1
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Wang X, Yu H, Ma Y, Zhang P, Wang X, Liang J, Zhang X, Gao R, Lu X, Yang W, Chen Y, Gu M, Hu J, Liu X, Hu S, Peng D, Qi X, Bao C, Liu K, Liu X. The novel H10N3 avian influenza virus acquired airborne transmission among chickens: an increasing threat to public health. mBio 2024:e0236324. [PMID: 39679681 DOI: 10.1128/mbio.02363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Following two human infections with the H10N3 avian influenza virus (AIV) in 2021 and 2022, a third case was discovered in Yunnan, China, in 2024, raising concerns about the potential for future pandemics. Recent studies have indicated that novel H10N3 viruses are highly pathogenic in mice and can be transmitted between guinea pigs via respiratory droplets without prior adaptation. However, the biological characteristics of novel H10N3 in poultry have not been fully elucidated. Our findings revealed that H10 subtype AIVs are predominantly prevalent in waterfowl. Notably, H10N8 and H10N3 viruses that have infected humans were primarily isolated from chickens. For the first time, double basic hemagglutinin cleavage sites (motif PEIKQGR↓GL) were identified in novel H10N3 AIVs, which exhibit enhanced replication in chickens, and can be transmitted between chickens through direct contact and respiratory droplets. Animal experimental studies demonstrated that ducks are also susceptible to H10N3 viruses and that the virus is transmissible through direct contact, suggesting a greater risk of transmission and recombination. Serological studies conducted among poultry workers suggest that while the human population was largely naïve to H10N3 infection, sporadic and undetected human infections did occur, indicating a potential increasing trend. These data further emphasize the growing threat to public health posed by zoonotic H10N3 subtype AIVs.IMPORTANCEExposure to poultry in live poultry markets (LPMs) is strongly associated with human infection with avian influenza viruses (AIVs), with chickens being the most common species found in these markets in China. The prevalence of AIVs in chickens, therefore, increases the risk of human infection. Notably, the main host of the novel H10N3 virus has shifted from waterfowl to chickens, and the virus can be transmitted between chickens via respiratory droplets, posing a potential risk of a pandemic within poultry populations. The novel H10N3 virus also remains sensitive to ducks and can be transmitted through direct contact, which means a greater risk of transmission and recombination. Significantly, the human population remains largely naïve to H10N3 infection, but sporadic seropositivity among poultry workers indicates previous exposure to H10 subtype AIVs. Therefore, a comprehensive surveillance of the novel H10N3 viruses in poultry is imperative. Effective control of the virus within poultry populations could significantly reduce the risk of emerging human infections.
Collapse
Affiliation(s)
- Xiaoquan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiyan Yu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Yahao Ma
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pinghu Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Xiyue Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianyu Liang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Zhang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
He D, Wang X, Wu H, Cai K, Song X, Wang X, Hu J, Hu S, Liu X, Ding C, Peng D, Su S, Gu M, Liu X. Characterization of Conserved Evolution in H7N9 Avian Influenza Virus Prior Mass Vaccination. Virulence 2024; 15:2395837. [PMID: 39240070 PMCID: PMC11382709 DOI: 10.1080/21505594.2024.2395837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Vaccination is crucial for the prevention and mitigation of avian influenza infections in China. The inactivated H7N9 vaccine, when administered to poultry, significantly lowers the risk of infection among both poultry and humans, while also markedly decreasing the prevalence of H7N9 detections. Highly pathogenic (HP) H7N9 viruses occasionally appear, whereas their low pathogenicity (LP) counterparts have been scarcely detected since 2018. However, these contributing factors remain poorly understood. We conducted an exploratory investigation of the mechanics via the application of comprehensive bioinformatic approaches. We delineated the Yangtze River Delta (YRD) H7N9 lineage into 5 clades (YRD-A to E). Our findings highlight the emergence and peak occurrence of the LP H7N9-containing YRD-E clade during the 5th epidemic wave in China's primary poultry farming areas. A more effective control of LP H7N9 through vaccination was observed compared to that of its HP H7N9 counterpart. YRD-E exhibited a tardy evolutionary trajectory, denoted by the conservation of its genetic and antigenic variation. Our analysis of YRD-E revealed only minimal amino acid substitutions along its phylogenetic tree and a few selective sweep mutations since 2016. In terms of epidemic fitness, the YRD-E was measured to be lower than that of the HP variants. Collectively, these findings underscore the conserved evolutionary patterns distinguishing the YRD-E. Given the conservation presented in its evolutionary patterns, the YRD-E LP H7N9 is hypothesized to be associated with a reduction following the mass vaccination in a relatively short period owing to its lower probability of antigenic variation that might affect vaccine efficiency.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kairui Cai
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoli Song
- Animal Epidemic Prevention Office, Jiangsu Provincial Animal Disease Control Center, Nanjing, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Tang J, Zou SM, Zhou JF, Gao RB, Xin L, Zeng XX, Huang WJ, Li XY, Cheng YH, Liu LQ, Xiao N, Wang DY. R229I substitution from oseltamivir induction in HA1 region significantly increased the fitness of a H7N9 virus bearing NA 292K. Emerg Microbes Infect 2024; 13:2373314. [PMID: 38922326 PMCID: PMC467099 DOI: 10.1080/22221751.2024.2373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.
Collapse
MESH Headings
- Animals
- Oseltamivir/pharmacology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/drug effects
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/physiology
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Dogs
- Virus Replication/drug effects
- Antiviral Agents/pharmacology
- Humans
- Mice
- Orthomyxoviridae Infections/virology
- Madin Darby Canine Kidney Cells
- A549 Cells
- Mice, Inbred C57BL
- Drug Resistance, Viral/genetics
- Amino Acid Substitution
- Influenza, Human/virology
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Female
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Shu-Mei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Jian-Fang Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Rong-Bao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiao-Xu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Wei-Juan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xi-Yan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Yan-Hui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Li-Qi Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Da-Yan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Reference and Research on Influenza; Key Laboratory for Medical Virology and Viral Diseases, National Health Commission; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Ahrens AK, Pohlmann A, Grund C, Beer M, Harder TC. Out of the blue: detection of a unique highly pathogenic avian influenza virus of subtype H7N5 in Germany. Emerg Microbes Infect 2024; 13:2420723. [PMID: 39435698 PMCID: PMC11552254 DOI: 10.1080/22221751.2024.2420723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Timm C. Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
6
|
Zhao Y, Chen P, Hu Y, Liu J, Jiang Y, Zeng X, Deng G, Shi J, Li Y, Tian G, Liu J, Chen H. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg Microbes Infect 2024; 13:2284301. [PMID: 37966272 PMCID: PMC10769552 DOI: 10.1080/22221751.2023.2284301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
Due to the fact that many avian influenza viruses that kill chickens are not lethal to ducks, farmers are reluctant to use avian influenza inactivated vaccines on ducks. Large numbers of unvaccinated ducks play an important role in the transmission of avian influenza viruses from wild birds to domestic poultry, creating a substantial challenge to vaccination strategies for avian influenza control. To solve this problem, we constructed a recombinant duck enteritis virus (DEV), rDEV-dH5/H7, using a live attenuated DEV vaccine strain (vDEV) as a vector. rDEV-dH5/H7 carries the hemagglutinin gene of two H5 viruses [GZ/S4184/17 (H5N6) (clade 2.3.4.4 h) and LN/SD007/17 (H5N1) (clade 2.3.2.1d)] and an H7 virus [GX/SD098/17 (H7N9)]. These three hemagglutinin genes were stably inherited in rDEV-dH5/H7 and expressed in rDEV-dH5/H7-infected cells. Animal studies revealed that rDEV-dH5/H7 and vDEV induced similar neutralizing antibody responses and protection against lethal DEV challenge. Importantly, rDEV-dH5/H7 induced strong and long-lasting hemagglutinin inhibition antibodies against different H5 and H7 viruses and provided complete protection against challenges with homologous and heterologous highly pathogenic H5 and H7 influenza viruses in ducks. Our study shows that rDEV-dH5/H7 could serve as an ideal live attenuated vaccine to protect ducks against infection with lethal DEV and highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Yubo Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jinxiong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
7
|
Lin L, Zhu S, Yang B, Zhang X, Wu H, Wu S, Wu L, Shu J, He Y, Feng H. H9 Consensus Hemagglutinin Subunit Vaccine with Adjuvants Induces Robust Mucosal and Systemic Immune Responses in Mice by Intranasal Administration. Microorganisms 2024; 12:2294. [PMID: 39597683 PMCID: PMC11596065 DOI: 10.3390/microorganisms12112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The H9N2 subtype avian influenza viruses mainly cause respiratory symptoms, reduce the egg production and fertility of poultry, and result in secondary infections, posing a great threat to the poultry industry and human health. Currently, all H9N2 avian influenza commercial vaccines are inactivated vaccines, which provide protection for immunized animals but cannot inhibit the spread of the virus and make it difficult to distinguish between the infected animals and vaccinated animals. In this study, a trimeric consensus H9 hemagglutinin (HA) subunit vaccine for the H9N2 subtype avian influenza virus based on a baculovirus expression system was first generated, and then the effects of three molecular adjuvants on the H9 HA subunit vaccine, Cholera toxin subunit B (CTB), flagellin, and granulocyte-macrophage colony-stimulating factor (GM-CSF) fused with H9 HA, and one synthetic compound, a polyinosinic-polycytidylic acid (PolyI:C) adjuvant, were evaluated in mice by intranasal administration. The results showed that these four adjuvants enhanced the immunogenicity of the H9 HA subunit vaccine for avian influenza viruses, and that GM-CSF and PolyI:C present better mucosal adjuvant activity for the H9 HA subunit vaccine. These results demonstrate that we have developed a potential universal H9 HA mucosal subunit vaccine with adjuvants in a baculovirus system that would be helpful for the prevention and control of H9N2 subtype avian influenza viruses.
