1
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Widespread pharmaceutical exposure at concentrations of concern for a subtropical coastal fishery: Bonefish (Albula vulpes). MARINE POLLUTION BULLETIN 2024; 209:117143. [PMID: 39461181 DOI: 10.1016/j.marpolbul.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Pharmaceuticals have been acknowledged as an important contaminant of emerging concern with the potential to cause adverse effects in exposed fauna. Most research has focused on temperate freshwater systems; therefore, there is a pressing need to quantify pharmaceutical exposure in subtropical coastal marine systems. This study investigated the prevalence of pharmaceutical exposure to bonefish (Albula vulpes) in subtropical South Florida, USA, and evaluated the relative risk of detected concentrations to elicit pharmacological effects. The influence of sampling region, season (within or outside spawning season), and bonefish length on pharmaceutical assemblage, detection frequency, and risk was assessed. Both spatial (multiple regions) and temporal (spawning season) components were considered in order to incorporate bonefish biology biological in our exploration of pharmaceutical exposure and potential risk of effect. To quantify risk of pharmacological effects, concentrations were compared to a 1/3 threshold of the human therapeutic plasma concentration (HTPC). In total, 53 different pharmaceuticals were detected with an average of 7.1 pharmaceuticals per bonefish and 52.3 % had at least one pharmaceutical exceeding the 1/3 HTPC threshold. The presence of pharmaceutical cocktails at concentrations capable of eliciting pharmacological effects is of particular concern considering the potential for unknown interactions. For exposure and risk of pharmacological effect, region and season were significant, while bonefish length was not. Pharmaceutical exposure and risk were highest in the most remote sampling region. Results establish pharmaceuticals' widespread prevalence in subtropical coastal marine ecosystems, exposure and risk to biota, and the necessity to examine marine systems.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
2
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Ussery E, McMaster M, Palace V, Parrott J, Blandford NC, Frank R, Kidd K, Birceanu O, Wilson J, Alaee M, Cunningham J, Wynia A, Clark T, Campbell S, Timlick L, Michaleski S, Marshall S, Nielsen K. Effects of metformin on wild fathead minnows (Pimephales promelas) using in-lake mesocosms in a boreal lake ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172457. [PMID: 38649046 DOI: 10.1016/j.scitotenv.2024.172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Due to its widespread use for the treatment of Type-2 diabetes, metformin is routinely detected in surface waters globally. Laboratory studies have shown that environmentally relevant concentrations of metformin can adversely affect the health of adult fish, with effects observed more frequently in males. However, the potential risk to wild fish populations has yet to be fully elucidated and remains a topic of debate. To explore whether environmentally relevant metformin exposure poses a risk to wild fish populations, the present study exposed wild fathead minnows (Pimephales promelas) to 5 or 50 μg/L metformin via 2 m diameter in-lake mesocosms deployed in a natural boreal lake in Northern Ontario at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA). Environmental monitoring was performed at regular intervals for 8-weeks, with fish length, weight (body, liver and gonad), condition factor, gonadosomatic index, liver-somatic index, body composition (water and biomolecules) and hematocrit levels evaluated at test termination. Metabolic endpoints were also evaluated using liver, brain and muscle tissue, and gonads were evaluated histologically. Results indicate that current environmental exposure scenarios may be sufficient to adversely impact the health of wild fish populations. Adult male fish exposed to metformin had significantly reduced whole body weight and condition factor and several male fish from the high-dose metformin had oocytes in their testes. Metformin-exposed fish had altered moisture and lipid (decrease) content in their tissues. Further, brain (increase) and liver (decrease) glycogen were altered in fish exposed to high-dose metformin. To our knowledge, this study constitutes the first effort to understand metformin's effects on a wild small-bodied fish population under environmentally relevant field exposure conditions.
Collapse
Affiliation(s)
- Erin Ussery
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Mark McMaster
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Vince Palace
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Joanne Parrott
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Nicholas C Blandford
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Richard Frank
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Karen Kidd
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Oana Birceanu
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Joanna Wilson
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Mehran Alaee
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Jessie Cunningham
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Abby Wynia
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Thomas Clark
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Sheena Campbell
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Lauren Timlick
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Sonya Michaleski
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Stephanie Marshall
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Kristin Nielsen
- University of Texas at Austin, Department of Marine Science, Port Aransas, TX, USA
| |
Collapse
|
4
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Goldberg T, Campbell L, Perez AU, Schmitter-Soto JJ, Lewis JP, Fick J, Brodin T, Rehage JS. Understanding pharmaceutical exposure and the potential for effects in marine biota: A survey of bonefish (Albula vulpes) across the Caribbean Basin. CHEMOSPHERE 2024; 349:140949. [PMID: 38096990 DOI: 10.1016/j.chemosphere.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Most research on pharmaceutical presence in the environment to date has focused on smaller scale assessments of freshwater and riverine systems, relying mainly on assays of water samples, while studies in marine ecosystems and of exposed biota are sparse. This study investigated the pharmaceutical burden in bonefish (Albula vulpes), an important recreational and artisanal fishery, to quantify pharmaceutical exposure throughout the Caribbean Basin. We sampled 74 bonefish from five regions, and analyzed them for 102 pharmaceuticals. We assessed the influence of sampling region on the number of pharmaceuticals, pharmaceutical assemblage, and risk of pharmacological effects. To evaluate the risk of pharmacological effects at the scale of the individual, we proposed a metric based on the human therapeutic plasma concentration (HTPC), comparing measured concentrations to a threshold of 1/3 the HTPC for each pharmaceutical. Every bonefish had at least one pharmaceutical, with an average of 4.9 and a maximum of 16 pharmaceuticals in one individual. At least one pharmaceutical was detected in exceedance of the 1/3 HTPC threshold in 39% of bonefish, with an average of 0.6 and a maximum of 11 pharmaceuticals exceeding in a Key West individual. The number of pharmaceuticals (49 detected in total) differed across regions, but the risk of pharmacological effects did not (23 pharmaceuticals exceeded the 1/3 HTPC threshold). The most common pharmaceuticals were venlafaxine (43 bonefish), atenolol (36), naloxone (27), codeine (27), and trimethoprim (24). Findings suggest that pharmaceutical detections and concentration may be independent, emphasizing the need to monitor risk to biota regardless of exposure diversity, and to focus on risk quantified at the individual level. This study supports the widespread presence of pharmaceuticals in marine systems and shows the utility of applying the HTPC to assess the potential for pharmacological effects, and thus quantify impact of exposure at large spatial scales.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - T Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - L Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - A U Perez
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J J Schmitter-Soto
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - J P Lewis
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
Grzesiuk M, Grabska M, Pawelec A. Fluoxetine may interfere with learning in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104358. [PMID: 38154759 DOI: 10.1016/j.etap.2023.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Pawelec
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
6
|
Yang W, Bao Y, Hao J, Hu X, Xu T, Yin D. Effects of carbamazepine on the central nervous system of zebrafish at human therapeutic plasma levels. iScience 2023; 26:107688. [PMID: 37701572 PMCID: PMC10494213 DOI: 10.1016/j.isci.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 μg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Bao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Welch SA, Moe SJ, Sharikabad MN, Tollefsen KE, Olsen K, Grung M. Predicting Environmental Risks of Pharmaceuticals from Wholesale Data: An Example from Norway. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2253-2270. [PMID: 37341554 DOI: 10.1002/etc.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/03/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Environmental risk assessment (ERA) of pharmaceuticals relies on available measured environmental concentrations, but often such data are sparse. Predicted environmental concentrations (PECs), calculated from sales weights, are an attractive alternative but often cover only prescription sales. We aimed to rank, by environmental risk in Norway, approximately 200 active pharmaceutical ingredients (APIs) over 2016-2019, based on sales PECs. To assess the added value of wholesale and veterinary data, we compared exposure and risk predictions with and without these additional sources. Finally, we aimed to characterize the persistence, mobility, and bioaccumulation of these APIs. We compared our PECs to available Norwegian measurements, then, using public predicted-no-effect concentrations, we calculated risk quotients (RQs) and appended experimental and predicted persistence and bioaccumulation. Our approach overestimated environmental concentrations compared with measurements for 18 of 20 APIs with comparable predictions and measurements. Seventeen APIs had mean RQs >1, indicating potential risk, while the mean RQ was 2.05 and the median 0.001, driven by sex hormones, antibiotics, the antineoplastic abiraterone, and common painkillers. Some high-risk APIs were also potentially persistent or bioaccumulative (e.g., levonorgestrel [RQ = 220] and ciprofloxacin [RQ = 56]), raising the possibility of impacts beyond their RQs. Exposure and risk were also calculated with and without over-the-counter sales, showing that prescriptions explained 70% of PEC magnitude. Likewise, human sales, compared with veterinary, explained 85%. Sales PECs provide an efficient option for ERA, designed to overestimate compared with analytical techniques and potentially held back by limited data availability and an inability to quantify uncertainty but, nevertheless, an ideal initial approach for identification and ranking of risks. Environ Toxicol Chem 2023;42:2253-2270. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| | | | - Merete Grung
- Norwegian Institute for Water Research, Oslo, Norway
| |
Collapse
|
8
|
Matthee C, Brown AR, Lange A, Tyler CR. Factors Determining the Susceptibility of Fish to Effects of Human Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8845-8862. [PMID: 37288931 PMCID: PMC10286317 DOI: 10.1021/acs.est.2c09576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The increasing levels and frequencies at which active pharmaceutical ingredients (APIs) are being detected in the environment are of significant concern, especially considering the potential adverse effects they may have on nontarget species such as fish. With many pharmaceuticals lacking environmental risk assessments, there is a need to better define and understand the potential risks that APIs and their biotransformation products pose to fish, while still minimizing the use of experimental animals. There are both extrinsic (environment- and drug-related) and intrinsic (fish-related) factors that make fish potentially vulnerable to the effects of human drugs, but which are not necessarily captured in nonfish tests. This critical review explores these factors, particularly focusing on the distinctive physiological processes in fish that underlie drug absorption, distribution, metabolism, excretion and toxicity (ADMET). Focal points include the impact of fish life stage and species on drug absorption (A) via multiple routes; the potential implications of fish's unique blood pH and plasma composition on the distribution (D) of drug molecules throughout the body; how fish's endothermic nature and the varied expression and activity of drug-metabolizing enzymes in their tissues may affect drug metabolism (M); and how their distinctive physiologies may impact the relative contribution of different excretory organs to the excretion (E) of APIs and metabolites. These discussions give insight into where existing data on drug properties, pharmacokinetics and pharmacodynamics from mammalian and clinical studies may or may not help to inform on environmental risks of APIs in fish.
