1
|
Wang J, Yang L, Xu B, Cao R, Charagh S, Hui S, Zhou L, Zhang Y, Chen Y, Sheng Z, Jiao G, Shao G, Wang L, Zhao F, Xie L, Lyu Y, Tang S, Hu S, Hu P. Chloroplast-localized transporter OsNTP1 mediates cadmium transport from root to shoot and sugar metabolism in rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136766. [PMID: 39644857 DOI: 10.1016/j.jhazmat.2024.136766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Cadmium (Cd) is an element with high toxicity to living organisms, and its accumulation in rice grains poses a threat to human health. In this study, we report a novel nickel-transport family protein, OsNTP1, that is involved in Cd transport from root to shoot. Heterologous expression of OsNTP1 in yeast enhanced Ni and Cd tolerance. In rice, the transporter OsNTP1 is localized at the chloroplast and the expression of OsNTP1 was rapidly induced by Cd treatment. Under Cd²⁺ treatment, the Cd content in the shoots of OsNTP1-RNAi lines was significantly increased. Notably, knockdown of OsNTP1 significantly reduces Cd accumulation in the grains, highlighting its critical role in minimizing Cd contamination in edible parts of the plant. In addition, knockout or knockdown OsNTP1 also increased sensitivity to sucrose. Sucrose treatment led to more starch particles at the OsNTP1-RNAi shoot base, and exogenous sucrose can alleviate the inhibitory effects of Cd stress on sugar metabolism and starch synthesis in OsNTP1-RNAi lines. The present study provides a new genetic resource for breeding low-Cd grains and exploring the response mechanisms of sugar metabolism to Cd stress.
Collapse
Affiliation(s)
- Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yujuan Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Ling Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yusong Lyu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
2
|
Barroso IG, Nascimento BB, Ferreira C, Terra WR. Water fluxes and nutrient absorption along the midgut of three hemipterans, Mahanarva fimbriolata, Dysdercus peruvianus, and Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111773. [PMID: 39515658 DOI: 10.1016/j.cbpa.2024.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Hemiptera Order comprises insect species adapted to different diets regarding water and nutrient content and availability, thus suggesting different combinations of proteins to ensure their absorption. To find out whether hemipterans use the same or distinct set of proteins and whether these differences are related to the phylogeny or the diet, RNAseq analyses were conducted in gut sections of three hemipterans, M. fimbriolata, D. peruvianus, and R. prolixus, with remarkable distinct diet. Since only a few of the selected proteins were functionally characterized, the coded putative proteins were manually curated by bioinformatics to infer their physiological function. The results suggest a relationship between gene expression patterns and water and nutrient dietary content and availability. In contrast, putative gene expansions and deletions are related to phylogeny, corresponding to evolutionary adaptations of ancestral forms to feed on xylem, cotton seeds, and blood, resulting in more resemblances between D. peruvianus and R. prolixus than M. fimbriolata. M. fimbriolata absorbs water through aquaporins Drip and Prip in the filtration chamber by passive diffusion, with a higher contribution of water-selective Drip. D. peruvianus water absorption involves Drip and Prip, but Prip contribution appears to be higher, and they probably cooperate with water-ion cotransporters in the posterior midgut. R. prolixus absorbs water in the anterior midgut involving a sodium transporter and a putative water-urea Prip. Sugars, amino acids, and lipids might be absorbed along the midgut in the three species, with a higher contribution of the posterior midgut for amino acid and lipid absorption in M. fimbriolata and D. peruvianus and the middle midgut in R. prolixus.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Bárbara B Nascimento
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
3
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
4
|
Jia H, Wu Y, Zhang M, Ye J, Du D, Wang H. Role of phosphorus on the biogeochemical behavior of cadmium in the contaminated soil under leaching and pot experiments. J Environ Sci (China) 2024; 137:488-499. [PMID: 37980033 DOI: 10.1016/j.jes.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Phosphorus (P) is involved in various biochemical reactions in plant growth, so it is beneficial to plants growing in soils contaminated by metals, including cadmium (Cd). However, few studies have reported on the mechanistic roles of P in mitigating Cd toxicity to ryegrass root, and especially in alleviating the disruption of the mitochondrial function of living cells. In this study, the physiological and biochemical mechanisms associated with ryegrass growth under various Cd and P treatments were investigated using leaching and pot systems. The concentration of Cd in soil leachates showed a significantly positive relationship with redox potential (P < 0.05), but negative relationship (P < 0.05) with leachate pH values and dissolved organic carbon (DOC), indicating that exogenous P addition (as H2PO4-) may decrease Cd leaching from contaminated soil. Compared to the control (without P addition), the cumulative Cd content was reduced by 53.3% and 64.5% in the soil leachate with exogenous P application (20 mg/L and 80 mg/L), respectively. Notably, application of P decreased the Cd concentrations in the symplastic fractions and increased the Cd concentrations in the apoplastic fractions in root tips, which may help to alleviate Cd stress to the protoplast. Moreover, exogenous P was found to play a positive role in mitochondrial function and Ca2+ variation in root cells under Cd stress, which provides novel insights into the mechanisms of exogenous P in alleviating plant Cd injury.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifan Wu
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Mengqi Zhang
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Jinhui Ye
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - He Wang
- Xuzhou Medical University, Affiliated Hospital, Xuzhou 221004, China.
| |
Collapse
|
5
|
Tubergen PJ, Medlock G, Moore A, Zhang X, Papin JA, Danna CH. A computational model of Pseudomonas syringae metabolism unveils a role for branched-chain amino acids in Arabidopsis leaf colonization. PLoS Comput Biol 2023; 19:e1011651. [PMID: 38150474 PMCID: PMC10775980 DOI: 10.1371/journal.pcbi.1011651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/09/2024] [Accepted: 11/02/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial pathogens adapt their metabolism to the plant environment to successfully colonize their hosts. In our efforts to uncover the metabolic pathways that contribute to the colonization of Arabidopsis thaliana leaves by Pseudomonas syringae pv tomato DC3000 (Pst DC3000), we created iPst19, an ensemble of 100 genome-scale network reconstructions of Pst DC3000 metabolism. We developed a novel approach for gene essentiality screens, leveraging the predictive power of iPst19 to identify core and ancillary condition-specific essential genes. Constraining the metabolic flux of iPst19 with Pst DC3000 gene expression data obtained from naïve-infected or pre-immunized-infected plants, revealed changes in bacterial metabolism imposed by plant immunity. Machine learning analysis revealed that among other amino acids, branched-chain amino acids (BCAAs) metabolism significantly contributed to the overall metabolic status of each gene-expression-contextualized iPst19 simulation. These predictions were tested and confirmed experimentally. Pst DC3000 growth and gene expression analysis showed that BCAAs suppress virulence gene expression in vitro without affecting bacterial growth. In planta, however, an excess of BCAAs suppress the expression of virulence genes at the early stages of infection and significantly impair the colonization of Arabidopsis leaves. Our findings suggesting that BCAAs catabolism is necessary to express virulence and colonize the host. Overall, this study provides valuable insights into how plant immunity impacts Pst DC3000 metabolism, and how bacterial metabolism impacts the expression of virulence.
Collapse
Affiliation(s)
- Philip J. Tubergen
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Greg Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anni Moore
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cristian H. Danna
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
6
|
Stanton C, Rodríguez-Celma J, Krämer U, Sanders D, Balk J. BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5767-5782. [PMID: 37393944 PMCID: PMC10540732 DOI: 10.1093/jxb/erad243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/01/2023] [Indexed: 07/04/2023]
Abstract
The mineral micronutrients zinc (Zn) and iron (Fe) are essential for plant growth and human nutrition, but interactions between the homeostatic networks of these two elements are not fully understood. Here we show that loss of function of BTSL1 and BTSL2, which encode partially redundant E3 ubiquitin ligases that negatively regulate Fe uptake, confers tolerance to Zn excess in Arabidopsis thaliana. Double btsl1 btsl2 mutant seedlings grown on high Zn medium accumulated similar amounts of Zn in roots and shoots to the wild type, but suppressed the accumulation of excess Fe in roots. RNA-sequencing analysis showed that roots of mutant seedlings had relatively higher expression of genes involved in Fe uptake (IRT1, FRO2, and NAS) and in Zn storage (MTP3 and ZIF1). Surprisingly, mutant shoots did not show the transcriptional Fe deficiency response which is normally induced by Zn excess. Split-root experiments suggested that within roots the BTSL proteins act locally and downstream of systemic Fe deficiency signals. Together, our data show that constitutive low-level induction of the Fe deficiency response protects btsl1 btsl2 mutants from Zn toxicity. We propose that BTSL protein function is disadvantageous in situations of external Zn and Fe imbalances, and formulate a general model for Zn-Fe interactions in plants.