Collapse
Affiliation(s)
- Liming Lin
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Beibei Yang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Huimin Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| |
Collapse
|
8
|
Feoktistova SG, Ivanova AO, Degtyarev EP, Smirnova DI, Volchkov PY, Deviatkin AA. Phylogenetic Insights into H7Nx Influenza Viruses: Uncovering Reassortment Patterns and Geographic Variability. Viruses 2024; 16:1656. [PMID: 39599771 PMCID: PMC11598867 DOI: 10.3390/v16111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Influenza A viruses (IAVs), which belong to the Orthomyxoviridae family, are RNA viruses characterized by a segmented genome that allows them to evolve and adapt rapidly. These viruses are mainly transmitted by wild waterfowl. In this study, we investigated the evolutionary processes of H7Nx (H7N1, H7N2, H7N3, H7N4, H7N5, H7N6, H7N7, H7N8, H7N9) viruses, which pose a significant pandemic risk due to the known cases of human infection and their potential for rapid genetic evolution and reassortment. The complete genome sequences of H7Nx influenza viruses (n = 3239) were compared between each other to investigate their phylogenetic relationships and reassortment patterns. For the selected viruses, phylogenetic trees were constructed for eight genome segments (PB2, PB1, PA, HA, NP, NA, M, NS) to assess the genetic diversity and geographic distribution of these viruses. Distinct phylogenetic clades with remarkable geographic patterns were found for the different segments. While the viruses were consistently grouped by subtype based on the NA segment sequences, the phylogeny of the other segment sequences, with the exception of the NS segment, showed distinct grouping patterns based on geographic origin rather than formal subtype assignment. Reassortment events leading to complex phylogenetic relationships were frequently observed. In addition, multiple cases of previously undescribed reassortments between subtypes were detected, emphasizing the fluidity of H7Nx virus populations. These results indicate a high degree of genetic diversity and reassortment within H7Nx influenza viruses. In other words, H7Nx viruses exist as constantly changing combinations of gene pools rather than stable genetic lineages.
Collapse
Affiliation(s)
- Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.Y.V.)
| | - Alexandra O. Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS (IBCh RAS), 117997 Moscow, Russia
| | - Egor P. Degtyarev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.Y.V.)
| | - Daria I. Smirnova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.Y.V.)
| | - Pavel Yu. Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.Y.V.)
- Center for Personalized Medicine, The MCSC Named After A.S. Loginov, 111123 Moscow, Russia
| | - Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.Y.V.)
| |
Collapse
|
9
|
Yamaji R, Zhang W, Kamata A, Adlhoch C, Swayne DE, Pereyaslov D, Wang D, Neumann G, Pavade G, Barr IG, Peiris M, Webby RJ, Fouchier RAM, Von Dobschütz S, Fabrizio T, Shu Y, Samaan M. Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA). THE LANCET. MICROBE 2024:100973. [PMID: 39396528 DOI: 10.1016/j.lanmic.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Wenqing Zhang
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Akiko Kamata
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Dmitriy Pereyaslov
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Changping District, Beijing, China
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sophie Von Dobschütz
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy; Emerging Diseases and Zoonoses Unit, Department for Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuelong Shu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Magdi Samaan
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
10
|
Li F, Sun Z, Tao M, Song K, Wang Z, Ren X. Epidemiological characterization of human infection with H5N6 avian influenza. Front Public Health 2024; 12:1398365. [PMID: 39416930 PMCID: PMC11479881 DOI: 10.3389/fpubh.2024.1398365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Background In recent years, there have been frequent reports of human infection with H5N6 avian influenza. However, the fundamental characteristics of the disease remain unclear. This paper conducts a systematic review to explore the epidemiological features of the disease, aiming to provide a foundation for epidemic prevention and control and to serve as a reference for clinical diagnosis. Method A systematic search was performed in PubMed, Web of Science, CNKI, Wanfang and gray literature up to November 15, 2023. All articles were about the epidemic features of the H5N6 subtype of avian influenza, written in English or Chinese. Results This review encompasses 24 documented outbreaks of human H5N6 avian influenza, exclusively reported in southern China. The age range of cases spanned from under 2 years old to 81 years old. The incubation period ranged from 1 to 13 days, with a mean of 4.3 days. Among the 24 cases, 22 individuals had a documented history of contact with poultry. Of the 23 cases with available prognosis data, 12 resulted in fatalities, yielding a significant fatality rate of 52.2%. A noteworthy observation is that all cases with a history of contact with sick and dead poultry resulted in fatalities, and the difference in fatality rates between this group and others was statistically significant (χ2 = 7.441, p = 0.014). This study identified a total of 888 close contacts, none of whom demonstrated infection. Conclusion This study represents a comprehensive summary of the epidemiological characteristics of human H5N6 avian influenza. Significantly, it sheds light on the incubation period of the disease and underscores a potential elevated risk of mortality among patients with a history of contact with sick and dead poultry.
Collapse
Affiliation(s)
- Fengying Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Mingyong Tao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kai Song
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaobin Ren
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
11
|
Zhang Z, Lei Z. The Alarming Situation of Highly Pathogenic Avian Influenza Viruses in 2019-2023. Glob Med Genet 2024; 11:200-213. [PMID: 38947761 PMCID: PMC11213626 DOI: 10.1055/s-0044-1788039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Avian influenza viruses (AIVs) have the potential to cause severe illness in wild birds, domestic poultry, and humans. The ongoing circulation of highly pathogenic avian influenza viruses (HPAIVs) has presented significant challenges to global poultry industry and public health in recent years. This study aimed to elucidate the circulation of HPAIVs during 2019 to 2023. Specifically, we assess the alarming global spread and continuous evolution of HPAIVs. Moreover, we discuss their transmission and prevention strategies to provide valuable references for future prevention and control measures against AIVs.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
12
|
Wang Y, Li Q, Peng P, Zhang Q, Huang Y, Hu J, Hu Z, Liu X. Dual N-linked glycosylation at residues 133 and 158 in the hemagglutinin are essential for the efficacy of H7N9 avian influenza virus like particle vaccine in chickens and mice. Vet Microbiol 2024; 294:110108. [PMID: 38729093 DOI: 10.1016/j.vetmic.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.
Collapse
Affiliation(s)
- Yufei Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qun Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yalan Huang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Hu Y, Jiang L, Wang G, Song Y, Shan Z, Wang X, Deng G, Shi J, Tian G, Zeng X, Liu L, Chen H, Li C. M6PR interacts with the HA2 subunit of influenza A virus to facilitate the fusion of viral and endosomal membranes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:579-595. [PMID: 38038885 DOI: 10.1007/s11427-023-2471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor (M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR, the nuclear accumulation of viral nucleoprotein (NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking, or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin (HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes, thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR-HA interaction in the fusion of viral and late endosomal membranes during IAV replication.
Collapse
Affiliation(s)
- Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yangming Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhibo Shan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuyuan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
14
|
Sayedahmed EE, Elshafie NO, dos Santos AP, Jagannath C, Sambhara S, Mittal SK. Development of NP-Based Universal Vaccine for Influenza A Viruses. Vaccines (Basel) 2024; 12:157. [PMID: 38400140 PMCID: PMC10892571 DOI: 10.3390/vaccines12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The nucleoprotein (NP) is a vital target for the heterosubtypic immunity of CD8+ cytotoxic T lymphocytes (CTLs) due to its conservation among influenza virus subtypes. To further enhance the T cell immunity of NP, autophagy-inducing peptide C5 (AIP-C5) from the CFP10 protein of Mycobacterium tuberculosis was used. Mice were immunized intranasally (i.n.) with human adenoviral vectors, HAd-C5-NP(H7N9) or HAd-NP(H7N9), expressing NP of an H7N9 influenza virus with or without the AIP-C5, respectively. Both vaccines developed similar levels of NP-specific systemic and mucosal antibody titers; however, there was a significantly higher number of NP-specific CD8 T cells secreting interferon-gamma (IFN-γ) in the HAd-C5-NP(H7N9) group than in the HAd-NP(H7N9) group. The HAd-C5-NP(H7N9) vaccine provided better protection following the challenge with A/Puerto Rico/8/1934(H1N1), A/Hong Kong/1/68(H3N2), A/chukkar/MN/14951-7/1998(H5N2), A/goose/Nebraska/17097/2011(H7N9), or A/Hong Kong/1073/1999(H9N2) influenza viruses compared to the HAd-NP(H7N9) group. The autophagy transcriptomic gene analysis of the HAd-C5-NP(H7N9) group revealed the upregulation of some genes involved in the positive regulation of the autophagy process. The results support further exploring the use of NP and AIP-C5 for developing a universal influenza vaccine for pandemic preparedness.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX 77030, USA;
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| |
Collapse
|
15
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
16
|
Zhu M, Zeng H, He J, Zhu Y, Wang P, Guo J, Guo J, Zhou H, Qin Y, Ouyang K, Wei Z, Huang W, Chen Y. Reassortant H9N2 canine influenza viruses containing the pandemic H1N1/2009 ribonucleoprotein complex circulating in pigs acquired enhanced virulence in mice. Virology 2024; 589:109927. [PMID: 37951087 DOI: 10.1016/j.virol.2023.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
The reassortment between avian H9N2 and Eurasian avian-like (EA) H1N1 viruses may have potentially changed from avian-to-mammals adaptation. This study generated 20 reassortant viruses with the introduction of H1N1/2009 internal genes from EA H1N1 virus into H9N2 virus. 12 of these recovered the replication capability both in the lungs and turbinate samples. 10 of 12 obtained PA gene segments from the ribonucleoprotein (RNP) complexes of the EA H1N1 virus, and 3 exhibited extreme virulence. Specially, the combination of PB2, PA and NP genes could overcome the species-specific restriction in human cells. Analysis of the polymerase activities found that introduction of the PA gene resulted in increased polymerase activity. These findings indicated that RNP complexes from EA H1N1 virus could confer an adaptation advantage and high compatibility to avian H9N2 virus. This raises new concerns for public health due to the possible coexistence of H9N2 and EA H1N1 viruses in dogs.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Hao Zeng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jianqiao He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Yaohui Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Pingping Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Jianing Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jinfan Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Huabo Zhou
- Huabo Pet Hospital, Nanning, 530004, PR China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China.