Collapse
Affiliation(s)
- Chrisna Matthee
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Andrew Ross Brown
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Anke Lange
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R. Tyler
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
9
|
Marcu D, Keyser S, Petrik L, Fuhrimann S, Maree L. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. TOXICS 2023; 11:330. [PMID: 37112557 PMCID: PMC10141735 DOI: 10.3390/toxics11040330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Approximately 9% of couples are infertile, with half of these cases relating to male factors. While many cases of male infertility are associated with genetic and lifestyle factors, approximately 30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances identified in the environment for the first time or detected at low concentrations during water quality analysis. Since CEC production and use have increased in recent decades, CECs are now ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and parallel reports indicate that semen quality is continuously declining, supporting the notion that CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as well as the use of spermatozoa in toxicological studies. Collective findings report that chronic in vivo exposure to pesticides, including atrazine, simazine, and chlorpyrifos, is likely to be detrimental to the reproduction of many organisms, as well as to sperm performance in vitro. Similarly, exposure to pharmaceuticals such as diclofenac and naproxen impairs sperm motility both in vivo and in vitro. These contaminants are also likely to play a key role in health and disease in offspring sired by parents exposed to CECs. On the other side of the double-edged sword, we propose that due to its sensitivity to environmental conditions, spermatozoa could be used as a bioindicator in eco- and repro-toxicology studies.
Collapse
Affiliation(s)
- Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
10
|
Grzesiuk M, Gryglewicz E, Bentkowski P, Pijanowska J. Impact of Fluoxetine on Herbivorous Zooplankton and Planktivorous Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:385-392. [PMID: 36377689 PMCID: PMC10107138 DOI: 10.1002/etc.5525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The contamination of freshwater environments by pharmaceuticals is a growing problem. Modern healthcare uses nearly 3000 substances, many of which are designed to work at low dosages and act on physiological systems that have been evolutionarily conserved across taxa. Because drugs affect the organisms from different trophic levels, pharmaceutical pollution is likely to disturb species interactions. However, such effects are still only poorly understood. We investigated the impacts of environmentally relevant concentrations of the common drug fluoxetine (Prozac), an increasingly common contaminant of European waters, on predation behavior of crucian carp (Carassius carassius), a common planktivorous European fish, and the somatic growth of its prey, the water flea (Daphnia magna), a widespread planktonic crustacean. We exposed these two organisms to environmentally relevant levels of fluoxetine (360 ng L-1 ): the fish for 4 weeks and the water fleas for two generations. We tested the growth of the daphnids and the hunting behavior (reaction distance at which fish attacked Daphnia and feeding rate) of the fish under drug contamination. We found that Daphnia exposed to fluoxetine grew larger than a nonexposed cohort. The hunting behavior of C. carassius was altered when they were exposed to the drug; the reaction distance was shorter, and the feeding rate was slower. These effects occurred regardless of Daphnia size and the treatment regime they were subjected to. Our results suggest that contamination of freshwater environments with fluoxetine can disrupt the top-down ecological control of herbivores by reducing the hunting efficiency of fish and, as a consequence, may lead to increases in cladoceran population numbers. Environ Toxicol Chem 2023;42:385-392. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Hydrobiology, Faculty of BiologyUniversity of WarsawWarsawPoland
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life SciencesWarsawPoland
| | - Eva Gryglewicz
- Department of Hydrobiology, Faculty of BiologyUniversity of WarsawWarsawPoland
- tier3 SolutionsLeverkusenGermany
| | - Piotr Bentkowski
- Department of Hydrobiology, Faculty of BiologyUniversity of WarsawWarsawPoland
- Faculty of “Artes Liberales”University of WarsawWarsawPoland
| | - Joanna Pijanowska
- Department of Hydrobiology, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
11
|
Barbieri PA, Mari-Ribeiro IP, Lupepsa L, Gigliolli AAS, Paupitz BR, de Melo RF, de Souza Leite Mello EV, de Brito Portela-Castro AL, Borin-Carvalho LA. Metformin-induced alterations in gills of the freshwater fish Astyanax lacustris (Lütken, 1875) detected by histological and scanning electron microscopy. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1205-1216. [PMID: 36042120 DOI: 10.1007/s10646-022-02580-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The antidiabetic drug metformin is widely prescribed and found in different concentrations in the environment around the world, raising concern about potential impacts on aquatic life. Analyses of the effects of exposure of biological models to aquatic contaminants are important for assessing pollution effects on fish health. The gills of fishes represent primary targets of disturbance by pollutants, mainly because of the large surface of the respiratory epithelium and the high perfusion rate, which both help the entry of pollutants into this tissue. In this context, the aim of this work was to use gill histological analyses biomarkers to evaluate the toxicity of metformin on aquatic environmental systems, by means of chronic exposure for 90 days of Astyanax lacustris (lambari), an ecologically important neotropical species that can be used as an environmental bioindicator. Histopathological analyses were performed using Light and Scanning Electron Microscopy. The main changes were lamellar fusion, telangiectasia hyperplasia and disappearance of microridges. The morphological changes observed possibly interfere with the gill physiology, indicating an unfavorable situation to the presence of metformin in the water, pointing to a concern that metformin may pose a risk to Astyanax lacustris and likely to other fish species, compromising the dynamics of the aquatic ecosystem as a whole. Graphical abstract.
Collapse
Affiliation(s)
- Pablo Americo Barbieri
- Pós-graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil.
| | - Isabelle Pereira Mari-Ribeiro
- Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Luara Lupepsa
- Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | | - Brennda Ribeiro Paupitz
- Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Rafael Fernando de Melo
- Pós-graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | | - Ana Luiza de Brito Portela-Castro
- Departamento de Biotecnologia, Genética e Biologia Celular, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | |
Collapse
|
12
|
Ceger P, Garcia-Reyero Vinas N, Allen D, Arnold E, Bloom R, Brennan JC, Clarke C, Eisenreich K, Fay K, Hamm J, Henry PFP, Horak K, Hunter W, Judkins D, Klein P, Kleinstreuer N, Koehrn K, LaLone CA, Laurenson JP, Leet JK, Lowit A, Lynn SG, Norberg-King T, Perkins EJ, Petersen EJ, Rattner BA, Sprankle CS, Steeger T, Warren JE, Winfield S, Odenkirchen E. Current ecotoxicity testing needs among selected U.S. federal agencies. Regul Toxicol Pharmacol 2022; 133:105195. [PMID: 35660046 PMCID: PMC9623878 DOI: 10.1016/j.yrtph.2022.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
U.S. regulatory and research agencies use ecotoxicity test data to assess the hazards associated with substances that may be released into the environment, including but not limited to industrial chemicals, pharmaceuticals, pesticides, food additives, and color additives. These data are used to conduct hazard assessments and evaluate potential risks to aquatic life (e.g., invertebrates, fish), birds, wildlife species, or the environment. To identify opportunities for regulatory uses of non-animal replacements for ecotoxicity tests, the needs and uses for data from tests utilizing animals must first be clarified. Accordingly, the objective of this review was to identify the ecotoxicity test data relied upon by U.S. federal agencies. The standards, test guidelines, guidance documents, and/or endpoints that are used to address each of the agencies' regulatory and research needs regarding ecotoxicity testing are described in the context of their application to decision-making. Testing and information use, needs, and/or requirements relevant to the regulatory or programmatic mandates of the agencies taking part in the Interagency Coordinating Committee on the Validation of Alternative Methods Ecotoxicology Workgroup are captured. This information will be useful for coordinating efforts to develop and implement alternative test methods to reduce, refine, or replace animal use in chemical safety evaluations.
Collapse
Affiliation(s)
- Patricia Ceger
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | | | - David Allen
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Elyssa Arnold
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Raanan Bloom
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jennifer C Brennan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carol Clarke
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Karen Eisenreich
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Kellie Fay
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jonathan Hamm
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Paula F P Henry
- U.S. Geological Survey, Eastern Ecological Science Center, 12100 Beech Forest Rd, Laurel, MD, 20708, USA.
| | - Katherine Horak
- U.S. Department of Agriculture, Wildlife Services National Wildlife Research Center, 4101 LaPorte Ave. Fort Collins, CO, 80521, USA.
| | - Wesley Hunter
- U.S. Food and Drug Administration, Center for Veterinary Medicine, HFV-161, 7500 Standish Place, Rockville, MD, 20855, USA.
| | - Donna Judkins
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Patrice Klein
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| | - Kara Koehrn
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - James P Laurenson
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jessica K Leet
- U.S. Geological Survey, Columbia Environmental Research Center (CERC), Columbia, MO, 65201, USA.