Collapse
Affiliation(s)
- Camilla Stanton
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Dale Sanders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
8
|
Maurus I, Harting R, Herrfurth C, Starke J, Nagel A, Mohnike L, Chen YY, Schmitt K, Bastakis E, Süß MT, Leonard M, Heimel K, Valerius O, Feussner I, Kronstad JW, Braus GH. Verticillium dahliae Vta3 promotes ELV1 virulence factor gene expression in xylem sap, but tames Mtf1-mediated late stages of fungus-plant interactions and microsclerotia formation. PLoS Pathog 2023; 19:e1011100. [PMID: 36716333 PMCID: PMC9910802 DOI: 10.1371/journal.ppat.1011100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Verticillium transcription activator of adhesion 3 (Vta3) is required for plant root colonization and pathogenicity of the soil-borne vascular fungus Verticillium dahliae. RNA sequencing identified Vta3-dependent genetic networks required for growth in tomato xylem sap. Vta3 affects the expression of more than 1,000 transcripts, including candidates with predicted functions in virulence and morphogenesis such as Egh16-like virulence factor 1 (Elv1) and Master transcription factor 1 (Mtf1). The genes encoding Elv1 and Mtf1 were deleted and their functions in V. dahliae growth and virulence on tomato (Solanum lycopersicum) plants were investigated using genetics, plant infection experiments, gene expression studies and phytohormone analyses. Vta3 contributes to virulence by promoting ELV1 expression, which is dispensable for vegetative growth and conidiation. Vta3 decreases disease symptoms mediated by Mtf1 in advanced stages of tomato plant colonization, while Mtf1 induces the expression of fungal effector genes and tomato pathogenesis-related protein genes. The levels of pipecolic and salicylic acids functioning in tomato defense signaling against (hemi-) biotrophic pathogens depend on the presence of MTF1, which promotes the formation of resting structures at the end of the infection cycle. In summary, the presence of VTA3 alters gene expression of virulence factors and tames the Mtf1 genetic subnetwork for late stages of plant disease progression and subsequent survival of the fungus in the soil.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Lennart Mohnike
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ying-Yu Chen
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Marian T. Süß
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry and Service Unit for Metabolomics and Lipidomics, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- * E-mail:
| |
Collapse
|
9
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
10
|
Kabir AH, Ela EJ, Bagchi R, Rahman MA, Peiter E, Lee KW. Nitric oxide acts as an inducer of Strategy-I responses to increase Fe availability and mobilization in Fe-starved broccoli (Brassica oleracea var. oleracea). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:182-192. [PMID: 36423388 DOI: 10.1016/j.plaphy.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) deficiency causes reduced growth and yield in broccoli. This study elucidates how sodium nitroprusside (SNP), known as nitric oxide (NO) donor, mitigates the retardation caused by Fe deficiency in broccoli. The SNP caused substantial nitric oxide accumulation in the roots of Fe-deficient plants, which resulted in a significant improvement in chlorophyll levels, photosynthetic efficiency, and morphological growth parameters, showing that it has a favorable influence on recovering broccoli health. Ferric reductase activity and the expression of BoFRO1 (ferric chelate reductase) gene in roots were consistently increased by SNP under Fe deficiency, which likely resulted in increased Fe mobilization. Furthermore, proton (H+) extrusion and BoHA2 (H+-ATPase 2) expression were significantly increased, suggesting that they may be involved in lowering rhizospheric pH to restore Fe mobilization in roots of bicarbonate-treated broccoli plants. The levels of Fe in root and shoot tissues and the expression of BoIRT1 (Fe-regulated transporter) both increased dramatically after SNP supplementation under Fe deprivation. Furthermore, SNP-induced increase in citrate and malate concentrations suggested a role of NO in improved Fe chelation in Fe-deficient broccoli. A NO scavenger (cPTIO) ceased the elevated FCR activity and IAA (indole-3-acetic acid) concentration in Fe-starved plants treated with SNP. These findings suggest that SNP may play a role in initiating Fe availability by elevated IAA concentration and BoEIR1 (auxin efflux carrier) expression in the roots of broccoli during Fe shortage. Therefore, SNP may improve Fe availability and mobilization by increasing Strategy-I Fe uptake pathways, which may help broccoli tolerate Fe deficiency.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Department of Genetics, University of Georgia, GA 30602, USA; Molecular Plant Physiology Laboratory, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Esrat Jahan Ela
- Molecular Plant Physiology Laboratory, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ruby Bagchi
- Molecular Plant Physiology Laboratory, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| |
Collapse
|
11
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
12
|
Kabir AH, Rahman MA, Rahman MM, Brailey‐Jones P, Lee K, Bennetzen JL. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. J Appl Microbiol 2022; 133:2760-2778. [PMID: 35665578 PMCID: PMC9796762 DOI: 10.1111/jam.15651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
AIMS Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
| | - Philip Brailey‐Jones
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Ki‐Won Lee
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Jeffrey L. Bennetzen
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| |
Collapse
|
13
|
Ye JY, Zhou M, Zhu QY, Zhu YX, Du WX, Liu XX, Jin CW. Inhibition of shoot-expressed NRT1.1 improves reutilization of apoplastic iron under iron-deficient conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:549-564. [PMID: 36062335 DOI: 10.1111/tpj.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Iron deficiency is a major constraint for plant growth in calcareous soils. The interplay between NO3 - and Fe nutrition affects plant performance under Fe-deficient conditions. However, how NO3 - negatively regulates Fe nutrition at the molecular level in plants remains elusive. Here, we showed that the key nitrate transporter NRT1.1 in Arabidopsis plants, especially in the shoots, was markedly downregulated at post-translational levels by Fe deficiency. However, loss of NRT1.1 function alleviated Fe deficiency chlorosis, suggesting that downregulation of NRT1.1 by Fe deficiency favors plant tolerance to Fe deficiency. Further analysis showed that although disruption of NRT1.1 did not alter Fe levels in both the shoots and roots, it improved the reutilization of apoplastic Fe in shoots but not in roots. In addition, disruption of NRT1.1 prevented Fe deficiency-induced apoplastic alkalization in shoots by inhibiting apoplastic H+ depletion via NO3 - uptake. In vitro analysis showed that reduced pH facilitates release of cell wall-bound Fe. Thus, foliar spray with an acidic buffer promoted the reutilization of Fe in the leaf apoplast to enhance plant tolerance to Fe deficiency, while the opposite was true for the foliar spray with a neutral buffer. Thus, downregulation of the shoot-part function of NRT1.1 prevents apoplastic alkalization to ensure the reutilization of apoplastic Fe under Fe-deficient conditions. Our findings may provide a basis for elucidating the link between N and Fe nutrition in plants and insight to scrutinize the relevance of shoot-expressed NRT1.1 to the plant response to stress.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Miao Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Saavedra T, Gama F, Rodrigues MA, Abadía J, de Varennes A, Pestana M, Da Silva JP, Correia PJ. Effects of foliar application of organic acids on strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:12-20. [PMID: 35963050 DOI: 10.1016/j.plaphy.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The large economic costs and environmental impacts of iron-chelate treatments has led to the search for alternative methods and compounds to control iron (Fe) deficiency chlorosis. Strawberry plants (Fragaria x ananassa) were grown in Hoagland's nutrient solution in a greenhouse with two levels of Fe: 0 and 10 μM Fe(III)-EDDHA. After 20 days, plants growing without Fe showed typical symptoms of Fe deficiency chlorosis in young leaves. Then, the adaxial and abaxial sides of one mature or one young leaf in each plant were brushed with 10 mM malic (MA), citric (CA) or succinic (SA) acids. Eight applications were done over a two-week period. At the end of the experiment, the newly emerged (therefore untreated), young and mature leaves were sampled for nutritional and metabolomic analysis, to assess the effectiveness of treatments. Leaf regreening was monitored using a SPAD-502 apparatus, and the activity of the ferric chelate-reductase activity (FCR) was measured using root tips. Iron deficiency negatively affected biomass and leaf chlorophyll but did not increase FCR activity. Application of succinic acid alleviated the decrease in chlorophyll observed in other treatments, and the overall nutritional balance in the plant was also changed. The concentrations of two quinic acid derivatives increased under Fe deficiency and decreased in plants treated with succinic acid, and thus they are proposed as Fe stress markers. Data suggest that foliage treatments with carboxylates may be, in some cases, environmentally friendly alternatives to Fe(III)-chelates. The importance of Fe mobilization pathways in the formulation of new fertilizers is also discussed.
