1
|
Kim JY, Im NH, Shim SY, Lee HB. Photosynthetic acclimation of crassulacean acid metabolism orchid Phalaenopsis in response to light level. Sci Rep 2025; 15:13016. [PMID: 40234588 PMCID: PMC12000393 DOI: 10.1038/s41598-025-96167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Phalaenopsis orchids exhibit remarkable photosynthetic plasticity, enabling them to effectively acclimate crassulacean acid metabolism (CAM) to a wide range of light levels. Herein, the photosynthetic acclimation of Phalaenopsis Queen Beer 'Mantefon' was examined under different light intensities. Phalaenopsis clones grown under a photosynthetic photon flux density (PPFD) of 100 µmol m-2 s-1 were subjected to different light intensities of 10, 50, 100, and 200 µmol m-2 s-1 for either one day or two months of modified light levels, and their chlorophyll fluorescence response and CO2 exchange rate were observed. The electron transport rate (ETR) varied rapidly to changing light levels, showing a significant positive correlation with light intensity after just one day of treatment. Only plants exposed to an elevated light intensity of 200 µmol m-2 s-1 for 1 day showed a decrease in ETR after midday. Moreover, after 2 months, the ETR decreased more slowly under 200 µmol m-2 s-1. Long-term exposure to varying light conditions for two months led to increased CO2 uptake, even at reduced light intensities. The plants also exhibited an enhanced malic acid recovery rate under both low- and high-light conditions. Citric acid levels also varied with light intensity. High-light conditions led to a significant increase in plant growth, characterized by greater biomass and a higher number of leaves. Furthermore, stable carbon isotope analysis revealed differences in the daytime CO2 uptake rate of Phalaenopsis plants grown under different light intensities for two months. In this manner, Phalaenopsis orchids exhibit remarkable plasticity in their photosynthetic pathways, allowing them to acclimate effectively to different light environments. Investigating Phalaenopsis light acclimation is crucial for understanding the mechanisms underlying photosynthetic optimization and growth in diverse light environments in CAM plants.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Nam Hyun Im
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Su Yong Shim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hyo Beom Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Li C, Wang J, Lan H, Yu Q. Comprehensive analyses of the metabolome and transcriptome reveals the photosynthetic effects in Arabidopsis thaliana of SaPEPC1 gene from desert plant with single-cell C4 photosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112516. [PMID: 40246244 DOI: 10.1016/j.plantsci.2025.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The enzyme phosphoenolpyruvate carboxylase (PEPC) plays an important role in the photosynthetic metabolism of higher plants. Although the photosynthetic pathway involving PEPC has been clarified, further investigation is required to elucidate the effects of different light intensity treatments on plant photosynthetic and metabolism of PEPC. In this study, wild-type (WT) Arabidopsis was used as a control to investigate the effect of SaPEPC1 overexpression on the photosynthesis and metabolism of Arabidopsis. The results showed that intense light promoted and weak light inhibited the growth of Arabidopsis. Under different light intensity treatments, overexpression of SaPEPC1 led to increases in the photosynthetic rate (Pn) and photosynthetic enzyme activity (PEPC, Rubisco, PPDK, NADP-ME), a decrease in the intercellular CO2 concentration (Ci), and increases in sucrose accumulation, leaf length, leaf width, and shoot fresh weight. Transcriptomic data analysis revealed that the starch, sucrose, and glutathione metabolic pathways were significantly enriched in transgenic Arabidopsis under intense light. This was accompanied by the up-regulation of multiple differentially expressed genes related to starch and sucrose metabolism, including AtBAM5, AtSUS6, and AtTPS5; the expression of most genes related to glutathione metabolism was down-regulated. A targeted metabolomic data analysis of transgenic Arabidopsis yielded 56 metabolites, the majority of which were found to participate in the tricarboxylic acid (TCA) cycle, followed by glycolysis. The content of L-aspartate, fumaric acid, malic acid, oxaloacetate, citric acid, and succinic acid was higher in transgenic lines than in WT under intense light. In conclusion, the overexpression of SaPEPC1 in Arabidopsis resulted in an increase in the photosynthetic rate and promoted the TCA cycle, and these changes were more pronounced under intense light treatment.
Collapse
Affiliation(s)
- Caixia Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
| | - Qinghui Yu
- Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
3
|
van den Berg TE, Sanders RGP, Kaiser E, Schmitz J. Viewing Stomata in Action: Autonomous in Planta Imaging of Individual Stomatal Movement. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40025844 DOI: 10.1111/pce.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Stomata regulate plant gas exchange under changing environments, but observations of single stomata dynamics in planta are sparse. We developed a compact microscope system that can measure the kinetics of tens of stomata in planta simultaneously, with sub-minute time resolution. Darkfield imaging with green light was used to create 3D stacks from which 2D surface projections were constructed to resolve stomatal apertures. Stomatal dynamics of Chrysanthemum morifolium (Chrysanthemum) and Zea mays (Maize) under changing light intensity were categorized, and a kinetic model was fitted to the data for quantitative comparison. Maize stomata transitioned frequently between open and closed states under constant growth light and these 'opening and closing' stomata, when closed, responded faster to a change to saturating light than steady-state closed stomata under the constant growth light. The faster opening response benefits CO2 uptake under saturating light. The slow closure of Chrysanthemum stomata reduced water use efficiency (WUE). Over 50% showed delayed or partial closure, leading to unnecessarily large apertures after reduced light. Stomata with larger apertures had more lag and similar closure speeds compared to those with smaller apertures and lag, further reducing WUE. In contrast, maize stomata with larger apertures closed faster, with no lag.
Collapse
Affiliation(s)
| | - Remco G P Sanders
- Integrated Devices and Systems, University of Twente, Enschede, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Jurriaan Schmitz
- Integrated Devices and Systems, University of Twente, Enschede, the Netherlands
| |
Collapse
|
4
|
Bechtold U, Burow M, Kangasjärvi S. Translational photobiology: towards dynamic lighting in indoor horticulture. TRENDS IN PLANT SCIENCE 2025; 30:301-310. [PMID: 39482192 DOI: 10.1016/j.tplants.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
Crop productivity depends on the ability of plants to thrive across different growth environments. In nature, light conditions fluctuate due to diurnal and seasonal changes in direction, duration, intensity, and spectrum. Laboratory studies, predominantly conducted with arabidopsis (Arabidopsis thaliana), have provided valuable insights into the metabolic and regulatory strategies that plants employ to cope with varying light intensities. However, there has been less focus on how horticultural crops tolerate dynamically changing light conditions during the photoperiod. In this review we connect insights from photobiology in model plants to the application of dynamic lighting in indoor horticulture. We explore how model species respond to fluctuating light intensities and discuss how this knowledge could be translated for new lighting solutions in controlled environment agriculture.