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Scott G Lynn
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Teresa Norberg-King
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - Edward J Perkins
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA.
| | - Elijah J Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 2089, USA.
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, 10300 Baltimore Ave, BARC-EAST Bldg. 308, Beltsville, MD, 20705, USA.
| | - Catherine S Sprankle
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Thomas Steeger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jim E Warren
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Sarah Winfield
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, HFS-009, College Park, MD, 20740, USA.
| | - Edward Odenkirchen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| |
Collapse
|
13
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
14
|
Warren LD, Guyader ME, Kiesling RL, Higgins CP, Schoenfuss HL. Linking Trace Organic Contaminants in On-Site Wastewater-Treatment Discharge with Biological Effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3193-3204. [PMID: 34499771 DOI: 10.1002/etc.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Around the globe, on-site wastewater-treatment systems (OWTSs) are critical for rural communities without access to a municipal sewer system. However, their treatment efficiency does not match that of modern wastewater-treatment plants. The impact of OWTS discharge on nearby aquatic ecosystems and their resident fish species is poorly understood. In the present study, larval and adult fathead minnows (Pimephales promelas) and adult sunfish (Lepomis macrochirus) were exposed for 21 days to two trace organic contaminant (TOrC) mixtures replicating water chemistry derived from a previous environmental study. Larval fathead minnows were assessed for survival, growth, predator avoidance, and feeding efficiency. Adult fathead minnows and sunfish were assessed for a suite of physiological endpoints (condition indices, vitellogenin, glucose), histological changes, and fecundity. The only observed effect of TOrC mixture exposure on larval fathead minnows was a decrease in feeding efficiency. Effects were mixed in exposed adult fishes, except for male sunfish which realized a significant induction of vitellogenin (p < 0.05). The consequences of TOrC mixture exposure in the present controlled laboratory study match effects observed in wild-caught sunfish in a corresponding field study. The present study begins to bridge the gap by connecting nonpoint OWTS pollution with biological effects observed in resident lake fish species. Given the effects observed despite the brevity of the laboratory mixture exposure, longer-term studies are warranted to understand the full impacts of OWTS discharge to nearby aquatic ecosystems. Environ Toxicol Chem 2021;40:3193-3204. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Les D Warren
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Meaghan E Guyader
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Christopher P Higgins
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
15
|
Beghin M, Schmitz M, Betoulle S, Palluel O, Baekelandt S, Mandiki SNM, Gillet E, Nott K, Porcher JM, Robert C, Ronkart S, Kestemont P. Integrated multi-biomarker responses of juvenile rainbow trout (Oncorhynchus mykiss) to an environmentally relevant pharmaceutical mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112454. [PMID: 34214917 DOI: 10.1016/j.ecoenv.2021.112454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are emerging pollutants of concern for aquatic ecosystems where they are occurring in complex mixtures. In the present study, the chronic toxicity of an environmentally relevant pharmaceutical mixture on juvenile rainbow trout (Oncorhynchus mykiss) was investigated. Five pharmaceuticals (paracetamol, carbamazepine, diclofenac, naproxen and irbesartan) were selected based on their detection frequency and concentration levels in the Meuse river (Belgium). Fish were exposed for 42 days to three different concentrations of the mixture, the median one detected in the Meuse river, 10-times and 100-times this concentration. Effects on the nervous, immune, antioxidant, and detoxification systems were evaluated throughout the exposure period and their response standardized using the Integrated Biomarker Response (IBRv2) index. IBRv2 scores increased over time in the fish exposed to the highest concentration. After 42 days, fish exposed to the highest concentration displayed significantly higher levels in lysozyme activity (p < 0.01). The mixture also caused significant changes in brain serotonin turnover (p < 0.05). In short, our results indicate that the subchronic waterborne exposure to a pharmaceutical mixture commonly occurring in freshwater ecosystems may affect the neuroendocrine and immune systems of juvenile rainbow trout.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Mélodie Schmitz
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardennes, Stress Environnementaux et BIOsurveillance des milieux aquatiques, Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Olivier Palluel
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP no. 2, 60550 Verneuil en Halatte, France
| | - Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Erin Gillet
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Katherine Nott
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Jean-Marc Porcher
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP no. 2, 60550 Verneuil en Halatte, France
| | - Christelle Robert
- Centre d'Economie Rurale, Health Department, 8 Rue Point du Jour, B-6900 Marloie, Belgium
| | - Sébastien Ronkart
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
16
|
Grzesiuk M, Pawelec A. Fluoxetine results in misleading conclusions on fish behavior. Ecol Evol 2021; 11:9707-9714. [PMID: 34306656 PMCID: PMC8293709 DOI: 10.1002/ece3.7797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Fluoxetine is an antidepressant medicine causing relaxation and mood improvement in people, with silencing certain personality traits in some cases. The question arise if such phenomena can be observed in nontarget organisms such as fish. Fluoxetine affects fishes behavior; however, it is not known if the medicine affects its "personality." This study aimed to evaluate the reaction of the invasive Neogobius fluviatilis and native Gobio gobio individuals to fluoxetine at environmental concentration of 360 ng/L. We prepared three variants of the experiments: (a) behavioral trials with unexposed fishes, (b) behavioral trials with the same fishes after 21 days of fluoxetine exposure, and (c) behavioral trials with the same fishes after 21-day depuration period, that is, without fluoxetine. The fishes reaction time (RT), that is, difference in time spent on reaching food with and without the necessity of overcoming the obstacle, was analyzed. Additionally, the personality, bold or shy, traits of each fish individual, was assigned. The results indicated that environmental concentrations of the antidepressant influenced RT. The average RT of the fishes cultured with fluoxetine was by 7-min shorter in comparison with the nonexposed control. Share of individuals exposed to fluoxetine assigned as bold raised to 71.4% in comparison with 46.4% in nonexposed control. This sheds new light on wild fishes behavior caught from freshwater. Environmental concentrations of the antidepressant influenced the time of fishes reaction and share individuals assigned as bold. Moreover, 21-day recovery lasting might be not enough to get fluoxetine effect on fishes.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and MicrobiologyInstitute of BiologyWarsaw University of Life Sciences (SGGW)WarsawPoland
- Department of Hydrobiology at Biological and Chemical Research CentreFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Alicja Pawelec
- Department of Hydrobiology at Biological and Chemical Research CentreFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
17
|
Cerveny D, Grabic R, Grabicová K, Randák T, Larsson DGJ, Johnson AC, Jürgens MD, Tysklind M, Lindberg RH, Fick J. Neuroactive drugs and other pharmaceuticals found in blood plasma of wild European fish. ENVIRONMENT INTERNATIONAL 2021; 146:106188. [PMID: 33096467 DOI: 10.1016/j.envint.2020.106188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
To gain a better understanding of which pharmaceuticals could pose a risk to fish, 94 pharmaceuticals representing 23 classes were analyzed in blood plasma from wild bream, chub, and roach captured at 18 sites in Germany, the Czech Republic and the UK, respectively. Based on read across from humans, we evaluated the risks of pharmacological effects occurring in the fish for each measured pharmaceutical. Twenty-three compounds were found in fish plasma, with the highest levels measured in chub from the Czech Republic. None of the German bream had detectable levels of pharmaceuticals, whereas roach from the Thames had mostly low concentrations. For two pharmaceuticals, four individual Czech fish had plasma concentrations higher than the concentrations reached in the blood of human patients taking the corresponding medication. For nine additional compounds, determined concentrations exceeded 10% of the corresponding human therapeutic plasma concentration in 12 fish. The majority of the pharmaceuticals where a clear risk for pharmacological effects was identified targets the central nervous system. These include e.g. flupentixol, haloperidol, and risperidone, all of which have the potential to affect fish behavior. In addition to identifying pharmaceuticals of environmental concern, the results emphasize the value of environmental monitoring of internal drug levels in aquatic wildlife, as well as the need for more research to establish concentration-response relationships.
Collapse
Affiliation(s)
- Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Sweden
| | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Monika D Jürgens
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
An Extended Ecosystem Model for Understanding EE2 Indirect Effects on a Freshwater Food Web and its Ecosystem Function Resilience. WATER 2020. [DOI: 10.3390/w12061736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freshwater species are highly impacted by human activities and the consequences on ecosystem functioning are still not well understood. In the literature, a multitrophic perspective appears to be key to advance future biodiversity and ecosystem functioning (BEF) research. This paper aims at studying indirect effects of the synthetic hormone 17α-ethinylestradiol (EE2) on a freshwater food web by creating BEF links, through the interpretation of seasonal cycles and multitrophic interactions. An ecosystem model previously developed using experimental data from a unique whole-ecosystem study on EE2 was extended with the addition of Chaoborus, an omnivorous insect. During the experimental study, a collapse of fathead minnow was measured after one year of exposure. The simulation results showed that EE2 indirect effects on other fishes (horizontal diversity) and lower trophic levels (vertical diversity) were connected to multitrophic interactions with a top-down cascade effect. The results also demonstrated that adding an omnivorous, mid-trophic level group such as Chaoborus enhances resilience. Conversely, missing such a species means that the actual resilience of an ecosystem and its functioning cannot be properly simulated. Thus, the extended ecosystem model offers a tool that can help better understand what is happening after environmental perturbations, such as with EE2.