Collapse
Affiliation(s)
- Teresa Saavedra
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Florinda Gama
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maria A Rodrigues
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Javier Abadía
- Estación Experimental de Aula Dei, CSIC, Plant Biology Department, Av. Montañana 1005, Zaragoza, E-50059, Spain
| | - Amarilis de Varennes
- Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Maribela Pestana
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - José Paulo Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Pedro José Correia
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
15
|
Zeng N, Zhu Y, Gu S, Wang D, Chen R, Feng Q, Zhan X, Gardea-Torresdey JL. Mechanistic insights into phenanthrene acropetal translocation via wheat xylem: Separation and identification of transfer proteins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155919. [PMID: 35577096 DOI: 10.1016/j.scitotenv.2022.155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have the potential to cause cancer, teratogenicity, and mutagenesis in humans. Long-term plant safe production relies on how PAHs are transported and coordinated across organs. However, the acropetal transfer mechanism of PAHs in staple crop stems, particularly in xylem, a critical path, is unknown. Herein, we first confirmed the presence of specific interaction between the proteins and phenanthrene by employing the magnetic phenanthrene-bound bead immunoassay and label free liquid chromatograph mass spectrometer (LC-MS/MS), suggesting that peroxidase (uniprot accession: A0A3B5XXD0) and unidentified proteins (uniprot accession: A0A3B6LUC6) may function as the carriers to load and acropetally translocate phenanthrene (a model PAH) in wheat xylem. This specified binding of protein-phenanthrene may form through hydrophobic interactions in the conservative binding region, as revealed by protein structural investigations and molecular docking. To further investigate the role of these proteins in phenanthrene solubilization, phenanthrene exposure was conducted: a substantial quantity of peroxidase was produced; an unusually high expression of uncharacterized proteins was observed, indicating their positive effects in the acropetal transfer of phenanthrene in wheat xylem. These data confirmed that the two proteins are crucial in the solubilization of phenanthrene in wheat xylem sap. Our findings provide fresh light on the molecular mechanism of PAH loading in plant xylem and techniques for ensuring the security of staple crops and improving the efficacy of phytoremediation in a PAH-contaminated environment.
Collapse
Affiliation(s)
- Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Yuting Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Suodi Gu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| | - Jorge L Gardea-Torresdey
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
| |
Collapse
|
16
|
Zhu QY, Wang Y, Liu XX, Ye JY, Zhou M, Jing XT, Du WX, Hu WJ, He C, Zhu YX, Jin CW. The ferroxidases are critical for Fe(II) oxidation in xylem to ensure a healthy Fe allocation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:958984. [PMID: 36061760 PMCID: PMC9428407 DOI: 10.3389/fpls.2022.958984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The long-distance transport of iron (Fe) in the xylem is critical for maintaining systemic Fe homeostasis in plants. The loading form of Fe(II) into the xylem and the long-distance translocation form of Fe(III)-citrate have been identified, but how Fe(II) is oxidized to Fe(III) in the xylem remains unknown. Here, we showed that the cell wall-resided ferroxidases LPR1 and LPR2 (LPRs) were both specifically expressed in the vascular tissues of Arabidopsis thaliana, while disruption of both of them increased Fe(II) in the xylem sap and caused excessive Fe deposition in the xylem vessel wall under Fe-sufficient conditions. As a result, a large amount of Fe accumulated in both roots and shoots, hindering plant growth. Moreover, under low-Fe conditions, LPRs were preferentially induced in old leaves, but the loss of LPRs increased Fe deposition in the vasculature of older leaves and impeded Fe allocation to younger leaves. Therefore, disruption of both LPRs resulted in severer chlorosis in young leaves under Fe-deficient conditions. Taken together, the oxidation of Fe(II) to Fe(III) by LPRs in the cell wall of vasculature plays an important role in xylem Fe allocation, ensuring healthy Fe homeostasis for normal plant growth.
Collapse
Affiliation(s)
- Qing-Yang Zhu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Yun Wang
- Planting Technology Extension Center of Dongyang, Jinhua, China
| | - Xing-Xing Liu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Jia-Yuan Ye
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Miao Zhou
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xiang-Ting Jing
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen-Xin Du
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wei-Jie Hu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chao He
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Ya-Xin Zhu
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong-Wei Jin
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
18
|
M L, Dhumgond P, Shruthi, C R JB, Sarkar S, Nagabovanalli B P. Influence of yellow gypsum on nutrient uptake and yield of groundnut in different acid soils of Southern India. Sci Rep 2022; 12:5604. [PMID: 35379868 PMCID: PMC8979954 DOI: 10.1038/s41598-022-09591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Yellow gypsum (YG), a synthetic product from Linz-Donawitz slag containing high iron (Fe) (5.41%), zinc (Zn) (0.37%) and silicon (Si) (3.41%) can be used as a source of these nutrients along with calcium (Ca) and sulphur (S) for groundnut production. Three field experiments were conducted to know the effect of different rates (500 and 625 kg YG ha-1) and time of application (basal alone and basal + split) of YG on growth, yield and economic returns of groundnut, and micronutrient and Si availability and their uptake in comparison with basal application of 500 kg natural gypsum (NG) ha-1. Basal alone and basal + split application of YG significantly increased the growth, yield and economic returns of groundnut. Further, it increased the soil pH, availability of micronutrients, Si and their uptake by haulm and kernel of groundnut over NG. Irrespective of the location, YG application recorded higher plant available nutrient (PAN) coefficient of micronutrients, while NG application recorded higher PAN recovery coefficient of Si. Basal + split application of YG resulted in better growth and yield of groundnut than basal application of YG. In conclusion, YG can be a potential alternative for NG as a source of Fe, Zn and Si along with Ca and S for groundnut production.
Collapse
Affiliation(s)
- Laxmanarayanan M
- Plant Nutrition Laboratory, Department of Soil Science and Agriculture Chemistry, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, 560065, India
| | - Prabhudev Dhumgond
- Plant Nutrition Laboratory, Department of Soil Science and Agriculture Chemistry, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, 560065, India
| | - Shruthi
- Plant Nutrition Laboratory, Department of Soil Science and Agriculture Chemistry, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, 560065, India
| | - Jahir Basha C R
- Agricultural Research Station, Pavagada, Tumkur, Karnataka, 561202, India
| | - Supriya Sarkar
- Environmental Research Group, Tata Steel Limited, Jamshedpur, Jharkhand, 831007, India
| | - Prakash Nagabovanalli B
- Plant Nutrition Laboratory, Department of Soil Science and Agriculture Chemistry, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, 560065, India.
| |
Collapse
|
19
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
20
|
Jia B, Chang X, Fu Y, Heng W, Ye Z, Liu P, Liu L, Al Shoffe Y, Watkins CB, Zhu L. Metagenomic analysis of rhizosphere microbiome provides insights into occurrence of iron deficiency chlorosis in field of Asian pears. BMC Microbiol 2022; 22:18. [PMID: 34996363 PMCID: PMC8742312 DOI: 10.1186/s12866-021-02432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. RESULTS The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. CONCLUSIONS It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.
Collapse
Affiliation(s)
- Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Xiao Chang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Yuanyuan Fu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Zhenfeng Ye
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Li Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China
| | - Yosef Al Shoffe
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui, P.R. China.
