1
|
Liu L, Kitano J, Shigenobu S, Ishikawa A. Co-profiling of single-cell gene expression and chromatin landscapes in stickleback pituitary. Sci Data 2025; 12:41. [PMID: 39789025 PMCID: PMC11718312 DOI: 10.1038/s41597-025-04376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
The pituitary gland is a key endocrine gland with various physiological functions including metabolism, growth, and reproduction. It comprises several distinct cell populations that release multiple polypeptide hormones. Although the major endocrine cell types are conserved across taxa, the regulatory mechanisms of gene expression and chromatin organization in specific cell types remain poorly understood. Here, we performed simultaneous profiling of the transcriptome and chromatin landscapes in the pituitary cells of the three-spined stickleback (Gasterosteus aculeatus), which represents a good model for investigating the genetic mechanisms underlying adaptive evolution. We obtained pairwise gene expression and chromatin profiles for 5184 cells under short- and long-day conditions. Using three independent clustering analyses, we identified 16 distinct cell clusters and validated their consistency. These results advance our understanding of the regulatory dynamics in the pituitary gland and provide a reference for future research on comparative physiology and evolutionary biology.
Collapse
Affiliation(s)
- Liang Liu
- Laboratory of Molecular Ecological Genetics, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Asano Ishikawa
- Laboratory of Molecular Ecological Genetics, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
2
|
Sandamal S, Tennakoon A, Wijerathna P, Zhang HX, Yu WH, Qiang CG, Han JD, Zhang FM, Ratnasekera D, Ge S. Phenological and morphological variations of Oryza rufipogon and O. nivara in Sri Lanka and their evolutionary implications. Sci Rep 2024; 14:31126. [PMID: 39730894 DOI: 10.1038/s41598-024-82383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O. nivara populations in Sri Lanka by incorporating the in situ observation in natural habitats and manipulative experiments in the common gardens. First, we observed varying degrees of phenological variation under different temporal and spatial conditions, suggesting that flowering phenology of two Oryza species varied depending on both environments and management practices. Particularly, the Sri Lankan O. nivara exhibits high plasticity in flowering phenology, implying that O. nivara might not be an annual in the strict sense. Second, the observation that flowering time of the two species overlapped suggests that the primary factor to maintain the species divergence in Sri Lanka may not be flowering time but rather environments. Third, our selection analysis suggests that interspecific divergence in the traits related to reproduction and habitat preference is adaptive and most likely driven by natural selection. Together, our case study on the Sri Lankan O. rufipogon and O. nivara enhances the understanding of the roles of phenotypic plasticity and environmental factors in the processes of adaptation and speciation.
Collapse
Affiliation(s)
- Salinda Sandamal
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Asanka Tennakoon
- Department of Agricultural Biology Faculty of Agriculture, Eastern University, 30350, Chenkaladi, Sri Lanka
| | - Parakkrama Wijerathna
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka
- Sea Institute of Oceanology, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Hong-Xiang Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Hao Yu
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cheng-Gen Qiang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing-Dan Han
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Fu-Min Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Disna Ratnasekera
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka.
| | - Song Ge
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Flueck-Giraud M, Schmidt-Posthaus H, Bergadano A, Adrian-Kalchhauser I. An adaptable, user-friendly score sheet to monitor welfare in experimental fish. Lab Anim 2024:236772241271013. [PMID: 39668587 DOI: 10.1177/00236772241271013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Fish are increasingly used as experimental animals across research fields. Currently, around a quarter of all experimental animals used are fish. Less than 20% of these are standard model species. Welfare assessments for experimental fish are in their infancy compared with those for rodents. This can be attributed to the diversity of species used, the relative recency of fish as the go-to model for research, and challenges to assess welfare in non-vocal underwater species. The lack of guidelines and tools presents a challenge for researchers (particularly, for newcomers), for ethics committees and for implementing refinement measures. Here, we present an adaptable, user-friendly score sheet for fish based on MS Excel. The parameters are based on a literature review, have been validated by expert interviews and evaluated by a fish pathologist. The tool allows scoring of individual fish as well as groups, calculates summary scores and visualizes trends. We provide the underlying literature, give use examples and provide instructions on the adaptation and use of the score sheet. We hope that this tool will empower researchers to include welfare assessment in their routines, foster discussions on fish welfare parameters among scientists, facilitate interactions with ethics committees and, most importantly, enable the refinement of fish experiments.
Collapse
Affiliation(s)
- Mathilde Flueck-Giraud
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Switzerland
| | | | | |
Collapse
|
4
|
Herbert AL, Lee D, McCoy MJ, Behrens VC, Wucherpfennig JI, Kingsley DM. Genetic mechanisms of axial patterning in Apeltes quadracus. Evol Lett 2024; 8:893-901. [PMID: 39677576 PMCID: PMC11637603 DOI: 10.1093/evlett/qrae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 12/17/2024] Open
Abstract
The genetic mechanisms underlying striking axial patterning changes in wild species are still largely unknown. Previous studies have shown that Apeltes quadracus fish, commonly known as fourspine sticklebacks, have evolved multiple different axial patterns in wild populations. Here, we revisit classic locations in Nova Scotia, Canada, where both high-spined and low-spined morphs are particularly common. Using genetic crosses and quantitative trait locus (QTL) mapping, we examine the genetic architecture of wild differences in several axial patterning traits, including the number and length of prominent dorsal spines, the number of underlying median support bones (pterygiophores), and the number and ratio of abdominal and caudal vertebrae along the anterior-posterior body axis. Our studies identify a highly significant QTL on chromosome 6 that controls a substantial fraction of phenotypic variation in multiple dorsal spine and pterygiophore traits (~15%-30% variance explained). An additional smaller-effect QTL on chromosome 14 contributes to the lengths of both the last dorsal spine and anal spine (~9% variance explained). 1 or no QTL were detected for differences in the numbers of abdominal and caudal vertebrae. The major-effect patterning QTL on chromosome 6 is centered on the HOXDB gene cluster, where sequence changes in a noncoding axial regulatory enhancer have previously been associated with prominent dorsal spine differences in Apeltes. The QTL that have the largest effects on dorsal spine number and length traits map to different chromosomes in Apeltes and Gasterosteus, 2 distantly related stickleback genera. However, in both genera, the major-effect QTL for prominent skeletal changes in wild populations maps to linked clusters of powerful developmental control genes. This study, therefore, bolsters the body of evidence that regulatory changes in developmental gene clusters provide a common genetic mechanism for evolving major morphological changes in natural species.
Collapse
Affiliation(s)
- Amy L Herbert
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - David Lee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Veronica C Behrens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Searle JB, Pardo-Manuel de Villena F. Meiotic Drive and Speciation. Annu Rev Genet 2024; 58:341-363. [PMID: 39585909 DOI: 10.1146/annurev-genet-111523-102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
Collapse
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | | |
Collapse
|
6
|
Cooper KL. The case against simplistic genetic explanations of evolution. Development 2024; 151:dev203077. [PMID: 39369308 PMCID: PMC11463953 DOI: 10.1242/dev.203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Humans are curious to understand the causes of traits that distinguish us from other animals and that distinguish vastly different species from one another. We also have a proclivity for simple stories and sometimes tend toward seeking and accepting simple genetic explanations for large evolutionary shifts, even to a single gene. Here, I reveal how a biased expectation of mechanistic simplicity threads through the long history of evolutionary and developmental genetics. I argue, however, that expecting a simple mechanism threatens a deeper understanding of evolution, and I define the limitations for interpreting experimental evidence in evolutionary developmental genetics.