Collapse
|
19
|
Shelton DS, Shelton SG, Daniel DK, Raja M, Bhat A, Tanguay RL, Higgs DM, Martins EP. Collective Behavior in Wild Zebrafish. Zebrafish 2020; 17:243-252. [PMID: 32513074 DOI: 10.1089/zeb.2019.1851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic change is expected to alter environments at alarming rates. To predict the impact of modified environments on social behavior, we must study the relationship between environmental features and collective behavior in a genetically tractable model, zebrafish (Danio rerio). Here, we conducted a field study to examine the relationship between salient environmental features and collective behavior in four populations of zebrafish. We found zebrafish in flowing water formed volatile groups, whereas those in still water had more consistent membership and leadership. Groups in fast-flowing water were large (up to 2000 fish) and tightly knit with short nearest neighbor distances, whereas group sizes were smaller (11 fish/group) with more space between individual fish in still and slow-flowing water. These observations point to a possible profound role of water flow in influencing collective behavior in wild zebrafish.
Collapse
Affiliation(s)
- Delia S Shelton
- Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Biological Sciences, University of Windsor, Windsor, Canada
| | | | - Danita K Daniel
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Manickam Raja
- Department of Biomedical Engineering, The Kavery College of Engineering, Salem, India
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon, USA
| | - Dennis M Higgs
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
20
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32126404 DOI: 10.5066/p9voobwt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
21
|
Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N, Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA, Medlock-Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis CP, Wilson VS, Zehraoui A. Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137236. [PMID: 32126404 PMCID: PMC9140060 DOI: 10.1016/j.scitotenv.2020.137236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.
Collapse
Affiliation(s)
| | - Maria Argos
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Michael J Devito
- U.S. National Institute of Environmental Health Sciences/NIH, Durham, NC, USA
| | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea R Putz
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | | | - Alan E Stark
- City of Chicago, Department of Water Management, Chicago, IL, USA
| | - Christopher P Weis
- U.S. National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
22
|
Dhar P, Samarasinghe RM, Shigdar S. Antibodies, Nanobodies, or Aptamers-Which Is Best for Deciphering the Proteomes of Non-Model Species? Int J Mol Sci 2020; 21:E2485. [PMID: 32260091 PMCID: PMC7177290 DOI: 10.3390/ijms21072485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the "omics", proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes-antibodies, aptamers, and nanobodies-as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented.
Collapse
Affiliation(s)
- Poshmaal Dhar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
23
|
Bradley PM, Romanok KM, Duncan JR, Battaglin WA, Clark JM, Hladik ML, Huffman BJ, Iwanowicz LR, Journey CA, Smalling KL. Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135431. [PMID: 31896231 DOI: 10.1016/j.scitotenv.2019.135431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/14/2023]
Abstract
Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered species. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiversity, but increasing park visitation and development of surrounding landscapes increase exposure to and effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five systems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment. Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples. Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate exposure data to biological effects space, site-specific cumulative exposure-activity ratios (ΣEAR) were calculated for detected surface-water contaminants with available ToxCast data; common exceedances of a 0.001 ΣEAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of protected resources to reduce contaminant exposure and preserve habitat quality, including prioritization of conservation practices (riparian buffers) near stream corridors and increased engagement with upstream/up-gradient property owners and municipal wastewater facilities.
Collapse
Affiliation(s)
- Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA.
| | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ USA
| | | | | | - Jimmy M Clark
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA USA
| | - Bradley J Huffman
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center , Kearneysville, WV USA
| | - Celeste A Journey
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ USA
| |
Collapse
|
24
|
Cerveny D, Brodin T, Cisar P, McCallum ES, Fick J. Bioconcentration and behavioral effects of four benzodiazepines and their environmentally relevant mixture in wild fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134780. [PMID: 31733557 DOI: 10.1016/j.scitotenv.2019.134780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
We studied the adverse effects of four benzodiazepines frequently measured in European surface waters. We evaluated bioaccumulation potential of oxazepam, bromazepam, temazepam, and clobazam in freshwater fish species - perch (Perca fluviatilis) and we conducted a series of behavioral trials to assess their potential to alter boldness, activity, and social behavior. All selected endpoints were studied individually for each target benzodiazepine and as a mixture of all tested compounds to assess possible combinatory effects. We used a three-dimensional automated tracking system to quantify the fish behavior. The four compounds bioconcentrated differently in fish muscle (temazepam > clobazam > oxazepam > bromazepam) at high exposure (9.1, 6.9, 5.7, 8.1 µg L-1, respectively) and low exposure (0.5, 0.5, 0.3, 0.4 µg L-1, respectively) concentrations. A significant amount of oxazepam was also measured in fish exposed to temazepam, most likely because of the metabolic transformation of temazepam within the fish. Bromazepam, temazepam, and clobazam significantly affected fish behavior at high concentration, while no statistically significant changes were registered for oxazepam. The studied benzodiazepines affected behavior in combination, because the mixture treatment significantly changed several important behavioral traits even at low concentration, while no single compound exposure had such an effect at that dose. Based on our results, we conclude that effects of pharmaceuticals on aquatic environments could be underestimated if risk assessments only rely on the evaluation of single compounds. More studies focused on the combinatory effects of environmentally relevant mixtures of pharmaceuticals are necessary to fill the gaps in this knowledge.
Collapse
Affiliation(s)
- D Cerveny
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - P Cisar
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - E S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden; Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| | - J Fick
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
25
|
Bradley PM, Journey CA, Button DT, Carlisle DM, Huffman BJ, Qi SL, Romanok KM, Van Metre PC. Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams. PLoS One 2020; 15:e0228214. [PMID: 31999738 PMCID: PMC6992211 DOI: 10.1371/journal.pone.0228214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014-2017, the United States Geological Survey measured 111 pharmaceutical compounds in 308 headwater streams (261 urban-gradient sites sampled 3-5 times, 47 putative low-impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams (248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cumulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and concentrations correlated to urban land use and presence/absence of permitted WWTP discharges, but pharmaceutical mixtures also were common in the 75% of sampled streams without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient exposures with high probability of molecular effects to vertebrates. Considering the potential individual and interactive effects of the detected pharmaceuticals and the recognized analytical underestimation of the pharmaceutical-contaminant (unassessed parent compounds, metabolites, degradates) space, these results demonstrate a nation-wide environmental concern and the need for watershed-scale mitigation of in-stream pharmaceutical contamination.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Celeste A. Journey
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Daniel T. Button
- U.S. Geological Survey, Columbus, Ohio, United States of America
| | | | - Bradley J. Huffman
- U.S. Geological Survey, Columbia, South Carolina, United States of America
| | - Sharon L. Qi
- U.S. Geological Survey, Beaverton, Oregon, United States of America
| | - Kristin M. Romanok
- U.S. Geological Survey, Lawrenceville, New Jersey, United States of America
| | | |
Collapse
|
26
|
Mehdi H, Bragg LM, Servos MR, Craig PM. Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Front Physiol 2019; 10:1431. [PMID: 31803073 PMCID: PMC6877669 DOI: 10.3389/fphys.2019.01431] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aquatic organisms are continuously exposed to multiple environmental stressors working cumulatively to alter ecosystems. Wastewater-dominated environments are often riddled by a myriad of stressors, such as chemical and thermal stressors. The objective of this study was to examine the effects of an environmentally relevant concentration of a commonly prescribed antidepressant, venlafaxine (VFX) [1.0 μg/L], in addition to a 5°C increase in water temperature on zebrafish metabolism. Fish were chronically exposed (21 days) to one of four conditions: (i) 0 μg/L VFX at 27°C; (ii) 1.0 μg/L VFX at 27°C; (iii) 0 μg/L VFX at 32°C; (iv) 1.0 μg/L VFX at 32°C. Following exposure, whole-body metabolism was assessed by routine metabolic rate (RMR) measurements, whereas tissue-specific metabolism was assessed by measuring the activities of major metabolic enzymes in addition to glucose levels in muscle. RMR was significantly higher in the multi-stressed group relative to Control. The combination of both stressors resulted in elevated pyruvate kinase activity and glucose levels, while lipid metabolism was depressed, as measured by 3-hydroxyacyl CoA dehydrogenase activity. Citrate synthase activity increased with the onset of temperature, but only in the group treatment without VFX. Catalase activity was also elevated with the onset of the temperature stressor, however, that was not the case for the multi-stressed group, potentially indicating a deleterious effect of VFX on the anti-oxidant defense mechanism. The results of this study highlight the importance of multiple-stressor research, as it able to further bridge the gap between field and laboratory studies, as well as have the potential of yielding surprising results that may have not been predicted using a conventional single-stressor approach.
