1
|
Gerardi V, Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Deep Structural Analysis of Myriads of Omicron Sub-Variants Revealed Hotspot for Vaccine Escape Immunity. Vaccines (Basel) 2023; 11:668. [PMID: 36992252 PMCID: PMC10059128 DOI: 10.3390/vaccines11030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The emergence of the Omicron variant has reinforced the importance of continued SARS-CoV-2 evolution and its possible impact on vaccine effectiveness. Specifically, mutations in the receptor-binding domain (RBD) are critical to comprehend the flexibility and dynamicity of the viral interaction with the human agniotensin-converting enzyme 2 (hACE2) receptor. To this end, we have applied a string of deep structural and genetic analysis tools to map the substitution patterns in the S protein of major Omicron sub-variants (n = 51) with a primary focus on the RBD mutations. This head-to-head comparison of Omicron sub-variants revealed multiple simultaneous mutations that are attributed to antibody escape, and increased affinity and binding to hACE2. Our deep mapping of the substitution matrix indicated a high level of diversity at the N-terminal and RBD domains compared with other regions of the S protein, highlighting the importance of these two domains in a matched vaccination approach. Structural mapping identified highly variable mutations in the up confirmation of the S protein and at sites that critically define the function of the S protein in the virus pathobiology. These substitutional trends offer support in tracking mutations along the evolutionary trajectories of SAR-CoV-2. Collectively, the findings highlight critical areas of mutations across the major Omicron sub-variants and propose several hotspots in the S proteins of SARS-CoV-2 sub-variants to train the future design and development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Valeria Gerardi
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Rania F. El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Mustafa O. Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
2
|
Ahmad L. Implication of SARS-CoV-2 Immune Escape Spike Variants on Secondary and Vaccine Breakthrough Infections. Front Immunol 2021; 12:742167. [PMID: 34804022 PMCID: PMC8596465 DOI: 10.3389/fimmu.2021.742167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
COVID-19 pandemic remains an on-going global health and economic threat that has amassed millions of deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of this disease and is constantly under evolutionary pressures that drive the modification of its genome which may represent a threat to the efficacy of current COVID-19 vaccines available. This article highlights the pressures that facilitate the rise of new SARS-CoV-2 variants and the key mutations of the viral spike protein - L452R, E484K, N501Y and D614G- that promote immune escape mechanism and warrant a cautionary point for clinical and public health responses in terms of re-infection, vaccine breakthrough infection and therapeutic values.
Collapse
Affiliation(s)
- Liyana Ahmad
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| |
Collapse
|
3
|
Wang Z, Zhou M, Fu Z, Zhao L. The Pathogenic Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Possible Mechanisms for Immune Evasion? Front Immunol 2021; 12:693579. [PMID: 34335604 PMCID: PMC8317057 DOI: 10.3389/fimmu.2021.693579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a newly emerging, highly transmitted and pathogenic coronavirus that has caused global public health events and economic crises. As of March 4, 2021, more than 100 million people have been infected, more than 2 million deaths have been reported worldwide, and the numbers are continuing to rise. To date, a specific drug for this lethal virus has not been developed to date, and very little is currently known about the immune evasion mechanisms of SARS-CoV-2. The aim of this review was to summarize and sort dozens of published studies on PubMed to explore the pathogenic features of SARS-CoV-2, as well as the possible immune escape mechanisms of this virus.
Collapse
Affiliation(s)
- Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Burton TD, Eyre NS. Applications of Deep Mutational Scanning in Virology. Viruses 2021; 13:1020. [PMID: 34071591 PMCID: PMC8227372 DOI: 10.3390/v13061020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Several recently developed high-throughput techniques have changed the field of molecular virology. For example, proteomics studies reveal complete interactomes of a viral protein, genome-wide CRISPR knockout and activation screens probe the importance of every single human gene in aiding or fighting a virus, and ChIP-seq experiments reveal genome-wide epigenetic changes in response to infection. Deep mutational scanning is a relatively novel form of protein science which allows the in-depth functional analysis of every nucleotide within a viral gene or genome, revealing regions of importance, flexibility, and mutational potential. In this review, we discuss the application of this technique to RNA viruses including members of the Flaviviridae family, Influenza A Virus and Severe Acute Respiratory Syndrome Coronavirus 2. We also briefly discuss the reverse genetics systems which allow for analysis of viral replication cycles, next-generation sequencing technologies and the bioinformatics tools that facilitate this research.