Collapse
Affiliation(s)
- Kimberly L. Cooper
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Sakamoto T, Whiting JR, Yeaman S. Mutation potentiates migration swamping in polygenic local adaptation. Genetics 2024; 228:iyae165. [PMID: 39395190 PMCID: PMC11631501 DOI: 10.1093/genetics/iyae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Locally adapted traits can exhibit a wide range of genetic architectures, from pronounced divergence at a few loci to small frequency divergence at many loci. The type of architecture that evolves depends strongly on the migration rate, as weakly selected loci experience swamping and do not make lasting contributions to divergence. Simulations from previous studies showed that even when mutations are strongly selected and should resist migration swamping, the architecture of adaptation can collapse and become transient at high mutation rates. Here, we use an analytical two-population model to study how this transition in genetic architecture depends upon population size, strength of selection, and parameters describing the mutation process. To do this, we develop a mathematical theory based on the diffusion approximation to predict the threshold mutation rate above which the transition occurs. We find that this performs well across a wide range of parameter space, based on comparisons with individual-based simulations. The threshold mutation rate depends most strongly on the average effect size of mutations, weakly on the strength of selection, and marginally on the population size. Across a wide range of the parameter space, we observe that the transition to a transient architecture occurs when the trait-wide mutation rate is 10-3-10-2, suggesting that this phenomenon is potentially relevant to complex traits with a large mutational target. On the other hand, based on the apparent stability of genetic architecture in many classic examples of local adaptation, our theory suggests that per-trait mutation rates are often relatively low.
Collapse
Affiliation(s)
- Takahiro Sakamoto
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
- National Institute of Genetics 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
8
|
Tapanes E, Rennison DJ. The genetic basis of divergent melanic pigmentation in benthic and limnetic threespine stickleback. Heredity (Edinb) 2024; 133:207-215. [PMID: 39048622 PMCID: PMC11437277 DOI: 10.1038/s41437-024-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Pigmentation is an excellent trait to examine patterns of evolutionary change because it is often under natural selection. Benthic and limnetic threespine stickleback (Gasterosteus aculeatus) exhibit distinct pigmentation phenotypes, likely an adaptation to occupation of divergent niches. The genetic architecture of pigmentation in vertebrates appears to be complex. Prior QTL mapping of threespine stickleback pigmentation phenotypes has identified several candidate loci. However-relative to other morphological phenotypes (e.g., spines or lateral plates)-the genetic architecture of threespine stickleback pigmentation remains understudied. Here, we performed QTL mapping for two melanic pigmentation traits (melanophore density and lateral barring) using benthic-limnetic F2 crosses. The two traits mapped to different chromosomes, suggesting a distinct genetic basis. The resulting QTLs were additive, but explained a relatively small fraction of the total variance (~6%). QTLs maps differed by F1 family, suggesting variation in genetic architecture or ability to detect loci of small effect. Functional analysis identified enriched pathways for candidate loci. Several of the resulting candidate loci for pigmentation, including three loci in enriched pathways (bco1, sulf1, and tyms) have been previously indicated to affect pigmentation in other vertebrates. These findings add to a growing body of evidence suggesting pigmentation is often polygenic.
Collapse
Affiliation(s)
- Elizabeth Tapanes
- School of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, USA
| | - Diana J Rennison
- School of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Strickland K, Matthews B, Jónsson ZO, Kristjánsson BK, Phillips JS, Einarsson Á, Räsänen K. Microevolutionary change in wild stickleback: Using integrative time-series data to infer responses to selection. Proc Natl Acad Sci U S A 2024; 121:e2410324121. [PMID: 39231210 PMCID: PMC11406292 DOI: 10.1073/pnas.2410324121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
A central goal in evolutionary biology is to understand how different evolutionary processes cause trait change in wild populations. However, quantifying evolutionary change in the wild requires linking trait change to shifts in allele frequencies at causal loci. Nevertheless, datasets that allow for such tests are extremely rare and existing theoretical approaches poorly account for the evolutionary dynamics that likely occur in ecological settings. Using a decade-long integrative phenome-to-genome time-series dataset on wild threespine stickleback (Gasterosteus aculeatus), we identified how different modes of selection (directional, episodic, and balancing) drive microevolutionary change in correlated traits over time. Most strikingly, we show that feeding traits changed by as much 25% across 10 generations which was driven by changes in the genetic architecture (i.e., in both genomic breeding values and allele frequencies at genetic loci for feeding traits). Importantly, allele frequencies at genetic loci related to feeding traits changed at a rate greater than expected under drift, suggesting that the observed change was a result of directional selection. Allele frequency dynamics of loci related to swimming traits appeared to be under fluctuating selection evident in periodic population crashes in this system. Our results show that microevolutionary change in a wild population is characterized by different modes of selection acting simultaneously on different traits, which likely has important consequences for the evolution of correlated traits. Our study provides one of the most thorough descriptions to date of how microevolutionary processes result in trait change in a natural population.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
- Department of Aquaculture and Fish Biology, Háskólinn á Hólum, Hólum í Hjaltadal, Sauðárkrókur551, Iceland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, KastanienbaumCH-6047, Switzerland
| | - Zophonías O. Jónsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík102, Iceland
| | - Bjarni K. Kristjánsson
- Department of Aquaculture and Fish Biology, Háskólinn á Hólum, Hólum í Hjaltadal, Sauðárkrókur551, Iceland
| | - Joseph S. Phillips
- Department of Aquaculture and Fish Biology, Háskólinn á Hólum, Hólum í Hjaltadal, Sauðárkrókur551, Iceland
- Department of Biology, Creighton University, Omaha, NE68178
| | - Árni Einarsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík102, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Duebendorf8600, Switzerland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä40014, Finland
| |
Collapse
|
10
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Fišer Ž, Whitehorn H, Furness T, Trontelj P, Protas M. Genetic bias in repeated evolution of pigment loss in cave populations of the Asellus aquaticus species complex. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:425-436. [PMID: 38828691 DOI: 10.1002/jez.b.23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Similar phenotypes can evolve repeatedly under the same evolutionary pressures. A compelling example is the evolution of pigment loss and eye loss in cave-dwelling animals. While specific genomic regions or genes associated with these phenotypes have been identified in model species, it remains uncertain whether a bias towards particular genetic mechanisms exists. An isopod crustacean, Asellus aquaticus, is an ideal model organism to investigate this phenomenon. It inhabits surface freshwaters throughout Europe but has colonized groundwater on multiple independent occasions and evolved several cave populations with distinct ecomorphology. Previous studies have demonstrated that three different cave populations utilized common genetic regions, potentially the same genes, in the evolution of pigment and eye loss. Expanding on this, we conducted analysis on two additional cave populations, distinct either phylogenetically or biogeographically from those previously examined. We generated F2 hybrids from cave × surface crosses and tested phenotype-genotype associations, as well as conducted complementation tests by crossing individuals from different cave populations. Our findings revealed that pigment loss and orange eye pigment in additional cave populations were associated with the same genomic regions as observed in the three previously tested cave populations. Moreover, the lack of complementation across all cross combinations suggests that the same gene likely drives pigment loss. These results substantiate a genetic bias in the recurrent evolution of pigment loss in this model system. Future investigations should focus on the cause behind this bias, possibly arising from allele recruitment from ancestral surface populations' genetic variation or advantageous allele effects via pleiotropy.
Collapse
Affiliation(s)
- Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hana Whitehorn
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| | - Tia Furness
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Meredith Protas
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
12
|
Luo M, Hu J. Alternative splicing in parallel evolution and the evolutionary potential in sticklebacks. J Anim Ecol 2024; 93:1392-1405. [PMID: 39056271 DOI: 10.1111/1365-2656.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Yi X, Kemppainen P, Reid K, Chen Y, Rastas P, Fraimout A, Merilä J. Heterogeneous genomic architecture of skeletal armour traits in sticklebacks. J Evol Biol 2024; 37:995-1008. [PMID: 39073424 DOI: 10.1093/jeb/voae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
Whether populations adapt to similar selection pressures using the same underlying genetic variants depends on population history and the distribution of standing genetic variation at the metapopulation level. Studies of sticklebacks provide a case in point: when colonizing and adapting to freshwater habitats, three-spined sticklebacks (Gasterosteus aculeatus) with high gene flow tend to fix the same adaptive alleles in the same major loci, whereas nine-spined sticklebacks (Pungitius pungitius) with limited gene flow tend to utilize a more heterogeneous set of loci. In accordance with this, we report results of quantitative trait locus (QTL) analyses using a backcross design showing that lateral plate number variation in the western European nine-spined sticklebacks mapped to 3 moderate-effect QTL, contrary to the major-effect QTL in three-spined sticklebacks and different from the 4 QTL previously identified in the eastern European nine-spined sticklebacks. Furthermore, several QTL were identified associated with variation in lateral plate size, and 3 moderate-effect QTL with body size. Together, these findings indicate more heterogenous and polygenic genetic underpinnings of skeletal armour variation in nine-spined than three-spined sticklebacks, indicating limited genetic parallelism underlying armour trait evolution in the family Gasterostidae.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Zhang Q, Liu H, Liu C, Wang Y, Huang P, Wang X, Ma Y, Ma L, Ge R. Tibetan mesenchymal stem cell-derived exosomes alleviate pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. Stem Cells 2024; 42:720-735. [PMID: 38717187 DOI: 10.1093/stmcls/sxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 08/02/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-β1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFβ pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFβ1 and p-Smad2/3. Furthermore, TGFβ1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFβ1/Smad2/3 pathway via Nbl1.