| |
Collapse
|
17
|
Xu N, Wang X, Cai M, Tang X, Yang W, Lu X, Liu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Mutations in HA and PA affect the transmissibility of H7N9 avian influenza virus in chickens. Vet Microbiol 2023; 287:109910. [PMID: 38016409 DOI: 10.1016/j.vetmic.2023.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Low pathogenic (LP) H7N9 avian influenza virus (AIV) emerged in 2013 and had spread widely over several months in China, experienced a noteworthy reduction in isolation rate in poultry and human since 2017. Here, we examined the transmission of H7N9 viruses to better understand viral spread and dissemination mechanisms. Three out of four viruses (2013-2016) could transmit in chickens through direct contact, and airborne transmission was confirmed in the JT157 (2016) virus. However, we did not detect the transmission of the two 2017 viruses, WF69 and AH395, through either direct or airborne exposure. Molecular analysis of genome sequence of two viruses identified eleven mutations located in viral proteins (except for matrix protein), such as PA (K362R and S364N) and HA (D167N, H7 numbering), etc. We explored the genetic determinants that contributed to the difference in transmissibility of the viruses in chickens by generating a series of reassortants in the JT157 background. We found that the replacement of HA gene in JT157 by that of WF69 abrogated the airborne transmission in recipient chickens, whereas the combination of HA and PA replacement led to the loss of airborne and direct contact transmission. Failure with contact transmission of the viruses has been associated with the emergence of the mutations D167N in HA and K362R and S364N in PA. Furthermore, the HA D167N mutation significantly reduced viral attachment to chicken lung and trachea tissues, while mutations K362R and S364N in PA reduced the nuclear transport efficiency and the PA protein expression levels in both cytoplasm and nucleus of CEF cells. The D167N substitution in HA reduced the H7N9 viral acid stability and avian-like receptor binding, while enhanced human-like receptor binding. Further analysis revealed these mutants grew poorly in vitro and in vivo. To conclude, H7N9 AIVs that contain mutations in the HA and PA protein reduced the viral transmissibility in chicken, and may pose a reduced threat for poultry but remain a heightened public health risk.
Collapse
Affiliation(s)
- Naiqing Xu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenhao Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
18
|
Wang Y, Wang M, Zhang H, Zhao C, Zhang Y, Shen J, Sun X, Xu H, Xie Y, Gao X, Cui P, Chu D, Li Y, Liu W, Peng P, Deng G, Guo J, Li X. Prevalence, evolution, replication and transmission of H3N8 avian influenza viruses isolated from migratory birds in eastern China from 2017 to 2021. Emerg Microbes Infect 2023; 12:2184178. [PMID: 36913241 PMCID: PMC10013397 DOI: 10.1080/22221751.2023.2184178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The continued evolution and emergence of novel influenza viruses in wild and domestic animals poses an increasing public health risk. Two human cases of H3N8 avian influenza virus infection in China in 2022 have caused public concern regarding the risk of transmission between birds and humans. However, the prevalence of H3N8 avian influenza viruses in their natural reservoirs and their biological characteristics are largely unknown. To elucidate the potential threat of H3N8 viruses, we analyzed five years of surveillance data obtained from an important wetland region in eastern China and evaluated the evolutionary and biological characteristics of 21 H3N8 viruses isolated from 15,899 migratory bird samples between 2017 and 2021. Genetic and phylogenetic analyses showed that the H3N8 viruses circulating in migratory birds and ducks have evolved into different branches and have undergone complicated reassortment with viruses in waterfowl. The 21 viruses belonged to 12 genotypes, and some strains induced body weight loss and pneumonia in mice. All the tested H3N8 viruses preferentially bind to avian-type receptors, although they have acquired the ability to bind human-type receptors. Infection studies in ducks, chickens and pigeons demonstrated that the currently circulating H3N8 viruses in migratory birds have a high possibility of infecting domestic waterfowl and a low possibility of infecting chickens and pigeons. Our findings imply that circulating H3N8 viruses in migratory birds continue to evolve and pose a high infection risk in domestic ducks. These results further emphasize the importance of avian influenza surveillance at the wild bird and poultry interface.
Collapse
Affiliation(s)
- Yanwen Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Mengjing Wang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong Zhang
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Conghui Zhao
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Yaping Zhang
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jinyan Shen
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xiaohong Sun
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Hongke Xu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Yujiao Xie
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xinxin Gao
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Pengfei Cui
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Dong Chu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, People's Republic of China
| | - Guohua Deng
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin, People's Republic of China
| | - Jing Guo
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, People's Republic of China
| |
Collapse
|
19
|
Liu Q, Zeng H, Wu X, Yang X, Wang G. Global Prevalence and Hemagglutinin Evolution of H7N9 Avian Influenza Viruses from 2013 to 2022. Viruses 2023; 15:2214. [PMID: 38005891 PMCID: PMC10674656 DOI: 10.3390/v15112214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
H7N9 avian influenza viruses have caused severe harm to the global aquaculture industry and human health. For further understanding of the characteristics of prevalence and hemagglutinin evolution of H7N9 avian influenza viruses, we generated the global epidemic map of H7N9 viruses from 2013 to 2022, constructed a phylogenetic tree, predicted the glycosylation sites and compared the selection pressure of the hemagglutinin. The results showed that although H7N9 avian influenza appeared sporadically in other regions worldwide, China had concentrated outbreaks from 2013 to 2017. The hemagglutinin genes were classified into six distinct lineages: A, B, C, D, E and F. After 2019, H7N9 viruses from the lineages B, E and F persisted, with the lineage B being the dominant. The hemagglutinin of highly pathogenic viruses in the B lineage has an additional predicted glycosylation site, which may account for their persistent pandemic, and is under more positive selection pressure. The most recent ancestor of the H7N9 avian influenza viruses originated in September 1991. The continuous evolution of hemagglutinin has led to an increase in virus pathogenicity in both poultry and humans, and sustained human-to-human transmission. This study provides a theoretical basis for better prediction and control of H7N9 avian influenza.
Collapse
Affiliation(s)
- Qianshuo Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.L.); (H.Z.); (X.W.)
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Haowen Zeng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.L.); (H.Z.); (X.W.)
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Xinghui Wu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.L.); (H.Z.); (X.W.)
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Xuelian Yang
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| | - Guiqin Wang
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China;
| |
Collapse
|
20
|
Kok A, Scheuer R, Bestebroer TM, Burke DF, Wilks SH, Spronken MI, de Meulder D, Lexmond P, Pronk M, Smith DJ, Herfst S, Fouchier RAM, Richard M. Characterization of A/H7 influenza virus global antigenic diversity and key determinants in the hemagglutinin globular head mediating A/H7N9 antigenic evolution. mBio 2023; 14:e0048823. [PMID: 37565755 PMCID: PMC10655666 DOI: 10.1128/mbio.00488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 08/12/2023] Open
Abstract
IMPORTANCE A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.
Collapse
Affiliation(s)
- Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rachel Scheuer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David F. Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mark Pronk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Wu Y, Zhan J, Shan Z, Li Y, Liu Y, Li Y, Wang Y, Liu Z, Wen X, Wang X. CRISPR-Cas13a-based detection method for avian influenza virus. Front Microbiol 2023; 14:1288951. [PMID: 37886067 PMCID: PMC10598603 DOI: 10.3389/fmicb.2023.1288951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Avian influenza virus (AIV) causes huge losses to the global poultry industry and poses a threat to humans and other mammals. Fast, sensitive, and portable diagnostic methods are essential for efficient avian influenza control. Here, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a based platform was developed to detect AIV. This novel method was developed to specifically detect H1-H16 subtypes of AIV with fluorescence and lateral flow-based readouts and exhibited no cross-reactivity with Newcastle disease virus, avian infectious bronchitis virus, or infectious bursal disease virus. The limit of detection was determined to be 69 and 690 copies/μL using fluorescence and lateral flow as readouts, respectively. The developed assay exhibited 100% consistency with quantitative real-time polymerase chain reaction in detecting clinical samples. The heating of unextracted diagnostic samples to obliterate nuclease treatment was introduced to detect viral RNA without nucleic acid extraction. Single-step optimization was used to perform reverse transcription, recombinase polymerase amplification, and CRISPR-Cas13a detection in a tube. These advances resulted in an optimized assay that could specifically detect AIV with simplified procedures and reduced contamination risk, highlighting the potential to be used in point-of-care testing.