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Ye JY, Tian WH, Jin CW. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. STRESS BIOLOGY 2022; 2:4. [PMID: 37676383 PMCID: PMC10441927 DOI: 10.1007/s44154-021-00030-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 09/08/2023]
Abstract
Nitrogen is one of the most important nutrient for plant growth and development; it is strongly associated with a variety of abiotic stress responses. As sessile organisms, plants have evolved to develop efficient strategies to manage N to support growth when exposed to a diverse range of stressors. This review summarizes the recent progress in the field of plant nitrate (NO3-) and ammonium (NH4+) uptake, which are the two major forms of N that are absorbed by plants. We explore the intricate relationship between NO3-/NH4+ and abiotic stress responses in plants, focusing on stresses from nutrient deficiencies, unfavorable pH, ions, and drought. Although many molecular details remain unclear, research has revealed a number of core signaling regulators that are associated with N-mediated abiotic stress responses. An in-depth understanding and exploration of the molecular processes that underpin the interactions between N and abiotic stresses is useful in the design of effective strategies to improve crop growth, development, and productivity.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Hao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Hsieh EJ, Lin WD, Schmidt W. Genomically Hardwired Regulation of Gene Activity Orchestrates Cellular Iron Homeostasis in Arabidopsis. RNA Biol 2021; 19:143-161. [PMID: 35067184 PMCID: PMC8786333 DOI: 10.1080/15476286.2021.2024024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/26/2021] [Indexed: 10/26/2022] Open
Abstract
Iron (Fe) is an essential micronutrient which plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homoeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Dragišić Maksimović J, Mojović M, Vučinić Ž, Maksimović V. Spatial distribution of apoplastic antioxidative constituents in maize root. PHYSIOLOGIA PLANTARUM 2021; 173:818-828. [PMID: 34109632 DOI: 10.1111/ppl.13476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Apoplastic antioxidative constituents (enzymes, primary and secondary metabolites, ROS) from different root zones of hydroponically grown maize (Zea mays L.) were investigated using a noninvasive isolation procedure: filter strip method. Filter strips were placed at specific positions on the root surface: apical zone (tip) and basal zone (base) to absorb apoplastic fluid. Three major classes of low-weight metabolites (organic acids, sugars, and phenolics) have been identified by HPLC-ECD. The longitudinal distribution of sugars and organic acids had the same pattern: higher concentration in the tip than the base, while it was vice versa for phenolics. The specific activities of guaiacol peroxidase, superoxide dismutase, and ascorbate peroxidase were higher in the apoplastic fluid from the root base than the tip, and their different isoforms were separated by isoelectric focusing. Electron paramagnetic resonance (EPR) spectroscopy coupled with the spin-trapping method using DEPMPO showed a persistent generation of hydroxyl radical in the root tip. In vivo EPR imaging of the whole maize root with membrane-permeable and impermeable aminoxyl spin-probes, enabling real-time detection of ROS formation within and outside the membranes, demonstrated ROS accumulation on the root surface, while endodermis and central cylinder were ROS free. For the first time in plant research, 2D EPR images enabled the direct demonstration of site-specific free radical production along the root. Highly sensitive analytical techniques combined with the filter strips, as a non-invasive tool, have increased our knowledge of metabolic processes occurring in the apoplast and their spatial-temporal changes in small regions of the intact root tissue.
Collapse
Affiliation(s)
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Željko Vučinić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Peng JS, Zhang BC, Chen H, Wang MQ, Wang YT, Li HM, Cao SX, Yi HY, Wang H, Zhou YH, Gong JM. Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. MOLECULAR PLANT 2021; 14:1640-1651. [PMID: 34171482 DOI: 10.1016/j.molp.2021.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/23/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Apoplastic iron (Fe) in roots represents an essential Fe storage pool. Reallocation of apoplastic Fe is of great importance to plants experiencing Fe deprivation, but how this reallocation process is regulated remains elusive, likely because of the highly complex cell wall structure and the limited knowledge about cell wall biosynthesis and modulation. Here, we present genetic and biochemical evidence to demonstrate that the Cdi-mediated galactosylation of rhamnogalacturonan-II (RG-II) is required for apoplastic Fe reallocation. Cdi is expressed in roots and up-regulated in response to Fe deficiency. It encodes a putative glycosyltransferase localized to the Golgi apparatus. Biochemical and mass spectrometry assays showed that Cdi catalyzes the transfer of GDP-L-galactose to the terminus of side chain A on RG-II. Disruption of Cdi essentially decreased RG-II dimerization and hence disrupted cell wall formation, as well as the reallocation of apoplastic Fe from roots to shoots. Further transcriptomic, Fourier transform infrared spectroscopy, and Fe desorption kinetic analyses coincidently suggested that Cdi mediates apoplastic Fe reallocation through extensive modulation of cell wall components and consequently the Fe adsorption capacity of the cell wall. Our study provides direct evidence demonstrating a link between cell wall biosynthesis and apoplastic Fe reallocation, thus indicating that the structure of the cell wall is important for efficient usage of the cell wall Fe pool.
Collapse
Affiliation(s)
- Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ting Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hong-Mei Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shao-Xue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
25
|
Justi M, de Freitas MP, Silla JM, Nunes CA, Silva CA. Molecular structure features and fast identification of chemical properties of metal carboxylate complexes by FTIR and partial least square regression. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Hanikenne M, Esteves SM, Fanara S, Rouached H. Coordinated homeostasis of essential mineral nutrients: a focus on iron. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2136-2153. [PMID: 33175167 DOI: 10.1093/jxb/eraa483] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Sara M Esteves
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Steven Fanara
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Hatem Rouached
- BPMP, Univ. Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Gheshlaghi Z, Luis-Villarroya A, Álvarez-Fernández A, Khorassani R, Abadía J. Iron deficient Medicago scutellata grown in nutrient solution at high pH accumulates and secretes large amounts of flavins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110664. [PMID: 33487332 DOI: 10.1016/j.plantsci.2020.110664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Flavin synthesis and secretion is an integral part of the toolbox of root-borne Fe facilitators used by Strategy I species upon Fe deficiency. The Fe-deficiency responses of the wild legume Medicago scutellata grown in nutrient solution have been studied at two different pH values (5.5 and 7.5). Parameters studied include leaf chlorophyll, nutrient solution pH, concentrations and contents of micronutrients, flavin accumulation in roots, flavin export to the medium, and root ferric chelate reductase and acidification activities. Results show that M. scutellata behaves upon Fe deficiency as a Strategy I species, with a marked capacity for synthesizing flavins (riboflavin and three hydroxylated riboflavin derivatives), which becomes more intense at high pH. Results also show that this species is capable of exporting a large amount of flavins to the external medium, both at pH 5.5 and 7.5. This is the first report of a species having a major flavin secretion at pH 7.5, in contrast with the very low flavin secretion found in other flavin-producing species such as Beta vulgaris and M. truncatula. These results provide further support to the hypothesis that flavin secretion is relevant for Fe acquisition at high pH, and open the possibility to improve the Fe-efficiency responses in legumes of agronomic interest.
Collapse
Affiliation(s)
- Zahra Gheshlaghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Adrián Luis-Villarroya
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av. Montañana 1005, E-50059, Zaragoza, Spain.
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av. Montañana 1005, E-50059, Zaragoza, Spain.
| | - Reza Khorassani
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av. Montañana 1005, E-50059, Zaragoza, Spain.
| |
Collapse
|
28
|
Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize ( Zea mays L.). PLANTS 2020; 9:plants9121812. [PMID: 33371388 PMCID: PMC7767415 DOI: 10.3390/plants9121812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Globally, one-third of the population is affected by iron (Fe) and zinc (Zn) deficiency, which is severe in developing and underdeveloped countries where cereal-based diets predominate. The genetic biofortification approach is the most sustainable and one of the cost-effective ways to address Fe and Zn malnutrition. Maize is a major source of nutrition in sub-Saharan Africa, South Asia and Latin America. Understanding systems’ biology and the identification of genes involved in Fe and Zn homeostasis facilitate the development of Fe- and Zn-enriched maize. We conducted a genome-wide transcriptome assay in maize inbred SKV616, under –Zn, –Fe and –Fe–Zn stresses. The results revealed the differential expression of several genes related to the mugineic acid pathway, metal transporters, photosynthesis, phytohormone and carbohydrate metabolism. We report here Fe and Zn deficiency-mediated changes in the transcriptome, root length, stomatal conductance, transpiration rate and reduced rate of photosynthesis. Furthermore, the presence of multiple regulatory elements and/or the co-factor nature of Fe and Zn in enzymes indicate their association with the differential expression and opposite regulation of several key gene(s). The differentially expressed candidate genes in the present investigation would help in breeding for Fe and Zn efficient and kernel Fe- and Zn-rich maize cultivars through gene editing, transgenics and molecular breeding.