Collapse
Affiliation(s)
- Qingqing Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining 810001, People's Republic of China
| | - Hong Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yuxiang Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Pan Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Xiaobo Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yougang Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
| |
Collapse
|
15
|
Okude G, Yamasaki YY, Toyoda A, Mori S, Kitano J. Genome-wide analysis of histone modifications can contribute to the identification of candidate cis-regulatory regions in the threespine stickleback fish. BMC Genomics 2024; 25:685. [PMID: 38992624 PMCID: PMC11241946 DOI: 10.1186/s12864-024-10602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cis-regulatory mutations often underlie phenotypic evolution. However, because identifying the locations of promoters and enhancers in non-coding regions is challenging, we have fewer examples of identified causative cis-regulatory mutations that underlie naturally occurring phenotypic variations than of causative amino acid-altering mutations. Because cis-regulatory elements have epigenetic marks of specific histone modifications, we can detect cis-regulatory elements by mapping and analyzing them. Here, we investigated histone modifications and chromatin accessibility with cleavage under targets and tagmentation (CUT&Tag) and assay for transposase-accessible chromatin-sequencing (ATAC-seq). RESULTS Using the threespine stickleback (Gasterosteus aculeatus) as a model, we confirmed that the genes for which nearby regions showed active marks, such as H3K4me1, H3K4me3, and high chromatin accessibility, were highly expressed. In contrast, the expression levels of genes for which nearby regions showed repressive marks, such as H3K27me3, were reduced, suggesting that our chromatin analysis protocols overall worked well. Genomic regions with peaks of histone modifications showed higher nucleotide diversity within and between populations. By comparing gene expression in the gills of the marine and stream ecotypes, we identified several insertions and deletions (indels) with transposable element fragments in the candidate cis-regulatory regions. CONCLUSIONS Thus, mapping and analyzing histone modifications can help identify cis-regulatory elements and accelerate the identification of causative mutations in the non-coding regions underlying naturally occurring phenotypic variations.
Collapse
Affiliation(s)
- Genta Okude
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Seiichi Mori
- Faculty of Economics, Gifu-Kyoritsu University, Ogaki, Gifu, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
16
|
Mackintosh C, Scott MF, Reuter M, Pomiankowski A. Locally adaptive inversions in structured populations. Genetics 2024; 227:iyae073. [PMID: 38709495 DOI: 10.1093/genetics/iyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted alleles at different loci. Prior work addressing this question theoretically has considered the spread of inversions in "continent-island" scenarios in which there is a unidirectional flow of maladapted migrants into the island population. In this setting, inversions capturing locally adaptive haplotypes are most likely to invade when selection is weak, because stronger local selection (i) more effectively purges maladaptive alleles and (ii) generates linkage disequilibrium between adaptive alleles, thus lessening the advantage of inversions. We show this finding only holds under limited conditions by studying the establishment of inversions in a more general two-deme model, which explicitly considers the dynamics of allele frequencies in both populations linked by bidirectional migration. In this model, the level of symmetry between demes can be varied from complete asymmetry (continent-island) to complete symmetry. For symmetric selection and migration, strong selection increases the allele frequency divergence between demes thereby increasing the frequency of maladaptive alleles in migrants, favoring inversions-the opposite of the pattern seen in the asymmetric continent-island scenario. We also account for the likelihood that a new inversion captures an adaptive haplotype in the first instance. When considering the combined process of capture and invasion in "continent island" and symmetric scenarios, relatively strong selection increases inversion establishment probability. Migration must also be low enough that the inversion is likely to capture an adaptive allele combination, but not so low as to eliminate the inversion's advantage. Overall, our analysis suggests that inversions are likely to harbor larger effect alleles that experience relatively strong selection.
Collapse
Affiliation(s)
- Carl Mackintosh
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff 29680, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff 29680, France
| | - Michael F Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Max Reuter
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Venu V, Harjunmaa E, Dreau A, Brady S, Absher D, Kingsley DM, Jones FC. Fine-scale contemporary recombination variation and its fitness consequences in adaptively diverging stickleback fish. Nat Ecol Evol 2024; 8:1337-1352. [PMID: 38839849 PMCID: PMC11239493 DOI: 10.1038/s41559-024-02434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Despite deep evolutionary conservation, recombination rates vary greatly across the genome and among individuals, sexes and populations. Yet the impact of this variation on adaptively diverging populations is not well understood. Here we characterized fine-scale recombination landscapes in an adaptively divergent pair of marine and freshwater populations of threespine stickleback from River Tyne, Scotland. Through whole-genome sequencing of large nuclear families, we identified the genomic locations of almost 50,000 crossovers and built recombination maps for marine, freshwater and hybrid individuals at a resolution of 3.8 kb. We used these maps to quantify the factors driving variation in recombination rates. We found strong heterochiasmy between sexes but also differences in recombination rates among ecotypes. Hybrids showed evidence of significant recombination suppression in overall map length and in individual loci. Recombination rates were lower not only within individual marine-freshwater-adaptive loci, but also between loci on the same chromosome, suggesting selection on linked gene 'cassettes'. Through temporal sampling along a natural hybrid zone, we found that recombinants showed traits associated with reduced fitness. Our results support predictions that divergence in cis-acting recombination modifiers, whose functions are disrupted in hybrids, may play an important role in maintaining differences among adaptively diverging populations.
Collapse
Affiliation(s)
- Vrinda Venu
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Los Alamos National Laboratory, New Mexico, NM, USA.
| | - Enni Harjunmaa
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- CeGAT GmbH, Tübingen, Germany
| | - Andreea Dreau
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Evotec SE 'Campus Curie', Toulouse, France
| | - Shannon Brady
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - David M Kingsley
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
18
|
Hendry AP, Barrett RDH, Bell AM, Bell MA, Bolnick DI, Gotanda KM, Haines GE, Lind ÅJ, Packer M, Peichel CL, Peterson CR, Poore HA, Massengill RL, Milligan‐McClellan K, Steinel NC, Sanderson S, Walsh MR, Weber JN, Derry AM. Designing eco-evolutionary experiments for restoration projects: Opportunities and constraints revealed during stickleback introductions. Ecol Evol 2024; 14:e11503. [PMID: 38932947 PMCID: PMC11199335 DOI: 10.1002/ece3.11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.
Collapse
Affiliation(s)
| | | | - Alison M. Bell
- School of Integrative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Michael A. Bell
- Museum of PaleontologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Kiyoko M. Gotanda
- Department of Biological SciencesBrock UniversitySaint CatharinesOntarioCanada
| | - Grant E. Haines
- Aquaculture and Fish BiologyHólar University CollegeSauðárkrókurIceland
| | - Åsa J. Lind
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Michelle Packer
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | | | | | | | | | | | - Natalie C. Steinel
- Biological SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | | | - Matthew R. Walsh
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Jesse N. Weber
- Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alison M. Derry
- Sciences BiologiquesUniversité du Québec á MontréalMontréalQuébecCanada
| |
Collapse
|
19
|
Wiese J, Richards E, Kowalko JE, McGaugh SE. Loci associated with cave-derived traits concentrate in specific regions of the Mexican cavefish genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587360. [PMID: 38585759 PMCID: PMC10996652 DOI: 10.1101/2024.03.29.587360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A major goal of modern evolutionary biology is connecting phenotypic evolution with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. This analysis revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify a list of 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific "evolutionary hotspots" in the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.