Collapse
Affiliation(s)
- Yuhan Wu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Zhan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhaomeng Shan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yining Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yan Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixin Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhe Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xuexia Wen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
22
|
Chen T, Kong D, Hu X, Gao Y, Lin S, Liao M, Fan H. Influenza H7N9 Virus Hemagglutinin with T169A Mutation Possesses Enhanced Thermostability and Provides Effective Immune Protection against Lethal H7N9 Virus Challenge in Chickens. Vaccines (Basel) 2023; 11:1318. [PMID: 37631886 PMCID: PMC10460070 DOI: 10.3390/vaccines11081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of avian influenza relies on traditional inactivated vaccines; however, they have some limitations and genetically engineered avian influenza subunit vaccines may be potential candidate vaccines. In this study, a T169A mutation in the HA protein derived from H7N9 AIV A/Chicken/Guangdong/16876 (H7N9-16876) was generated using the baculovirus expression system (BVES). The results showed that the mutant (HAm) had significantly increased thermostability compared with the wild-type HA protein (HA-WT). Importantly, immunizing chickens with HAm combined with ISA 71VG elicited higher cross-reactive hemagglutination inhibition (HI) antibody responses and cytokine (IFN-γ and IL-4) secretion. After a lethal challenge with heterologous H7N9 AIV, the vaccine conferred chickens with 100% (10/10) clinical protection and effectively inhibited viral shedding, with 90% (9/10) of the chickens showing no virus shedding. The thermostability of HAm may represent an advantage in practical vaccine manufacture and application. In general, the HAm generated in this study represents a promising subunit vaccine candidate for the prevention and control of H7N9 avian influenza.
Collapse
Affiliation(s)
- Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Xiaolong Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| |
Collapse
|
23
|
Guo Z, Jin Q, Li P, Xing G, Lu Q, Zhang G. Potential cross-species transmission risks of emerging swine enteric coronavirus to human beings. J Med Virol 2023; 95:e28919. [PMID: 37386904 DOI: 10.1002/jmv.28919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Peng Li
- Vet Diagnostic & Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Longhu Modern Immunity Labrotary, Zhengzhou, Henan, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
24
|
Simancas-Racines A, Cadena-Ullauri S, Guevara-Ramírez P, Zambrano AK, Simancas-Racines D. Avian Influenza: Strategies to Manage an Outbreak. Pathogens 2023; 12:pathogens12040610. [PMID: 37111496 PMCID: PMC10145843 DOI: 10.3390/pathogens12040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Avian influenza (AI) is a contagious disease among the poultry population with high avian mortality, which generates significant economic losses and elevated costs for disease control and outbreak eradication. AI is caused by an RNA virus part of the Orthomyxoviridae family; however, only Influenzavirus A is capable of infecting birds. AI pathogenicity is based on the lethality, signs, and molecular characteristics of the virus. Low pathogenic avian influenza (LPAI) virus has a low mortality rate and ability to infect, whereas the highly pathogenic avian influenza (HPAI) virus can cross respiratory and intestinal barriers, diffuse to the blood, damage all tissues of the bird, and has a high mortality rate. Nowadays, avian influenza is a global public health concern due to its zoonotic potential. Wild waterfowl is the natural reservoir of AI viruses, and the oral-fecal path is the main transmission route between birds. Similarly, transmission to other species generally occurs after virus circulation in densely populated infected avian species, indicating that AI viruses can adapt to promote the spread. Moreover, HPAI is a notifiable animal disease; therefore, all countries must report infections to the health authorities. Regarding laboratory diagnoses, the presence of influenza virus type A can be identified by agar gel immunodiffusion (AGID), enzyme immunoassay (EIA), immunofluorescence assays, and enzyme-linked immunoadsorption assay (ELISAs). Furthermore, reverse transcription polymerase chain reaction is used for viral RNA detection and is considered the gold standard for the management of suspect and confirmed cases of AI. If there is suspicion of a case, epidemiological surveillance protocols must be initiated until a definitive diagnosis is obtained. Moreover, if there is a confirmed case, containment actions should be prompt and strict precautions must be taken when handling infected poultry cases or infected materials. The containment measures for confirmed cases include the sanitary slaughter of infected poultry using methods such as environment saturation with CO2, carbon dioxide foam, and cervical dislocation. For disposal, burial, and incineration, protocols should be followed. Lastly, disinfection of affected poultry farms must be carried out. The present review aims to provide an overview of the avian influenza virus, strategies for its management, the challenges an outbreak can generate, and recommendations for informed decision making.
Collapse
Affiliation(s)
- Alison Simancas-Racines
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria Universidad Técnica de Cotopaxi, Latacunga 050108, Ecuador
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
25
|
Bosco-Lauth A, Rodriguez A, Maison RM, Porter SM, Root JJ. H7N9 influenza A virus transmission in a multispecies barnyard model. Virology 2023; 582:100-105. [PMID: 37043909 DOI: 10.1016/j.virol.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Influenza A viruses are a diverse group of pathogens that have been responsible for millions of human and avian deaths throughout history. Here, we illustrate the transmission potential of H7N9 influenza A virus between Coturnix quail (Coturnix sp.), domestic ducks (Anas platyrhynchos domesticus), chickens (Gallus gallus domesticus), and house sparrows (Passer domesticus) co-housed in an artificial barnyard setting. In each of four replicates, individuals from a single species were infected with the virus. Quail shed virus orally and were a source of infection for both chickens and ducks. Infected chickens transmitted the virus to quail but not to ducks or house sparrows. Infected ducks transmitted to chickens, resulting in seroconversion without viral shedding. House sparrows did not shed virus sufficiently to transmit to other species. These results demonstrate that onward transmission varies by index species, and that gallinaceous birds are more likely to maintain H7N9 than ducks or passerines.
Collapse
Affiliation(s)
- Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Anna Rodriguez
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Central District Health Department, Grand Island, NE, USA
| | - Rachel M Maison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Stephanie M Porter
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - J Jeffrey Root
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| |
Collapse
|
26
|
Yin Y, Liu Y, Fen J, Liu K, Qin T, Chen S, Peng D, Liu X. Characterization of an H7N9 Influenza Virus Isolated from Camels in Inner Mongolia, China. Microbiol Spectr 2023; 11:e0179822. [PMID: 36809036 PMCID: PMC10100662 DOI: 10.1128/spectrum.01798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
The H7N9 subtype of influenza virus can infect birds and humans, causing great losses in the poultry industry and threatening public health worldwide. However, H7N9 infection in other mammals has not been reported yet. In the present study, one H7N9 subtype influenza virus, A/camel/Inner Mongolia/XL/2020 (XL), was isolated from the nasal swabs of camels in Inner Mongolia, China, in 2020. Sequence analyses revealed that the hemagglutinin cleavage site of the XL virus was ELPKGR/GLF, which is a low-pathogenicity molecular characteristic. The XL virus had similar mammalian adaptations to human-originated H7N9 viruses, such as the polymerase basic protein 2 (PB2) Glu-to-Lys mutation at position 627 (E627K) mutation, but differed from avian-originated H7N9 viruses. The XL virus showed a higher SA-α2,6-Gal receptor-binding affinity and better mammalian cell replication than the avian H7N9 virus. Moreover, the XL virus had weak pathogenicity in chickens, with an intravenous pathogenicity index of 0.01, and intermediate virulence in mice, with a median lethal dose of 4.8. The XL virus replicated well and caused clear infiltration of inflammatory cells and increased inflammatory cytokines in the lungs of mice. Our data constitute the first evidence that the low-pathogenicity H7N9 influenza virus can infect camels and therefore poses a high risk to public health. IMPORTANCE H5 subtype avian influenza viruses can cause serious diseases in poultry and wild birds. On rare occasions, viruses can cause cross-species transmission to mammalian species, including humans, pigs, horses, canines, seals, and minks. The H7N9 subtype of the influenza virus can also infect both birds and humans. However, viral infection in other mammalian species has not been reported yet. In this study, we found that the H7N9 virus could infect camels. Notably, the H7N9 virus from camels had mammalian adaption molecular markers, including altered receptor-binding activity on the hemagglutinin protein and an E627K mutation on the polymerase basic protein 2 protein. Our findings indicated that the potential risk of camel-origin H7N9 virus to public health is of great concern.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Juan Fen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
He D, Gu M, Wang X, Yan Y, Li Y, Wang X, Hu S, Liu X. Reintroduction of highly pathogenic avian influenza A H7N9 virus in southwestern China. Virus Genes 2023; 59:479-483. [PMID: 36781818 PMCID: PMC9924862 DOI: 10.1007/s11262-023-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/29/2023] [Indexed: 02/15/2023]
Abstract
Highly pathogenic (HP) avian influenza A H7N9 virus has emerged in China since 2016. In recent years, it has been most prevalent in northern China. However, several strains of HP H7N9 reappeared in southwestern China (Yunnan Province) in 2021. As a result, we are wondering if these viruses have re-emerged in situ or been reintroduced. Here, we present phylogenetic evidence that the HP H7N9 viruses isolated in Yunnan emigrated from northern to southwestern China in 2020. The northern subregion of China has become a novel epicenter in HP H7N9 dissemination. Meanwhile, a cleavage motif re-emerged due to the T341I mutation, implying a parallel evolution. This cross-region transmission, which originated in non-adjacent provinces and traveled a great geographic distance in an unknown way, indicates that HP H7N9 dissemination did not halt in 2020, even under the shadow of the COVID-19 pandemic. Additional surveillance studies in poultry are required to determine the HP H7N9 virus's geographic distribution and spread.