Collapse
Affiliation(s)
| | - Nicholas S. Eyre
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
5
|
Leach A, Miller A, Bentley E, Mattiuzzo G, Thomas J, McAndrew C, Van Montfort R, Rabbitts T. Implementing a method for engineering multivalency to substantially enhance binding of clinical trial anti-SARS-CoV-2 antibodies to wildtype spike and variants of concern proteins. Sci Rep 2021; 11:10475. [PMID: 34006961 PMCID: PMC8131632 DOI: 10.1038/s41598-021-89887-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed quads, that retain efficient binding to the SARS-CoV-2 spike protein, show up to two orders of magnitude enhancement in neutralization of pseudovirus infection and retain potent interaction with virus variant of concern spike proteins. The tetramerization method is simple, general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.
Collapse
Affiliation(s)
- Adam Leach
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Ami Miller
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
- Evotec, 114 Innovation Dr, Milton Park, Abingdon, OX14 4RZ, UK
| | - Emma Bentley
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Giada Mattiuzzo
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Jemima Thomas
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Craig McAndrew
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Rob Van Montfort
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Terence Rabbitts
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK.
| |
Collapse
|
6
|
de Mattos Barbosa MG, Liu H, Huynh D, Shelley G, Keller ET, Emmer BT, Sherman E, Ginsburg D, Kennedy AA, Tai AW, Wobus C, Mirabeli C, Lanigan TM, Samaniego M, Meng W, Rosenfeld AM, Prak ETL, Platt JL, Cascalho M. IgV somatic mutation of human anti-SARS-CoV-2 monoclonal antibodies governs neutralization and breadth of reactivity. JCI Insight 2021; 6:147386. [PMID: 33769311 PMCID: PMC8262290 DOI: 10.1172/jci.insight.147386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti-SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein-specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10-12 M to 6.7 × 10-15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10-12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emily Sherman
- Department of Internal Medicine
- Life Sciences Institute
| | - David Ginsburg
- Department of Internal Medicine
- Life Sciences Institute
- Departments of Human Genetics and Pediatrics and Howard Hughes Medical Institute
| | | | | | | | | | - Thomas M. Lanigan
- Department of Internal Medicine
- Vector Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA
| | - Milagros Samaniego
- Department of Medicine, Henry Ford Health Systems, Detroit, Michigan, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron M. Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey L. Platt
- Department of Surgery
- Department of Microbiology and Immunology, and
| | - Marilia Cascalho
- Department of Surgery
- Department of Microbiology and Immunology, and
| |
Collapse
|
7
|
Hodcroft EB, Zuber M, Nadeau S, Vaughan TG, Crawford KHD, Althaus CL, Reichmuth ML, Bowen JE, Walls AC, Corti D, Bloom JD, Veesler D, Mateo D, Hernando A, Comas I, González Candelas F, Stadler T, Neher RA. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.10.25.20219063. [PMID: 33269368 PMCID: PMC7709189 DOI: 10.1101/2020.10.25.20219063] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes.
Collapse
Affiliation(s)
- Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Moira Zuber
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Nadeau
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Timothy G Vaughan
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Katharine H D Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Christian L Althaus
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Martina L Reichmuth
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jesse D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Mateo
- Kido Dynamics SA, Avenue de Sevelin 46, 1004 Lausanne, Switzerland
| | - Alberto Hernando
- Kido Dynamics SA, Avenue de Sevelin 46, 1004 Lausanne, Switzerland
| | - Iñaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia (IBV-CSIC), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- on behalf or the SeqCOVID-SPAIN consortium
| | - Fernando González Candelas
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- on behalf or the SeqCOVID-SPAIN consortium
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
8
|
Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, Feldman J, Pavlovic MN, Gregory DJ, Poznansky MC, Sigal A, Schmidt AG, Iafrate AJ, Naranbhai V, Balazs AB. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.14.21251704. [PMID: 33619506 PMCID: PMC7899476 DOI: 10.1101/2021.02.14.21251704] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Crossneutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.