Collapse
Affiliation(s)
- Jonathan Wiese
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | - Emilie Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
20
|
Laine J, Mak SST, Martins NFG, Chen X, Gilbert MTP, Jones FC, Pedersen MW, Romundset A, Foote AD. Late Pleistocene stickleback environmental genomes reveal the chronology of freshwater adaptation. Curr Biol 2024; 34:1142-1147.e6. [PMID: 38350445 DOI: 10.1016/j.cub.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective "evolve and resequence" natural experiments using sedaDNA.
Collapse
Affiliation(s)
- Jan Laine
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Nuno F G Martins
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Xihan Chen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
21
|
Meng QL, Qiang CG, Li JL, Geng MF, Ren NN, Cai Z, Wang MX, Jiao ZH, Zhang FM, Song XJ, Ge S. Genetic architecture of ecological divergence between Oryza rufipogon and Oryza nivara. Mol Ecol 2024; 33:e17268. [PMID: 38230514 DOI: 10.1111/mec.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Ecological divergence due to habitat difference plays a prominent role in the formation of new species, but the genetic architecture during ecological speciation and the mechanism underlying phenotypic divergence remain less understood. Two wild ancestors of rice (Oryza rufipogon and Oryza nivara) are a progenitor-derivative species pair with ecological divergence and provide a unique system for studying ecological adaptation/speciation. Here, we constructed a high-resolution linkage map and conducted a quantitative trait locus (QTL) analysis of 19 phenotypic traits using an F2 population generated from a cross between the two Oryza species. We identified 113 QTLs associated with interspecific divergence of 16 quantitative traits, with effect sizes ranging from 1.61% to 34.1% in terms of the percentage of variation explained (PVE). The distribution of effect sizes of QTLs followed a negative exponential, suggesting that a few genes of large effect and many genes of small effect were responsible for the phenotypic divergence. We observed 18 clusters of QTLs (QTL hotspots) on 11 chromosomes, significantly more than that expected by chance, demonstrating the importance of coinheritance of loci/genes in ecological adaptation/speciation. Analysis of effect direction and v-test statistics revealed that interspecific differentiation of most traits was driven by divergent natural selection, supporting the argument that ecological adaptation/speciation would proceed rapidly under coordinated selection on multiple traits. Our findings provide new insights into the understanding of genetic architecture of ecological adaptation and speciation in plants and help effective manipulation of specific genes or gene cluster in rice breeding.
Collapse
Affiliation(s)
- Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Hui Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Jun Song
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Delmore K, Justen H, Kay KM, Kitano J, Moyle LC, Stelkens R, Streisfeld MA, Yamasaki YY, Ross J. Genomic Approaches Are Improving Taxonomic Representation in Genetic Studies of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041438. [PMID: 37848243 PMCID: PMC10835617 DOI: 10.1101/cshperspect.a041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Until recently, our understanding of the genetics of speciation was limited to a narrow group of model species with a specific set of characteristics that made genetic analysis feasible. Rapidly advancing genomic technologies are eliminating many of the distinctions between laboratory and natural systems. In light of these genomic developments, we review the history of speciation genetics, advances that have been gleaned from model and non-model organisms, the current state of the field, and prospects for broadening the diversity of taxa included in future studies. Responses to a survey of speciation scientists across the world reveal the ongoing division between the types of questions that are addressed in model and non-model organisms. To bridge this gap, we suggest integrating genetic studies from model systems that can be reared in the laboratory or greenhouse with genomic studies in related non-models where extensive ecological knowledge exists.
Collapse
Affiliation(s)
- Kira Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California 93740, USA
| |
Collapse
|
23
|
Lloyd E, Privat M, Sumbre G, Duboué ER, Keene AC. A protocol for whole-brain Ca 2+ imaging in Astyanax mexicanus, a model of comparative evolution. STAR Protoc 2023; 4:102517. [PMID: 37742184 PMCID: PMC10520939 DOI: 10.1016/j.xpro.2023.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
In this protocol, we describe a comparative approach to study the evolution of brain function in the Mexican tetra, Astyanax mexicanus. We developed surface fish and two independent populations of cavefish with pan-neuronal expression of the Ca2+ sensor GCaMP6s. We describe a methodology to prepare samples and image activity across the optic tectum and olfactory bulb.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Erik R Duboué
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
24
|
Hänfling B, Smith A. The genome sequence of the nine-spined stickleback, Pungitius pungitius (Linnaeus, 1758). Wellcome Open Res 2023; 8:555. [PMID: 39114814 PMCID: PMC11303943 DOI: 10.12688/wellcomeopenres.20354.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 08/10/2024] Open
Abstract
We present a genome assembly from an individual male Pungitius pungitius (the nine-spined stickleback; Chordata; Actinopteri; Gasterosteiformes; Gasterosteidae). The genome sequence is 480.4 megabases in span. Most of the assembly is scaffolded into 21 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 16.57 kilobases in length.
Collapse
Affiliation(s)
- Bernd Hänfling
- Institute for Biodiversity and Freshwater Conservation, University of Highlands and Islands, Inverness, Scotland, UK
| | - Alan Smith
- School of Natural Sciences, University of Hull, Hull, England, UK
| | | | | | - Tree of Life Core Informatics collective
- Institute for Biodiversity and Freshwater Conservation, University of Highlands and Islands, Inverness, Scotland, UK
- School of Natural Sciences, University of Hull, Hull, England, UK
| | | |
Collapse
|
25
|
Ye Z, Pfrender ME, Lynch M. Evolutionary Genomics of Sister Species Differing in Effective Population Sizes and Recombination Rates. Genome Biol Evol 2023; 15:evad202. [PMID: 37946625 PMCID: PMC10664402 DOI: 10.1093/gbe/evad202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studies of closely related species with known ecological differences provide exceptional opportunities for understanding the genetic mechanisms of evolution. In this study, we compared population-genomics data between Daphnia pulex and Daphnia pulicaria, two reproductively compatible sister species experiencing ecological speciation, the first largely confined to intermittent ponds and the second to permanent lakes in the same geographic region. Daphnia pulicaria has lower genome-wide nucleotide diversity, a smaller effective population size, a higher incidence of private alleles, and a substantially more linkage disequilibrium than D. pulex. Positively selected genes in D. pulicaria are enriched in potentially aging-related categories such as cellular homeostasis, which may explain the extended life span in D. pulicaria. We also found that opsin-related genes, which may mediate photoperiodic responses, are under different selection pressures in these two species. Genes involved in mitochondrial functions, ribosomes, and responses to environmental stimuli are found to be under positive selection in both species. Additionally, we found that the two species have similar average evolutionary rates at the DNA-sequence level, although approximately 160 genes have significantly different rates in the two lineages. Our results provide insights into the physiological traits that differ within this regionally sympatric sister-species pair that occupies unique microhabitats.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
26
|
Matthews DG, Dial TR, Lauder GV. Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution. Integr Comp Biol 2023; 63:843-859. [PMID: 37422435 DOI: 10.1093/icb/icad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
To understand the complexities of morphological evolution, we must understand the relationships between genes, morphology, performance, and fitness in complex traits. Genomicists have made tremendous progress in finding the genetic basis of many phenotypes, including a myriad of morphological characters. Similarly, field biologists have greatly advanced our understanding of the relationship between performance and fitness in natural populations. However, the connection from morphology to performance has primarily been studied at the interspecific level, meaning that in most cases we lack a mechanistic understanding of how evolutionarily relevant variation among individuals affects organismal performance. Therefore, functional morphologists need methods that will allow for the analysis of fine-grained intraspecific variation in order to close the path from genes to fitness. We suggest three methodological areas that we believe are well suited for this research program and provide examples of how each can be applied within fish model systems to build our understanding of microevolutionary processes. Specifically, we believe that structural equation modeling, biological robotics, and simultaneous multi-modal functional data acquisition will open up fruitful collaborations among biomechanists, evolutionary biologists, and field biologists. It is only through the combined efforts of all three fields that we will understand the connection between evolution (acting at the level of genes) and natural selection (acting on fitness).