Collapse
Affiliation(s)
- Dongchang He
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Min Gu
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiyue Wang
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Yayao Yan
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Yang Li
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- grid.268415.cAnimal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China ,grid.268415.cJiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
28
|
Liu Q, Yang H, Zhao L, Huang N, Ping J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022; 10:microorganisms10122336. [PMID: 36557591 PMCID: PMC9785332 DOI: 10.3390/microorganisms10122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon β (IFN-β) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i.
Collapse
Affiliation(s)
- Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
29
|
Jiang H, Liu F, Chan TC, Yin J, Huang R, Shen L, Tu S, Kang L, Liu W, Zhao N, Zhang D, Xu W, Li W, Liu S, Huang C. Comparison of clinical characteristics between COVID-19 and H7N9 fatal cases: An observational study. Front Public Health 2022; 10:1047362. [PMID: 36504959 PMCID: PMC9729836 DOI: 10.3389/fpubh.2022.1047362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The outbreak of COVID-19 in 2020 is reminiscent of the H7N9 outbreak in 2013, which poses a huge threat to human health. We aim to compare clinical features and survival factors in fatal cases of COVID-19 and H7N9. Methods Data on confirmed COVID-19 and H7N9 fatal cases identified in mainland China were analyzed to compare demographic characteristics and clinical severity. Survival curves were estimated by the Kaplan-Meier method and compared using log-rank tests and a restricted mean survival time model. A Cox regression model was used to identify survival factors in fatal cases of COVID-19 and H7N9. Results Similar demographic characteristics were observed in fatal cases of COVID-19 and H7N9. The proportion of fatal cases of H7N9 receiving antibiotics, antiviral drugs, and oxygen treatment was higher than that of COVID-19. The potential protective factors for fatal COVID-19 cases were receiving antibiotics (HR: 0.37, 95% CI: 0.22-0.61), oxygen treatment (HR: 0.66, 95% CI: 0.44-0.99), and corticosteroids (HR: 0.46, 95% CI: 0.35-0.62). In contrast, antiviral drugs (HR: 0.21, 95% CI: 0.08-0.56) and corticosteroids (HR: 0.45, 95% CI: 0.29-0.69) were the protective factors for H7N9 fatal cases. Conclusion The proportion of males, those having one or more underlying medical condition, and older age was high in COVID-19 and H7N9 fatal cases. Offering antibiotics, oxygen treatment, and corticosteroids to COVID-19 cases extended the survival time. Continued global surveillance remains an essential component of pandemic preparedness.
Collapse
Affiliation(s)
- Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fangchao Liu
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Jinfeng Yin
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ruowen Huang
- Beijing Normal University School of Mathematical Sciences, Beijing, China
| | - Li Shen
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjin Tu
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Liu
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Di Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wangli Xu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Weimin Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China,Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang, China,*Correspondence: Shelan Liu
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Chaolin Huang
| |
Collapse
|
30
|
Liu S, Yang G, Li M, Sun F, Li Y, Wang X, Gao Y, Yang P. Transcutaneous immunization via dissolving microneedles protects mice from lethal influenza H7N9 virus challenge. Vaccine 2022; 40:6767-6775. [PMID: 36243592 DOI: 10.1016/j.vaccine.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Avian influenza H7N9 virus has first emerged in 2013 and since then has spread in China in five seasonal waves. In humans, influenza H7N9 virus infection is associated with a high fatality rate; thus, an effective vaccine for this virus is needed. In the present study, we evaluated the usefulness of dissolving microneedles (MNs) loaded with influenza H7N9 vaccine in terms of the dissolution time, insertion capacity, insertion depth, and structural integrity of H7N9 virus in vitro. Our in vitro results showed MNs dissolved within 6 mins. The depth of skin penetration was 270 µm. After coating with a matrix material solution, the H7N9 proteins were agglomerated. We detected the H7N9 delivery time and humoral immune response in vivo. In a mouse model, the antigen retention time was longer for MNs than for intramuscular (IM) injection. The humoral response showed that similar to IM administration, MN administration increased the levels of functional and systematic antibodies and protection against the live influenza A/Anhui/01/2013 virus (Ah01/H7N9). The protection level was determined by the analysis of pathological sections of infected lungs. MN and IM administration yielded results superior to those in the control group. Taken together, these findings demonstrate that the use of dissolving MNs to deliver influenza H7N9 vaccines is a promising immunization approach.
Collapse
Affiliation(s)
- Siqi Liu
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China; Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, NL, the Netherlands
| | - Guozhong Yang
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Minghui Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fang Sun
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Yufeng Li
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yunhua Gao
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| |
Collapse
|
31
|
Zhang J, Nian X, Li X, Huang S, Duan K, Li X, Yang X. The Epidemiology of Influenza and the Associated Vaccines Development in China: A Review. Vaccines (Basel) 2022; 10:1873. [PMID: 36366381 PMCID: PMC9692979 DOI: 10.3390/vaccines10111873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/28/2023] Open
Abstract
Influenza prevention and control has been one of the biggest challenges encountered in the public health domain. The vaccination against influenza plays a pivotal role in the prevention of influenza, particularly for the elderly and small children. According to the epidemiology of influenza in China, the nation is under a heavy burden of this disease. Therefore, as a contribution to the prevention and control of influenza in China through the provision of relevant information, the present report discusses the production and batch issuance of the influenza vaccine, analysis of the vaccination status and vaccination rate of the influenza vaccine, and the development trend of the influenza vaccine in China.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Ltd., Beijing 100029, China
| |
Collapse
|
32
|
Liu T, Peng Y, Wu J, Lu S, He Y, Li X, Sun L, Song S, Zhang S, Li Z, Wang X, Zhang S, Liu M, Kou Z. Surveillance of avian influenza viruses in live bird markets of Shandong province from 2013 to 2019. Front Microbiol 2022; 13:1030545. [PMID: 36406436 PMCID: PMC9670132 DOI: 10.3389/fmicb.2022.1030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Avian influenza viruses (AIVs) seriously affect the poultry industry and pose a great threat to humans. Timely surveillance of AIVs is the basis for preparedness of the virus. This study reported the long-term surveillance of AIVs in the live bird market (LBM) of 16 cities in Shandong province from 2013 to 2019. A total of 29,895 samples were obtained and the overall positive rate of AIVs was 9.7%. The H9 was found to be the most predominant subtype in most of the time and contributed most to the monthly positve rate of AIVs as supported by the univariate and multivariate analysis, while H5 and H7 only circulated in some short periods. Then, the whole-genome sequences of 62 representative H9N2 viruses including one human isolate from a 7-year-old boy in were determined and they were genetically similar to each other with the median pairwise sequence identities ranging from 0.96 to 0.98 for all segments. The newly sequenced viruses were most similar to viruses isolated in chickens in mainland China, especially the provinces in Eastern China. Phylogenetic analysis showed that these newly sequenced H9N2 viruses belonged to the same clade for all segments except PB1. Nearly all of these viruses belonged to the G57 genotype which has dominated in China since 2010. Finally, several molecular markers associated with human adaptation, mammalian virulence, and drug resistance were identified in the newly sequenced H9N2 viruses. Overall, the study deepens our understanding of the epidemic and evolution of AIVs and provides a basis for effective control of AIVs in China.