Collapse
Affiliation(s)
- Hossein Mehdi
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | |
Collapse
|
27
|
Turnipseed SB, Storey JM, Wu IL, Andersen WC, Madson MR. Extended liquid chromatography high resolution mass spectrometry screening method for veterinary drug, pesticide and human pharmaceutical residues in aquaculture fish. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1501-1514. [PMID: 31361192 PMCID: PMC7377552 DOI: 10.1080/19440049.2019.1637945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
A liquid chromatography high resolution mass spectrometry (LC-HRMS) screening method was developed previously to analyze for veterinary drug residues commonly found in different types of aquaculture products. This method has been further evaluated for its feasibility to detect several other classes of compounds that might also be a concern as possible contaminants in farmed tilapia, salmon, eel and shrimp. Some chemicals could contaminate water sources used in aquaculture production through agricultural run-off. These compounds include several widely used triazine herbicides, organophosphate and carbamate pesticides, as well as various discarded human pharmaceuticals. Other possible contaminants investigated were selected disinfectants, some newer antibiotics, growth promoters, and various parasiticides. The sample preparation consisted of an acidic acetonitrile extraction followed by solid-phase extraction clean-up. Data were collected with a quadrupole-Orbitrap MS using both non-targeted and targeted acquisition. This rapid clean-up procedure and HRMS detection method described previously for veterinary drug residues also worked well for many other types of compounds. Most analytes had screening limit levels between 0.5-10 ng/g in the matrices examined using exact mass identification criteria. The strategy described in this paper for testing the performance of additional analytes will help expand the applicability of the HRMS procedure as aquaculture samples can now be analyzed for a wider range of contaminants.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- Animal Drugs Research Center, U.S. Food and Drug Administration , Denver , CO , USA
| | - Joseph M Storey
- Animal Drugs Research Center, U.S. Food and Drug Administration , Denver , CO , USA
| | - I-Lin Wu
- Animal Drugs Research Center, U.S. Food and Drug Administration , Denver , CO , USA
| | - Wendy C Andersen
- Animal Drugs Research Center, U.S. Food and Drug Administration , Denver , CO , USA
| | - Mark R Madson
- Animal Drugs Research Center, U.S. Food and Drug Administration , Denver , CO , USA
| |
Collapse
|
28
|
Duarte IA, Pais MP, Reis-Santos P, Cabral HN, Fonseca VF. Biomarker and behavioural responses of an estuarine fish following acute exposure to fluoxetine. MARINE ENVIRONMENTAL RESEARCH 2019; 147:24-31. [PMID: 30987769 DOI: 10.1016/j.marenvres.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Antidepressants such as fluoxetine are frequently detected in estuaries and can have profound effects on non-target organisms by interfering with the neural system and affecting essential physiological processes and behaviours. In this context, short-term effects of fluoxetine exposure were analysed in the common goby Pomatoschistus microps, an estuarine resident fish species. Two experiments were conducted with fish exposed to: i) fluoxetine concentrations within the μg/L range for 96 h (0.1, 0.5, 10 and 100 μg/L) and ii) fluoxetine concentrations within the mg/L range for 1 h (1, 5 and 10 mg/L). Acute toxicity was assessed via multiple biomarker responses, namely: activity levels of antioxidant (superoxide dismutase and catalase) and detoxification enzymes (ethoxyresorufin O-deethylase and glutathione S-transferase); and biomarkers of effects (lipid peroxidation and DNA damage) and of neurotoxicity (acetylcholinesterase inhibition). Furthermore, behavioural responses concerning activity (active time, movement delay and number of active individuals) and feeding (number of feeding individuals) were also recorded and analysed. Acute fluoxetine exposure for 96 h (in the μg/L range) reduced antioxidant CAT activity with increasing concentrations but had no significant effect on SOD activity. Biotransformation enzymes showed bell-shaped response curves, suggesting efficient fluoxetine metabolism at concentrations up to 10 μg/L. No significant damage (LPO and DNAd) was observed at both concentration ranges (μg/L and mg/L), yet 1 h exposure to higher fluoxetine concentrations (mg/L range) inhibited acetylcholinesterase activity (up to 37%). Fluoxetine (at mg/L) also decreased the number of both feeding and active individuals (by 67%), decreased fish active time (up to 93%) and increased movement delay almost 3-fold (274%). Overall, acutely exposed P. microps were able to cope with fluoxetine toxicity at the μg/L range but higher concentrations (mg/L) affected fish cholinergic system and behavioural responses.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal.
| | - Miguel P Pais
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal; Irstea, UR EABX, 50 Avenue de Verdun, 33612, Cestas, France
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal
| |
Collapse
|
29
|
Bradley PM, Journey CA, Berninger JP, Button DT, Clark JM, Corsi SR, DeCicco LA, Hopkins KG, Huffman BJ, Nakagaki N, Norman JE, Nowell LH, Qi SL, VanMetre PC, Waite IR. Mixed-chemical exposure and predicted effects potential in wadeable southeastern USA streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:70-83. [PMID: 30469070 DOI: 10.1016/j.scitotenv.2018.11.186] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/19/2023]
Abstract
Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.
Collapse
|
30
|
Lagesson A, Saaristo M, Brodin T, Fick J, Klaminder J, Martin JM, Wong BBM. Fish on steroids: Temperature-dependent effects of 17β-trenbolone on predator escape, boldness, and exploratory behaviors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:243-252. [PMID: 30423539 DOI: 10.1016/j.envpol.2018.10.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/09/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
Hormonal growth promoters (HGPs), widely used in beef cattle production globally, make their way into the environment as agricultural effluent-with potential impacts on aquatic ecosystems. One HPG of particular concern is 17β-trenbolone, which is persistent in freshwater habitats and can affect the development, morphology and reproductive behaviors of aquatic organisms. Despite this, few studies have investigated impacts of 17β-trenbolone on non-reproductive behaviors linked to growth and survival, like boldness and predator avoidance. None consider the interaction between 17β-trenbolone and other environmental stressors, such as temperature, although environmental challenges confronting animals in the wild seldom, if ever, occur in isolation. Accordingly, this study aimed to test the interactive effects of trenbolone and temperature on organismal behavior. To do this, eastern mosquitofish (Gambusia holbrooki) were subjected to an environmentally-relevant concentration of 17β-trenbolone (average measured concentration 3.0 ± 0.2 ng/L) or freshwater (i.e. control) for 21 days under one of two temperatures (20 and 30 °C), after which the predator escape, boldness and exploration behavior of fish were tested. Predator escape behavior was assayed by subjecting fish to a simulated predator strike, while boldness and exploration were assessed in a separate maze experiment. We found that trenbolone exposure increased boldness behavior. Interestingly, some behavioral effects of trenbolone depended on temperature, sex, or both. Specifically, significant effects of trenbolone on male predator escape behavior were only noted at 30 °C, with males becoming less reactive to the simulated threat. Further, in the maze experiment, trenbolone-exposed fish explored the maze faster than control fish, but only at 20 °C. We conclude that field detected concentrations of 17β-trenbolone can impact ecologically important behaviors of fish, and such effects can be temperature dependent. Such findings underscore the importance of considering the potentially interactive effects of other environmental stressors when investigating behavioral effects of environmental contaminants.
Collapse
Affiliation(s)
- A Lagesson
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden.
| | - M Saaristo
- School of Biological Sciences, Monash University, Victoria 3800, Australia; Department of Biosciences, Åbo Academy University, 20500 Turku, Finland
| | - T Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - J Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - J Klaminder
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - J M Martin
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - B B M Wong
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
31
|
Burgos-Aceves MA, Cohen A, Paolella G, Lepretti M, Smith Y, Faggio C, Lionetti L. Modulation of mitochondrial functions by xenobiotic-induced microRNA: From environmental sentinel organisms to mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:79-88. [PMID: 30015121 DOI: 10.1016/j.scitotenv.2018.07.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. They are in the first line in facing cellular energy requirements in stress conditions, such as in response to xenobiotic exposure. Recently, a novel regulatory key role of microRNAs (miRNAs) in important signaling pathways in mitochondria has been proposed. Consequently, alteration in miRNAs expression by xenobiotics could outcome into mitochondrial dysfunction, reactive oxygen species overexpression, and liberation of apoptosis or necrosis activating proteins. The aim of this review is to show the highlights about mitochondria-associated miRNAs in cellular processes exposed to xenobiotic stress in different cell types involved in detoxification processes or sensitive to environmental hazards in marine sentinel organisms and mammals.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Lillà Lionetti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
32
|
Bradley PM, Kolpin DW, Romanok KM, Smalling KL, Focazio MJ, Brown JB, Cardon MC, Carpenter KD, Corsi SR, DeCicco LA, Dietze JE, Evans N, Furlong ET, Givens CE, Gray JL, Griffin DW, Higgins CP, Hladik ML, Iwanowicz LR, Journey CA, Kuivila KM, Masoner JR, McDonough CA, Meyer MT, Orlando JL, Strynar MJ, Weis CP, Wilson VS. Reconnaissance of Mixed Organic and Inorganic Chemicals in Private and Public Supply Tapwaters at Selected Residential and Workplace Sites in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13972-13985. [PMID: 30460851 PMCID: PMC6742431 DOI: 10.1021/acs.est.8b04622] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 μg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 μg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.