Collapse
Affiliation(s)
- Ulrike Bechtold
- Department of Bioscience, Durham University, Durham DH1 3LE, UK
| | - Meike Burow
- Section for Molecular Plant Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, 00014 University of Helsinki, Helsinki, Finland; Faculty of Agriculture and Forestry, Department of Agricultural Sciences, 00014 University of Helsinki, Helsinki, Finland; Viikki Plant Science Centre, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Sellaro R, Durand M, Aphalo PJ, Casal JJ. Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:712-729. [PMID: 39101508 PMCID: PMC11805590 DOI: 10.1093/jxb/erae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/06/2024]
Abstract
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
Collapse
Affiliation(s)
- Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Maxime Durand
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
6
|
Liu Q, Jin W, Huang L, Wang D, Xu K, Wei Y. Photosynthetic Induction Characteristics in Saplings of Four Sun-Demanding Trees and Shrubs. PLANTS (BASEL, SWITZERLAND) 2025; 14:144. [PMID: 39795404 PMCID: PMC11723256 DOI: 10.3390/plants14010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, Eucalyptus. Ficus macrocarpa L., Hibiscus syriacus L. and Ficus carica L. We aimed to find out the relations among gas exchange parameter adaptions among different species during photosynthetic induction. The net photosynthetic rates (A) versus time course curves were sigmoidal or hyperbolic after the dark-adapted leaves were irradiated by continuous saturated light. Compared with other species, Ficus carica L. have the largest net photosynthesis rate, stomatal conductance to CO2 (gsc), and the maximum carboxylation rate (Vcmax) at both the initial and steady photosynthetic state. The initial gsc (gsci) was as much as sixfold higher compared to the other shrub, Hibiscus syriacus L. The time required to reach 90% of A (tA90) was 7-30 min; tA90 of Ficus carica L. and Ficus macrocarpa L. were lower than that of the other two species. The time required to reach 90% of gsc (tgsc90) significantly lagged behind tA90 among species. Biochemical induction was fast in leaves of Ficus carica L., as about 4 min were needed to reach 90% of Vcmax, while the other species needed 7-18 min. Correlation analysis showed that the tgsc90 was the main factor in limiting tA90, especially for Eucalyptus spp. and Hibiscus syriacus L.; gsci was negatively correlated with tgsc90 among species. Moreover, time-integrated limitation analysis revealed that gsc still accounted for the largest limitation in constraining A of Eucalyptus spp. and Hibiscus syriacus L. and Ficus macrocarpa L. Overall, the findings suggest that to enhance the carbon gain by woody species under naturally dynamic light environments, attention should be focused on improving the rate of stomatal opening or initial stomatal conductance.
Collapse
Affiliation(s)
- Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (Q.L.); (W.J.); (L.H.)
| | - Wei Jin
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (Q.L.); (W.J.); (L.H.)
| | - Liying Huang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (Q.L.); (W.J.); (L.H.)
| | - Danfeng Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China;
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China;
| | - Yunmin Wei
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China;
| |
Collapse
|
7
|
Tang X, Zhao J, Zhou J, Zhu Q, Sheng X, Yue C. Elevated CO 2 Shifts Photosynthetic Constraint from Stomatal to Biochemical Limitations During Induction in Populus tomentosa and Eucalyptus robusta. PLANTS (BASEL, SWITZERLAND) 2024; 14:47. [PMID: 39795307 PMCID: PMC11722825 DOI: 10.3390/plants14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO2 concentration (Ca). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO2. In this study, we experimentally investigated the influence of elevated CO2 (from 400 to 800 μmol mol-1) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, Populus tomentosa and Eucalyptus robusta. The results show that elevated CO2 increased the steady-state photosynthesis rate (A) and decreased stomatal conductance (gs) and the maximum carboxylation rate (Vcmax) in both species. While E. robusta exhibited a decrease in the linear electron transport rate (J) and the fraction of open reaction centers in photosynthesis II (qL), P. tomentosa showed a significant increase in non-photochemical quenching (NPQ). With respect to non-steady-state photosynthesis, elevated CO2 significantly reduced the induction time of A following a shift from low to high light intensity in both species. Time-integrated limitation analysis during induction revealed that elevated CO2 reduces the relative impacts of stomatal limitations in both species, consequently shifting the predominant limitation on induction efficiency from stomatal to biochemical components. Additionally, species-specific changes in qL and NPQ suggest that elevated CO2 may increase biochemical limitation by affecting energy allocation between carbon fixation and photoprotection. These findings suggest that, in a future CO2-rich atmosphere, plants productivity under fluctuating light may be primarily constrained by photochemical and non-photochemical quenching.
Collapse
Affiliation(s)
- Xianhui Tang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Jiayu Zhou
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Qingchen Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Xiyang Sheng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (J.Z.); (Q.Z.); (X.S.)
| | - Chao Yue
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Yu C, Xu HF, Liu YR, Yan WW, Kong XL, Zhang ZC, Dai GZ, Qiu BS. The transcription factor RppA regulates chlorophyll and carotenoid biosynthesis to improve photoprotection in cyanobacteria. PLANT PHYSIOLOGY 2024; 197:kiae502. [PMID: 39321190 DOI: 10.1093/plphys/kiae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Chlorophyll is an essential photosynthetic pigment but also a strong photosensitizer. Excessive free chlorophyll and its precursors can cause oxidative damage to photosynthetic organisms. Cyanobacteria are the oldest oxygenic photosynthetic organisms and the ancestors of the chloroplast. Owing to their complex habitats, cyanobacteria require precise regulation of chlorophyll synthesis to respond to environmental factors, especially changes in light. Chlorophyll synthase, encoded by chlG, is the enzyme catalyzing the final step of chlorophyll biosynthesis, which is closely related to photosynthesis biogenesis. However, the transcriptional regulation on chlG remains unclear. Here, the transcription factor, regulator of photosynthesis and photopigment-related gene expression A (RppA), was identified to bind to the chlG promoter by screening a yeast 1-hybrid library in the cyanobacterium Synechocystis sp. PCC 6803. The rppA knockout mutant showed a phenotype of slow growth and severe oxidative damage under dark-light transition conditions. The upregulated transcriptional expression of chlG was significantly higher and more chlorophyll and its precursors accumulated in the rppA knockout mutant than those in the wild-type strain during the transition from darkness to light, indicating that RppA represses the expression of chlG in Synechocystis. Meanwhile, RppA could synchronously promote the transcription of carotenoids biosynthesis-related genes to enhance carotenoids synthesis during the dark-light transition. These results reveal synergistic regulation of chlorophyll and carotenoids biosynthesis in cyanobacteria in response to frequent dark-light transitions, which slows down chlorophyll biosynthesis while promoting carotenoids biosynthesis to avoid oxidative damage caused by excessive reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xin-Ling Kong
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
9
|
Shao B, Zhang Y, Vincenzi E, Berman S, Vialet-Chabrand S, Marcelis LFM, Li T, Kaiser E. Photosynthesis and photoprotection in top leaves respond faster to irradiance fluctuations than bottom leaves in a tomato canopy. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7217-7236. [PMID: 39171726 PMCID: PMC11630027 DOI: 10.1093/jxb/erae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Accounting for the dynamic responses of photosynthesis and photoprotection to naturally fluctuating irradiance can improve predictions of plant performance in the field, but the variation of these dynamics within crop canopies is poorly understood. We conducted a detailed study of dynamic and steady-state photosynthesis, photoprotection, leaf pigmentation, and stomatal anatomy in four leaf layers (100, 150, 200, and 250 cm from the floor) of a fully grown tomato (Solanum lycopersicum cv. Foundation) canopy in a greenhouse. We found that leaves at the top of the canopy exhibited higher photosynthetic capacity and slightly faster photosynthetic induction compared with lower-canopy leaves, accompanied by higher stomatal conductance and a faster activation of carboxylation and linear electron transport capacities. In upper-canopy leaves, non-photochemical quenching showed faster induction and relaxation after increases and decreases in irradiance, allowing for more effective photoprotection in these leaves. Despite these observed differences in transient responses between leaf layers, steady-state rather than dynamic photosynthesis traits were more influential for predicting photosynthesis under fluctuating irradiance. Also, a model analysis revealed that time-averaged photosynthesis under fluctuating irradiance could be accurately predicted by one set of Rubisco activation/deactivation parameters across all four leaf layers, thereby greatly simplifying future modelling efforts of whole-canopy photosynthesis.