Collapse
Affiliation(s)
- Ti Liu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Julong Wu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Shangwen Lu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Yujie He
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Sun
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Shaoxia Song
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Shengyang Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zhong Li
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xianjun Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Shu Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Mi Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Mi Liu,
| | - Zengqiang Kou
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
- *Correspondence: Zengqiang Kou,
| |
Collapse
|
33
|
Specific Monoclonal Antibodies Targeting Unique HA Epitopes Block H7N9 Influenza A Viral Replication. J Virol 2022; 96:e0123822. [PMID: 36037479 PMCID: PMC9517735 DOI: 10.1128/jvi.01238-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H7N9 subtype influenza A viruses pose a serious threat to public health, and there is still a lack of vaccines or drugs for humans against H7N9 influenza viruses. In this study, we screened two monoclonal antibodies (MAbs), 4H1E8 and 7H9A6, that specifically recognize the hemagglutinin (HA) protein of H7N9 influenza virus and display highly neutralizing activity against H7N9 virus. The epitopes recognized by two MAbs are nearly all conserved within all known H7 subtypes. Characteristic identification showed that two MAbs have high avidity for the HA protein but no hemagglutinin inhibition activity or antibody-dependent cellular cytotoxicity. Mechanistically, the 4H1E8 and 7H9A6 antibodies inhibit the pH-dependent conformational change of HA and block the HA-mediated membrane fusion. More importantly, 4H1E8 and 7H9A6 exhibit promising prophylactic and therapeutic effects against lethal challenge with H7N9 virus. Moreover, 4H1E8- and 7H9A6-treated mice displayed inhibition of pulmonary viral replication and reduced lung lesions after viral challenge. Together, these findings indicate that antibodies 4H1E8 and 7H9A6 recognize unique epitopes in the HA protein and possess the neutralizing activity and protective efficacy against the H7N9 influenza A viruses. IMPORTANCE In 2013, H7N9 influenza viruses appeared in China and other countries resulting in more than 1,500 individual infections or death. There are still limited studies on vaccines or drugs for humans against H7N9 influenza viruses. Alternative approaches against H7N9 virus infection need to be developed. Here, we identified two monoclonal antibodies (4H1E8 and 7H9A6) that possess neutralizing activity by blocking the pH-dependent HA-mediated membrane fusion. Additionally, the two monoclonal antibodies protect mice against the H7N9 virus challenge prophylactically or therapeutically. Therefore, our study demonstrates that 4H1E8 and 7H9A6 could be used for the prevention and treatment of the H7N9 influenza virus, and the conserved epitopes we identified may contribute to the development of a broad H7N9 vaccine and provide insights into unique antiviral approaches.
Collapse
|
34
|
Shi Z, Wei L, Wang P, Wang S, Liu Z, Jiang Y, Wang J. Spatio-temporal spread and evolution of influenza A (H7N9) viruses. Front Microbiol 2022; 13:1002522. [PMID: 36187942 PMCID: PMC9520483 DOI: 10.3389/fmicb.2022.1002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The influenza A (H7N9) virus has been seriously concerned for its potential to cause an influenza pandemic. To understand the spread and evolution process of the virus, a spatial and temporal Bayesian evolutionary analysis was conducted on 2,052 H7N9 viruses isolated during 2013 and 2018. It revealed that the H7N9 virus was probably emerged in a border area of Anhui Province in August 2012, approximately 6 months earlier than the first human case reported. Two major epicenters had been developed in the Yangtze River Delta and Peral River Delta regions by the end of 2013, and from where the viruses have also spread to other regions at an average speed of 6.57 km/d. At least 24 genotypes showing have been developed and each of them showed a distinct spatio-temporal distribution pattern. Furthermore, A random forest algorithm-based model has been developed to predict the occurrence risk of H7N9 virus. The model has a high overall forecasting precision (> 97%) and the monthly H7N9 occurrence risk for each county of China was predicted. These findings provide new insights for a comprehensive understanding of the origin, evolution, and occurrence risk of H7N9 virus. Moreover, our study also lays a theoretical basis for conducting risk-based surveillance and prevention of the disease.
Collapse
|
35
|
A dominant internal gene cassette of high pathogenicity avian influenza H7N9 virus raised since 2018. Virus Genes 2022; 58:584-588. [PMID: 35974285 PMCID: PMC9380661 DOI: 10.1007/s11262-022-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
The zoonotic H7N9 avian influenza virus emerged with the H9N2-origin internal gene cassette. Previous studies have reported that genetic reassortments with H9N2 were common in the first five human H7N9 epidemic waves. However, our latest work found that the circulating high pathogenicity H7N9 virus has established a dominant internal gene cassette and has decreased the frequency of reassortment with H9N2 since 2018. This dominant cassette of H7N9 was distinct from the cocirculating H9N2, although they shared a common ancestor. As a result, we suppose that this dominant cassette may benefit the viral population fitness and promote its continuous circulation in chickens.
Collapse
|
36
|
Feng H, Wang Z, Zhu P, Wu L, Shi J, Li Y, Shu J, He Y, Kong H. ARNT Inhibits H5N1 Influenza A Virus Replication by Interacting with the PA Protein. Viruses 2022; 14:v14071347. [PMID: 35891329 PMCID: PMC9318437 DOI: 10.3390/v14071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Increasing evidence suggests that the polymerase acidic (PA) protein of influenza A viruses plays an important role in viral replication and pathogenicity. However, information regarding the interaction(s) of host factors with PA is scarce. By using a yeast two-hybrid screen, we identified a novel host factor, aryl hydrocarbon receptor nuclear translocator (ARNT), that interacts with the PA protein of the H5N1 virus. The interaction between PA and human ARNT was confirmed by co-immunoprecipitation and immunofluorescence microscopy. Moreover, overexpression of ARNT downregulated the polymerase activity and inhibited virus propagation, whereas knockdown of ARNT significantly increased the polymerase activity and virus replication. Mechanistically, overexpression of ARNT resulted in the accumulation of PA protein in the nucleus and inhibited both the replication and transcription of the viral genome. Interaction domain mapping revealed that the bHLH/PAS domain of ARNT mainly interacted with the C-terminal domain of PA. Together, our results demonstrate that ARNT inhibits the replication of the H5N1 virus and could be a target for the development of therapeutic strategies against H5N1 influenza viruses.
Collapse
Affiliation(s)
- Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.F.); (J.S.); (Y.H.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Zeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Pengyang Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Li Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.F.); (J.S.); (Y.H.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.F.); (J.S.); (Y.H.)
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
- Correspondence:
| |
Collapse
|
37
|
He D, Wang X, Wu H, Wang X, Yan Y, Li Y, Zhan T, Hao X, Hu J, Hu S, Liu X, Ding C, Su S, Gu M, Liu X. Genome-Wide Reassortment Analysis of Influenza A H7N9 Viruses Circulating in China during 2013-2019. Viruses 2022; 14:v14061256. [PMID: 35746727 PMCID: PMC9230085 DOI: 10.3390/v14061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Reassortment with the H9N2 virus gave rise to the zoonotic H7N9 avian influenza virus (AIV), which caused more than five outbreak waves in humans, with high mortality. The frequent exchange of genomic segments between H7N9 and H9N2 has been well-documented. However, the reassortment patterns have not been described and are not yet fully understood. Here, we used phylogenetic analyses to investigate the patterns of intersubtype and intrasubtype/intralineage reassortment across the eight viral segments. The H7N9 virus and its progeny frequently exchanged internal genes with the H9N2 virus but rarely with the other AIV subtypes. Before beginning the intrasubtype/intralineage reassortment analyses, five Yangtze River Delta (YRD A-E) and two Pearl River Delta (PRD A-B) clusters were divided according to the HA gene phylogeny. The seven reset segment genes were also nomenclatured consistently. As revealed by the tanglegram results, high intralineage reassortment rates were determined in waves 2–3 and 5. Additionally, the clusters of PB2 c05 and M c02 were the most dominant in wave 5, which could have contributed to the onset of the largest H7N9 outbreak in 2016–2017. Meanwhile, a portion of the YRD-C cluster (HP H7N9) inherited their PB2, PA, and M segments from the co-circulating YRD-E (LP H7N9) cluster during wave 5. Untanglegram results revealed that the reassortment rate between HA and NA was lower than HA with any of the other six segments. A multidimensional scaling plot revealed a robust genetic linkage between the PB2 and PA genes, indicating that they may share a co-evolutionary history. Furthermore, we observed relatively more robust positive selection pressure on HA, NA, M2, and NS1 proteins. Our findings demonstrate that frequent reassortment, particular reassorted patterns, and adaptive mutations shaped the H7N9 viral genetic diversity and evolution. Increased surveillance is required immediately to better understand the current state of the HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Yang Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| |
Collapse
|
38
|
The relationship among avian influenza, gut microbiota and chicken immunity: An updated overview. Poult Sci 2022; 101:102021. [PMID: 35939896 PMCID: PMC9386105 DOI: 10.1016/j.psj.2022.102021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
The alimentary tract in chickens plays a crucial role in immune cell formation and immune challenges, which regulate intestinal flora and sustain extra-intestinal immunity. The interaction between pathogenic microorganisms and the host commensal microbiota as well as the variety and integrity of gut microbiota play a vital role in health and disease conditions. Thus, several studies have highlighted the importance of gut microbiota in developing immunity against viral infections in chickens. The gut microbiota (such as different species of Lactobacillus, Blautia Bifidobacterium, Faecalibacterium, Clostridium XlVa, and members of firmicutes) encounters different pathogens through different mechanisms. The digestive tract is a highly reactive environment, and infectious microorganisms can disturb its homeostasis, resulting in dysbiosis and mucosal infections. Avian influenza viruses (AIV) are highly infectious zoonotic viruses that lead to severe economic losses and pose a threat to the poultry industry worldwide. AIV is a challenging virus that affects gut integrity, disrupts microbial homeostasis and induces inflammatory damage in the intestinal mucosa. H9N2 AIV infection elevates the expression of proinflammatory cytokines, such as interferon (IFN-γ and IFNα) and interleukins (IL-17A and IL-22), and increases the proliferation of members of proteobacteria, particularly Escherichia coli. On the contrary, it decreases the proliferation of certain beneficial bacteria, such as Enterococcus, Lactobacillus and other probiotic microorganisms. In addition, H9N2 AIV decreases the expression of primary gel-forming mucin, endogenous trefoil factor family peptides and tight junction proteins (ZO-1, claudin 3, and occludin), resulting in severe intestinal damage. This review highlights the relationship among AIV, gut microbiota and immunity in chicken.
