1
|
Naresh R, Srivastava R, Gunapati S, Sane AP, Sane VA. Functional characterization of GhNAC2 promoter conferring hormone- and stress-induced expression: a potential tool to improve growth and stress tolerance in cotton. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:17-32. [PMID: 38435854 PMCID: PMC10901759 DOI: 10.1007/s12298-024-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
The GhNAC2 transcription factor identified from G. herbaceum improves root growth and drought tolerance through transcriptional reprogramming of phytohormone signaling. The promoter of such a versatile gene could serve as an important genetic engineering tool for biotechnological application. In this study, we identified and characterized the promoter of GhNAC2 to understand its regulatory mechanism. GhNAC2 transcription factor increased in root tissues in response to GA, ethylene, auxin, ABA, mannitol, and NaCl. In silico analysis revealed an overrepresentation of cis-regulatory elements associated with hormone signaling, stress responses and root-, pollen-, and seed-specific promoter activity. To validate their role in GhNAC2 function/regulation, an 870-bp upstream regulatory sequence was fused with the GUS reporter gene (uidA) and expressed in Arabidopsis and cotton hairy roots for in planta characterization. Histochemical GUS staining indicated localized expression in root tips, root elongation zone, root primordia, and reproductive tissues under optimal growth conditions. Mannitol, NaCl, auxin, GA, and ABA, induced the promoter-driven GUS expression in all tissues while ethylene suppressed the promoter activity. The results show that the 870 nt fragment of the GhNAC2 promoter drives root-preferential expression and responds to phytohormonal and stress signals. In corroboration with promoter regulation, GA and ethylene pathways differentially regulated root growth in GhNAC2-expressing Arabidopsis. The findings suggest that differential promoter activity governs the expression of GhNAC2 in root growth and stress-related functions independently through specific promoter elements. This multifarious promoter can be utilized to develop yield and climate resilience in cotton by expanding the options to control gene regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01411-2.
Collapse
Affiliation(s)
- Ram Naresh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Richa Srivastava
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Samatha Gunapati
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Present Address: Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108 USA
| | - Aniruddha P. Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
2
|
Pathak A, Haq S, Meena N, Dwivedi P, Kothari SL, Kachhwaha S. Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:3126. [PMID: 37687372 PMCID: PMC10490111 DOI: 10.3390/plants12173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
The agricultural practices of breeding, farm management and cultivation have improved production, to a great extent, in order to meet the food demands of a growing population. However, the newer challenges of climate change, global warming, and nutritional quality improvement will have to be addressed under a new scenario. Plant biotechnology has emerged as a reliable tool for enhancing crop yields by protecting plants against insect pests and metabolic engineering through the addition of new genes and, to some extent, nutritional quality improvement. Plant tissue culture techniques have provided ways for the accelerated clonal multiplication of selected varieties with the enhanced production of value-added plant products to increase modern agriculture. The in vitro propagation method has appeared as a pre-eminent approach for the escalated production of healthy plants in relatively shorter durations, also circumventing seasonal effects. However, there are various kinds of factors that directly or indirectly affect the efficiency of in vitro regeneration like the concentration and combination of growth regulators, variety/genotype of the mother plant, explant type, age of seedlings and other nutritional factors, and elicitors. Nanotechnology as one of the latest and most advanced approaches in the material sciences, and can be considered to be very promising for the improvement of crop production. Nanomaterials have various kinds of properties because of their small size, such as an enhanced contact surface area, increased reactivity, stability, chemical composition, etc., which can be employed in plant sciences to alter the potential and performance of plants to improve tissue culture practices. Implementing nanomaterials with in vitro production procedures has been demonstrated to increase the shoot multiplication potential, stress adaptation and yield of plant-based products. However, nanotoxicity and biosafety issues are limitations, but there is evidence that implies the promotion and further exploration of nanoparticles in agriculture production. The incorporation of properly designed nanoparticles with tissue culture programs in a controlled manner can be assumed as a new pathway for sustainable agriculture development. The present review enlists different studies in which treatment with various nanoparticles influenced the growth and biochemical responses of seed germination, as well as the in vitro morphogenesis of many crop species. In addition, many studies suggest that nanoparticles can be useful as elicitors for elevating levels of important secondary metabolites in in vitro cultures. Recent advancements in this field also depict the suitability of nanoparticles as a promising carrier for gene transfer, which show better efficiency than traditional Agrobacterium-mediated delivery. This review comprehensively highlights different in vitro studies that will aid in identifying research gaps and provide future directions for unexplored areas of research in important crop species.