Collapse
Affiliation(s)
- Wilfredo F. Garcia-Beltran
- These authors contributed equally
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Evan C. Lam
- These authors contributed equally
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Kerri St. Denis
- These authors contributed equally
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Adam D. Nitido
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Zeidy H. Garcia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Blake M. Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Maia N. Pavlovic
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - David J. Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
- Pedriatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban, 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa
- Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - A. John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Vivek Naranbhai
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for the AIDS Programme of Research in South Africa, Durban, 4001, South Africa
| | | |
Collapse
|
9
|
Santiago L, Uranga-Murillo I, Arias M, González-Ramírez AM, Macías-León J, Moreo E, Redrado S, García-García A, Taleb V, Lira-Navarrete E, Hurtado-Guerrero R, Aguilo N, del Mar Encabo-Berzosa M, Hidalgo S, Galvez EM, Ramirez-Labrada A, de Miguel D, Benito R, Miranda P, Fernández A, Domingo JM, Serrano L, Yuste C, Villanueva-Saz S, Paño-Pardo JR, Pardo J. Determination of the Concentration of IgG against the Spike Receptor-Binding Domain That Predicts the Viral Neutralizing Activity of Convalescent Plasma and Serum against SARS-CoV-2. BIOLOGY 2021; 10:208. [PMID: 33801808 PMCID: PMC8001978 DOI: 10.3390/biology10030208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022]
Abstract
Several hundred millions of people have been diagnosed of coronavirus disease 2019 (COVID-19), causing millions of deaths and a high socioeconomic burden. SARS-CoV-2, the causative agent of COVID-19, induces both specific T- and B-cell responses, being antibodies against the virus detected a few days after infection. Passive immunization with hyperimmune plasma from convalescent patients has been proposed as a potentially useful treatment for COVID-19. Using an in-house quantitative ELISA test, we found that plasma from 177 convalescent donors contained IgG antibodies specific to the spike receptor-binding domain (RBD) of SARS-CoV-2, although at very different concentrations which correlated with previous disease severity and gender. Anti-RBD IgG plasma concentrations significantly correlated with the plasma viral neutralizing activity (VN) against SARS-CoV-2 in vitro. Similar results were found using an independent cohort of serum from 168 convalescent health workers. These results validate an in-house RBD IgG ELISA test in a large cohort of COVID-19 convalescent patients and indicate that plasma from all convalescent donors does not contain a high enough amount of anti-SARS-CoV-2-RBD neutralizing IgG to prevent SARS-CoV-2 infection in vitro. The use of quantitative anti-RBD IgG detection systems might help to predict the efficacy of the passive immunization using plasma from patients recovered from SARS-CoV-2.
Collapse
Affiliation(s)
- Llipsy Santiago
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Iratxe Uranga-Murillo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Maykel Arias
- Instituto de Carboquímica (ICB), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain; (M.A.); (S.R.); (E.M.G.)
| | - Andrés Manuel González-Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Javier Macías-León
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Eduardo Moreo
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
| | - Sergio Redrado
- Instituto de Carboquímica (ICB), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain; (M.A.); (S.R.); (E.M.G.)
| | - Ana García-García
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Víctor Taleb
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Erandi Lira-Navarrete
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
- Laboratorio de Microscopías Avanzada (LMA), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nacho Aguilo
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
| | | | - Sandra Hidalgo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Eva M. Galvez
- Instituto de Carboquímica (ICB), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain; (M.A.); (S.R.); (E.M.G.)
| | - Ariel Ramirez-Labrada
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Diego de Miguel
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Rafael Benito
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
- Servicio de Microbiología, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Patricia Miranda
- Banco de Sangre y Tejidos de Aragón, 50009 Zaragoza, Spain; (P.M.); (J.M.D.)
| | - Antonio Fernández
- Department Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - José María Domingo
- Banco de Sangre y Tejidos de Aragón, 50009 Zaragoza, Spain; (P.M.); (J.M.D.)
| | - Laura Serrano
- Servicio de Prevención de Riesgos Laborales, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain; (L.S.); (C.Y.)
| | - Cristina Yuste
- Servicio de Prevención de Riesgos Laborales, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain; (L.S.); (C.Y.)