Collapse
Affiliation(s)
- Bingjie Shao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elena Vincenzi
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sarah Berman
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
10
|
Zhang N, Berman SR, van den Berg T, Chen Y, Marcelis LFM, Kaiser E. Biochemical versus stomatal acclimation of dynamic photosynthetic gas exchange to elevated CO 2 in three horticultural species with contrasting stomatal morphology. PLANT, CELL & ENVIRONMENT 2024; 47:4516-4529. [PMID: 39011936 DOI: 10.1111/pce.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Understanding photosynthetic acclimation to elevated CO2 (eCO2) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO2 (450 μmol mol-1) and eCO2 (900 μmol mol-1) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (gs) responses were quantified by gas exchange measurements. Opening and closure of individual stomata were imaged in situ, using a novel custom-made microscope. The three crop species acclimated to eCO2 with very different strategies: Cucumber (with the highest stomatal density) acclimated to eCO2 mostly via dynamic gs responses, whereas chrysanthemum (with the lowest stomatal density) acclimated to eCO2 mostly via photosynthetic biochemistry. Tomato exhibited acclimation in both photosynthesis and gs kinetics. eCO2 acclimation in individual stomatal pore movement increased rates of pore aperture changes in chrysanthemum, but such acclimation responses resulted in no changes in gs responses. Although eCO2 acclimation occurred in all three crops, photosynthesis under fluctuating irradiance was hardly affected. Our study stresses the importance of quantifying eCO2 acclimatory responses at different integration levels to understand photosynthetic performance under future eCO2 environments.
Collapse
Affiliation(s)
- Ningyi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Sarah R Berman
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Tom van den Berg
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
- Integrated Devices and Systems, University of Twente, Enschede, The Netherlands
| | - Yunke Chen
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, China
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Durand M, Zhuang X, Salmon Y, Robson TM. Caught between two states: The compromise in acclimation of photosynthesis, transpiration and mesophyll conductance to different amplitudes of fluctuating irradiance. PLANT, CELL & ENVIRONMENT 2024; 47:5220-5236. [PMID: 39169893 DOI: 10.1111/pce.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
While dynamic regulation of photosynthesis in fluctuating light is increasingly recognized as an important driver of carbon uptake, acclimation to realistic irradiance fluctuations is still largely unexplored. We subjected Arabidopsis thaliana (L.) wild-type and jac1 mutants to irradiance fluctuations with distinct amplitudes and average irradiance. We examined how irradiance fluctuations affected leaf structure, pigments and physiology. A wider amplitude of fluctuations produced a stronger acclimation response. Large reductions of leaf mass per area under fluctuating irradiance framed our interpretation of changes in photosynthetic capacity and mesophyll conductance as measured by three separate methods, in that photosynthetic investment increased markedly on a mass basis, but only a little on an area basis. Moreover, thermal imagery showed that leaf transpiration was four times higher under fluctuating irradiance. Leaves growing under fluctuating irradiance, although thinner, maintained their photosynthetic capacity, as measured through light- and CO2-response curves; suggesting their photosynthesis may be more cost-efficient than those under steady light, but overall may incur increased maintenance costs. This is especially relevant for plant performance globally because naturally fluctuating irradiance creates conflicting acclimation cues for photosynthesis and transpiration that may hinder progress towards ensuring food security under climate-related extremes of water stress.
Collapse
Affiliation(s)
- Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Xin Zhuang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- National School of Forestry, Institute of Science & Environment, University of Cumbria, Ambleside, UK
| |
Collapse
|
12
|
Kang H, Yu Y, Ke X, Tomimatsu H, Xiong D, Santiago L, Han Q, Kardiman R, Tang Y. Initial stomatal conductance increases photosynthetic induction of trees leaves more from sunlit than from shaded environments: a meta-analysis. TREE PHYSIOLOGY 2024; 44:tpae128. [PMID: 39361922 DOI: 10.1093/treephys/tpae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
It has long been held that tree species/leaves from shaded environments show faster rate of photosynthetic induction than species/leaves from sunlit environments, but the evidence so far is conflicting and the underlying mechanisms are still under debate. To address the debate, we compiled a dataset for 87 tree species and compared the initial increasing slope during the first 2-min induction (SA) and stomatal and biochemical characteristics between sun and shade species from the same study, and those between sun and shade leaves within the same species. In 77% of between-species comparisons, the species with high steady-state photosynthetic rate in the high light (Af) exhibited a larger SA than the species with low Af. In 67% within-species comparisons, the sun leaves exhibited a larger SA than the shade leaves. However, in only a few instances did the sun species/leaves more rapidly achieve 50% of full induction, with an even smaller SA, than the shade species/leaves. At both the species and leaf level, SA increased with increasing initial stomatal conductance before induction (gsi). Despite exhibiting reduced intrinsic water-use efficiency in low light, a large SA proportionally enhances photosynthetic carbon gain during the first 2-min induction in the sun species and leaves. Thus, in terms of the increase in absolute rate of photosynthesis, tree species/leaves from sunlit environments display faster photosynthetic induction responses than those from shaded environments. Our results call for re-consideration of contrasting photosynthetic strategies in photosynthetic adaption/acclimation to dynamic light environments across species.
Collapse
Affiliation(s)
- Huixing Kang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Yu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinran Ke
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hajime Tomimatsu
- Graduate School of Life Sciences, Tohoku University, 980-8578, Aoba, Sendai, Japan
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Louis Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521-0124, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Reki Kardiman
- Department of Biology, Faculty of Mathematic and Natural Science, Universitas Negeri Padang35171, West Sumatra, Indonesia
| | - Yanhong Tang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Nair RS, Raju S, More SJ, Puthur JT, Makasana J, Ravi V. Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava ( Manihot esculenta) subjected to variable high light conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24118. [PMID: 39361805 DOI: 10.1071/fp24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Light intensity is a critical environmental factor influencing plant growth and development. To survive high light conditions, plants have evolved various protective mechanisms, including non-photochemical quenching (NPQ). However, NPQ can limit effective photosynthetic yield when transitioning to low light conditions. This phenomenon is underexplored in cassava (Manihot esculenta ), a starchy storage root crop known for its high biological efficiency and climate resilience. To address this knowledge gap, we assessed the photoprotective abilities and growth responses of six cassava varieties under natural environmental light conditions (control) and intermittent high light (IHL) conditions by adding 900μmolm-2 s-1 using full-spectrum LED lights, on top of the natural ambient daylight. Our results demonstrated a significant impact of light treatment on aboveground biomass, total crop biomass, chlorophyll a and b content, photosynthetic rate, and NPQ values during transitions from low to high light and vice versa. Notably, cassava variety 'Sree Suvarna' exhibited the highest yield under both control and IHL conditions. These findings suggest that screening cassava varieties for their ability to postpone photoinhibition and recover quickly from photoinhibition may enhance photosynthetic performance. Such strategies have important implications for improving the efficiency and resilience of cassava crops, ultimately contributing to sustainable agricultural productivity.