Collapse
Affiliation(s)
- Ashutosh Pathak
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shamshadul Haq
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Neelam Meena
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Pratibha Dwivedi
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India;
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| |
Collapse
|
3
|
Xing L, Zhang L, Zheng H, Zhang Z, Luo Y, Liu Y, Wang L. ZmmiR169q/ZmNF-YA8 is a module that homeostatically regulates primary root growth and salt tolerance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1163228. [PMID: 37457348 PMCID: PMC10344899 DOI: 10.3389/fpls.2023.1163228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
In response to salt stress, plants alter the expression of manifold gene networks, enabling them to survive and thrive in the face of adversity. As a result, the growth and development of plant roots could be drastically altered, with significant inhibition of the growth of root meristematic zones. Although it is known that root growth is primarily regulated by auxins and cytokinins, the molecular regulatory mechanism by which salt stress stunts root meristems remains obscure. In this study, we found that the ZmmiR169q/ZmNF-YA8 module regulates the growth of maize taproots in response to salt stress. Salt stress downregulates ZmmiR169q expression, allowing for significant upregulation of ZmNF-YA8, which, in turn, activates ZmERF1B, triggering the upregulation of ASA1 and ASA2, two rate-limiting enzymes in the biosynthesis of tryptophan (Trp), leading to the accumulation of auxin in the root tip, thereby inhibiting root growth. The development of the maize root is stymied as meristem cell division and meristematic zone expansion are both stifled. This study reveals the ZmmiR169q/ZmNF-YA8 module's involvement in maintaining an equilibrium in bestowing plant salt tolerance and root growth and development under salt stress, providing new insights into the molecular mechanism underlying the homeostatic regulation of plant development in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Xing
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Hainan, China
| | - Zhuoxia Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanzhong Luo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Hainan, China
| |
Collapse
|
4
|
Li Q, Chen P, Tang H, Zeng F, Li X. Integrated transcriptome and hormone analyses provide insights into silver thiosulfate-induced “maleness” responses in the floral sex differentiation of pumpkin (Cucurbita moschata D.). Front Genet 2022; 13:960027. [PMID: 36105109 PMCID: PMC9464984 DOI: 10.3389/fgene.2022.960027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The perfect mating of male and female flowers is the key to successful pollination. The regulation of ethylene with chemicals is a good option for inducing staminate or female flowers. Silver thiosulfate is often used to induce the formation of male flowers in subgynoecious and gynoecious crops, which is important to maintain their progenies. However, its effects on flower sex differentiation in pumpkin (Cucurbita moschata Duch.) and the underlying mechanism remain unclear. In this study, the application of silver thiosulfate to pumpkin seedlings significantly delayed the occurrence of the first female flower and increased the number of male flowers. We next investigated the underlying mechanism by employing transcriptome and endogenous hormone analyses of the treated plants. In total, 1,304 annotated differentially expressed genes (DEGs)were identified by comparing silver thiosulfate-treated and control plants. Among these genes, 835 were upregulated and 469 were downregulated. The DEGs were mainly enriched in the phenylpropanoid biosynthesis and metabolism pathways (phenylalanine ammonia-lyase, peroxidase) and plant hormone signal transduction pathways (auxin signaling, indole-3-acetic acid-amido synthetase, ethylene response factor). Silver thiosulfate significantly reduced the levels of 2-oxindole-3-acetic acid, para-topolin riboside, dihydrozeatin-O-glucoside riboside, and jasmonoyl-l-isoleucine but increased the levels of trans-zeatin-O-glucoside, cis-zeatin riboside, and salicylic acid 2-O-β-glucoside. The levels of auxin and jasmonic acid were decreased, whereas those of salicylic acid were increased. Different trends were observed for different types of cytokinins. We concluded that silver thiosulfate treatment not only affects the expression of auxin synthesis and signaling genes but also that of ethylene response factor genes and regulates the levels of auxin, salicylic acid, jasmonic acid, and cytokinins, which together might contribute to the maleness of pumpkin. This study provides useful information for understanding the mechanism underlying the effect of silver thiosulfate on floral sex differentiation in pumpkin, a widely cultivated vegetable crop worldwide, and gives a production guidance for the induction of maleness using STS for the reproduction of gynoecious lines of Cucurbitaceae crops.