| | - Sergio Villanueva-Saz
- Department Pharmacology and Physiology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - José Ramón Paño-Pardo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
- Servicio de Enfermedades Infecciosas, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Julián Pardo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
| |
Collapse
|
10
|
Cohen CA, Li APY, Hachim A, Hui DSC, Kwan MYW, Tsang OTY, Chiu SS, Chan WH, Yau YS, Kavian N, Ma FNL, Lau EHY, Cheng SMS, Poon LLM, Peiris JSM, Valkenburg SA. SARS-CoV-2 specific T cell responses are lower in children and increase with age and time after infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.02.21250988. [PMID: 33564773 PMCID: PMC7872365 DOI: 10.1101/2021.02.02.21250988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 infection of children leads to a mild illness and the immunological differences with adults remains unclear. We quantified the SARS-CoV-2 specific T cell responses in adults and children (<13 years of age) with RT-PCR confirmed asymptomatic and symptomatic infection for long-term memory, phenotype and polyfunctional cytokines. Acute and memory CD4+ T cell responses to structural SARS-CoV-2 proteins significantly increased with age, whilst CD8+ T cell responses increased with time post infection. Infected children had significantly lower CD4+ and CD8+ T cell responses to SARS-CoV-2 structural and ORF1ab proteins compared to infected adults. SARS-CoV-2-specific CD8+ T cell responses were comparable in magnitude to uninfected negative adult controls. In infected adults CD4+ T cell specificity was skewed towards structural peptides, whilst children had increased contribution of ORF1ab responses. This may reflect differing T cell compartmentalisation for antigen processing during antigen exposure or lower recruitment of memory populations. T cell polyfunctional cytokine production was comparable between children and adults, but children had a lower proportion of SARS-CoV-2 CD4+ T cell effector memory. Compared to adults, children had significantly lower levels of antibodies to β-coronaviruses, indicating differing baseline immunity. Total T follicular helper responses was increased in children during acute infection indicating rapid co-ordination of the T and B cell responses. However total monocyte responses were reduced in children which may be reflective of differing levels of inflammation between children and adults. Therefore, reduced prior β-coronavirus immunity and reduced activation and recruitment of de novo responses in children may drive milder COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Carolyn A Cohen
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Athena PY Li
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David SC Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mike YW Kwan
- Department of Paediatric and Adolescent Medicine, Hong Kong Hospital Authority Infectious Disease Center, Princess Margaret Hospital, Special Administrative Region of Hong Kong, China
| | - Owen TY Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Susan S Chiu
- Department of Paediatric and Adolescent Medicine, The University of Hong Kong and Queen Mary Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Wai Hung Chan
- Department of Paediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Yat Sun Yau
- Department of Paediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, China
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fionn NL Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric HY Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Samuel MS Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo LM Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - JS Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
McCallum M, Marco AD, Lempp F, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta F, Zepeda S, di Iulio J, Bowen JE, Montiel-Ruiz M, Zhou J, Rosen LE, Bianchi S, Guarino B, Fregni CS, Abdelnabi R, Caroline Foo SY, Rothlauf PW, Bloyet LM, Benigni F, Cameroni E, Neyts J, Riva A, Snell G, Telenti A, Whelan SPJ, Virgin HW, Corti D, Pizzuto MS, Veesler D. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.14.426475. [PMID: 33469588 PMCID: PMC7814825 DOI: 10.1101/2021.01.14.426475] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
SARS-CoV-2 entry into host cells is orchestrated by the spike (S) glycoprotein that contains an immunodominant receptor-binding domain (RBD) targeted by the largest fraction of neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge. SARS-CoV-2 variants, including the 501Y.V2 and B.1.1.7 lineages, harbor frequent mutations localized in the NTD supersite suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs to protective immunity.
Collapse
|
12
|
Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H, Errico JM, Theel ES, Liebeskind MJ, Alford B, Buchser WJ, Ellebedy AH, Fremont DH, Diamond MS, Whelan SPJ. Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33442690 DOI: 10.1101/2020.11.06.372037] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although neutralizing antibodies against the SARS-CoV-2 spike (S) protein are a goal of COVID-19 vaccines and have received emergency use authorization as therapeutics, viral escape mutants could compromise their efficacy. To define the immune-selected mutational landscape in S protein, we used a VSV-eGFP-SARS-CoV-2-S chimeric virus and 19 neutralizing monoclonal antibodies (mAbs) against the receptor-binding domain (RBD) to generate 50 different escape mutants. The variants were mapped onto the RBD structure and evaluated for cross-resistance to mAbs and convalescent human sera. Each mAb had a unique resistance profile, although many shared residues within an epitope. Some variants ( e.g ., S477N) were resistant to neutralization by multiple mAbs, whereas others ( e.g ., E484K) escaped neutralization by convalescent sera, suggesting some humans induce a narrow repertoire of neutralizing antibodies. Comparing the antibody-mediated mutational landscape in S with sequence variation in circulating SARS-CoV-2, we define substitutions that may attenuate neutralizing immune responses in some humans.