Collapse
Affiliation(s)
- Raji Sadasivan Nair
- Division of Crop Production, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala 695 017, India
| | - Saravanan Raju
- Division of Crop Production, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala 695 017, India
| | | | - Jos Thomas Puthur
- Department of Botany, University of Calicut, Calicut, Kerala 673 635, India
| | - Jayanti Makasana
- Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat 360 003, India
| | - Velumani Ravi
- Division of Crop Production, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala 695 017, India
| |
Collapse
|
16
|
Fuente D, Orlando M, Bailleul B, Jullien L, Lazár D, Nedbal L. A mathematical model to simulate the dynamics of photosynthetic light reactions under harmonically oscillating light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109138. [PMID: 39481198 DOI: 10.1016/j.plaphy.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Alternating electric current and alternating electromagnetic fields revolutionized physics and engineering and led to many technologies that shape modern life. Despite these undisputable achievements that have been reached using stimulation by harmonic oscillations over centuries, applications in biology remain rare. Photosynthesis research is uniquely suited to unleash this potential because light can be modulated as a harmonic function, here sinus. Understanding the response of photosynthetic organisms to sinusoidal light is hindered by the complexity of dynamics that such light elicits, and by the mathematical apparatus required for understanding the signals in the frequency domain which, although well-established and simple, is outside typical curricula in biology. Here, we approach these challenges by presenting a mathematical model that was designed specifically to simulate the response of photosynthetic light reactions to light which oscillates with periods that often occur in nature. The independent variables of the model are the plastoquinone pool, the photosystem I donors, lumen pH, ATP, and the chlorophyll fluorescence (ChlF) quencher that is responsible for the qE non-photochemical quenching. Dynamics of ChlF emission, rate of oxygen evolution, and non-photochemical quenching are approximated by dependent model variables. The model is used to explain the essentials of the frequency-domain approaches up to the level of presenting Bode plots of frequency-dependence of ChlF. The model simulations were found satisfactory when compared with the Bode plots of ChlF response of the green alga Chlamydomonas reinhardtii to light that was oscillating with a small amplitude and frequencies between 7.8 mHz and 64 Hz.
Collapse
Affiliation(s)
- David Fuente
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Marcelo Orlando
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Ladislav Nedbal
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Sahay S, Shrestha N, Dias HM, Mural RV, Grzybowski M, Schnable JC, Głowacka K. Nonphotochemical quenching kinetics GWAS in sorghum identifies genes that may play conserved roles in maize and Arabidopsis thaliana photoprotection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:3000-3014. [PMID: 39126284 DOI: 10.1111/tpj.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Photosynthetic organisms must cope with rapid fluctuations in light intensity. Nonphotochemical quenching (NPQ) enables the dissipation of excess light energy as heat under high light conditions, whereas its relaxation under low light maximizes photosynthetic productivity. We quantified variation in NPQ kinetics across a large sorghum (Sorghum bicolor) association panel in four environments, uncovering significant genetic control for NPQ. A genome-wide association study (GWAS) confidently identified three unique regions in the sorghum genome associated with NPQ and suggestive associations in an additional 61 regions. We detected strong signals from the sorghum ortholog of Arabidopsis thaliana Suppressor Of Variegation 3 (SVR3) involved in plastid-nucleus signaling. By integrating GWAS results for NPQ across maize (Zea mays) and sorghum-association panels, we identified a second gene, Non-yellowing 1 (NYE1), originally studied by Gregor Mendel in pea (Pisum sativum) and involved in the degradation of photosynthetic pigments in light-harvesting complexes. Analysis of nye1 insertion alleles in A. thaliana confirmed the effect of this gene on NPQ kinetics in eudicots. We extended our comparative genomics GWAS framework across the entire maize and sorghum genomes, identifying four additional loci involved in NPQ kinetics. These results provide a baseline for increasing the accuracy and speed of candidate gene identification for GWAS in species with high linkage disequilibrium.
Collapse
Affiliation(s)
- Seema Sahay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nikee Shrestha
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Henrique Moura Dias
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ravi V Mural
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Marcin Grzybowski
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Katarzyna Głowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
| |
Collapse
|
18
|
Liu S, Wu Z, Yang T, Xu J, Aishan S, Qin E, Ma K, Liu J, Qin R, Wang J, Tie J, Liu H. The Chrysosplenium sinicum genome provides insights into adaptive evolution of shade plants. Commun Biol 2024; 7:1004. [PMID: 39152309 PMCID: PMC11329650 DOI: 10.1038/s42003-024-06701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Chrysosplenium sinicum, a traditional Tibetan medicinal plant, can successfully thrive in low-light environments for long periods of time. To investigate the adaptive evolution of shade plants in low-light environments, we generated a chromosome-scale genome assembly (~320 Mb) for C. sinicum by combining PacBio sequencing and Hi-C technologies. Based on our results, gene families related to photosynthesis and cell respiration greatly expanded and evolved in C. sinicum genome due to intracellular DNA transfer from organelle genome to nuclear genome. Under positive selective pressure, adaptive evolution of light-harvesting complex II (LHCII) component protein CsLhcb1s resulted in the expansion of threonine residues at the phosphorylation site of STN7 kinase, potentially establishing a crucial genomic foundation for enhancing C. sinicum's adaptability in low-light environments. Through transcriptome and metabolome analysis, we identified chrysosplenol and chrysosplenoside as predominant flavonoid metabolites of C. sinicum and predicted their synthesis pathways. In addition, analysis of alternative splicing (AS) revealed that AS events help regulate state transition and flavonoid biosynthesis. The present study provides new insights into the genomes of shade plants exposed to low-light conditions and adaptive evolution of these genomes; in addition, the results improve our current knowledge on the biosynthetic and regulatory processes of chrysosplenol and chrysosplenoside.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiangqing Wang
- College of Computer Science, South-Central Minzu University, Wuhan, China
| | - Jun Tie
- College of Computer Science, South-Central Minzu University, Wuhan, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
19
|
Turc B, Sahay S, Haupt J, de Oliveira Santos T, Bai G, Glowacka K. Up-regulation of non-photochemical quenching improves water use efficiency and reduces whole-plant water consumption under drought in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3959-3972. [PMID: 38470077 PMCID: PMC11233411 DOI: 10.1093/jxb/erae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Water supply limitations will likely impose increasing restrictions on future crop production, underlining a need for crops that use less water per mass of yield. Water use efficiency (WUE) therefore becomes a key consideration in developing resilient and productive crops. In this study, we hypothesized that it is possible to improve WUE under drought conditions via modulation of chloroplast signals for stomatal opening by up-regulation of non-photochemical quenching (NPQ). Nicotiana tabacum plants with strong overexpression of the PsbS gene encoding PHOTOSYSTEM II SUBUNIT S, a key protein in NPQ, were grown under differing levels of drought. The PsbS-overexpressing lines lost 11% less water per unit CO2 fixed under drought and this did not have a significant effect on plant size. Depending on growth conditions, the PsbS-overexpressing lines consumed from 4-30% less water at the whole-plant level than the corresponding wild type. Leaf water and chlorophyll contents showed a positive relation with the level of NPQ. This study therefore provides proof of concept that up-regulation of NPQ can increase WUE, and as such is an important step towards future engineering of crops with improved performance under drought.
Collapse
Affiliation(s)
- Benjamin Turc
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Seema Sahay
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jared Haupt
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Talles de Oliveira Santos
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Geng Bai
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Katarzyna Glowacka
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| |
Collapse
|
20
|
Lazzarin M, Driever S, Wassenaar M, Marcelis LFM, van Ieperen W. Shining light on diurnal variation of non-photochemical quenching: Impact of gradual light intensity patterns on short-term NPQ over a day. PHYSIOLOGIA PLANTARUM 2024; 176:e14410. [PMID: 38945685 DOI: 10.1111/ppl.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 μmol m-2 s-1) while DC stayed constant at 300 μmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.
Collapse
Affiliation(s)
- Martina Lazzarin
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Steven Driever
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, AA, The Netherlands
| | - Maarten Wassenaar
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| |
Collapse
|
21
|
Niu Y, Matsubara S, Nedbal L, Lazár D. Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light. PLANT, CELL & ENVIRONMENT 2024; 47:2240-2257. [PMID: 38482712 DOI: 10.1111/pce.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/28/2024] [Indexed: 04/30/2024]
Abstract
Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
22
|
Sahay S, Grzybowski M, Schnable JC, Głowacka K. Genotype-specific nonphotochemical quenching responses to nitrogen deficit are linked to chlorophyll a to b ratios. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154261. [PMID: 38705078 DOI: 10.1016/j.jplph.2024.154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.