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Terry R Dial
- Department of Biology and Ecology Center, Utah State University, Moab, UT 84322, USA
- Department of Environment and Society, Utah State University, Moab, UT 84322, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Uji K, Ishikawa A, Shin K, Tayasu I, Kitano J. Strontium isotope analysis of otoliths reveals differences in the habitat salinity among three sympatric stickleback species of the genus Pungitius. Ecol Evol 2023; 13:e10463. [PMID: 37670821 PMCID: PMC10475353 DOI: 10.1002/ece3.10463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The analysis of otolith Sr isotope ratios (87Sr/86Sr) is a powerful method to study fish migration in freshwater areas. However, few studies have applied this method to study fish movement in brackish-water environments. Furthermore, despite the fact that habitat differentiation has been shown to drive genetic differentiation and reproductive isolation among stickleback fish, no studies have used the otolith 87Sr/86Sr ratios to analyze habitat differentiation between stickleback ecotypes and species. In this study, we analyzed the otolith 87Sr/86Sr ratios of three sympatric stickleback species of the genus Pungitius in the Shiomi River on Hokkaido Island, Japan: P. tymensis, the brackish-water type of the P. pungitius-P. sinensis complex, and the freshwater type of the P. pungitius-P. sinensis complex. First, we created a mixing equation to depict the relationship between habitat salinity and the 87Sr/86Sr ratios of river water. We found that the otolith 87Sr/86Sr ratios differed significantly among the three species, indicating that the three species utilize habitats with different salinities: P. tymensis and the brackish-water type inhabit freshwater and brackish-water environments, respectively, with the freshwater type using intermediate habitats. In addition, we found that some freshwater individuals moved to habitats with higher salinities as they grew. Our study demonstrates that the analysis of otolith 87Sr/86Sr ratios is a useful method for studying the habitat use of fish in brackish-water environments and habitat differentiation among closely related sympatric and parapatric species.
Collapse
Affiliation(s)
- Konomi Uji
- Center for Ecological ResearchKyoto UniversityOtsuJapan
| | - Asano Ishikawa
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
- Present address:
Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Ki‐Cheol Shin
- Research Institute for Humanity and NatureKyotoJapan
| | - Ichiro Tayasu
- Research Institute for Humanity and NatureKyotoJapan
| | - Jun Kitano
- Ecological Genetics LaboratoryNational Institute of GeneticsMishimaJapan
| |
Collapse
|
28
|
Dean LL, Magalhaes IS, D’Agostino D, Hohenlohe P, MacColl ADC. On the Origins of Phenotypic Parallelism in Benthic and Limnetic Stickleback. Mol Biol Evol 2023; 40:msad191. [PMID: 37652053 PMCID: PMC10490448 DOI: 10.1093/molbev/msad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Rapid evolution of similar phenotypes in similar environments, giving rise to in situ parallel adaptation, is an important hallmark of ecological speciation. However, what appears to be in situ adaptation can also arise by dispersal of divergent lineages from elsewhere. We test whether two contrasting phenotypes repeatedly evolved in parallel, or have a single origin, in an archetypal example of ecological adaptive radiation: benthic-limnetic three-spined stickleback (Gasterosteus aculeatus) across species pair and solitary lakes in British Columbia. We identify two genomic clusters across freshwater populations, which differ in benthic-limnetic divergent phenotypic traits and separate benthic from limnetic individuals in species pair lakes. Phylogenetic reconstruction and niche evolution modeling both suggest a single evolutionary origin for each of these clusters. We detected strong phylogenetic signal in benthic-limnetic divergent traits, suggesting that they are ancestrally retained. Accounting for ancestral state retention, we identify local adaptation of body armor due to the presence of an intraguild predator, the sculpin (Cottus asper), and environmental effects of lake depth and pH on body size. Taken together, our results imply a predominant role for retention of ancestral characteristics in driving trait distribution, with further selection imposed on some traits by environmental factors.
Collapse
Affiliation(s)
- Laura L Dean
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| | - Isabel Santos Magalhaes
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- Department of Life Sciences, School of Health and Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Daniele D’Agostino
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Paul Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Andrew D C MacColl
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
29
|
Neto C, Hancock A. Genetic Architecture of Flowering Time Differs Between Populations With Contrasting Demographic and Selective Histories. Mol Biol Evol 2023; 40:msad185. [PMID: 37603463 PMCID: PMC10461413 DOI: 10.1093/molbev/msad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Understanding the evolutionary factors that impact the genetic architecture of traits is a central goal of evolutionary genetics. Here, we investigate how quantitative trait variation accumulated over time in populations that colonized a novel environment. We compare the genetic architecture of flowering time in Arabidopsis populations from the drought-prone Cape Verde Islands and their closest outgroup population from North Africa. We find that trait polygenicity is severely reduced in the island populations compared to the continental North African population. Further, trait architectures and reconstructed allelic histories best fit a model of strong directional selection in the islands in accord with a Fisher-Orr adaptive walk. Consistent with this, we find that large-effect variants that disrupt major flowering time genes (FRI and FLC) arose first, followed by smaller effect variants, including ATX2 L125F, which is associated with a 4-day reduction in flowering time. The most recently arising flowering time-associated loci are not known to be directly involved in flowering time, consistent with an omnigenic signature developing as the population approaches its trait optimum. Surprisingly, we find no effect in the natural population of EDI-Cvi-0 (CRY2 V367M), an allele for which an effect was previously validated by introgression into a Eurasian line. Instead, our results suggest the previously observed effect of the EDI-Cvi-0 allele on flowering time likely depends on genetic background, due to an epistatic interaction. Altogether, our results provide an empirical example of the effects demographic history and selection has on trait architecture.
Collapse
Affiliation(s)
- Célia Neto
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hancock
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
30
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Fair T, Pollen AA. Genetic architecture of human brain evolution. Curr Opin Neurobiol 2023; 80:102710. [PMID: 37003107 DOI: 10.1016/j.conb.2023.102710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/03/2023]
Abstract
Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/@TylerFair_
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Mack KL, Square TA, Zhao B, Miller CT, Fraser HB. Evolution of Spatial and Temporal cis-Regulatory Divergence in Sticklebacks. Mol Biol Evol 2023; 40:7048494. [PMID: 36805962 PMCID: PMC10015619 DOI: 10.1093/molbev/msad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Biology, Stanford University, Stanford, CA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Bin Zhao
- Department of Biology, Stanford University, Stanford, CA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | | |
Collapse
|
33
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
34
|
Wang Y, Wang Y, Cheng X, Ding Y, Wang C, Merilä J, Guo B. Prevalent Introgression Underlies Convergent Evolution in the Diversification of Pungitius Sticklebacks. Mol Biol Evol 2023; 40:7026025. [PMID: 36738166 PMCID: PMC9949714 DOI: 10.1093/molbev/msad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
New mutations and standing genetic variations contribute significantly to repeated phenotypic evolution in sticklebacks. However, less is known about the role of introgression in this process. We analyzed taxonomically and geographically comprehensive genomic data from Pungitius sticklebacks to decipher the extent of introgression and its consequences for the diversification of this genus. Our results demonstrate that introgression is more prevalent than suggested by earlier studies. Although gene flow was generally bidirectional, it was often asymmetric and left unequal genomic signatures in hybridizing species, which might, at least partly, be due to biased hybridization and/or population size differences. In several cases, introgression of variants from one species to another was accompanied by transitions of pelvic and/or lateral plate structures-important diagnostic traits in Pungitius systematics-and frequently left signatures of adaptation in the core gene regulatory networks of armor trait development. This finding suggests that introgression has been an important source of genetic variation and enabled phenotypic convergence among Pungitius sticklebacks. The results highlight the importance of introgression of genetic variation as a source of adaptive variation underlying key ecological and taxonomic traits. Taken together, our study indicates that introgression-driven convergence likely explains the long-standing challenges in resolving the taxonomy and systematics of this small but phenotypically highly diverse group of fish.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yingnan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqi Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yongli Ding
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chongnv Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
35
|
Poore HA, Stuart YE, Rennison DJ, Roesti M, Hendry AP, Bolnick DI, Peichel CL. Repeated genetic divergence plays a minor role in repeated phenotypic divergence of lake-stream stickleback. Evolution 2023; 77:110-122. [PMID: 36622692 DOI: 10.1093/evolut/qpac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 01/10/2023]
Abstract
Recent studies have shown that the repeated evolution of similar phenotypes in response to similar ecological conditions (here "parallel evolution") often occurs through mutations in the same genes. However, many previous studies have focused on known candidate genes in a limited number of systems. Thus, the question of how often parallel phenotypic evolution is due to parallel genetic changes remains open. Here, we used quantitative trait locus (QTL) mapping in F2 intercrosses between lake and stream threespine stickleback (Gasterosteus aculeatus) from four independent watersheds on Vancouver Island, Canada to determine whether the same QTL underlie divergence in the same phenotypes across, between, and within watersheds. We find few parallel QTL, even in independent crosses from the same watershed or for phenotypes that have diverged in parallel. These findings suggest that different mutations can lead to similar phenotypes. The low genetic repeatability observed in these lake-stream systems contrasts with the higher genetic repeatability observed in other stickleback systems. We speculate that differences in evolutionary history, gene flow, and/or the strength and direction of selection might explain these differences in genetic parallelism and emphasize that more work is needed to move beyond documenting genetic parallelism to identifying the underlying causes.