Collapse
|
29
|
Cornu JY, Bussière S, Coriou C, Robert T, Maucourt M, Deborde C, Moing A, Nguyen C. Changes in plant growth, Cd partitioning and xylem sap composition in two sunflower cultivars exposed to low Cd concentrations in hydroponics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111145. [PMID: 32846296 DOI: 10.1016/j.ecoenv.2020.111145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 05/22/2023]
Abstract
This study characterizes sunflower response to the levels of Cd encountered in moderately Cd-polluted soils. Two sunflower cultivars differing in their ability to sequestrate Cd in roots were exposed to low concentrations of Cd (0.5 nM or 100 nM) in hydroponics and sampled after 18 days (258 degree-days) when ten leaves were fully expanded. Plant growth, Cd uptake and partitioning among organs were monitored along with the ionomic (ICP-MS) and the metabolic (1H-NMR) composition of the xylem sap. Sunflower tolerance to Cd differed between the two cultivars. The cultivar with the highest ability to sequestrate Cd in roots (Kapllan) was more tolerant to Cd than the one with the lowest ability (ES RICA). The 23% penalization of plant growth observed at 100 nM in cultivar ES RICA was associated with reduced xylem loading fluxes of soluble sugars, perhaps pointing to disruption of carbohydrate metabolism. Retention of Cd in the stem was higher at 100 nM than at 0.5 nM in the Cd-sensitive cultivar ES RICA, which can be seen as a sunflower strategy to restrict the amount of Cd delivered to the leaves under Cd stress. No direct connection was found between the speciation of Cd in the xylem sap and the Cd translocation efficiency, although significant changes in the free ionic fraction of Cd were observed between the two cultivars at 0.5 nM. The relevance of these results in promoting the use of sunflower in phytomanagement of Cd-polluted soils is discussed.
Collapse
Affiliation(s)
- J Y Cornu
- INRAE, Bordeaux Sciences Agro, UMR ISPA, F-33140, Villenave D'Ornon, France.
| | - S Bussière
- INRAE, Bordeaux Sciences Agro, UMR ISPA, F-33140, Villenave D'Ornon, France
| | - C Coriou
- INRAE, Bordeaux Sciences Agro, UMR ISPA, F-33140, Villenave D'Ornon, France
| | - T Robert
- INRAE, Bordeaux Sciences Agro, UMR ISPA, F-33140, Villenave D'Ornon, France
| | - M Maucourt
- INRAE, Univ. Bordeaux, UMR Fruit Biology and Pathology, F-33140, Villenave D'Ornon, France; PMB-Metabolome, INRAE, 2018. Bordeaux Metabolome Facility, France
| | - C Deborde
- INRAE, Univ. Bordeaux, UMR Fruit Biology and Pathology, F-33140, Villenave D'Ornon, France; PMB-Metabolome, INRAE, 2018. Bordeaux Metabolome Facility, France
| | - A Moing
- INRAE, Univ. Bordeaux, UMR Fruit Biology and Pathology, F-33140, Villenave D'Ornon, France; PMB-Metabolome, INRAE, 2018. Bordeaux Metabolome Facility, France
| | - C Nguyen
- INRAE, Bordeaux Sciences Agro, UMR ISPA, F-33140, Villenave D'Ornon, France
| |
Collapse
|
30
|
Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D, Lonsdale A, Abadía A, Doblin MS, Bacic A, Uemura M, Abadía J, López-Millán AF. Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato ( Solanum lycopersicum) as Revealed by Shotgun Proteomic Analysis. Int J Mol Sci 2020; 21:E8863. [PMID: 33238539 PMCID: PMC7700171 DOI: 10.3390/ijms21228863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023] Open
Abstract
Metal toxicity is a common problem in crop species worldwide. Some metals are naturally toxic, whereas others such as manganese (Mn) are essential micro-nutrients for plant growth but can become toxic when in excess. Changes in the composition of the xylem sap, which is the main pathway for ion transport within the plant, is therefore vital to understanding the plant's response(s) to metal toxicity. In this study we have assessed the effects of exposure of tomato roots to excess Mn on the protein profile of the xylem sap, using a shotgun proteomics approach. Plants were grown in nutrient solution using 4.6 and 300 µM MnCl2 as control and excess Mn treatments, respectively. This approach yielded 668 proteins reliably identified and quantified. Excess Mn caused statistically significant (at p ≤ 0.05) and biologically relevant changes in relative abundance (≥2-fold increases or ≥50% decreases) in 322 proteins, with 82% of them predicted to be secretory using three different prediction tools, with more decreasing than increasing (181 and 82, respectively), suggesting that this metal stress causes an overall deactivation of metabolic pathways. Processes most affected by excess Mn were in the oxido-reductase, polysaccharide and protein metabolism classes. Excess Mn induced changes in hydrolases and peroxidases involved in cell wall degradation and lignin formation, respectively, consistent with the existence of alterations in the cell wall. Protein turnover was also affected, as indicated by the decrease in proteolytic enzymes and protein synthesis-related proteins. Excess Mn modified the redox environment of the xylem sap, with changes in the abundance of oxido-reductase and defense protein classes indicating a stress scenario. Finally, results indicate that excess Mn decreased the amounts of proteins associated with several signaling pathways, including fasciclin-like arabinogalactan-proteins and lipids, as well as proteases, which may be involved in the release of signaling peptides and protein maturation. The comparison of the proteins changing in abundance in xylem sap and roots indicate the existence of tissue-specific and systemic responses to excess Mn. Data are available via ProteomeXchange with identifier PXD021973.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain; (L.C.-L.); (E.G.-C.); (A.A.); (A.F.L.-M.)
| | - Elain Gutierrez-Carbonell
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain; (L.C.-L.); (E.G.-C.); (A.A.); (A.F.L.-M.)
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
| | - Andrew Lonsdale
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Anunciación Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain; (L.C.-L.); (E.G.-C.); (A.A.); (A.F.L.-M.)
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; (M.S.D.); (A.B.)
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; (M.S.D.); (A.B.)
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain; (L.C.-L.); (E.G.-C.); (A.A.); (A.F.L.-M.)
| | - Ana Flor López-Millán
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain; (L.C.-L.); (E.G.-C.); (A.A.); (A.F.L.-M.)
| |
Collapse
|
31
|
Escudero V, Abreu I, Tejada-Jiménez M, Rosa-Núñez E, Quintana J, Prieto RI, Larue C, Wen J, Villanova J, Mysore KS, Argüello JM, Castillo-Michel H, Imperial J, González-Guerrero M. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. THE NEW PHYTOLOGIST 2020; 228:194-209. [PMID: 32367515 DOI: 10.1111/nph.16642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Julia Quintana
- Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Camille Larue
- EcoLab, CNRS, Université de Toulouse, Toulouse, 31326, France
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Julie Villanova
- ID16 Beamline. European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
32
|
Llorens E, Scalschi L, González-Hernández AI, Camañes G, García-Agustín P, Vicedo B. 1-Methyltryptophan Treatment Increases Defense-Related Proteins in the Apoplast of Tomato Plants. J Proteome Res 2020; 20:433-443. [PMID: 32989989 DOI: 10.1021/acs.jproteome.0c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activation of induced resistance in plants may enhance the production of defensive proteins to avoid the invasion of pathogens. In this way, the composition of the apoplastic fluid could represent an important layer of defense that plants can modify to avoid the attack. In this study, we performed a proteomic study of the apoplastic fluid from plants treated with the resistance inducer 1-methyltryptophan (1-MT) as well as infected with Pseudomonas syringae pv. tomato (Pst). Our results showed that both the inoculation with Pst and the application of the inducer provoke changes in the proteomic composition in the apoplast enhancing the accumulation of proteins involved in plant defense. Finally, one of the identified proteins that are overaccumulated upon the treatment have been expressed in Escherichia coli and purified in order to test their antimicrobial effect. The result showed that the tested protein is able to reduce the growth of Pst in vitro. Taken together, in this work, we described the proteomic changes in the apoplast induced by the treatment and by the inoculation, as well as demonstrated that the proteins identified have a role in the plant protection.