Collapse
Affiliation(s)
- Paul M. Bradley
- United States Geological Survey, Columbia, South Carolina 29210, United States
| | - Dana W. Kolpin
- United States Geological Survey, Iowa City, Iowa 52240, United States
| | - Kristin M. Romanok
- United States Geological Survey, Lawrenceville, New Jersey 08648, United States
| | - Kelly L. Smalling
- United States Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | | | | - Mary C. Cardon
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Kurt D. Carpenter
- United States Geological Survey, Portland, Oregon 97201, United States
| | - Steven R. Corsi
- United States Geological Survey, Middleton, Wisconsin 53562, United States
| | - Laura A. DeCicco
- United States Geological Survey, Middleton, Wisconsin 53562, United States
| | - Julie E. Dietze
- United States Geological Survey, Lawrence, Kansas 66049, United States
| | - Nicola Evans
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Edward T. Furlong
- United States Geological Survey, Lakewood, Colorado 80225, United States
| | - Carrie E. Givens
- United States Geological Survey, Lansing, Michigan 48911, United States
| | - James L. Gray
- United States Geological Survey, Lakewood, Colorado 80225, United States
| | - Dale W. Griffin
- United States Geological Survey, St. Petersburg, Florida 33701, United States
| | | | - Michelle L. Hladik
- United States Geological Survey, Sacramento, California 95819, United States
| | - Luke R. Iwanowicz
- United States Geological Survey, Kearneysville, West Virginia 25430, United States
| | - Celeste A. Journey
- United States Geological Survey, Columbia, South Carolina 29210, United States
| | | | - Jason R. Masoner
- United States Geological Survey, Oklahoma City, Oklahoma 73159, United States
| | | | - Michael T. Meyer
- United States Geological Survey, Lawrence, Kansas 66049, United States
| | - James L. Orlando
- United States Geological Survey, Sacramento, California 95819, United States
| | - Mark J. Strynar
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Christopher P. Weis
- United States National Institute of Environmental Health Sciences/NIH, Bethesda, Maryland 20892, United States
| | - Vickie S. Wilson
- United States Environmental Protection Agency, Durham, North Carolina 27709, United States
| |
Collapse
|
33
|
Mintram KS, Brown AR, Maynard SK, Liu C, Parker SJ, Tyler CR, Thorbek P. Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Mehdi H, Dickson FH, Bragg LM, Servos MR, Craig PM. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:270-279. [DOI: 10.1016/j.cbpb.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
|
35
|
Weissinger RH, Blackwell BR, Keteles K, Battaglin WA, Bradley PM. Bioactive contaminants of emerging concern in National Park waters of the northern Colorado Plateau, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:910-918. [PMID: 29729508 PMCID: PMC6794149 DOI: 10.1016/j.scitotenv.2018.04.332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 05/18/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs), wastewater indicators (WWIs), and pesticides (herein, Contaminants of Emerging Concern [CECs]) have been documented in surface waters throughout the world and have associated risks to aquatic life. While much research has focused on temperate and urbanized watersheds, less is known about CEC presence in semi-arid landscapes, where water availability is limited and populations are low. CEC presence in water and sediment is reported for 21 sites in eight U.S. national parks in the northern Colorado Plateau region. From 2012 to 2016, at least one PPCP and/or WWI was detected at most sites on over half of sampling visits, indicating that CECs are not uncommon even in isolated areas. CEC detections were generally fewer and at lower concentrations than in urbanized or agricultural watersheds. Consistent with studies from other U.S. regions, the most frequently detected CECs in this study include DEET, caffeine, organophosphorus flame retardants, and bisphenol A in water and fecal indicators and polycyclic aromatic hydrocarbons in sediment. Maximum concentrations in this study were generally below available water quality benchmarks, sediment quality guidelines, and risk assessment thresholds associated with vertebrates. Additional work is needed to assess the potential activity of hormones, which had high reporting limits in our study, and potential bioactivity of environmental concentrations for invertebrates, microbial communities, and algae. Potential sources of CEC contamination include upstream wastewater effluent discharges and National Park Service invasive-plant-control herbicide applications. CEC occurrence patterns and similarities between continuous and isolated flow locations suggest that direct contamination from individual visitors may also occur. While our data indicate there is little aquatic health risk associated with CECs at our sites, our results demonstrate the ubiquity of CECs on the landscape and a continued need for public outreach concerning resource-use ethics and the potential effects of upstream development.
Collapse
|
36
|
Saaristo M, Brodin T, Balshine S, Bertram MG, Brooks BW, Ehlman SM, McCallum ES, Sih A, Sundin J, Wong BBM, Arnold KE. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc Biol Sci 2018; 285:rspb.2018.1297. [PMID: 30135169 DOI: 10.1098/rspb.2018.1297] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are changing ecosystems via effects on wildlife. Indeed, recent work explicitly performed under environmentally realistic conditions reveals that chemical contaminants can have both direct and indirect effects at multiple levels of organization by influencing animal behaviour. Altered behaviour reflects multiple physiological changes and links individual- to population-level processes, thereby representing a sensitive tool for holistically assessing impacts of environmentally relevant contaminant concentrations. Here, we show that even if direct effects of contaminants on behavioural responses are reasonably well documented, there are significant knowledge gaps in understanding both the plasticity (i.e. individual variation) and evolution of contaminant-induced behavioural changes. We explore implications of multi-level processes by developing a conceptual framework that integrates direct and indirect effects on behaviour under environmentally realistic contexts. Our framework illustrates how sublethal behavioural effects of contaminants can be both negative and positive, varying dynamically within the same individuals and populations. This is because linkages within communities will act indirectly to alter and even magnify contaminant-induced effects. Given the increasing pressure on wildlife and ecosystems from chemical pollution, we argue there is a need to incorporate existing knowledge in ecology and evolution to improve ecological hazard and risk assessments.
Collapse
Affiliation(s)
- Minna Saaristo
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Ontario, Canada
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, TX, USA
| | - Sean M Ehlman
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Erin S McCallum
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | | | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| | | |
Collapse
|
37
|
Glover CN. Defence mechanisms: the role of physiology in current and future environmental protection paradigms. CONSERVATION PHYSIOLOGY 2018; 6:coy012. [PMID: 29564135 PMCID: PMC5848810 DOI: 10.1093/conphys/coy012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 05/13/2023]
Abstract
Ecological risk assessments principally rely on simplified metrics of organismal sensitivity that do not consider mechanism or biological traits. As such, they are unable to adequately extrapolate from standard laboratory tests to real-world settings, and largely fail to account for the diversity of organisms and environmental variables that occur in natural environments. However, an understanding of how stressors influence organism health can compensate for these limitations. Mechanistic knowledge can be used to account for species differences in basal biological function and variability in environmental factors, including spatial and temporal changes in the chemical, physical and biological milieu. Consequently, physiological understanding of biological function, and how this is altered by stressor exposure, can facilitate proactive, predictive risk assessment. In this perspective article, existing frameworks that utilize physiological knowledge (e.g. biotic ligand models, adverse outcomes pathways and mechanistic effect models), are outlined, and specific examples of how mechanistic understanding has been used to predict risk are highlighted. Future research approaches and data needs for extending the incorporation of physiological information into ecological risk assessments are discussed. Although the review focuses on chemical toxicants in aquatic systems, physical and biological stressors and terrestrial environments are also briefly considered.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Canada
- Department of Biological Sciences, CW 405, Biological Sciences Bldg. University of Alberta Edmonton, Alberta, Canada T6G 2E9
- Corresponding author: 1 University Drive, Athabasca, Alberta, Canada T9S 3A3. Tel: +(587) 985 8007.
| |
Collapse
|
38
|
McCallum ES, Krutzelmann E, Brodin T, Fick J, Sundelin A, Balshine S. Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:578-588. [PMID: 28672246 DOI: 10.1016/j.scitotenv.2017.06.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceutical active compounds (PhACs) are increasingly being reported in wastewater effluents and surface waters around the world. The presence of these products, designed to modulate human physiology and behaviour, has created concern over whether PhACs similarly affect aquatic organisms. Though laboratory studies are beginning to address the effects of individual PhACs on fish behaviour, few studies have assessed the effects of exposure to complex, realistic wastewater effluents on fish behaviour. In this study, we exposed a wild, invasive fish species-the round goby (Neogobius melanostomus)-to treated wastewater effluent (0%, 50% or 100% effluent dilutions) for 28days. We then determined the impact of exposure on fish aggression, an important behaviour for territory acquisition and defense. We found that exposure to 100% wastewater effluent reduced the number of aggressive acts that round goby performed. We complimented our behavioural assay with measures of pharmaceutical uptake in fish tissues. We detected 11 of 93 pharmaceutical compounds that we tested for in round goby tissues, and we found that concentration was greatest in the brain followed by plasma, then gonads, then liver, and muscle. Fish exposed to 50% and 100% effluent had higher tissue concentrations of pharmaceuticals and concentrated a greater number of pharmaceutical compounds compare to control fish exposed to no (0%) effluent. Exposed fish also showed increased ethoxyresorufin-O-deethylase (EROD) activity in liver tissue, suggesting that fish were exposed to planar halogenated/polycyclic aromatic hydrocarbons (PHHs/PAHs) in the wastewater effluent. Our findings suggest that fish in effluent-dominated systems may have altered behaviours and greater tissue concentration of PhACs. Moreover, our results underscore the importance of characterizing exposure to multiple pollutants, and support using behaviour as a sensitive tool for assessing animal responses to complex contaminant mixtures, like wastewater effluent.
Collapse
Affiliation(s)
- Erin S McCallum
- Department of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| | - Emily Krutzelmann
- Department of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Sundelin
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sigal Balshine
- Department of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| |
Collapse
|
39
|
Meador JP, Yeh A, Gallagher EP. Determining potential adverse effects in marine fish exposed to pharmaceuticals and personal care products with the fish plasma model and whole-body tissue concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:1018-1029. [PMID: 28764109 PMCID: PMC5595653 DOI: 10.1016/j.envpol.2017.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 05/02/2023]
Abstract
The Fish Plasma Model (FPM) was applied to water exposure and tissue concentrations in fish collected from two wastewater treatment plant impacted estuarine sites. In this study we compared predicted fish plasma concentrations to Cmax values for humans, which represents the maximum plasma concentration for the minimum therapeutic dose. The results of this study show that predictions of plasma concentrations for a variety of pharmaceutical and personal care products (PPCPs) from effluent concentrations resulted in 37 compounds (54%) exceeding the response ratio (RR = Fish [Plasma]/1%Cmaxtotal) of 1 compared to 3 compounds (14%) detected with values generated with estuarine receiving water concentrations. When plasma concentrations were modeled from observed whole-body tissue residues, 16 compounds out of 24 detected for Chinook (67%) and 7 of 14 (50%) for sculpin resulted in an RRtissue value greater than 1, which highlights the importance of this dose metric over that using estuarine water. Because the tissue residue approach resulted in a high percentage of compounds with calculated response ratios exceeding a value of unity, we believe this is a more accurate representation for exposure in the field. Predicting plasma concentrations from tissue residues improves our ability to assess the potential for adverse effects in fish because exposure from all sources is captured. Tissue residues are also more likely to represent steady-state conditions compared to those from water exposure because of the inherent reduction in variability usually observed for field data and the time course for bioaccumulation. We also examined the RR in a toxic unit approach to highlight the importance of considering multiple compounds exhibiting a similar mechanism of action.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way, Seattle, WA 98195, USA.
| | - Andrew Yeh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way, Seattle, WA 98195, USA.