Collapse
Affiliation(s)
- Hilary A Poore
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Diana J Rennison
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States
| | - Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Daniel I Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
36
|
Strickland K, Räsänen K, Kristjánsson BK, Phillips JS, Einarsson A, Snorradóttir RG, Bartrons M, Jónsson ZO. Genome-phenotype-environment associations identify signatures of selection in a panmictic population of threespine stickleback. Mol Ecol 2023; 32:1708-1725. [PMID: 36627230 DOI: 10.1111/mec.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2 = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, EAWAG and Institute of Integrative Biology, ETH, Zurich, Switzerland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Joseph S Phillips
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland.,Department of Biology, Creighton University, Omaha, Nebraska, USA
| | | | - Ragna G Snorradóttir
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Mireia Bartrons
- Aquatic Ecology Group, University of Vic (UVic-UCC), Catalonia, Spain
| | | |
Collapse
|
37
|
Turba R, Richmond JQ, Fitz-Gibbon S, Morselli M, Fisher RN, Swift CC, Ruiz-Campos G, Backlin AR, Dellith C, Jacobs DK. Genetic structure and historic demography of endangered unarmoured threespine stickleback at southern latitudes signals a potential new management approach. Mol Ecol 2022; 31:6515-6530. [PMID: 36205603 PMCID: PMC10092051 DOI: 10.1111/mec.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Abstract
Habitat loss, flood control infrastructure, and drought have left most of southern California and northern Baja California's native freshwater fish near extinction, including the endangered unarmoured threespine stickleback (Gasterosteus aculeatus williamsoni). This subspecies, an unusual morph lacking the typical lateral bony plates of the G. aculeatus complex, occurs at arid southern latitudes in the eastern Pacific Ocean and survives in only three inland locations. Managers have lacked molecular data to answer basic questions about the ancestry and genetic distinctiveness of unarmoured populations. These data could be used to prioritize conservation efforts. We sampled G. aculeatus from 36 localities and used microsatellites and whole genome data to place unarmoured populations within the broader evolutionary context of G. aculeatus across southern California/northern Baja California. We identified three genetic groups with none consisting solely of unarmoured populations. Unlike G. aculeatus at northern latitudes, where Pleistocene glaciation has produced similar historical demographic profiles across populations, we found markedly different demographics depending on sampling location, with inland unarmoured populations showing steeper population declines and lower heterozygosity compared to low armoured populations in coastal lagoons. One exception involved the only high elevation population in the region, where the demography and alleles of unarmoured fish were similar to low armoured populations near the coast, exposing one of several cases of artificial translocation. Our results suggest that the current "management-by-phenotype" approach, based on lateral plates, is incidentally protecting the most imperilled populations; however, redirecting efforts toward evolutionary units, regardless of phenotype, may more effectively preserve adaptive potential.
Collapse
Affiliation(s)
- Rachel Turba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | | | - Sorel Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA
| | | | - Camm C Swift
- Emeritus, Section of Fishes, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Gorgonio Ruiz-Campos
- Ichthyological Collection, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Adam R Backlin
- U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station-Santa Ana Office, Santa Ana, California, USA
| | - Chris Dellith
- U.S. Fish and Wildlife Service, Ventura, California, USA
| | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
38
|
Gray OA, Yoo J, Sobreira DR, Jousma J, Witonsky D, Sakabe NJ, Peng YJ, Prabhakar NR, Fang Y, Nobréga MA, Di Rienzo A. A pleiotropic hypoxia-sensitive EPAS1 enhancer is disrupted by adaptive alleles in Tibetans. SCIENCE ADVANCES 2022; 8:eade1942. [PMID: 36417539 PMCID: PMC9683707 DOI: 10.1126/sciadv.ade1942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In Tibetans, noncoding alleles in EPAS1-whose protein product hypoxia-inducible factor 2α (HIF-2α) drives the response to hypoxia-carry strong signatures of positive selection; however, their functional mechanism has not been systematically examined. Here, we report that high-altitude alleles disrupt the activity of four EPAS1 enhancers in one or more cell types. We further characterize one enhancer (ENH5) whose activity is both allele specific and hypoxia dependent. Deletion of ENH5 results in down-regulation of EPAS1 and HIF-2α targets in acute hypoxia and in a blunting of the transcriptional response to sustained hypoxia. Deletion of ENH5 in mice results in dysregulation of gene expression across multiple tissues. We propose that pleiotropic adaptive effects of the Tibetan alleles in EPAS1 underlie the strong selective signal at this gene.
Collapse
Affiliation(s)
- Olivia A. Gray
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jennifer Yoo
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Débora R. Sobreira
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jordan Jousma
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - David Witonsky
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Marcelo A. Nobréga
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Anna Di Rienzo
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Beck EA, Bassham S, Cresko WA. Extreme intraspecific divergence in mitochondrial haplotypes makes the threespine stickleback fish an emerging evolutionary mutant model for mito-nuclear interactions. Front Genet 2022; 13:925786. [PMID: 36159975 PMCID: PMC9499175 DOI: 10.3389/fgene.2022.925786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA is primarily maternally inherited in most animals and evolves about 10 times faster than biparentally inherited nuclear DNA. Mitochondrial dysfunction (mt-dys) arises when interactions between the co-evolving mitochondrial and nuclear genomes are perturbed in essential processes like oxidative phosphorylation (OXPHOS). Over time mt-dys can lead to mitochondrial diseases (mt-diseases), which are surprisingly prevalent and include common diseases such as Alzheimer's, Parkinson's, and diabetes. Unfortunately, the strong impact that intraspecific mitochondrial and nuclear genetic variation has on mt-disease complicates its study and the development of effective treatments. Animal models have advanced our understanding of mt-disease but their relevance to human conditions is often limited by their relatively low nuclear genetic diversity. Many traditional laboratory models also typically have a single mitochondrial haplotype (mitotype), in stark contrast to over 5,000 mitotypes in humans worldwide. The threespine stickleback fish has an evolutionary history that has made it a favorable evolutionary mutant model (EMM) for studying mito-nuclear interactions and possibly mt-diseases. EMMs are species with naturally evolved states that mimic maladaptive human diseases. In threespine stickleback, a period of isolation followed by introgression of the mitochondrial genome from a sister species resulted in the maintenance of two distinct mitochondrial haplotypes which continue to segregate within many populations of wild stickleback. The existence of two mitogenomes segregating in numerous genetically diverse populations provides a unique system for exploring complex mito-nuclear dynamics. Here we provide the first complete coding region analysis of the two threespine stickleback mitotypes, whose mitogenomic divergence exceeds that of other mammalian models for mitochondrial disease and even that between ancient and modern humans. We find that divergence is not uniform across the mitogenome, but primarily impacts protein coding genes, and significantly impacts proteins in Complex I of OXPHOS. The full characterization of these highly divergent intraspecific mitotypes provides a foundation for the development of threespine stickleback as an EMM for mito-nuclear interactions.