Collapse
Affiliation(s)
- Eugenio Llorens
- Grupo de Bioquı́mica y Biotecnologı́a, Área de Fisiologı́a Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Loredana Scalschi
- Grupo de Bioquı́mica y Biotecnologı́a, Área de Fisiologı́a Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Ana I González-Hernández
- Grupo de Bioquı́mica y Biotecnologı́a, Área de Fisiologı́a Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Gemma Camañes
- Grupo de Bioquı́mica y Biotecnologı́a, Área de Fisiologı́a Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Pilar García-Agustín
- Grupo de Bioquı́mica y Biotecnologı́a, Área de Fisiologı́a Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| | - Begonya Vicedo
- Grupo de Bioquı́mica y Biotecnologı́a, Área de Fisiologı́a Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE. Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
33
|
Lefoulon C, Boxall SF, Hartwell J, Blatt MR. Crassulacean acid metabolism guard cell anion channel activity follows transcript abundance and is suppressed by apoplastic malate. THE NEW PHYTOLOGIST 2020; 227:1847-1857. [PMID: 32367511 DOI: 10.1111/nph.16640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Plants utilising crassulacean acid metabolism (CAM) concentrate CO2 around RuBisCO while reducing transpirational water loss associated with photosynthesis. Unlike stomata of C3 and C4 species, CAM stomata open at night for the mesophyll to fix CO2 into malate (Mal) and store it in the vacuole. CAM plants decarboxylate Mal in the light, generating high CO2 concentrations within the leaf behind closed stomata for refixation by RuBisCO. CO2 may contribute to stomatal closure but additional mechanisms, plausibly including Mal activation of anion channels, ensure closure in the light. In the CAM species Kalanchoë fedtschenkoi, we found that guard cell anion channel activity, recorded under voltage clamp, follows KfSLAC1 and KfALMT12 transcript abundance, declining to near zero by the end of the light period. Unexpectedly, however, we found that extracellular Mal inhibited the anion current of Kalanchoë guard cells, both in wild-type and RNAi mutants with impaired Mal metabolism. We conclude that the diurnal cycle of anion channel gene transcription, rather than the physiological signal of Mal release, is a key factor in the inverted CAM stomatal cycle.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Susanna F Boxall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
34
|
The Fungal Microbiome Is an Important Component of Vineyard Ecosystems and Correlates with Regional Distinctiveness of Wine. mSphere 2020; 5:5/4/e00534-20. [PMID: 32817452 PMCID: PMC7426168 DOI: 10.1128/msphere.00534-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The composition of soil has long been thought to provide wine with characteristic regional flavors. Here, we show that for vineyards in southern Australia, the soil fungal communities are of primary importance for the aromas found in wines. We propose a mechanism by which fungi can move from the soil through the vine. The flavors of fermented plant foods and beverages are formed by microorganisms, and in the case of wine, the location and environmental features of the vineyard site also imprint the wine with distinctive aromas and flavors. Microbial growth and metabolism play an integral role in wine production, by influencing grapevine health, wine fermentation, and the flavor, aroma, and quality of finished wines. The contributions by which microbial distribution patterns drive wine metabolites are unclear, and while flavor has been correlated with fungal and bacterial composition for wine, bacterial activity provides fewer sensorially active biochemical conversions than fungi in wine fermentation. Here, we collected samples across six distinct wine-growing areas in southern Australia to investigate regional distribution patterns of fungi and bacteria and the association with wine chemical composition. Results show that both soil and must microbiota distinguish wine-growing regions. We found a relationship between microbial and wine metabolic profiles under different environmental conditions, in particular measures of soil properties and weather. Fungal communities are associated with wine regional distinctiveness. We found that the soil microbiome is a source of grape- and must-associated fungi and suggest that weather and soil could influence wine characteristics via the soil fungal community. Our report describes a comprehensive scenario of wine microbial biogeography where microbial diversity responds to the surrounding environment and correlates with wine composition and regional characteristics. These findings provide perspectives for thoughtful human practices to optimize food composition through understanding fungal activity and abundance. IMPORTANCE The composition of soil has long been thought to provide wine with characteristic regional flavors. Here, we show that for vineyards in southern Australia, the soil fungal communities are of primary importance for the aromas found in wines. We propose a mechanism by which fungi can move from the soil through the vine.
Collapse
|
35
|
Balparda M, Armas AM, Estavillo GM, Roschzttardtz H, Pagani MA, Gomez-Casati DF. The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:323-337. [PMID: 31900819 DOI: 10.1007/s11103-019-00950-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria. This metabolite inhibits the action of a group of exorribonucleases which participate in post-transcriptional gene expression regulation. Transcriptome analysis of Arabidopsis thaliana mutant plants in PAP-SAL1 pathway revealed that the ferritin genes AtFER1, AtFER3, and AtFER4 are up-regulated. In this work we studied Fe metabolism in three different mutants of the PAP/SAL1 retrograde pathway. Mutant plants showed increased Fe accumulation in roots, shoots and seeds when grown in Fe-sufficient condition, and a constitutive activation of the Strategy I Fe uptake genes. As a consequence, they grew more vigorously than wild type plants in Fe-deficient medium. However, when mutant plants grown in Fe-deficient conditions were sprayed with Fe in their leaves, they were unable to deactivate root Fe uptake. Ethylene synthesis inhibition revert the constitutive Fe uptake phenotype. We propose that there is a link between PAP/SAL pathway, ethylene signaling and Fe metabolism.
Collapse
Affiliation(s)
- Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
36
|
Luo JS, Zhang Z. Proteomic changes in the xylem sap of Brassica napus under cadmium stress and functional validation. BMC PLANT BIOLOGY 2019; 19:280. [PMID: 31242871 PMCID: PMC6595625 DOI: 10.1186/s12870-019-1895-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The xylem sap of vascular plants primarily transports water and mineral nutrients from the roots to the shoots and also transports heavy metals such as cadmium (Cd). Proteomic changes in xylem sap is an important mechanism for detoxifying Cd by plants. However, it is unclear how proteins in xylem sap respond to Cd. Here, we investigated the effects of Cd stress on the xylem sap proteome of Brassica napus using a label-free shotgun proteomic approach to elucidate plant response mechanisms to Cd toxicity. RESULTS We identified and quantified 672 proteins; 67% were predicted to be secretory, and 11% (73 proteins) were unique to Cd-treated samples. Cd stress caused statistically significant and biologically relevant abundance changes in 28 xylem sap proteins. Among these proteins, the metabolic pathways that were most affected were related to cell wall modifications, stress/oxidoreductases, and lipid and protein metabolism. We functionally validated a plant defensin-like protein, BnPDFL, which belongs to the stress/oxidoreductase category, that was unique to the Cd-treated samples and played a positive role in Cd tolerance. Subcellular localization analysis revealed that BnPDFL is cell wall-localized. In vitro Cd-binding assays revealed that BnPDFL has Cd-chelating activity. BnPDFL heterologous overexpression significantly enhanced Cd tolerance in E. coli and Arabidopsis. Functional disruption of Arabidopsis plant defensin genes AtPDF2.3 and AtPDF2.2, which are mainly expressed in root vascular bundles, significantly decreased Cd tolerance. CONCLUSIONS Several xylem sap proteins in Brassica napus are differentially induced in response to Cd treatment, and plant defensin plays a positive role in Cd tolerance.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Hunan Provincial Key Laboratory of Nutrition in Common University, Changsha, 410128 China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Hunan Provincial Key Laboratory of Nutrition in Common University, Changsha, 410128 China
| |
Collapse
|
37
|
Wen D, Sun S, Yang W, Zhang L, Liu S, Gong B, Shi Q. Overexpression of S-nitrosoglutathione reductase alleviated iron-deficiency stress by regulating iron distribution and redox homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:1-11. [PMID: 30999072 DOI: 10.1016/j.jplph.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential micronutrient element for plant growth. The S-nitrosoglutathione reductase (GSNOR) gene's functions under Fe-deficiency conditions are not well understood. Here, GSNOR expression was induced by Fe deficiency in tomato (Solanum lycopersicum L.) leaves and roots, while its overexpression alleviated chlorosis under Fe-deficiency conditions. GSNOR overexpression positively regulated the Fe distribution from root to shoot, which might result from the transcriptional regulation of genes involved in Fe metabolism. Additionally, the overexpression of GSNOR maintained redox homeostasis and protected chloroplasts from Fe-deficiency-related damage, resulting in a greater photosynthetic capacity. As a nitric oxide regulator, GSNOR's overexpression decreased the excessive accumulation of nitric oxide and S-nitrosothiols during the Fe deficiency, and maintained the homeostases of reactive oxygen species and reactive nitrogen species. Moreover, GSNOR overexpression, probably at the level of genes and proteins, along with protein S-nitrosylation, promoted Fe uptake and regulated the shoot/root Fe ratio under Fe-deficiency conditions.