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Mintram KS, Brown AR, Maynard SK, Thorbek P, Tyler CR. Capturing ecology in modeling approaches applied to environmental risk assessment of endocrine active chemicals in fish. Crit Rev Toxicol 2017; 48:109-120. [PMID: 28929839 DOI: 10.1080/10408444.2017.1367756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.
Collapse
Affiliation(s)
- Kate S Mintram
- a College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| | - A Ross Brown
- a College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| | - Samuel K Maynard
- b Syngenta, Jealott's Hill International Research Centre , Bracknell , Berkshire , UK
| | - Pernille Thorbek
- b Syngenta, Jealott's Hill International Research Centre , Bracknell , Berkshire , UK
| | - Charles R Tyler
- a College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
41
|
Bean TG, Arnold KE, Lane JM, Bergström E, Thomas-Oates J, Rattner BA, Boxall ABA. Predictive framework for estimating exposure of birds to pharmaceuticals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2335-2344. [PMID: 28198558 DOI: 10.1002/etc.3771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
We present and evaluate a framework for estimating concentrations of pharmaceuticals over time in wildlife feeding at wastewater treatment plants (WWTPs). The framework is composed of a series of predictive steps involving the estimation of pharmaceutical concentration in wastewater, accumulation into wildlife food items, and uptake by wildlife with subsequent distribution into, and elimination from, tissues. Because many pharmacokinetic parameters for wildlife are unavailable for the majority of drugs in use, a read-across approach was employed using either rodent or human data on absorption, distribution, metabolism, and excretion. Comparison of the different steps in the framework against experimental data for the scenario where birds are feeding on a WWTP contaminated with fluoxetine showed that estimated concentrations in wastewater treatment works were lower than measured concentrations; concentrations in food could be reasonably estimated if experimental bioaccumulation data are available; and read-across from rodent data worked better than human to bird read-across. The framework provides adequate predictions of plasma concentrations and of elimination behavior in birds but yields poor predictions of distribution in tissues. The approach holds promise, but it is important that we improve our understanding of the physiological similarities and differences between wild birds and domesticated laboratory mammals used in pharmaceutical efficacy/safety trials, so that the wealth of data available can be applied more effectively in ecological risk assessments. Environ Toxicol Chem 2017;36:2335-2344. © 2017 SETAC.
Collapse
Affiliation(s)
- Thomas G Bean
- Environment Department, University of York, York, United Kingdom
| | - Kathryn E Arnold
- Environment Department, University of York, York, United Kingdom
| | - Julie M Lane
- Animal and Plant Health Agency, York, United Kingdom
| | - Ed Bergström
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, York, United Kingdom
| | - Jane Thomas-Oates
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, York, United Kingdom
| | - Barnett A Rattner
- United States Geological Survey Patuxent Wildlife Research Center, Beltsville, Maryland, USA
| | | |
Collapse
|
42
|
Yeh A, Marcinek DJ, Meador JP, Gallagher EP. Effect of contaminants of emerging concern on liver mitochondrial function in Chinook salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:21-31. [PMID: 28668760 PMCID: PMC5590637 DOI: 10.1016/j.aquatox.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
We previously reported the bioaccumulation of contaminants of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) and perfluorinated compounds, in field-collected juvenile Chinook salmon from urban estuaries of Puget Sound, WA (Meador et al., 2016). Although the toxicological impacts of CECs on salmon are poorly understood, several of the detected contaminants disrupt mitochondrial function in other species. Here, we sought to determine whether environmental exposures to CECs are associated with hepatic mitochondrial dysfunction in juvenile Chinook. Fish were exposed in the laboratory to a dietary mixture of 16 analytes representative of the predominant CECs detected in our field study. Liver mitochondrial content was reduced in fish exposed to CECs, which occurred concomitantly with a 24-32% reduction in expression of peroxisome proliferator-activated receptor (PPAR) Y coactivator-1a (pgc-1α), a positive transcriptional regulator of mitochondrial biogenesis. The laboratory exposures also caused a 40-70% elevation of state 4 respiration per unit mitochondria, which drove a 29-38% reduction of efficiency of oxidative phosphorylation relative to controls. The mixture-induced elevation of respiration was associated with increased oxidative injury as evidenced by increased mitochondrial protein carbonyls, elevated expression of glutathione (GSH) peroxidase 4 (gpx4), a mitochondrial-associated GSH peroxidase that protects against lipid peroxidation, and reduction of mitochondrial GSH. Juvenile Chinook sampled in a WWTP effluent-impacted estuary with demonstrated releases of CECs showed similar trends toward reduced liver mitochondrial content and elevated respiratory activity per mitochondria (including state 3 and uncoupled respiration). However, respiratory control ratios were greater in fish from the contaminated site relative to fish from a minimally-polluted reference site, which may have been due to differences in the timing of exposure to CECs under laboratory and field conditions. Our results indicate that exposure to CECs can affect both mitochondrial quality and content, and support the analysis of mitochondrial function as an indicator of the sublethal effects of CECs in wild fish.
Collapse
Affiliation(s)
- Andrew Yeh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States
| | - David J Marcinek
- Department of Radiology, Pathology, and Bioengineering University of Washington Medical School, Seattle, WA 98195, United States
| | - James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, United States
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States.
| |
Collapse
|
43
|
Melvin SD, Habener LJ, Leusch FDL, Carroll AR. 1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:123-132. [PMID: 28131079 DOI: 10.1016/j.aquatox.2017.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the expected response patterns may be explained by differences in the receptivity or uptake of the compounds in non-mammalian species. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed evidence of broad metabolic dysregulation in exposed animals, and possible interaction between the solvent and mixture. Specifically, increased lactic acid and branched-chain amino acids were observed, with responses tending to follow a non-monotonic pattern. Overall, results demonstrate that a mixture of drugs commonly prescribed to treat human metabolic syndrome is capable of eliciting physiological and developmental effects on larval amphibians. Importantly, outcomes further suggest that it may not be possible to predict toxicological effects in non-target wildlife based on our knowledge of how these compounds act in humans.
Collapse
Affiliation(s)
- Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia.
| | - Leesa J Habener
- Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia; Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | - Anthony R Carroll
- Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
44
|
McCallum ES, Du SNN, Vaseghi-Shanjani M, Choi JA, Warriner TR, Sultana T, Scott GR, Balshine S. In situ exposure to wastewater effluent reduces survival but has little effect on the behaviour or physiology of an invasive Great Lakes fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:37-48. [PMID: 28086147 DOI: 10.1016/j.aquatox.2016.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Treated effluents from wastewater treatment plants (WWTP) are a significant source of anthropogenic contaminants, such as pharmaceuticals, in the aquatic environment. Although our understanding of how wastewater effluent impacts fish reproduction is growing, we know very little about how effluent affects non-reproductive physiology and behaviours associated with fitness (such as aggression and activity). To better understand how fish cope with chronic exposure to wastewater effluent in the wild, we caged round goby (Neogobius melanostomus) for three weeks at different distances from a wastewater outflow. We evaluated the effects of this exposure on fish survival, behaviour, metabolism, and respiratory traits. Fish caged inside the WWTP and close to the outfall experienced higher mortality than fish from the reference site. Interestingly, those fish that survived the exposure performed similarly to fish caged at the reference site in tests of aggressive behaviour, startle-responses, and dispersal. Moreover, the fish near WWTP outflow displayed similar resting metabolism (O2 consumption rates), hypoxia tolerance, haemoglobin concentration, haematocrit, and blood-oxygen binding affinities as the fish from the more distant reference site. We discuss our findings in relation to exposure site water quality, concentrations of pharmaceutical and personal care product pollutants, and our test species tolerance.