Collapse
Affiliation(s)
- Seema Sahay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Marcin Grzybowski
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland.
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Katarzyna Głowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznań, Poland.
| |
Collapse
|
23
|
Zhang Y, Kaiser E, Dutta S, Sharkey TD, Marcelis LFM, Li T. Short-term salt stress reduces photosynthetic oscillations under triose phosphate utilization limitation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2994-3008. [PMID: 38436737 DOI: 10.1093/jxb/erae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/02/2024] [Indexed: 03/05/2024]
Abstract
Triose phosphate utilization (TPU) limitation is one of the three biochemical limitations of photosynthetic CO2 assimilation rate in C3 plants. Under TPU limitation, abrupt and large transitions in light intensity cause damped oscillations in photosynthesis. When plants are salt-stressed, photosynthesis is often down-regulated particularly under dynamic light intensity, but how salt stress affects TPU-related dynamic photosynthesis is still unknown. To elucidate this, tomato (Solanum lycopersicum) was grown with and without sodium chloride (NaCl, 100 mM) stress for 13 d. Under high CO2 partial pressure, rapid increases in light intensity caused profound photosynthetic oscillations. Salt stress reduced photosynthetic oscillations in leaves initially under both low- and high-light conditions and reduced the duration of oscillations by about 2 min. Besides, salt stress increased the threshold for CO2 partial pressure at which oscillations occurred. Salt stress increased TPU capacity without affecting Rubisco carboxylation and electron transport capacity, indicating the up-regulation of end-product synthesis capacity in photosynthesis. Thus salt stress may reduce photosynthetic oscillations by decreasing leaf internal CO2 partial pressure and/or increasing TPU capacity. Our results provide new insights into how salt stress modulates dynamic photosynthesis as controlled by CO2 availability and end-product synthesis.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Satadal Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Delft, the Netherlands
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Su-Zhou C, Durand M, Aphalo PJ, Martinez-Abaigar J, Shapiguzov A, Ishihara H, Liu X, Robson TM. Weaker photosynthetic acclimation to fluctuating than to corresponding steady UVB radiation treatments in grapevines. PHYSIOLOGIA PLANTARUM 2024; 176:e14383. [PMID: 38859677 DOI: 10.1111/ppl.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.
Collapse
Affiliation(s)
- Chenxing Su-Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Alexey Shapiguzov
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Finland
| | - Hirofumi Ishihara
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| |
Collapse
|
25
|
Neimane-Šroma S, Durand M, Lintunen A, Aalto J, Robson TM. Shedding light on the increased carbon uptake by a boreal forest under diffuse solar radiation across multiple scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17275. [PMID: 38624252 DOI: 10.1111/gcb.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.
Collapse
Affiliation(s)
- Santa Neimane-Šroma
- Faculty of Biological and Environmental Science, Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Maxime Durand
- Faculty of Biological and Environmental Science, Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
| | - T Matthew Robson
- Faculty of Biological and Environmental Science, Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- UK National School of Forestry, University of Cumbria, Ambleside, UK
| |
Collapse
|
26
|
He W, Chai Q, Zhao C, Yu A, Fan Z, Yin W, Hu F, Fan H, Sun Y, Wang F. Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23091. [PMID: 38669458 DOI: 10.1071/fp23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200μmolm-2 s-1 , presented as either white light or three levels of blue light (40μmolm-2 s-1 , 67μmolm-2 s-1 and 100μmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yali Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
27
|
Uflewski M, Rindfleisch T, Korkmaz K, Tietz E, Mielke S, Correa Galvis V, Dünschede B, Luzarowski M, Skirycz A, Schwarzländer M, Strand DD, Hertle AP, Schünemann D, Walther D, Thalhammer A, Wolff M, Armbruster U. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status. Nat Commun 2024; 15:2792. [PMID: 38555362 PMCID: PMC10981695 DOI: 10.1038/s41467-024-47151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.
Collapse
Affiliation(s)
- Michał Uflewski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Tobias Rindfleisch
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
- Computational Biology Unit, Department of Chemistry, University of Bergen, Bergen, Norway
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Enrico Tietz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Sarah Mielke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Alexander P Hertle
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Martin Wolff
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany.
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
Heuermann MC, Meyer RC, Knoch D, Tschiersch H, Altmann T. Strong prevalence of light regime-specific QTL in Arabidopsis detected using automated high-throughput phenotyping in fluctuating or constant light. PHYSIOLOGIA PLANTARUM 2024; 176:e14255. [PMID: 38528708 DOI: 10.1111/ppl.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light. A total of 282 image-derived architectural and/or color-related traits at six common time points, and 77 photosynthesis-related traits from one common time point were used to assess their associations with genome-wide natural variation for both light regimes. Out of the 3000 significant marker-trait associations (MTAs) detected, only 183 (6.1%) were common for fluctuating and constant light conditions. The prevalence of light regime-specific QTL indicates a complex adaptation. Genes in linkage disequilibrium with fluctuating light-specific MTAs with an adjusted repeatability value >0.5 were filtered for gene ontology terms containing "photo" or "light", yielding 15 selected candidates. The candidate genes are involved in photoprotection, PSII maintenance and repair, maintenance of linear electron flow, photorespiration, phytochrome signaling, and cell wall expansion, providing a promising starting point for further investigations into the response of Arabidopsis thaliana to fluctuating light conditions.
Collapse
Affiliation(s)
- Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
29
|
Zeng ZL, Wang XQ, Zhang SB, Huang W. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. PLANT PHYSIOLOGY 2024; 194:1498-1511. [PMID: 37956105 DOI: 10.1093/plphys/kiad605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Drought and heat stresses usually occur concomitantly in nature, with increasing frequency and intensity of both stresses expected due to climate change. The synergistic agricultural impacts of these compound climate extremes are much greater than those of the individual stresses. However, the mechanisms by which drought and heat stresses separately and concomitantly affect dynamic photosynthesis have not been thoroughly assessed. To elucidate this, we used tomato (Solanum lycopersicum) seedlings to measure dynamic photosynthesis under individual and compound stresses of drought and heat. Individual drought and heat stresses limited dynamic photosynthesis at the stages of diffusional conductance to CO2 and biochemistry, respectively. However, the primary limiting factor for photosynthesis shifted to mesophyll conductance under the compound stresses. Compared with the control, photosynthetic carbon gain in fluctuating light decreased by 38%, 73%, and 114% under the individual drought, heat, and compound stresses, respectively. Therefore, compound stresses caused a greater reduction in photosynthetic carbon gain in fluctuating light conditions than individual stress. These findings highlight the importance of mitigating the effects of compound climate extremes on crop productivity by targeting mesophyll conductance and improving dynamic photosynthesis.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shi-Bao Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
30
|
Caracciolo L, Philippi J, Theeuwen TPJM, van Amerongen H, Harbinson J. An open-source controller to build a dynamic light intensity setup. PLANT METHODS 2024; 20:35. [PMID: 38419125 PMCID: PMC10902962 DOI: 10.1186/s13007-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The development and physiology of plants are influenced by light intensity and its changes. Despite the significance of this phenomenon, there is a lack of understanding regarding the processes light regulates. This lack of understanding is partly due to the complexity of plant's responses, but also due to the limited availability of light setups capable of producing specific light patterns. RESULTS While unraveling the complexities of plant responses will require further studies, this research proposes a simple method to implement dynamic light setups. In this study, we introduce two distinct electronic circuits that are cost-effective and enable the control of a dimmable power supply. CONCLUSION This method enables the generation of intricate light patterns and rapid intensity fluctuations, providing a means to investigate how plants respond and develop when exposed to dynamic light conditions.