Collapse
Affiliation(s)
- Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, United States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, United States
| |
Collapse
|
40
|
Oliva C, Hinz NK, Robinson W, Barrett Thompson AM, Booth J, Crisostomo LM, Zanineli S, Tanner M, Lloyd E, O'Gorman M, McDole B, Paz A, Kozol R, Brown EB, Kowalko JE, Fily Y, Duboue ER, Keene AC. Characterizing the genetic basis of trait evolution in the Mexican cavefish. Evol Dev 2022; 24:131-144. [PMID: 35924750 PMCID: PMC9786752 DOI: 10.1111/ede.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Evolution in response to a change in ecology often coincides with various morphological, physiological, and behavioral traits. For most organisms little is known about the genetic and functional relationship between evolutionarily derived traits, representing a critical gap in our understanding of adaptation. The Mexican tetra, Astyanax mexicanus, consists of largely independent populations of fish that inhabit at least 30 caves in Northeast Mexico, and a surface fish population, that inhabit the rivers of Mexico and Southern Texas. The recent application of molecular genetic approaches combined with behavioral phenotyping have established A. mexicanus as a model for studying the evolution of complex traits. Cave populations of A. mexicanus are interfertile with surface populations and have evolved numerous traits including eye degeneration, insomnia, albinism, and enhanced mechanosensory function. The interfertility of different populations from the same species provides a unique opportunity to define the genetic relationship between evolved traits and assess the co-evolution of behavioral and morphological traits with one another. To define the relationships between morphological and behavioral traits, we developed a pipeline to test individual fish for multiple traits. This pipeline confirmed differences in locomotor activity, prey capture, and startle reflex between surface and cavefish populations. To measure the relationship between traits, individual F2 hybrid fish were characterized for locomotor behavior, prey-capture behavior, startle reflex, and morphological attributes. Analysis revealed an association between body length and slower escape reflex, suggesting a trade-off between increased size and predator avoidance in cavefish. Overall, there were few associations between individual behavioral traits, or behavioral and morphological traits, suggesting independent genetic changes underlie the evolution of the measured behavioral and morphological traits. Taken together, this approach provides a novel system to identify genetic underpinnings of naturally occurring variation in morphological and behavioral traits.
Collapse
Affiliation(s)
- Camila Oliva
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | | | - Wayne Robinson
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | | | - Julianna Booth
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | | | | | - Maureen Tanner
- NIH U‐RISE ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | - Evan Lloyd
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Brittnee McDole
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alexandra Paz
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Rob Kozol
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Elizabeth B. Brown
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Johanna E. Kowalko
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Yaouen Fily
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Erik R. Duboue
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alex C. Keene
- Jupiter Life Science InitiativeFlorida Atlantic UniversityJupiterFloridaUSA,Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
41
|
Whiting JR, Paris JR, van der Zee MJ, Fraser BA. AF‐vapeR
: A multivariate genome scan for detecting parallel evolution using allele frequency change vectors. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James R. Whiting
- Department of Biosciences University of Exeter Exeter UK
- Department of Biological Sciences University of Calgary Calgary Alberta Canada
| | - Josephine R. Paris
- Department of Biosciences University of Exeter Exeter UK
- Department of Health, Life and Environmental Sciences University of L'Aquila L'Aquila Italy
| | | | | |
Collapse
|
42
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
43
|
Abstract
The rediscovery of Mendel’s work showing that the heredity of phenotypes is controlled by discrete genes was followed by the reconciliation of Mendelian genetics with evolution by natural selection in the middle of the last century with the Modern Synthesis. In the past two decades, dramatic advances in genomic methods have facilitated the identification of the loci, genes, and even individual mutations that underlie phenotypic variants that are the putative targets of natural selection. Moreover, these methods have also changed how we can study adaptation by flipping the problem around, allowing us to first examine what loci show evidence of having been under selection, and then connecting these genetic variants to phenotypic variation. As a result, we now have an expanding list of actual genetic changes that underlie potentially adaptive phenotypic variation. Here, we synthesize how considering the effects of these adaptive loci in the context of cellular environments, genomes, organisms, and populations has provided new insights to the genetic architecture of adaptation.
Collapse
|
44
|
Roesti M, Gilbert KJ, Samuk K. Chromosomal inversions can limit adaptation to new environments. Mol Ecol 2022; 31:4435-4439. [PMID: 35810344 DOI: 10.1111/mec.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Chromosomal inversions are often thought to facilitate local adaptation and population divergence because they can link multiple adaptive alleles into non-recombining genomic blocks. Selection should thus be more efficient in driving inversion-linked adaptive alleles to high frequency in a population, particularly in the face of maladaptive gene flow. But what if ecological conditions and hence selection on inversion-linked alleles change? Reduced recombination within inversions could then constrain the formation of optimal combinations of pre-existing alleles under these new ecological conditions. Here, we outline this idea of inversions limiting adaptation and divergence when ecological conditions change across time or space. We reason and use simulations to illustrate that the benefit of inversions for local adaptation and divergence under one set of ecological conditions can come with a concomitant constraint for adaptation to novel sets of ecological conditions. This limitation of inversions to adaptation may contribute to the maintenance of polymorphism within species.
Collapse
Affiliation(s)
- Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Kieran Samuk
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
45
|
Morgan C, Knight E, Bomblies K. The meiotic cohesin subunit REC8 contributes to multigenic adaptive evolution of autopolyploid meiosis in Arabidopsis arenosa. PLoS Genet 2022; 18:e1010304. [PMID: 35830475 PMCID: PMC9312919 DOI: 10.1371/journal.pgen.1010304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Genome duplication, which leads to polyploidy, poses challenges to the meiotic segregation of the now-multiple homologous chromosome copies. Genome scan data showed previously that adaptation to polyploid meiosis in autotetraploid Arabidopsis arenosa is likely multigenic, involving genes encoding interacting proteins. But what does this really mean? Functional follow-up studies to genome scans for multigenic traits remain rare in most systems, and thus many mysteries remain about the "functional architecture" of polygenic adaptations. Do different genes all contribute subtle and additive progression towards a fitness optimum, or are there more complex interactions? We previously showed that derived alleles of genes encoding two interacting meiotic axis proteins (ASY1 and ASY3) have additive functional consequences for meiotic adaptation. Here we study derived versus ancestral alleles of the meiotic cohesin subunit REC8, which has roles in chromatin condensation, recruiting the axes, and other critical functions in meiosis. We use genetic and cytological approaches to assess the functional effects of REC8 diploid versus tetraploid alleles, as well as their interaction with ancestral versus derived alleles of ASY1 and ASY3. We show that homozygotes for derived (tetraploid) REC8 alleles have significantly fewer unpaired univalents, a common problem in neotetraploids. Interactions with ASY1 and ASY3 are complex, with the genes in some cases affecting distinct traits, and additive or even antagonistic effects on others. These findings suggest that the road to meiotic adaptation in A. arenosa was perhaps neither straight nor smooth.
Collapse
Affiliation(s)
| | | | - Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Kennedy SR, Ying Lim J, Ashley Adams S, Krehenwinkel H, Gillespie RG. What is adaptive radiation? Many manifestations of the phenomenon in an iconic lineage of Hawaiian spiders. Mol Phylogenet Evol 2022; 175:107564. [PMID: 35787456 DOI: 10.1016/j.ympev.2022.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Adaptive radiation provides the ideal context for identifying and testing the processes that drive evolutionary diversification. However, different adaptive radiations show a variety of different patterns, making it difficult to come up with universal rules that characterize all such systems. Diversification may occur via several mechanisms including non-adaptive divergence, adaptation to novel environments, or character displacement driven by competition. Here, we characterize the ways these different drivers contribute to present-day diversity patterns, using the exemplary adaptive radiation of Hawaiian long-jawed orbweaver (Tetragnatha) spiders. We present the most taxonomically comprehensive phylogenetic hypothesis to date for this group, using 10 molecular markers and representatives from every known species across the archipelago. Among the lineages that make up this remarkable radiation, we find evidence for multiple diversification modalities. Several clades appear to have diversified in allopatry under a narrow range of ecological conditions, highlighting the role of niche conservatism in speciation. Others have shifted into new environments and evolved traits that appear to be adaptive in those environments. Still others show evidence for character displacement by close relatives, often resulting in convergent evolution of stereotyped ecomorphs. All of the above mechanisms seem to have played a role in giving rise to the exceptional diversity of morphological, ecological and behavioral traits represented among the many species of Hawaiian Tetragnatha. Taking all these processes into account, and testing how they operate in different systems, may allow us to identify universal principles underlying adaptive radiation.