Collapse
Affiliation(s)
- Erin S McCallum
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada.
| | - Sherry N N Du
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Maryam Vaseghi-Shanjani
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Jasmine A Choi
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Theresa R Warriner
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Tamanna Sultana
- School of Environment, Trent University, 1600 West Bank Drive Peterborough, ON K9J 7B8, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
45
|
Brodin T, Nordling J, Lagesson A, Klaminder J, Hellström G, Christensen B, Fick J. Environmental relevant levels of a benzodiazepine (oxazepam) alters important behavioral traits in a common planktivorous fish, (Rutilus rutilus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:963-970. [PMID: 28829722 DOI: 10.1080/15287394.2017.1352214] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Environmental pollution by pharmaceuticals is increasingly recognized as a major threat to aquatic ecosystems worldwide. A complex mix of pharmaceuticals enters waterways via treated wastewater effluent and many remain biochemically active after the drugs reach aquatic systems. However, to date little is known regarding the ecological effects that might arise following pharmaceutical contamination of aquatic environments. One group of particular concern is behaviorally modifying pharmaceuticals as seemingly minor changes in behavior may initiate marked ecological consequences. The aim of this study was to examine the influence of a benzodiazepine anxiolytic drug (oxazepam) on key behavioral traits in wild roach (Rutilus rutilus) at concentrations similar to those encountered in effluent surface waters. Roach exposed to water with high concentrations of oxazepam (280 µg/L) exhibited increased boldness, while roach at low treatment (0.84 µg/L) became bolder and more active compared to control fish. Our results reinforce the notion that anxiolytic drugs may be affecting fish behavior in natural systems, emphasizing the need for further research on ecological impacts of pharmaceuticals in aquatic systems and development of new tools to incorporate ecologically relevant behavioral endpoints into ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Tomas Brodin
- a Department of Ecology and Environmental Science , Umeå University , Umeå , Sweden
| | - Johanna Nordling
- a Department of Ecology and Environmental Science , Umeå University , Umeå , Sweden
| | - Annelie Lagesson
- a Department of Ecology and Environmental Science , Umeå University , Umeå , Sweden
| | - Jonatan Klaminder
- a Department of Ecology and Environmental Science , Umeå University , Umeå , Sweden
| | - Gustav Hellström
- b Department of Wildlife , Fish, and Environmental Studies, Swedish University of Agricultural Sciences , Umeå , Sweden
| | - Bent Christensen
- a Department of Ecology and Environmental Science , Umeå University , Umeå , Sweden
| | - Jerker Fick
- c Department of Chemistry , Umeå University , Umeå , Sweden
| |
Collapse
|
46
|
Brown AR, Whale G, Jackson M, Marshall S, Hamer M, Solga A, Kabouw P, Galay-Burgos M, Woods R, Nadzialek S, Maltby L. Toward the definition of specific protection goals for the environmental risk assessment of chemicals: A perspective on environmental regulation in Europe. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:17-37. [PMID: 27243906 DOI: 10.1002/ieam.1797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
This critical review examines the definition and implementation of environmental protection goals for chemicals in current European Union (EU) legislation, guidelines, and international agreements to which EU countries are party. The European chemical industry is highly regulated, and prospective environmental risk assessments (ERAs) are tailored for different classes of chemical, according to their specific hazards, uses, and environmental exposure profiles. However, environmental protection goals are often highly generic, requiring the prevention of "unacceptable" or "adverse" impacts on "biodiversity" and "ecosystems" or the "environment as a whole." This review aims to highlight working examples, challenges, solutions, and best practices for defining specific protection goals (SPGs), which are seen to be essential for refining and improving ERA. Specific protection goals hinge on discerning acceptable versus unacceptable adverse effects on the key attributes of relevant, sensitive ecological entities (ranging from organisms to ecosystems). Some isolated examples of SPGs for terrestrial and aquatic biota can be found in prospective ERA guidance for plant protection products (PPPs). However, SPGs are generally limited to environmental or nature legislation that requires environmental monitoring and retrospective ERA. This limitation is due mainly to the availability of baselines, which define acceptable versus unacceptable environmental effects on the key attributes of sentinel species, populations and/or communities, such as reproductive status, abundance, or diversity. Nevertheless, very few regulatory case examples exist in which SPGs incorporate effect magnitude, spatial extent, and temporal duration. We conclude that more holistic approaches are needed for defining SPGs, particularly with respect to protecting population sustainability, ecosystem function, and integrity, which are implicit in generic protection goals and explicit in the International Programme for Chemical Safety (IPCS) definition of "adverse effect." A possible solution, which the chemical industry is currently assessing, is wider application of the ecosystem services approach proposed by the European Food Safety Authority (EFSA) for the risk assessment of PPPs. Integr Environ Assess Manag 2017;13:17-37. © 2016 SETAC.
Collapse
Affiliation(s)
- A Ross Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | | | | | | | - Mick Hamer
- Syngenta, Bracknell, Berkshire, United Kingdom
| | - Andreas Solga
- Bayer CropScience AG, Environmental Safety - Ecotoxicology, Monheim, Germany
| | - Patrick Kabouw
- BASF, Crop protection, Global Ecotoxicology, Limburgerhof, Germany
| | | | - Richard Woods
- ExxonMobil Biomedical Sciences, Clinton, New Jersey, USA
| | | | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
47
|
Heynen M, Backström T, Fick J, Jonsson M, Klaminder J, Brodin T. Home alone-The effects of isolation on uptake of a pharmaceutical contaminant in a social fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:71-77. [PMID: 27658223 DOI: 10.1016/j.aquatox.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 05/14/2023]
Abstract
A wide range of biologically active pharmaceutical residues is present in aquatic systems worldwide. As uptake potential and the risk of effects in aquatic wildlife are directly coupled, the aim of this study was to investigate the relationships between stress by isolation, uptake and effects of the psychiatric pharmaceutical oxazepam in fish. To do this, we measured cortisol levels, behavioral stress responses, and oxazepam uptake under different stress and social conditions, in juvenile perch (Perca fluviatilis) that were either exposed (1.03μgl-1) or not exposed to oxazepam. We found single exposed individuals to take up more oxazepam than individuals exposed in groups, likely as a result of stress caused by isolation. Furthermore, the bioconcentration factor (BCF) was significantly negatively correlated with fish weight in both social treatments. We found no effect of oxazepam exposure on body cortisol concentration or behavioral stress response. Most laboratory experiments, including standardized bioconcentration assays, are designed to minimize stress for the test organisms, however wild animals experience stress naturally. Hence, differences in stress levels between laboratory and natural environments can be one of the reasons why predictions from artificial laboratory experiments largely underestimate uptake of oxazepam, and other pharmaceuticals, in the wild.
Collapse
Affiliation(s)
- Martina Heynen
- Department of Ecology and Environmental Science, Umeå University, Sweden; Department of Chemistry, Umeå University, Sweden.
| | - Tobias Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - Micael Jonsson
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Sweden
| |
Collapse
|
48
|
Ankley GT, LaLone CA, Gray LE, Villeneuve DL, Hornung MW. Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian test systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2806-2816. [PMID: 27074246 DOI: 10.1002/etc.3456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 05/02/2023]
Abstract
The US Environmental Protection Agency has responsibility for assessing endocrine activity of more than 10 000 chemicals, a task that cannot reasonably be achieved solely through use of available mammalian and nonmammalian in vivo screening assays. Hence, it has been proposed that chemicals be prioritized for in vivo testing using data from in vitro high-throughput assays for specific endocrine system targets. Recent efforts focused on potential estrogenic chemicals-specifically those that activate estrogen receptor-alpha (ERα)-have broadly demonstrated feasibility of the approach. However, a major uncertainty is whether prioritization based on mammalian (primarily human) high-throughput assays accurately reflects potential chemical-ERα interactions in nonmammalian species. The authors conducted a comprehensive analysis of cross-species comparability of chemical-ERα interactions based on information concerning structural attributes of estrogen receptors, in vitro binding and transactivation data for ERα, and the effects of a range of chemicals on estrogen-signaling pathways in vivo. Overall, this integrated analysis suggests that chemicals with moderate to high estrogenic potency in mammalian systems also should be priority chemicals in nonmammalian vertebrates. However, the degree to which the prioritization approach might be applicable to invertebrates is uncertain because of a lack of knowledge of the biological role(s) of possible ERα orthologs found in phyla such as annelids. Further, comparative analysis of in vitro data for fish and reptiles suggests that mammalian-based assays may not effectively capture ERα interactions for low-affinity chemicals in all vertebrate classes. Environ Toxicol Chem 2016;35:2806-2816. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T Ankley
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota.
| | - Carlie A LaLone
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - L Earl Gray
- Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Michael W Hornung
- Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
49
|
Hultin CL, Hallgren P, Hansson MC. Estrogen receptor genes in gastropods: phylogenetic divergence and gene expression responses to a synthetic estrogen. Comp Biochem Physiol C Toxicol Pharmacol 2016; 189:17-21. [PMID: 27426037 DOI: 10.1016/j.cbpc.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022]
Abstract
Endocrine disrupting chemicals (EDCs) have the potential to affect development and reproduction in gastropods. However, one is today lacking basic understanding of the Molluscan endocrine system and one can therefore not fully explain these EDC-induced affects. Furthermore, only a few genes that potentially may be connected to the endocrine system have been sequenced in gastropods. An example is the estrogen receptor gene (er) that have been identified in a restricted number of freshwater and marine gastropods. Here, we have identified a new partial coding sequence of an estrogen receptor gene (er) in the European common heterobranch Radix balthica. The following phylogenetic analysis divided the ers of heterobranchs and ceanogastropods in two branches. Furthermore, exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) showed that exposure could significantly affect er expression level in the heterobranch R. balthica. This paper is the first that phylogenetically compares gastropods' er, basal er expression profiles, and transcriptional estrogenic responses in gastropods from two different evolutionary groups.
Collapse
Affiliation(s)
- Cecilia L Hultin
- Centre for Environmental and Climate Research (CEC), Lund University, Sölvegatan 37, SE-22362 Lund, Sweden.
| | - Per Hallgren
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Maria C Hansson
- Centre for Environmental and Climate Research (CEC), Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| |
Collapse
|
50
|
Green JM, Metz J, Lee O, Trznadel M, Takesono A, Brown AR, Owen SF, Kudoh T, Tyler CR. High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals Using a Novel Translucent Transgenic Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6536-45. [PMID: 27227508 DOI: 10.1021/acs.est.6b01243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free "Casper" phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates.
Collapse
Affiliation(s)
- Jon M Green
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Jeremy Metz
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Okhyun Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - A Ross Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment , Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|