Collapse
Affiliation(s)
- Qingfei Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
- *Correspondence: Xinzheng Li, ; Qingfei Li,
| | - Peiwen Chen
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Hao Tang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Fansen Zeng
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Xinzheng Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
- *Correspondence: Xinzheng Li, ; Qingfei Li,
| |
Collapse
|
5
|
Liu BR, Zheng HR, Jiang XJ, Zhang PZ, Wei GZ. Serratene triterpenoids from Lycopodium cernuum L. as α-glucosidase inhibitors: Identification, structure-activity relationship and molecular docking studies. PHYTOCHEMISTRY 2022; 185:112702. [PMID: 34953266 DOI: 10.1016/j.phytochem.2021.112702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 05/20/2023]
Abstract
Phytochemical investigation of Lycopodium cernuum L. afforded seven undescribed serratene triterpenoids named 3β, 21β-dihydroxyserra-14-en-24-oic acid-3β-(5'-hydroxybenzoate) (1), 3β, 21β, 24-trihydroxyserrat-14-en-3β-(5'-hydroxyl benzoate) (2), 3β, 14α, 15α, 21β-tetrahydroxyserratane-24-methyl ester (3), 3β, 14α, 21β-trihydroxyserratane-15α-(4'-methoxy-5'-hydroxybenzoate)-24-methyl ester (4), 3β, 14α, 21β-trihydroxyserratane-15α-(4'-methoxy-5'-hydroxybenzoate) (5), 3β-hydroxy-21β-acetate-16-oxoserrat-14-en-24-oic acid (6), 3β, 21β-dihydroxy-16α, 29-epoxyserrat-14-en-24-methyl ester (7), together with eleven known compounds (8-18), whose chemical structures were elucidated through spectroscopic analysis of HRESIMS, 1D NMR, 2D NMR and comparison between the literature. All compounds were evaluated for their α-glucosidase inhibitory activity for the first time. The results showed that compounds 1, 2, 4, 5, 6, 10, 13, 15, and 16 were among the most potent α-glucosidase inhibitors, with IC50 values ranging from 23.22 ± 0.64 to 50.65 ± 0.82 μM. Structure-activity relationship (SAR) studies indicated that the combined properties of the 5-hydroxybenzoate moiety at C-3, β-OH at C-21, COOH- at C-24, and Δ14,15 groups enabled an increase in the α-glucosidase inhibitory effect. In addition, molecular docking studies showed that the potential inhibitors mainly interact with key amino acid residues in the active site of α-glucosidase through hydrogen bonds and hydrophobic forces.
Collapse
Affiliation(s)
- Bing-Rui Liu
- College of Chemistry and Technology, Hebei Agricultural University, Huanghua, 061100, PR China; College of Public Heath, North China University of Science and Technology, Tangshan, 063503, PR China
| | - Hai-Rong Zheng
- Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming, 650201, PR China; BioBioPha Co., Ltd., Kunming, 650201, PR China
| | - Xian-Jun Jiang
- Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming, 650201, PR China; BioBioPha Co., Ltd., Kunming, 650201, PR China
| | - Pu-Zhao Zhang
- Key Laboratory of Modern Preparation of TCM. Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| | - Guo-Zhu Wei
- Reference Substance Branch, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Kunming, 650201, PR China; BioBioPha Co., Ltd., Kunming, 650201, PR China.