Collapse
Affiliation(s)
- Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University, 6700 ET, Wageningen, The Netherlands.
| | - John Philippi
- Laboratory of Biophysics, Wageningen University, 6700 ET, Wageningen, The Netherlands
| | - Tom P J M Theeuwen
- Jan IngenHousz Institute, Bornsesteeg 48, 6708 PE, Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6700 ET, Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6700 ET, Wageningen, The Netherlands
| |
Collapse
|
31
|
Taylor SH. Phenotyping photosynthesis: yes we can. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:659-662. [PMID: 38307516 PMCID: PMC10837009 DOI: 10.1093/jxb/erad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
This article comments on:
Keller B, Soto J, Steier A, Portilla-Benavides AE, Raatz B, Studer B, Walter A, Muller O, Urban MO. 2024. Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. Journal of Experimental Botany 75, 901–916.
Collapse
Affiliation(s)
- Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
32
|
Keller B, Soto J, Steier A, Portilla-Benavides AE, Raatz B, Studer B, Walter A, Muller O, Urban MO. Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:901-916. [PMID: 37878015 PMCID: PMC10837016 DOI: 10.1093/jxb/erad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Photosynthesis drives plant physiology, biomass accumulation, and yield. Photosynthetic efficiency, specifically the operating efficiency of PSII (Fq'/Fm'), is highly responsive to actual growth conditions, especially to fluctuating photosynthetic photon fluence rate (PPFR). Under field conditions, plants constantly balance energy uptake to optimize growth. The dynamic regulation complicates the quantification of cumulative photochemical energy uptake based on the intercepted solar energy, its transduction into biomass, and the identification of efficient breeding lines. Here, we show significant effects on biomass related to genetic variation in photosynthetic efficiency of 178 climbing bean (Phaseolus vulgaris L.) lines. Under fluctuating conditions, the Fq'/Fm' was monitored throughout the growing period using hand-held and automated chlorophyll fluorescence phenotyping. The seasonal response of Fq'/Fm' to PPFR (ResponseG:PPFR) achieved significant correlations with biomass and yield, ranging from 0.33 to 0.35 and from 0.22 to 0.31 in two glasshouse and three field trials, respectively. Phenomic yield prediction outperformed genomic predictions for new environments in four trials under different growing conditions. Investigating genetic control over photosynthesis, one single nucleotide polymorphism (Chr09_37766289_13052) on chromosome 9 was significantly associated with ResponseG:PPFR in proximity to a candidate gene controlling chloroplast thylakoid formation. In conclusion, photosynthetic screening facilitates and accelerates selection for high yield potential.
Collapse
Affiliation(s)
- Beat Keller
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonatan Soto
- Bean Program, Crops for nutrition and health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Angelina Steier
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Bodo Raatz
- Bean Program, Crops for nutrition and health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Achim Walter
- Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Milan O Urban
- Bean Program, Crops for nutrition and health, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
33
|
Yang QY, Wang XQ, Yang YJ, Huang W. Fluctuating light induces a significant photoinhibition of photosystem I in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108426. [PMID: 38340689 DOI: 10.1016/j.plaphy.2024.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.
Collapse
Affiliation(s)
- Qiu-Yan Yang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Qian Wang
- School of Life Sciences, Shannxi Normal University, Xi'an, 710119, China
| | - Ying-Jie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
34
|
von Bismarck T, Wendering P, Perez de Souza L, Ruß J, Strandberg L, Heyneke E, Walker BJ, Schöttler MA, Fernie AR, Nikoloski Z, Armbruster U. Growth in fluctuating light buffers plants against photorespiratory perturbations. Nat Commun 2023; 14:7052. [PMID: 37923709 PMCID: PMC10624928 DOI: 10.1038/s41467-023-42648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.
Collapse
Affiliation(s)
- Thekla von Bismarck
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Philipp Wendering
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Linnéa Strandberg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elmien Heyneke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Berkley J Walker
- DOE-Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd Rm 212, East Lansing, MI, 48823, USA
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ute Armbruster
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
35
|
Suwannarut W, Vialet-Chabrand S, Kaiser E. Diurnal decline in photosynthesis and stomatal conductance in several tropical species. FRONTIERS IN PLANT SCIENCE 2023; 14:1273802. [PMID: 37941668 PMCID: PMC10628437 DOI: 10.3389/fpls.2023.1273802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Photosynthesis (A) and stomatal conductance (gs) change diurnally due to internal signals, but the effects of diurnal rhythms on dynamic photosynthetic behavior are understudied. We examined diurnal changes in A and gs in ten tropical species: across species, there was a tendency for A and gs to decline diurnally when these were repeatedly measured under either steady-state or fluctuating irradiance conditions. We then examined in more detail the irradiance-induced kinetics of gas exchange in a C3 and C4 crop species each, namely fig (Ficus carica) and sugarcane (Saccharum officinarum). During the day, fig showed significantly slower photosynthetic induction and lower gs, as well as a slower gs increase, in the afternoon than in the morning and noon. Sugarcane showed a reduction in steady-state A reached under high irradiance and slower gs increase as well as lower gs reached under high irradiance, but no changes in the rate of photosynthetic induction, in the afternoon, compared to morning and noon. These reductions in the afternoon were not reverted by a dark treatment in the middle of the day, suggesting that the decrease was not proportional to diurnal time-integrated carbon fixation. Repeated exposure to light- and shadeflecks (1000 and 50 μmol m-2 s-1, lasting 20 min each) revealed fundamental differences in stomatal regulation between species: in fig, stomata opened and closed slowly, and their opening became progressively slower under a series of lightflecks, whereas sugarcane showed much faster stomatal opening than closure that was unchanged during the course of the day. Our results highlight that steady-state rates and irradiance-induced kinetics of photosynthesis and stomatal movement change diurnally in most species studied, and that they do so differently in fig and sugarcane.
Collapse
Affiliation(s)
| | | | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
37
|
Arce Cubas L, Rodrigues Gabriel Sales C, Vath RL, Bernardo EL, Burnett AC, Kromdijk J. Lessons from relatives: C4 photosynthesis enhances CO2 assimilation during the low-light phase of fluctuations. PLANT PHYSIOLOGY 2023; 193:1073-1090. [PMID: 37335935 PMCID: PMC10517189 DOI: 10.1093/plphys/kiad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Despite the global importance of species with C4 photosynthesis, there is a lack of consensus regarding C4 performance under fluctuating light. Contrasting hypotheses and experimental evidence suggest that C4 photosynthesis is either less or more efficient in fixing carbon under fluctuating light than the ancestral C3 form. Two main issues have been identified that may underly the lack of consensus: neglect of evolutionary distance between selected C3 and C4 species and use of contrasting fluctuating light treatments. To circumvent these issues, we measured photosynthetic responses to fluctuating light across 3 independent phylogenetically controlled comparisons between C3 and C4 species from Alloteropsis, Flaveria, and Cleome genera under 21% and 2% O2. Leaves were subjected to repetitive stepwise changes in light intensity (800 and 100 µmol m-2 s-1 photon flux density) with 3 contrasting durations: 6, 30, and 300 s. These experiments reconciled the opposing results found across previous studies and showed that (i) stimulation of CO2 assimilation in C4 species during the low-light phase was both stronger and more sustained than in C3 species; (ii) CO2 assimilation patterns during the high-light phase could be attributable to species or C4 subtype differences rather than photosynthetic pathway; and (iii) the duration of each light step in the fluctuation regime can strongly influence experimental outcomes.