Collapse
|
39
|
Ye Y, Ye Z, Yang L, Xiang B, Zheng C. Unignorable public health risk of avian influenza virus during COVID-19 pandemic. J Med Virol 2022; 94:4058-4060. [PMID: 35581678 PMCID: PMC9347936 DOI: 10.1002/jmv.27864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Ye
- Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.,Jiangxi Engineering Research Center for Animal Health Products, Nanchang, 330045, China
| | - Zaijiao Ye
- Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Cheung CSF, Gorman J, Andrews SF, Rawi R, Reveiz M, Shen CH, Wang Y, Harris DR, Nazzari AF, Olia AS, Raab J, Teng IT, Verardi R, Wang S, Yang Y, Chuang GY, McDermott AB, Zhou T, Kwong PD. Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure 2022; 30:993-1003.e6. [PMID: 35489332 DOI: 10.1016/j.str.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Several influenza antibodies with broad group 2 neutralization have recently been isolated. Here, we analyze the structure, class, and binding of one of these antibodies from an H7N9 vaccine trial, 315-19-1D12. The cryo-EM structure of 315-19-1D12 Fab in complex with the hemagglutinin (HA) trimer revealed the antibody to recognize the helix A region of the HA stem, at the supersite of vulnerability recognized by group 1-specific and by cross-group-neutralizing antibodies. 315-19-1D12 was derived from HV1-2 and KV2-28 genes and appeared to form a new antibody class. Bioinformatic analysis indicated its group 2 neutralization specificity to be a consequence of four key residue positions. We specifically tested the impact of the group 1-specific N33 glycan, which decreased but did not abolish group 2 binding of 315-19-1D12. Overall, this study highlights the recognition of a broad group 2-neutralizing antibody, revealing unexpected diversity in neutralization specificity for antibodies that recognize the HA stem supersite.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mateo Reveiz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Emergence, Evolution, and Biological Characteristics of H10N4 and H10N8 Avian Influenza Viruses in Migratory Wild Birds Detected in Eastern China in 2020. Microbiol Spectr 2022; 10:e0080722. [PMID: 35389243 PMCID: PMC9045299 DOI: 10.1128/spectrum.00807-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
H10Nx influenza viruses have caused increasing public concern due to their occasional infection of humans. However, the genesis and biological characteristics of H10 viruses in migratory wild birds are largely unknown. In this study, we conducted active surveillance to monitor circulation of avian influenza viruses in eastern China and isolated five H10N4 and two H10N8 viruses from migratory birds in 2020. Genetic analysis indicated that the hemagglutinin (HA) genes of the seven H10 viruses were clustered into the North American lineage and established as a novel Eurasian branch in wild birds in South Korea, Bangladesh, and China. The neuraminidase (NA) genes of the H10N4 and H10N8 viruses originated from the circulating HxN4 and H5N8 viruses in migratory birds in Eurasia. We further revealed that some of the novel H10N4 and H10N8 viruses acquired the ability to bind human-like receptors. Animal studies indicated that these H10 viruses can replicate in mice, chickens, and ducks. Importantly, we found that the H10N4 and H10N8 viruses can transmit efficiently among chickens and ducks but induce lower HA inhibition (HI) antibody titers in ducks. These findings emphasized that annual surveillance in migratory waterfowl should be strengthened to monitor the introduction of wild-bird H10N4 and H10N8 reassortants into poultry. IMPORTANCE The emerging avian influenza reassortants and mutants in birds pose an increasing threat to poultry and public health. H10 avian influenza viruses are widely prevalent in wild birds, poultry, seals, and minks and pose an increasing threat to human health. The occasional human infections with H10N8 and H10N3 viruses in China have significantly increased public concern about the potential pandemic risk posed by H10 viruses. In this study, we found that the North American H10 viruses have been successfully introduced to Asia by migratory birds and further reassorted with other subtypes to generate novel H10N4 and H10N8 viruses in eastern China. These emerging H10 reassortants have a high potential to threaten the poultry industry and human health due to their efficient replication and transmission in chickens, ducks, and mice.
Collapse
|
42
|
Li G, Feng J, Quan K, Sun Z, Yin Y, Yin Y, Chen S, Qin T, Peng D, Liu X. Generation of an avian influenza DIVA vaccine with a H3-peptide replacement located at HA2 against both highly and low pathogenic H7N9 virus. Virulence 2022; 13:530-541. [PMID: 35286234 PMCID: PMC8928850 DOI: 10.1080/21505594.2022.2040190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A differentiating infected from vaccinated animals (DIVA) vaccine is an ideal strategy for viral eradication in poultry. Here, according to the emerging highly pathogenic H7N9 avian influenza virus (AIV), a DIVA vaccine strain, named rGD4HALo-mH3-TX, was successfully developed, based on a substituted 12 peptide of H3 virus located at HA2. In order to meet with the safety requirement of vaccine production, the multi-basic amino acid located at the HA cleavage site was modified. Meanwhile, six inner viral genes from a H9N2 AIV TX strainwere introduced for increasing viral production. The rGD4HALo-mH3-TX strain displayed a similar reproductive ability with rGD4 and low pathogenicity in chickens, suggesting a good productivity and safety. In immuned chickens, rGD4HALo-mH3-TX induced a similar antibody level with rGD4 and provided 100% clinical protection and 90% shedding protection against highly pathogenic virus challenge. rGD4HALo-mH3-TX strain also produced a good cross-protection against low pathogenic AIV JD/17. Moreover, serological DIVA characteristics were evaluated by a successfully established competitive inhibition ELISA based on a 3G10 monoclonal antibody, and the result showed a strong reactivity with antisera of chickens vaccinated with H7 subtype strains but not rGD4HALo-mH3-TX. Collectedly, rGD4HALo-mH3-TX is a promising DIVA vaccine candidate against both high and low pathogenic H7N9 subtype AIV.
Collapse
Affiliation(s)
- Gang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Juan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhihao Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yinyan Yin
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
43
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
44
|
The molecular determinants of antigenic drift in a novel avian influenza A (H9N2) variant virus. Virol J 2022; 19:26. [PMID: 35123509 PMCID: PMC8817646 DOI: 10.1186/s12985-022-01755-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background In early 2020, a novel H9N2 AIV immune escape variant emerged in South China and rapidly spread throughout mainland China. The effectiveness of the current H9N2 vaccine is being challenged by emerging immune escape strains. Assessing key amino acid substitutions that contribute to antigenic drift and immune escape in the HA gene of circulating strains is critical for understanding virus evolution and in selecting more effective vaccine components. Methods In this study, a representative immune escape strain, A/chicken/Fujian/11/2020 (FJ/20), differed from current H9N2 vaccine strain, A/chicken/Anhui/LH99/2017 (AH/17) by 18 amino acids in the head domain in HA protein. To investigate the molecular determinants of antigenic drift of FJ/20, a panel of mutants were generated by reverse genetics including specific amino acids changes in the HA genes of FJ/20 and AH/17. The antigenic effect of the substitutions was evaluated by hemagglutination inhibition (HI) assay and antigenic cartography. Results Fujian-like H9N2 viruses had changed antigenicity significantly, having mutated into an antigenically distinct sub-clade. Relative to the titers of the vaccine virus AH/17, the escape strain FJ/20 saw a 16-fold reduction in HI titer against antiserum elicited by AH/17. Our results showed that seven residue substitutions (D127S, G135D, N145T, R146Q, D179T, R182T and T183N) near the HA receptor binding sites were critical for converting the antigenicity of both AH/17 and FJ/20. Especially, the combined mutations 127D, 135G, 145N, and 146R could be a major factor of antigenic drift in the current immune escape variant FJ/20. The avian influenza A (H9N2) variant virus need further ongoing epidemiological surveillance. Conclusions In this study, we evaluated the relative contributions of different combinations of amino acid substitutions in the HA globular head domain of the immune escape strain FJ/20 and the vaccine strain AH/17. Our study provides more insights into the molecular mechanism of the antigenic drift of the H9N2 AIV immune escape strain. This work identified important markers for understanding H9N2 AIV evolution as well as for improving vaccine development and control strategies in poultry. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01755-9.
Collapse
|
45
|
Yin L, Liu S, Shi H, Feng Y, Zhang Y, Wu D, Song Z, Zhang L. Subcellular Proteomic Analysis Reveals Dysregulation in Organization of Human A549 Cells Infected with Influenza Virus H7N9. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164619666211222145450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
H7N9 influenza virus poses a high risk to human beings and proteomic evaluations of these infections may help to better understand its pathogenic mechanisms in human systems. Objective: To find membrane proteins related to H7N9 infection.
Methods:
Here, we infected primary human alveolar adenocarcinoma epithelial cells (A549) cells with H7N9 (including wild and mutant strains) and then produced enriched cellular membrane isolations which were evaluated by western blot. The proteins in these cell membrane fractions were analyzed using the isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteome technologies.
Results:
Differentially expressed proteins (n = 32) were identified following liquid chromatography-tandem mass spectrometry, including 20 down-regulated proteins such as CD44 antigen, and CD151 antigen, and 12 up-regulated proteins such as tight junction protein ZO-1, and prostaglandin reductase 1. Gene Ontology database searching revealed that 20 out of the 32 differentially expressed proteins were localized to the plasma membrane. These proteins were primarily associated with cellular component organization (n = 20), and enriched in the Reactome pathway of extracellular matrix organization (n = 4).