| |
Collapse
|
6
|
Boosting Polyamines to Enhance Shoot Regeneration in Potato (Solanum tuberosum L.) Using AgNO3. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advancements in shoot regeneration systems support biotechnology-based tools used in the genetic improvement of plant crops. This study aims to enhance shoot regeneration in potatoes by boosting polyamine content by adding AgNO3 to the shoot regeneration medium (MS medium supplemented with 30 g L−1 sucrose, 100 mg L−1 myoinositol, and 2.25 BA mg L−1). Five concentrations of AgNO3 (2, 4, 6, 8, and 10 mg L−1) were used in addition to a control. The effect of AgNO3 on regeneration assumed a more or less concentration-dependent bell-shaped curve peaking at 4 mg L−1. Enhancements in shoot regeneration were attributed to the known role of AgNO3 as an ethylene action blocker in addition to improvements in polyamine accumulation without an increase in H2O2 content, lipid peroxidation, or DNA damage. The uncoupling of shoot regeneration and polyamine content recorded at high AgNO3 concentrations can be attributed to the consumption of polyamines to counteract the synchronized oxidative stress manifested by increases in H2O2 content, lipid peroxidation, and DNA damage.
Collapse
|
7
|
Banach A, Kuźniar A, Marzec-Grządziel A, Gałązka A, Wolińska A. Phenotype Switching in Metal-Tolerant Bacteria Isolated from a Hyperaccumulator Plant. BIOLOGY 2021; 10:biology10090879. [PMID: 34571755 PMCID: PMC8466758 DOI: 10.3390/biology10090879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022]
Abstract
As an adaptation to unfavorable conditions, microorganisms may represent different phenotypes. Azolla filiculoides L. is a hyperaccumulator of pollutants, but the functions of its microbiome have not been well recognized to date. We aimed to reveal the potential of the microbiome for degradation of organic compounds, as well as its potential to promote plant growth in the presence of heavy metals. We applied the BiologTM Phenotypic Microarrays platform to study the potential of the microbiome for the degradation of 96 carbon compounds and stress factors and assayed the hydrolytic potential and auxin production by the microorganisms in the presence of Pb, Cd, Cr (VI), Ni, Ag, and Au. We found various phenotype changes depending on the stress factor, suggesting a possible dual function of the studied microorganisms, i.e., in bioremediation and as a biofertilizer for plant growth promotion. Delftia sp., Staphylococcus sp. and Microbacterium sp. exhibited high efficacy in metabolizing organic compounds. Delftia sp., Achromobacter sp. and Agrobacterium sp. were efficient in enzymatic responses and were characterized by metal tolerant. Since each strain exhibited individual phenotype changes due to the studied stresses, they may all be beneficial as both biofertilizers and bioremediation agents, especially when combined in one biopreparation.
Collapse
Affiliation(s)
- Artur Banach
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland; (A.K.); (A.W.)
- Correspondence: ; Tel.: +48-81-454-56-48
| | - Agnieszka Kuźniar
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland; (A.K.); (A.W.)
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8 St., 24-100 Puławy, Poland; (A.M.-G.); (A.G.)
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8 St., 24-100 Puławy, Poland; (A.M.-G.); (A.G.)
| | - Agnieszka Wolińska
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland; (A.K.); (A.W.)
| |
Collapse
|
8
|
Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of Organogenesis and Somatic Embryogenesis by Ethylene: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061208. [PMID: 34198660 PMCID: PMC8232195 DOI: 10.3390/plants10061208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
Ethylene is a plant hormone controlling physiological and developmental processes such as fruit maturation, hairy root formation, and leaf abscission. Its effect on regeneration systems, such as organogenesis and somatic embryogenesis (SE), has been studied, and progress in molecular biology techniques have contributed to unveiling the mechanisms behind its effects. The influence of ethylene on regeneration should not be overlooked. This compound affects regeneration differently, depending on the species, genotype, and explant. In some species, ethylene seems to revert recalcitrance in genotypes with low regeneration capacity. However, its effect is not additive, since in genotypes with high regeneration capacity this ability decreases in the presence of ethylene precursors, suggesting that regeneration is modulated by ethylene. Several lines of evidence have shown that the role of ethylene in regeneration is markedly connected to biotic and abiotic stresses as well as to hormonal-crosstalk, in particular with key regeneration hormones and growth regulators of the auxin and cytokinin families. Transcriptional factors of the ethylene response factor (ERF) family are regulated by ethylene and strongly connected to SE induction. Thus, an evident connection between ethylene, stress responses, and regeneration capacity is markedly established. In this review the effect of ethylene and the way it interacts with other players during organogenesis and somatic embryogenesis is discussed. Further studies on the regulation of ERF gene expression induced by ethylene during regeneration can contribute to new insights on the exact role of ethylene in these processes. A possible role in epigenetic modifications should be considered, since some ethylene signaling components are directly related to histone acetylation.