Collapse
Affiliation(s)
- Lucίa Arce Cubas
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA Cambridge, UK
| | | | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA Cambridge, UK
| | - Emmanuel L Bernardo
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA Cambridge, UK
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Angela C Burnett
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA Cambridge, UK
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA Cambridge, UK
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Meyer RC, Weigelt-Fischer K, Tschiersch H, Topali G, Altschmied L, Heuermann MC, Knoch D, Kuhlmann M, Zhao Y, Altmann T. Dynamic growth QTL action in diverse light environments: characterization of light regime-specific and stable QTL in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5341-5362. [PMID: 37306093 DOI: 10.1093/jxb/erad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/10/2023] [Indexed: 06/13/2023]
Abstract
Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Georgia Topali
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| |
Collapse
|
39
|
Nies T, van Aalst M, Saadat N, Ebeling J, Ebenhöh O. What controls carbon sequestration in plants under which conditions? Biosystems 2023; 231:104968. [PMID: 37419275 DOI: 10.1016/j.biosystems.2023.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Photosynthetic organisms use photosynthesis to harvest sunlight and convert the solar energy into chemical energy, which is then used to reduce atmospheric carbon dioxide into organic molecules. This process forms the basis of all life on Earth, and stands at the beginning of the food chain which feeds the world population. Not surprisingly, many research efforts are currently ongoing aiming at improving growth and product yield of photosynthetic organisms, and several of these activities directly target the photosynthetic pathways. Metabolic Control Analysis (MCA) shows that, in general, the control over a metabolic flux, such as carbon fixation, is distributed among several steps and highly dependent on the external conditions. Therefore, the concept of a single 'rate-limiting' step is hardly ever applicable, and as a consequence, any strategy relying on improving a single molecular process in a complex metabolic system is bound to fail to yield the expected results. In photosynthesis, reports on which processes exert the highest control over carbon fixation are contradictory. This refers to both the photosynthetic 'light' reactions harvesting photons and the 'dark' reactions of the Calvin-Benson-Bassham Cycle (CBB cycle). Here, we employ a recently developed mathematical model, which describes photosynthesis as an interacting supply-demand system, to systematically study how external conditions affect the control over carbon fixation fluxes.
Collapse
Affiliation(s)
- Tim Nies
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany.
| | - Marvin van Aalst
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany
| | - Nima Saadat
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany; Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany
| | - Josha Ebeling
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany
| | - Oliver Ebenhöh
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany; Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, 40225, North Rhine-Westphalia, Germany
| |
Collapse
|
40
|
Niu Y, Lazár D, Holzwarth AR, Kramer DM, Matsubara S, Fiorani F, Poorter H, Schrey SD, Nedbal L. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport. THE NEW PHYTOLOGIST 2023. [PMID: 37429324 DOI: 10.1111/nph.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, NL-1081 HV, Amsterdam, the Netherlands
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia D Schrey
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
41
|
Durand M, Robson TM. Fields of a thousand shimmers: canopy architecture determines high-frequency light fluctuations. THE NEW PHYTOLOGIST 2023; 238:2000-2015. [PMID: 36807284 DOI: 10.1111/nph.18822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 05/04/2023]
Abstract
Wind-induced movement in the canopy produces rapid fluctuations in irradiance, called 'windflecks'. They create a dynamic environment for photosynthesis that bears little resemblance to the stable controlled conditions under which plants are typically measured. We recorded time series of irradiance to assess the diversity of windfleck properties (intensity, duration, frequency, clustering, and spectral composition) in canopies of four crops and five tree species. We also measured traits associated with leaf morphology and canopy architecture, which could be associated with canopy-specific differences in windflecks. Distinct features of windfleck properties were identified both between and among crop and tree canopy. Windflecks in crops were generally more intense and longer, and baseline irradiance was much higher than even the peak irradiance during a windfleck in a forest. The change in spectral composition during a windfleck was species-specific. Overall, irradiance fluctuations were less frequent and less intense in tall canopies and with increased depth from the canopy. Our systematic exploration of how canopy structure dictates light dynamics provides new insight into windfleck creation. Coupled with progress in elucidation of the mechanisms of photosynthetic induction, this knowledge should improve our capacity to model canopy ecophysiology and understand light use efficiency in shade.
Collapse
Affiliation(s)
- Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
- National Forestry School, University of Cumbria, Ambleside, LA22 9BB, UK
| |
Collapse
|
42
|
Li YT, Gao HY, Zhang ZS. Effects of Environmental and Non-Environmental Factors on Dynamic Photosynthetic Carbon Assimilation in Leaves under Changing Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2015. [PMID: 37653932 PMCID: PMC10223794 DOI: 10.3390/plants12102015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Major research on photosynthesis has been carried out under steady light. However, in the natural environment, steady light is rare, and light intensity is always changing. Changing light affects (usually reduces) photosynthetic carbon assimilation and causes decreases in biomass and yield. Ecologists first observed the importance of changing light for plant growth in the understory; other researchers noticed that changing light in the crop canopy also seriously affects yield. Here, we review the effects of environmental and non-environmental factors on dynamic photosynthetic carbon assimilation under changing light in higher plants. In general, dynamic photosynthesis is more sensitive to environmental and non-environmental factors than steady photosynthesis, and dynamic photosynthesis is more diverse than steady photosynthesis. Finally, we discuss the challenges of photosynthetic research under changing light.
Collapse
Affiliation(s)
- Yu-Ting Li
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Hui-Yuan Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Zi-Shan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
43
|
Vinyard DJ. A low-cost and realistic noisy light system for studying photosynthesis. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01012-2. [PMID: 36941457 DOI: 10.1007/s11120-023-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 05/25/2023]
Abstract
Unlike the light conditions commonly used to grow photosynthetic organisms in the research laboratory, the light intensity in real environments is dynamic. A simple and low-cost system is described in which a commercial dimmable LED panel is controlled to simulate a sinusoidal function representing daylight hours and overlaid with stochastic shading events. The output closely resembles light intensity measurements on Earth's surface on partly cloudy days or in lower levels of plant canopies. This tool may be useful to researchers studying photosynthetic acclimation responses.
Collapse
Affiliation(s)
- David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
44
|
Schiphorst C, Koeman C, Caracciolo L, Staring K, Theeuwen TPJM, Driever SM, Harbinson J, Wientjes E. The effects of different daily irradiance profiles on Arabidopsis growth, with special attention to the role of PsbS. FRONTIERS IN PLANT SCIENCE 2023; 14:1070218. [PMID: 36968375 PMCID: PMC10035889 DOI: 10.3389/fpls.2023.1070218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In nature, light is never constant, while in the controlled environments used for vertical farming, in vitro propagation, or plant production for scientific research, light intensity is often kept constant during the photoperiod. To investigate the effects on plant growth of varying irradiance during the photoperiod, we grew Arabidopsis thaliana under three irradiance profiles: a square-wave profile, a parabolic profile with gradually increasing and subsequently decreasing irradiance, and a regime comprised of rapid fluctuations in irradiance. The daily integral of irradiance was the same for all three treatments. Leaf area, plant growth rate, and biomass at time of harvest were compared. Plants grown under the parabolic profile had the highest growth rate and biomass. This could be explained by a higher average light-use efficiency for carbon dioxide fixation. Furthermore, we compared the growth of wild type plants with that of the PsbS-deficient mutant npq4. PsbS triggers the fast non-photochemical quenching process (qE) that protects PSII from photodamage during sudden increases in irradiance. Based mainly on field and greenhouse experiments, the current consensus is that npq4 mutants grow more slowly in fluctuating light. However, our data show that this is not the case for several forms of fluctuating light conditions under otherwise identical controlled-climate room conditions.