Collapse
|
13
|
Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020; 9:E1027. [PMID: 33302366 PMCID: PMC7762606 DOI: 10.3390/pathogens9121027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
14
|
Khoury DS, Wheatley AK, Ramuta MD, Reynaldi A, Cromer D, Subbarao K, O'Connor DH, Kent SJ, Davenport MP. Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nat Rev Immunol 2020; 20:727-738. [PMID: 33139888 PMCID: PMC7605490 DOI: 10.1038/s41577-020-00471-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
The rapid scale-up of research on coronavirus disease 2019 (COVID-19) has spawned a large number of potential vaccines and immunotherapies, accompanied by a commensurately large number of in vitro assays and in vivo models to measure their effectiveness. These assays broadly have the same end-goal - to predict the clinical efficacy of prophylactic and therapeutic interventions in humans. However, the apparent potency of different interventions can vary considerably between assays and animal models, leading to very different predictions of clinical efficacy. Complete harmonization of experimental methods may be intractable at the current pace of research. However, here we analyse a selection of existing assays for measuring antibody-mediated virus neutralization and animal models of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a framework for comparing results between studies and reconciling observed differences in the effects of interventions. Finally, we propose how we might optimize these assays for better comparison of results from in vitro and animal studies to accelerate progress.
Collapse
Affiliation(s)
- David S Khoury
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mitchell D Ramuta
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Wellner A, McMahon C, Gilman MSA, Clements JR, Clark S, Nguyen KM, Ho MH, Shin JE, Feldman J, Hauser BM, Caradonna TM, Wingler LM, Schmidt AG, Marks DS, Abraham J, Kruse AC, Liu CC. Rapid generation of potent antibodies by autonomous hypermutation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.11.378778. [PMID: 33200136 PMCID: PMC7668743 DOI: 10.1101/2020.11.11.378778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, has poor compatibility with certain antigens ( e . g ., integral membrane proteins), and suffers from self-tolerance and immunodominance, which limit the functional spectrum of antibodies that can be obtained. Here, we describe A utonomous H ypermutation y E ast surf A ce D isplay (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. In AHEAD, antibody fragments are encoded on an error-prone orthogonal DNA replication system, resulting in Saccharomyces cerevisiae populations that continuously mutate surface-displayed antibody repertoires. Simple cycles of yeast culturing and enrichment for antigen binding drive the evolution of high-affinity antibody clones in a readily parallelizable process that takes as little as 2 weeks. We applied AHEAD to generate nanobodies against the SARS-CoV-2 S glycoprotein, a GPCR, and other targets. The SARS-CoV-2 nanobodies, concurrently evolved from an open-source naïve nanobody library in 8 independent experiments, reached subnanomolar affinities through the sequential fixation of multiple mutations over 3-8 AHEAD cycles that saw ∼580-fold and ∼925-fold improvements in binding affinities and pseudovirus neutralization potencies, respectively. These experiments highlight the defining speed, parallelizability, and effectiveness of AHEAD and provide a template for streamlined antibody generation at large with salient utility in rapid response to current and future viral outbreaks.