Collapse
Affiliation(s)
- Dan Wen
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Shasha Sun
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Wanying Yang
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Lili Zhang
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Biao Gong
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
38
|
The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int J Mol Sci 2019; 20:ijms20102424. [PMID: 31100819 PMCID: PMC6566170 DOI: 10.3390/ijms20102424] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023] Open
Abstract
Iron is an essential element for plant growth and development. While abundant in soil, the available Fe in soil is limited. In this regard, plants have evolved a series of mechanisms for efficient iron uptake, allowing plants to better adapt to iron deficient conditions. These mechanisms include iron acquisition from soil, iron transport from roots to shoots, and iron storage in cells. The mobilization of Fe in plants often occurs via chelating with phytosiderophores, citrate, nicotianamine, mugineic acid, or in the form of free iron ions. Recent work further elucidates that these genes’ response to iron deficiency are tightly controlled at transcriptional and posttranscriptional levels to maintain iron homeostasis. Moreover, increasing evidences shed light on certain factors that are identified to be interconnected and integrated to adjust iron deficiency. In this review, we highlight the molecular and physiological bases of iron acquisition from soil to plants and transport mechanisms for tolerating iron deficiency in dicotyledonous plants and rice.
Collapse
|
39
|
Gentzel I, Giese L, Zhao W, Alonso AP, Mackey D. A Simple Method for Measuring Apoplast Hydration and Collecting Apoplast Contents. PLANT PHYSIOLOGY 2019; 179:1265-1272. [PMID: 30824565 PMCID: PMC6446764 DOI: 10.1104/pp.18.01076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/21/2019] [Indexed: 05/23/2023]
Abstract
The plant leaf apoplast is a dynamic environment subject to a variety of both internal and external stimuli. In addition to being a conduit for water vapor and gas exchange involved in transpiration and photosynthesis, the apoplast also accumulates many nutrients transported from the soil as well as those produced through photosynthesis. The internal leaf also provides a protective environment for endophytic and pathogenic microbes alike. Given the diverse array of physiological processes occurring in the apoplast, it is expedient to develop methods to study its contents. Many established methods rely on vacuum infiltration of an apoplast wash solution followed by centrifugation. In this study, we describe a refined method optimized for maize (Zea mays) seedling leaves, which not only provides a simple procedure for obtaining apoplast fluid, but also allows direct calculation of apoplast hydration at the time of harvest for every sample. In addition, we describe an abbreviated method for estimating apoplast hydration if the full apoplast extraction is not necessary. Finally, we show the applicability of this optimized apoplast extraction procedure for plants infected with the maize pathogen Pantoea stewartii ssp stewartii, including the efficient isolation of bacteria previously residing in the apoplast. The approaches to establishing this method should make it generally applicable to other types of plants.
Collapse
Affiliation(s)
- Irene Gentzel
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Laura Giese
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Wanying Zhao
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
| | - Ana Paula Alonso
- BioDiscovery Institute, University of North Texas, Denton, Texas 76201
- Department of Biological Sciences, University of North Texas, Denton, Texas 76201
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
40
|
Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RGF, Sonnewald U, Bachem CWB. Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Curr Biol 2019; 29:1178-1186.e6. [PMID: 30905604 DOI: 10.1016/j.cub.2019.02.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
Potato plants form tuberous storage organs on underground modified stems called stolons. Tubers are rich in starch, proteins, and other important nutrients, making potato one of the most important staple food crops. The timing of tuber development in wild potato is regulated by day length through a mechanism that is closely related to floral transition [1, 2]. Tuberization is also known to be regulated by the availability of assimilates, in particular sucrose, the transported form of sugar, required for starch synthesis. During the onset of tuber development, the mode of sucrose unloading switches from apoplastic to symplastic [3]. Here, we show that this switch may be mediated by the interaction between the tuberization-specific FT homolog StSP6A and the sucrose efflux transporter StSWEET11 [4]. The binding of StSP6A to StSWEET11 blocked the leakage of sucrose to the apoplast, and is therefore likely to promote symplastic sucrose transport. The direct physical interaction between StSWEET11 and StSP6A proteins represents a link between the sugar and photoperiodic pathways for the regulation of potato tuber formation. Our data suggest that a previously undiscovered function for the FT family of proteins extends their role as mobile signals to mediators of source-sink partitioning, opening the possibility for modifying source-sink interactions.
Collapse
Affiliation(s)
- José A Abelenda
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Sara Bergonzi
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Marian Oortwijn
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Miru Du
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands; Inner Mongolia Potato Engineering & Technology Research Centre, Inner Mongolia University, West College Road 235, Hohhot 010021, China
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands.
| |
Collapse
|
41
|
Wu H, Marhadour S, Lei ZW, Yang W, Marivingt-Mounir C, Bonnemain JL, Chollet JF. Vectorization of agrochemicals: amino acid carriers are more efficient than sugar carriers to translocate phenylpyrrole conjugates in the Ricinus system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:14336-14349. [PMID: 27966081 DOI: 10.1007/s11356-016-8107-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Producing quality food in sufficient quantity while using less agrochemical inputs will be one of the great challenges of the twenty-first century. One way of achieving this goal is to greatly reduce the doses of plant protection compounds by improving the targeting of pests to eradicate. Therefore, we developed a vectorization strategy to confer phloem mobility to fenpiclonil, a contact fungicide from the phenylpyrrole family used as a model molecule. It consists in coupling the antifungal compound to an amino acid or a sugar, so that the resulting conjugates are handled by active nutrient transport systems. The method of click chemistry was used to synthesize three conjugates combining fenpiclonil to glucose or glutamic acid with a spacer containing a triazole ring. Systemicity tests with the Ricinus model have shown that the amino acid promoiety was clearly more favorable to phloem mobility than that of glucose. In addition, the transport of the amino acid conjugate is carrier mediated since the derivative of the L series was about five times more concentrated in the phloem sap than its counterpart of the D series. The systemicity of the L-derivative is pH dependent and almost completely inhibited by the protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP). These data suggest that the phloem transport of the L-derivative is governed by a stereospecific amino acid carrier system energized by the proton motive force.
Collapse
Affiliation(s)
- Hanxiang Wu
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire Écologie et Biologie des Interactions, Unité Mixte de Recherche CNRS 7267, Université de Poitiers, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Sophie Marhadour
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Zhi-Wei Lei
- Guizhou Tea Reasearch Institute, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, 550009, China
| | - Wen Yang
- Guizhou Tea Reasearch Institute, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, 550009, China
| | - Cécile Marivingt-Mounir
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Jean-Louis Bonnemain
- Laboratoire Écologie et Biologie des Interactions, Unité Mixte de Recherche CNRS 7267, Université de Poitiers, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Jean-François Chollet
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
42
|
Wang S, Dong Q, Wang Z. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:200-206. [PMID: 28734223 DOI: 10.1016/j.ecoenv.2017.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots.