Collapse
Affiliation(s)
- Christo Schiphorst
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Cas Koeman
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Koen Staring
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | | | - Steven M. Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
45
|
Yudina L, Sukhova E, Gromova E, Mudrilov M, Zolin Y, Popova A, Nerush V, Pecherina A, Grishin AA, Dorokhov AA, Sukhov V. Effect of Duration of LED Lighting on Growth, Photosynthesis and Respiration in Lettuce. PLANTS (BASEL, SWITZERLAND) 2023; 12:442. [PMID: 36771527 PMCID: PMC9921278 DOI: 10.3390/plants12030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Parameters of illumination including the spectra, intensity, and photoperiod play an important role in the cultivation of plants under greenhouse conditions, especially for vegetables such as lettuce. We previously showed that illumination by a combination of red, blue, and white LEDs with a high red light intensity, was optimal for lettuce cultivation; however, the effect of the photoperiod on lettuce cultivation was not investigated. In the current work, we investigated the influence of photoperiod on production (total biomass and dry weight) and parameters of photosynthesis, respiration rate, and relative chlorophyll content in lettuce plants. A 16 h (light):8 h (dark) illumination regime was used as the control. In this work, we investigated the effect of photoperiod on total biomass and dry weight production in lettuce plants as well as on photosynthesis, respiration rate and chlorophyll content. A lighting regime 16:8 h (light:dark) was used as control. A shorter photoperiod (8 h) decreased total biomass and dry weight in lettuce, and this effect was related to the suppression of the linear electron flow caused by the decreasing content of chlorophylls and, therefore, light absorption. A longer photoperiod (24 h) increased the total biomass and dry weight, nevertheless an increase in photosynthetic processes, light absorption by leaves and chlorophyll content was not recorded, nor were differences in respiration rate, thus indicating that changes in photosynthesis and respiration are not necessary conditions for stimulating plant production. A simple model to predict plant production was also developed to address the question of whether increasing the duration of illumination stimulates plant production without inducing changes in photosynthesis and respiration. Our results indicate that increasing the duration of illumination can stimulate dry weight accumulation and that this effect can also be induced using the equal total light integrals for day (i.e., this stimulation can be also caused by increasing the light period while decreasing light intensity). Increasing the duration of illumination is therefore an effective approach to stimulating lettuce production under artificial lighting.
Collapse
Affiliation(s)
- Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Yuriy Zolin
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Alyona Popova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vladimir Nerush
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Anna Pecherina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Andrey A. Grishin
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia
| | - Artem A. Dorokhov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
46
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
47
|
Murchie EH, Reynolds M, Slafer GA, Foulkes MJ, Acevedo-Siaca L, McAusland L, Sharwood R, Griffiths S, Flavell RB, Gwyn J, Sawkins M, Carmo-Silva E. A 'wiring diagram' for source strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:72-90. [PMID: 36264277 PMCID: PMC9786870 DOI: 10.1093/jxb/erac415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 05/06/2023]
Abstract
Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Liana Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Robert Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | | |
Collapse
|
48
|
von Bismarck T, Korkmaz K, Ruß J, Skurk K, Kaiser E, Correa Galvis V, Cruz JA, Strand DD, Köhl K, Eirich J, Finkemeier I, Jahns P, Kramer DM, Armbruster U. Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:160-176. [PMID: 36378135 DOI: 10.1111/nph.18534] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Understanding photosynthesis in natural, dynamic light environments requires knowledge of long-term acclimation, short-term responses, and their mechanistic interactions. To approach the latter, we systematically determined and characterized light-environmental effects on thylakoid ion transport-mediated short-term responses during light fluctuations. For this, Arabidopsis thaliana wild-type and mutants of the Cl- channel VCCN1 and the K+ exchange antiporter KEA3 were grown under eight different light environments and characterized for photosynthesis-associated parameters and factors in steady state and during light fluctuations. For a detailed characterization of selected light conditions, we monitored ion flux dynamics at unprecedented high temporal resolution by a modified spectroscopy approach. Our analyses reveal that daily light intensity sculpts photosynthetic capacity as a main acclimatory driver with positive and negative effects on the function of KEA3 and VCCN1 during high-light phases, respectively. Fluctuations in light intensity boost the accumulation of the photoprotective pigment zeaxanthin (Zx). We show that KEA3 suppresses Zx accumulation during the day, which together with its direct proton transport activity accelerates photosynthetic transition to lower light intensities. In summary, both light-environment factors, intensity and variability, modulate the function of thylakoid ion transport in dynamic photosynthesis with distinct effects on lumen pH, Zx accumulation, photoprotection, and photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Kira Skurk
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Elias Kaiser
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Jeffrey A Cruz
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
49
|
Leveraging plant physiological dynamics using physical reservoir computing. Sci Rep 2022; 12:12594. [PMID: 35869238 PMCID: PMC9307625 DOI: 10.1038/s41598-022-16874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Plants are complex organisms subject to variable environmental conditions, which influence their physiology and phenotype dynamically. We propose to interpret plants as reservoirs in physical reservoir computing. The physical reservoir computing paradigm originates from computer science; instead of relying on Boolean circuits to perform computations, any substrate that exhibits complex non-linear and temporal dynamics can serve as a computing element. Here, we present the first application of physical reservoir computing with plants. In addition to investigating classical benchmark tasks, we show that Fragaria × ananassa (strawberry) plants can solve environmental and eco-physiological tasks using only eight leaf thickness sensors. Although the results indicate that plants are not suitable for general-purpose computation but are well-suited for eco-physiological tasks such as photosynthetic rate and transpiration rate. Having the means to investigate the information processing by plants improves quantification and understanding of integrative plant responses to dynamic changes in their environment. This first demonstration of physical reservoir computing with plants is key for transitioning towards a holistic view of phenotyping and early stress detection in precision agriculture applications since physical reservoir computing enables us to analyse plant responses in a general way: environmental changes are processed by plants to optimise their phenotype.
Collapse
|
50
|
Sukhova E, Ratnitsyna D, Gromova E, Sukhov V. Development of Two-Dimensional Model of Photosynthesis in Plant Leaves and Analysis of Induction of Spatial Heterogeneity of CO 2 Assimilation Rate under Action of Excess Light and Drought. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233285. [PMID: 36501325 PMCID: PMC9739240 DOI: 10.3390/plants11233285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Photosynthesis is a key process in plants that can be strongly affected by the actions of environmental stressors. The stressor-induced photosynthetic responses are based on numerous and interacted processes that can restrict their experimental investigation. The development of mathematical models of photosynthetic processes is an important way of investigating these responses. Our work was devoted to the development of a two-dimensional model of photosynthesis in plant leaves that was based on the Farquhar-von Caemmerer-Berry model of CO2 assimilation and descriptions of other processes including the stomatal and transmembrane CO2 fluxes, lateral CO2 and HCO3- fluxes, transmembrane and lateral transport of H+ and K+, interaction of these ions with buffers in the apoplast and cytoplasm, light-dependent regulation of H+-ATPase in the plasma membrane, etc. Verification of the model showed that the simulated light dependences of the CO2 assimilation rate were similar to the experimental ones and dependences of the CO2 assimilation rate of an average leaf CO2 conductance were also similar to the experimental dependences. An analysis of the model showed that a spatial heterogeneity of the CO2 assimilation rate on a leaf surface should be stimulated under an increase in light intensity and a decrease in the stomatal CO2 conductance or quantity of the open stomata; this prediction was supported by the experimental verification. Results of the work can be the basis of the development of new methods of the remote sensing of the influence of abiotic stressors (at least, excess light and drought) on plants.
Collapse
|