorphism data, within a diverse population and predict the phenotypes of external traits, represents the holy grail across genome-informed disciplines, from personal medicine and nutrition to plant breeding. In the present study, we propose a two-step procedure in bridging the genome to phenome gap where external phenotypes are viewed as emergent properties of internal phenotypes, such as molecular profiles, in interaction with the environment. Using biomass accumulation and shoot-root allometry as external traits in diverse genotypes of the model grass Brachypodium distachyon, we established correlative models between genotypes and metabolite profiles (metabotypes) as internal phenotypes, and between metabotypes and external phenotypes under two contrasting watering regimes. Our results demonstrate the potential for employing metabotypes as an integrator in predicting external phenotypes from genomic information.
Collapse
Affiliation(s)
- Pubudu P Handakumbura
- The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Washington, WA, 99352, USA.
| | - Bryan Stanfill
- Advanced Computing, Computing and Analytics Division, PNNL, Richland, WA, 99352, USA
| | - Albert Rivas-Ubach
- The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Washington, WA, 99352, USA
| | - Dan Fortin
- Advanced Computing, Computing and Analytics Division, PNNL, Richland, WA, 99352, USA
| | - John P Vogel
- US Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Christer Jansson
- The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Washington, WA, 99352, USA.
| |
Collapse
|
49
|
Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. PHYSIOLOGIA PLANTARUM 2019; 165:44-57. [PMID: 29704246 DOI: 10.1111/ppl.12751] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/04/2023]
Abstract
In plants, the root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars toward these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, mononsaccharide tranporters, SUT/SUC, H+/sucrose transporters and SWEET, Sugar will eventually be exported transporters) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors.
Collapse
Affiliation(s)
- Nils Hennion
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", TSA 51106, 86073, Poitiers Cedex 9, France
| | - Mickael Durand
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, 78026, Versailles, France
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", TSA 51106, 86073, Poitiers Cedex 9, France
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", TSA 51106, 86073, Poitiers Cedex 9, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", TSA 51106, 86073, Poitiers Cedex 9, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", TSA 51106, 86073, Poitiers Cedex 9, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", TSA 51106, 86073, Poitiers Cedex 9, France
| |
Collapse
|
50
|
Carvalho PCDF, Peterson CA, Nunes PADA, Martins AP, de Souza Filho W, Bertolazi VT, Kunrath TR, de Moraes A, Anghinoni I. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. J Anim Sci 2018; 96:3513-3525. [PMID: 29917103 DOI: 10.1093/jas/sky085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Sustainable intensification of land-use practices has never been more important to ensure food security for a growing world population. When combined under thoughtful management, cover cropping and crop-livestock integration under no-till systems can benefit from unexpected synergies due to their unique features of plant-animal diversification and complex agroecosystem functions. Mimicking the nutrient coupling/decoupling processes of natural ecosystems by diversifying plant and animal components of no-till integrated crop-livestock operations is an essential feature of the design of agroecological systems that support self-regulating feedbacks and lend resilience while increasing productivity and ecosystem service provision. Focusing on grazing animals as drivers of agroecosystem change, we highlight the benefits of grazed cover crops in rotation with cash crops for primary and secondary production and for soil physical, chemical, and biological parameters. However, careful management of grazing intensity is imperative; overgrazing drives soil deterioration, while light to moderate grazing enhances overall system functioning and allows for the generation of emergent properties.
Collapse
Affiliation(s)
| | | | | | - Amanda Posselt Martins
- Department of Soil Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - William de Souza Filho
- Department of Forage Plants and Agrometeorology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Thoma Bertolazi
- Department of Soil Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Taíse Robinson Kunrath
- Department of Forage Plants and Agrometeorology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aníbal de Moraes
- Department of Plant Science and Phytosanitation, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ibanor Anghinoni
- Department of Soil Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|