Conclusion:
These findings indicate that H7N9 may dysregulate cellular organization via specific alterations to the protein profile of the plasma membrane.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
46
|
He D, Gu M, Wang X, Wang X, Li G, Yan Y, Gu J, Zhan T, Wu H, Hao X, Wang G, Hu J, Hu S, Liu X, Su S, Ding C, Liu X. Spatiotemporal Associations and Molecular Evolution of Highly Pathogenic Avian Influenza A H7N9 Virus in China from 2017 to 2021. Viruses 2021; 13:2524. [PMID: 34960793 PMCID: PMC8705967 DOI: 10.3390/v13122524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chan Ding
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
47
|
Song Y, Huang H, Hu Y, Zhang J, Li F, Yin X, Shi J, Li Y, Li C, Zhao D, Chen H. A genome-wide CRISPR/Cas9 gene knockout screen identifies immunoglobulin superfamily DCC subclass member 4 as a key host factor that promotes influenza virus endocytosis. PLoS Pathog 2021; 17:e1010141. [PMID: 34871331 PMCID: PMC8675923 DOI: 10.1371/journal.ppat.1010141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Influenza virus infection is dependent on host cellular factors, and identification of these factors and their underlying mechanisms can provide important information for the development of strategies to inhibit viral infection. Here, we used a highly pathogenic H5N1 influenza virus to perform a genome-wide CRISPR/Cas9 gene knockout screen in human lung epithelial cells (A549 cells), and found that knockout of transmembrane protein immunoglobulin superfamily DCC subclass member 4 (IGDCC4) significantly reduced the replication of the virus in A549 cells. Further studies showed that IGDCC4 interacted with the viral hemagglutinin protein and facilitated virus internalization into host cells. Animal infection studies showed that replication of H5N1 virus in the nasal turbinates, lungs, and kidneys of IGDCC4-knockout mice was significantly lower than that in the corresponding organs of wild-type mice. Half of the IGDCC4-knockout mice survived a lethal H5N1 virus challenge, whereas all of the wild-type mice died within 11 days of infection. Our study identifies a novel host factor that promotes influenza virus infection by facilitating internalization and provides insights that will support the development of antiviral therapies.
Collapse
Affiliation(s)
- Yangming Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People’s Republic of China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Haixiang Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiwen Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Fang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dongming Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail: (DZ); (HC)
| | - Hualan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People’s Republic of China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail: (DZ); (HC)
| |
Collapse
|
48
|
Hu J, Peng P, Li J, Zhang Q, Li R, Wang X, Gu M, Hu Z, Hu S, Liu X, Jiao X, Peng D, Liu X. Single Dose of Bivalent H5 and H7 Influenza Virus-Like Particle Protects Chickens Against Highly Pathogenic H5N1 and H7N9 Avian Influenza Viruses. Front Vet Sci 2021; 8:774630. [PMID: 34859093 PMCID: PMC8632145 DOI: 10.3389/fvets.2021.774630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Both H5N1 and H7N9 subtype avian influenza viruses cause enormous economic losses and pose considerable threats to public health. Bivalent vaccines against both two subtypes are more effective in control of H5N1 and H7N9 viruses in poultry and novel egg-independent vaccines are needed. Herein, H5 and H7 virus like particle (VLP) were generated in a baculovirus expression system and a bivalent H5+H7 VLP vaccine candidate was prepared by combining these two antigens. Single immunization of the bivalent VLP or commercial inactivated vaccines elicited effective antibody immune responses, including hemagglutination inhibition, virus neutralizing and HA-specific IgG antibodies. All vaccinated birds survived lethal challenge with highly pathogenic H5N1 and H7N9 viruses. Furthermore, the bivalent VLP significantly reduced viral shedding and virus replication in chickens, which was comparable to that observed for the commercial inactivated vaccine. However, the bivalent VLP was better than the commercial vaccine in terms of alleviating pulmonary lesions caused by H7N9 virus infection in chickens. Therefore, our study suggests that the bivalent H5+H7 VLP vaccine candidate can serve as a critical alternative for the traditional egg-based inactivated vaccines against H5N1 and H7N9 avian influenza virus infection in poultry.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Rumeng Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
49
|
Abstract
A 2-year surveillance study of influenza A viruses in migratory birds was conducted to understand the subsequent risk during the migratory seasons in Dandong Yalu River Estuary Coastal Wetland National Nature Reserve, Liaoning Province, China, a major stopover site on the East Asian-Australasian flyway. Overall, we isolated 27 influenza A viruses with multiple subtypes, including H3N8 (n = 2), H4N6 (n = 2), H4N7 (n = 2), H7N4 (n = 9), H7N7 (n = 1), H10N7 (n = 7), and H13N6 (n = 4). Particularly, a novel reassortant influenza A(H7N4) virus was first identified in a woman and her backyard poultry flock in Jiangsu Province, China, posing a serious threat to public health. Here, we describe the genetic characterization and pathogenicity of the nine influenza A(H7N4) isolates. Phylogenetic analysis indicated that complex viral gene flow occurred among Asian countries. We also demonstrated a similar evolutionary trajectory of the surface genes of the A(H7N4) isolates and Jiangsu human-related A(H7N4) viruses. Our A(H7N4) isolates exhibited differing degrees of virulence in mice, suggesting a potential risk to other mammalian species, including humans. We revealed multiple mutations that might affect viral virulence in mice. Our report highlights the importance and need for the long-term surveillance of avian influenza virus in migratory birds combined with domestic poultry surveillance along migratory routes and flyways and, thereby, the development of measures to manage potential health threats. IMPORTANCE The H7 subtype avian influenza viruses, such as H7N2, H7N3, H7N4, H7N7, and H7N9, were documented as being capable of infecting humans, and the H7 subtype low pathogenicity avian influenza viruses are capable of mutating into highly pathogenic avian influenza; therefore, they pose a serious threat to public health. Here, we investigated the evolutionary history, molecular characteristics, and pathogenicity of shorebird-origin influenza A(H7N4) viruses, showing a similar evolutionary trajectory with Jiangsu human A(H7N4) viruses in HA and NA genes. Moreover, our isolates exhibited variable virulence (including moderate virulence) in mice, suggesting a potential risk to other mammalian species, including humans.
Collapse
|
50
|
Development of an Inactivated H7N9 Subtype Avian Influenza Serological DIVA Vaccine Using the Chimeric HA Epitope Approach. Microbiol Spectr 2021; 9:e0068721. [PMID: 34585985 PMCID: PMC8557892 DOI: 10.1128/spectrum.00687-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H7N9 avian influenza virus (AIV) is an emerging zoonotic pathogen, and it is necessary to develop a differentiating infected from vaccinated animals (DIVA) vaccine for the purpose of eradication. H7N9 subtype AIV hemagglutinin subunit 2 glycoprotein (HA2) peptide chips and antisera of different AIV subtypes were used to screen H7N9 AIV-specific epitopes. A selected specific epitope in the HA2 protein of H7N9 AIV strain A/Chicken/Huadong/JD/17 (JD/17) was replaced with an epitope from an H3N2 subtype AIV strain by reverse genetics. The protection and serological DIVA characteristics of the recombinant H7N9 AIV strain were evaluated. The results showed that a specific epitope on the HA2 protein of H7N9 AIV, named the H7-12 peptide, was successfully screened. The recombinant H7N9 AIV with a modified epitope in the HA2 protein was rescued and named A/Chicken/Huadong/JD-cHA/17 (JD-cHA/17). The HA titer of JD-cHA/17 was 10 log2, and the 50% egg infective dose (EID50) titer was 9.67 log10 EID50/ml. Inactivated JD-cHA/17 induced a hemagglutination inhibition (HI) antibody titer similar that of the parent strain and provided 100% protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. A peptide chip coated with H7-12 peptide was successfully applied to detect the seroconversion of chickens infected or vaccinated with JD/17, while there was no reactivity with antisera of chickens vaccinated with JD-cHA/17. Therefore, the marked vaccine candidate JD-cHA/17 can be used as a DIVA vaccine against H7N9 avian influenza when combined with an H7-12 peptide chip, making it a useful tool for stamping out the H7N9 AIV. IMPORTANCE DIVA vaccine is a useful tool for eradicating avian influenza, especially for highly pathogenic avian influenza. Several different DIVA strategies have been proposed for avian influenza inactivated whole-virus vaccine, involving the neuraminidase (NA), nonstructural protein 1 (NS1), matrix protein 2 ectodomain (M2e), or HA2 gene. However, virus reassortment, residual protein in a vaccine component, or reduced vaccine protection may limit the application of these DIVA strategies. Here, we constructed a novel chimeric H7N9 AIV, JD-cHA/17, that expressed the entire HA protein with substitution of an H3 AIV epitope in HA2. The chimeric H7N9 recombinant vaccine provides full clinical protection against high-pathogenicity or low-pathogenicity H7N9 AIV challenge. Combined with a short-peptide-based microarray chip containing the H7N9 AIV epitope in HA2, our finding is expected to be useful as a marker vaccine designed for avian influenza.
Collapse
|