Collapse
Affiliation(s)
- ShuTing Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, PR China.
| |
Collapse
|
43
|
Marhadour S, Wu H, Yang W, Marivingt-Mounir C, Bonnemain JL, Chollet JF. Vectorisation of agrochemicals via amino acid carriers: influence of the spacer arm structure on the phloem mobility of phenylpyrrole conjugates in the Ricinus system. PEST MANAGEMENT SCIENCE 2017; 73:1972-1982. [PMID: 28321972 DOI: 10.1002/ps.4575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Excessive agrochemical use poses significant threats to environmental safety and human health. Reducing pesticide use without reducing yield is necessary for sustainable agriculture. Therefore, we developed a vectorisation strategy to enhance agrochemical delivery through plant amino acid carriers. RESULTS In addition to a fenpiclonil conjugate recently described, three new amino acid conjugates were synthesised by coupling fenpiclonil to an l-α-amino acid. Phloem mobility of these conjugates, which exhibit different structures of the spacer arm introduced between fenpiclonil and the α-amino acid function, was studied using the Ricinus model. Conjugate L-14, which contains a triazole ring with the shortest amino acid chain, showed the best phloem systemicity among the four conjugates. By contrast, removing the triazole ring in the spacer arm did not improve systemicity. L-14 exhibited phloem systemicity at all reported pH values (pH values from 5.0 to 6.5) of the foliar apoplast, while acidic derivatives of fenpiclonil were translocated only at pH values near 5.0. CONCLUSION The conjugates were recognised by a pH-dependent transporter system and translocated at distance in the phloem. They exhibited a broader phloem systemicity than fenpiclonil acidic derivatives within the pH value range of the foliar apoplast. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sophie Marhadour
- Institut de Chimie des Milieux et des Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | - Hanxiang Wu
- Institut de Chimie des Milieux et des Matériaux de Poitiers, Université de Poitiers, Poitiers, France
- Laboratoire Écologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Wen Yang
- Guizhou Tea Reasearch Institute, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Cécile Marivingt-Mounir
- Institut de Chimie des Milieux et des Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | - Jean-Louis Bonnemain
- Laboratoire Écologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Jean-François Chollet
- Institut de Chimie des Milieux et des Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| |
Collapse
|
44
|
Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D, Abadía A, Uemura M, Abadía J, López-Millán AF. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses. J Proteomics 2017; 170:117-129. [PMID: 28847647 DOI: 10.1016/j.jprot.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary cell wall. Cell wall modifications could affect the mechanical and permeability properties of the xylem sap vessels, and therefore ultimately affect solute transport and distribution to the leaves. Results also suggest that signaling cascades involving lipid and peptides might play a role in nutrient stress signaling and pinpoint interesting candidates for future studies. Finally, both nutrient deficiencies seem to affect phosphorylation and glycosylation processes, again following an opposite pattern.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Elain Gutierrez-Carbonell
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Anunciación Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Ana Flor López-Millán
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA.
| |
Collapse
|
45
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
46
|
Leaden L, Pagani MA, Balparda M, Busi MV, Gomez-Casati DF. Altered levels of AtHSCB disrupts iron translocation from roots to shoots. PLANT MOLECULAR BIOLOGY 2016; 92:613-628. [PMID: 27655366 DOI: 10.1007/s11103-016-0537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/29/2016] [Indexed: 05/26/2023]
Abstract
Plants overexpressing AtHSCB and hscb knockdown mutants showed altered iron homeostasis. The overexpression of AtHSCB led to activation of the iron uptake system and iron accumulation in roots without concomitant transport to shoots, resulting in reduced iron content in the aerial parts of plants. By contrast, hscb knockdown mutants presented the opposite phenotype, with iron accumulation in shoots despite the reduced levels of iron uptake in roots. AtHSCB play a key role in iron metabolism, probably taking part in the control of iron translocation from roots to shoots. Many aspects of plant iron metabolism remain obscure. The most known and studied homeostatic mechanism is the control of iron uptake in the roots by shoots. Nevertheless, this mechanism likely involves various unknown sensors and unidentified signals sent from one tissue to another which need to be identified. Here, we characterized Arabidopsis thaliana plants overexpressing AtHSCB, encoding a mitochondrial cochaperone involved in [Fe-S] cluster biosynthesis, and hscb knockdown mutants, which exhibit altered shoot/root Fe partitioning. Overexpression of AtHSCB induced an increase in root iron uptake and content along with iron deficiency in shoots. Conversely, hscb knockdown mutants exhibited increased iron accumulation in shoots and reduced iron uptake in roots. Different experiments, including foliar iron application, citrate supplementation and iron deficiency treatment, indicate that the shoot-directed control of iron uptake in roots functions properly in these lines, implying that [Fe-S] clusters are not involved in this regulatory mechanism. The most likely explanation is that both lines have altered Fe transport from roots to shoots. This could be consistent with a defect in a homeostatic mechanism operating at the root-to-shoot translocation level, which would be independent of the shoot control over root iron deficiency responses. In summary, the phenotypes of these plants indicate that AtHSCB plays a role in iron metabolism.
Collapse
Affiliation(s)
- Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
47
|
O'Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. PLANT, CELL & ENVIRONMENT 2016; 39:2172-84. [PMID: 27239727 PMCID: PMC5026161 DOI: 10.1111/pce.12770] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of P. syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K(+) , that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca(2+) , Fe(2/3+) Mg(2+) , sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, 6009, Australia
| | - Helen C Neale
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Christoph-Martin Geilfus
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, 24118, Germany
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, UK
| | - Dawn L Arnold
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
48
|
Gourieroux AM, Holzapfel BP, Scollary GR, McCully ME, Canny MJ, Rogiers SY. The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:45-54. [PMID: 27082989 DOI: 10.1016/j.plaphy.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 05/24/2023]
Abstract
Amino acids are essential to grape berry and seed development and they are transferred to the reproductive structures through the phloem and xylem from various locations within the plant. The diurnal and seasonal dynamics of xylem and phloem amino acid composition in the leaf petiole and bunch rachis of field-grown Cabernet Sauvignon are described to better understand the critical periods for amino acid import into the berry. Xylem sap was extracted by the centrifugation of excised leaf petioles and rachises, while phloem exudate was collected by immersing these structures in an ethylenediaminetetraacetic acid (EDTA) buffer. Glutamine and glutamic acid were the predominant amino acids in the xylem sap of both grapevine rachises and petioles, while arginine and glycine were the principal amino acids of the phloem exudate. The amino acid concentrations within the xylem sap and phloem exudate derived from these structures were greatest during anthesis and fruit set, and a second peak occurred within the rachis phloem at the onset of ripening. The concentrations of the amino acids within the phloem and xylem sap of the rachis were highest just prior to or after midnight while the flow of sugar through the rachis phloem was greatest during the early afternoon. Sugar exudation rates from the rachis was greater than that of the petiole phloem between anthesis and berry maturity. In summary, amino acid and sugar delivery through the vasculature to grape berries fluctuates over the course of the day as well as through the season and is not necessarily related to levels near the source.
Collapse
Affiliation(s)
- Aude M Gourieroux
- National Wine and Grape Industry Centre, Wagga Wagga, NSW, Australia; Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Bruno P Holzapfel
- National Wine and Grape Industry Centre, Wagga Wagga, NSW, Australia; NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Geoffrey R Scollary
- National Wine and Grape Industry Centre, Wagga Wagga, NSW, Australia; School of Chemistry, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Margaret E McCully
- Division of Plant Industry, CSIRO, Canberra, Australia; Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Martin J Canny
- Division of Plant Industry, CSIRO, Canberra, Australia; Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Wagga Wagga, NSW, Australia; NSW Department of Primary Industries, Wagga Wagga, NSW, Australia.
| |
Collapse
|
49
|
González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia. FRONTIERS IN PLANT SCIENCE 2016; 7:1088. [PMID: 27524990 PMCID: PMC4965479 DOI: 10.3389/fpls.2016.01088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 05/03/2023]
Abstract
Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Gama F, Saavedra T, da Silva JP, Miguel MG, de Varennes A, Correia PJ, Pestana M. The memory of iron stress in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:36-44. [PMID: 27010743 DOI: 10.1016/j.plaphy.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 05/26/2023]
Abstract
To provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant. Bare-root transplants of strawberry (cv. 'Diamante') were grown for 42 days in Hoagland's nutrient solutions without Fe (Fe0) and containing 10 μM of Fe as Fe-EDDHA (control, Fe10). For plants under Fe0 the total chlorophyll concentration of young leaves decreased progressively on time, showing the typical symptoms of iron chlorosis. After 35 days the Fe concentration was 6% of that observed for plants growing under Fe10. Half of plants growing under Fe0 were then Fe-resupplied by adding 10 μM of Fe to the Fe0 nutrient solution (FeR). Full Chlorophyll recovery of young leaves took place within 12 days. Root ferric chelate-reductase activity (FCR) and succinic and citric acid concentrations increased in FeR plants. Fe partition revealed that FeR plants expressively accumulated this nutrient in the crown and flowers. This observation can be due to a passive deactivation mechanism of the FCR activity, associated with continuous synthesis of succinic and citric acids at root level, and consequent greater uptake of Fe.
Collapse
Affiliation(s)
- Florinda Gama
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Teresa Saavedra
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - José Paulo da Silva
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Amarilis de Varennes
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Pedro José Correia
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maribela Pestana
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|