Collapse
|
16
|
Long SW, Olsen RJ, Christensen PA, Bernard DW, Davis JJ, Shukla M, Nguyen M, Saavedra MO, Yerramilli P, Pruitt L, Subedi S, Kuo HC, Hendrickson H, Eskandari G, Nguyen HAT, Long JH, Kumaraswami M, Goike J, Boutz D, Gollihar J, McLellan JS, Chou CW, Javanmardi K, Finkelstein IJ, Musser JM. Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area. mBio 2020; 11:e02707-20. [PMID: 33127862 PMCID: PMC7642679 DOI: 10.1128/mbio.02707-20] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
We sequenced the genomes of 5,085 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains causing two coronavirus disease 2019 (COVID-19) disease waves in metropolitan Houston, TX, an ethnically diverse region with 7 million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston and from viruses recovered in an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotype and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein-the primary target of global vaccine efforts-are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR3022. Our report represents the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.IMPORTANCE There is concern about second and subsequent waves of COVID-19 caused by the SARS-CoV-2 coronavirus occurring in communities globally that had an initial disease wave. Metropolitan Houston, TX, with a population of 7 million, is experiencing a massive second disease wave that began in late May 2020. To understand SARS-CoV-2 molecular population genomic architecture and evolution and the relationship between virus genotypes and patient features, we sequenced the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our report provides the first molecular characterization of SARS-CoV-2 strains causing two distinct COVID-19 disease waves.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antibodies, Neutralizing/immunology
- Base Sequence
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Testing
- Clinical Laboratory Techniques
- Coronavirus Infections/diagnosis
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Coronavirus RNA-Dependent RNA Polymerase
- Genome, Viral
- Genotype
- Humans
- Machine Learning
- Models, Molecular
- Molecular Diagnostic Techniques
- Pandemics
- Phylogeny
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- RNA-Dependent RNA Polymerase/chemistry
- RNA-Dependent RNA Polymerase/genetics
- SARS-CoV-2
- Sequence Analysis, Protein
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Texas/epidemiology
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
Collapse
Affiliation(s)
- S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Paul A Christensen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - David W Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - James J Davis
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois, USA
| | - Maulik Shukla
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois, USA
| | - Marcus Nguyen
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Sishir Subedi
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Heather Hendrickson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Ghazaleh Eskandari
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Hoang A T Nguyen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - J Hunter Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Jule Goike
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel Boutz
- CCDC Army Research Laboratory-South, University of Texas, Austin, Texas, USA
| | - Jimmy Gollihar
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- CCDC Army Research Laboratory-South, University of Texas, Austin, Texas, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
17
|
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020; 9:e61312. [PMID: 33112236 PMCID: PMC7723407 DOI: 10.7554/elife.61312] [Citation(s) in RCA: 1013] [Impact Index Per Article: 202.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Base Sequence
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- COVID-19 Vaccines/immunology
- Epitopes/genetics
- Epitopes/immunology
- Genes, Reporter
- Humans
- Immunization, Passive
- Mutation
- Neutralization Tests
- Protein Domains
- Protein Isoforms/immunology
- Reassortant Viruses/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Selection, Genetic
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vesiculovirus/genetics
- Virus Replication
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Julio CC Lorenzi
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Christian Gaebler
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Marianna Agudelo
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Alice Cho
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Zijun Wang
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Anna Gazumyan
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Melissa Cipolla
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Larry Luchsinger
- Lindsley F. Kimball Research Institute, New York Blood CenterNew YorkUnited States
| | | | - Marina Caskey
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
| | - Davide F Robbiani
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
- Institute for Research in Biomedicine, Università della Svizzera italianaBellinzonaSwitzerland
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease The Rockefeller UniversityNew YorkUnited States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
18
|
Chen AT, Altschuler K, Zhan SH, Chan YA, Deverman BE. COVID-19 CG: Tracking SARS-CoV-2 mutations by locations and dates of interest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.23.310565. [PMID: 32995794 PMCID: PMC7523124 DOI: 10.1101/2020.09.23.310565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
COVID-19 CG is an open resource for tracking SARS-CoV-2 single-nucleotide variations (SNVs) and lineages while filtering by location, date, gene, and mutation of interest. COVID-19 CG provides significant time, labor, and cost-saving utility to diverse projects on SARS-CoV-2 transmission, evolution, emergence, immune interactions, diagnostics, therapeutics, vaccines, and intervention tracking. Here, we describe case studies in which users can interrogate (1) SNVs in the SARS-CoV-2 Spike receptor binding domain (RBD) across different geographic regions to inform the design and testing of therapeutics, (2) SNVs that may impact the sensitivity of commonly used diagnostic primers, and (3) the recent emergence of a dominant lineage harboring an S477N RBD mutation in Australia. To accelerate COVID-19 research and public health efforts, COVID-19 CG will be continually upgraded with new features for users to quickly and reliably pinpoint mutations as the virus evolves throughout the pandemic and in response to therapeutic and public health interventions.
Collapse
Affiliation(s)
- Albert Tian Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | | | - Shing Hei Zhan
- Department of Zoology & Biodiversity Research Centre, the University of British Columbia, Vancouver BC, Canada
| | - Yujia Alina Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| |
Collapse
|