Collapse
Affiliation(s)
| | - Jun Ying Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Seira Ashley Adams
- Department of Environmental Science, Policy and Management, University of California Berkeley, USA
| | | | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California Berkeley, USA
| |
Collapse
|
47
|
Aguirre WE, Reid K, Rivera J, Heins DC, Veeramah KR, Bell MA. Freshwater Colonization, Adaptation, and Genomic Divergence in Threespine Stickleback. Integr Comp Biol 2022; 62:388-405. [PMID: 35660873 PMCID: PMC9405723 DOI: 10.1093/icb/icac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The Threespine Stickleback is ancestrally a marine fish, but many marine populations breed in fresh water (i.e., are anadromous), facilitating their colonization of isolated freshwater habitats a few years after they form. Repeated adaptation to fresh water during at least 10 My and continuing today has led to Threespine Stickleback becoming a premier system to study rapid adaptation. Anadromous and freshwater stickleback breed in sympatry and may hybridize, resulting in introgression of freshwater-adaptive alleles into anadromous populations, where they are maintained at low frequencies as ancient standing genetic variation. Anadromous stickleback have accumulated hundreds of freshwater-adaptive alleles that are disbursed as few loci per marine individual and provide the basis for adaptation when they colonize fresh water. Recent whole-lake experiments in lakes around Cook Inlet, Alaska have revealed how astonishingly rapid and repeatable this process is, with the frequency of 40% of the identified freshwater-adaptive alleles increasing from negligible (∼1%) in the marine founder to ≥50% within ten generations in fresh water, and freshwater phenotypes evolving accordingly. These high rates of genomic and phenotypic evolution imply very intense directional selection on phenotypes of heterozygotes. Sexual recombination rapidly assembles freshwater-adaptive alleles that originated in different founders into multilocus freshwater haplotypes, and regions important for adaptation to freshwater have suppressed recombination that keeps advantageous alleles linked within large haploblocks. These large haploblocks are also older and appear to have accumulated linked advantageous mutations. The contemporary evolution of Threespine Stickleback has provided broadly applicable insights into the mechanisms that facilitate rapid adaptation.
Collapse
Affiliation(s)
- Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Kerry Reid
- School of Biological Sciences, Area of Ecology and Biodiversity, University of Hong Kong, Hong Kong, SAR, China.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jessica Rivera
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - David C Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans 70118, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Genomic changes underlying repeated niche shifts in an adaptive radiation. Evolution 2022; 76:1301-1319. [PMID: 35398888 PMCID: PMC9320971 DOI: 10.1111/evo.14490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
In adaptive radiations, single lineages rapidly diversify by adapting to many new niches. Little is known yet about the genomic mechanisms involved, that is, the source of genetic variation or genomic architecture facilitating or constraining adaptive radiation. Here, we investigate genomic changes associated with repeated invasion of many different freshwater niches by threespine stickleback in the Haida Gwaii archipelago, Canada, by resequencing single genomes from one marine and 28 freshwater populations. We find 89 likely targets of parallel selection in the genome that are enriched for old standing genetic variation. In contrast to theoretical expectations, their genomic architecture is highly dispersed with little clustering. Candidate genes and genotype-environment correlations match the three major environmental axes predation regime, light environment, and ecosystem size. In a niche space with these three dimensions, we find that the more divergent a new niche from the ancestral marine habitat, the more loci show signatures of parallel selection. Our findings suggest that the genomic architecture of parallel adaptation in adaptive radiation depends on the steepness of ecological gradients and the dimensionality of the niche space.
Collapse
Affiliation(s)
- David A. Marques
- Department of BiologyUniversity of VictoriaVictoriaBCV8W 3N5Canada
- Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernCH‐3012Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and BiogeochemistrySwiss Federal Institute of Aquatic Science and Technology (EAWAG), Eawag ‐ Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumCH‐6047Switzerland
- Natural History Museum BaselBaselCH‐4051Switzerland
| | - Felicity C. Jones
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingen72076Germany
| | - Federica Di Palma
- Earlham InstituteNorwichNR4 7UZUnited Kingdom
- Department of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - David M. Kingsley
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
| | | |
Collapse
|
49
|
Li Q, Lindtke D, Rodríguez-Ramírez C, Kakioka R, Takahashi H, Toyoda A, Kitano J, Ehrlich RL, Chang Mell J, Yeaman S. Local Adaptation and the Evolution of Genome Architecture in Threespine Stickleback. Genome Biol Evol 2022; 14:6589818. [PMID: 35594844 PMCID: PMC9178229 DOI: 10.1093/gbe/evac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Theory predicts that local adaptation should favor the evolution of a concentrated genetic architecture, where the alleles driving adaptive divergence are tightly clustered on chromosomes. Adaptation to marine versus freshwater environments in threespine stickleback has resulted in an architecture that seems consistent with this prediction: divergence among populations is mainly driven by a few genomic regions harboring multiple quantitative trait loci for environmentally adapted traits, as well as candidate genes with well-established phenotypic effects. One theory for the evolution of these "genomic islands" is that rearrangements remodel the genome to bring causal loci into tight proximity, but this has not been studied explicitly. We tested this theory using synteny analysis to identify micro- and macro-rearrangements in the stickleback genome and assess their potential involvement in the evolution of genomic islands. To identify rearrangements, we conducted a de novo assembly of the closely related tubesnout (Aulorhyncus flavidus) genome and compared this to the genomes of threespine stickleback and two other closely related species. We found that small rearrangements, within-chromosome duplications, and lineage-specific genes (LSGs) were enriched around genomic islands, and that all three chromosomes harboring large genomic islands have experienced macro-rearrangements. We also found that duplicates and micro-rearrangements are 9.9× and 2.9× more likely to involve genes differentially expressed between marine and freshwater genotypes. While not conclusive, these results are consistent with the explanation that strong divergent selection on candidate genes drove the recruitment of rearrangements to yield clusters of locally adaptive loci.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Canada T2N 1N4
| | - Dorothea Lindtke
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Canada T2N 1N4
| | - Carlos Rodríguez-Ramírez
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Nakagami-gun, Okinawa 903-0213, Japan
| | - Hiroshi Takahashi
- National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Rachel L Ehrlich
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia 19102, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia 19102, PA, USA
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Canada T2N 1N4
| |
Collapse
|
50
|
Kitano J, Ishikawa A, Ravinet M, Courtier-Orgogozo V. Genetic basis of speciation and adaptation: from loci to causative mutations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200503. [PMID: 35634921 PMCID: PMC9149796 DOI: 10.1098/rstb.2020.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Does evolution proceed in small steps or large leaps? How repeatable is evolution? How constrained is the evolutionary process? Answering these long-standing questions in evolutionary biology is indispensable for both understanding how extant biodiversity has evolved and predicting how organisms and ecosystems will respond to changing environments in the future. Understanding the genetic basis of phenotypic diversification and speciation in natural populations is key to properly answering these questions. The leap forward in genome sequencing technologies has made it increasingly easier to not only investigate the genetic architecture but also identify the variant sites underlying adaptation and speciation in natural populations. Furthermore, recent advances in genome editing technologies are making it possible to investigate the functions of each candidate gene in organisms from natural populations. In this article, we discuss how these recent technological advances enable the analysis of causative genes and mutations and how such analysis can help answer long-standing evolutionary biology questions. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Laboratory of Molecular Ecological Genetics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Chiba 277-8562, Japan
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|