Collapse
Affiliation(s)
- Mariana Neves
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
| | - Sandra Correia
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
| | - Carlos Cavaleiro
- CIEPQPF, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Jorge Canhoto
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (M.N.); (S.C.)
- Correspondence:
| |
Collapse
|
9
|
Landa P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:12-24. [PMID: 33561657 DOI: 10.1016/j.plaphy.2021.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles (NPs) are considered as potential agents for agriculture as fertilizers, growth enhancers and pesticides. Therefore, understanding the mechanisms that are responsible for their effects is important. Various studies demonstrated that the application of nontoxic concentrations can promote seed germination, enhance plant growth and increase the yield. Moreover, NPs can be used to protect plants from environmental impacts such as salt or drought stress and diminish accumulation and toxicity of heavy metals. NPs can serve as a source of micronutrients (e.g. ZnO, iron- and manganese-based NPs), thus increasing fitness and helps plants to cope with stress conditions. TiO2 and iron-based NPs are able to delay senescence and speed-up cell division via changes in phytohormonal levels. The application of some NPs can promote the activity of enzymes such as amylase, nitrate reductase, phosphatase, phytase and carbonic anhydrases, which are involved in metabolism and nutrient acquisition. E.g. ZnO and TiO2 NPs can stimulate chlorophyll biosynthesis and photosynthetic activity. Iron-based and CeO2 NPs enhance stomata opening resulting in better gas exchange and CO2 assimilation rate. NPs can also modulate oxidative stress by the stimulation of the antioxidant enzymes such peroxidases and superoxide dismutase. However, the knowledge about the fate, transformation, and accumulation of NPs in the environment and organisms is needed prior to their use in agriculture to avoid negative environmental impacts. Higher or lower toxicity of various NPs was established for microorganisms, plants or animals. In this overview, we focused on the possible mechanisms of Ag, ZnO, TiO2, Fe-based, CeO2, Al2O3, and manganese-based NPs responsible for their positive effects on plants.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6 - Lysolaje, Czech Republic.
| |
Collapse
|
10
|
Tripathi D, Rai KK, Pandey-Rai S. Impact of green synthesized WcAgNPs on in-vitro plant regeneration and withanolides production by inducing key biosynthetic genes in Withania coagulans. PLANT CELL REPORTS 2021; 40:283-299. [PMID: 33151379 DOI: 10.1007/s00299-020-02630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Withania coagulans (L.) Dunal bio-synthesized silver nanoparticles (WcAgNPs) worked as an abiotic elicitor or auto-catalyst that enhanced root regeneration and withanolides production in in-vitro regenerated W. coagulans. Rapid development in the production / consumption of silver nanoparticles (AgNPs) raised serious concern over its effects on the growth of natural plant community. The knowledge related to impact of AgNPs on plant growth and biocompatibility is increasing day by day, but comprehensive mechanism and gaps regarding their impacts on plant health have yet to be addressed. In the present study, we investigated the impact of Withania coagulans biosynthesized AgNPs (WcAgNPs) on in-vitro plant growth and withanolides production. Obtained results showed that the low concentrations of WcAgNPs significantly induced the plant growth by regulating oxidative stress via anti-oxidative defense system. Physiological, morphology and anatomical features also reflected healthy plant growth under low WcAgNPs exposure. While higher concentrations of WcAgNPs have a negative impact on W. coagulans plant growth due to induced lipid peroxidation, ROS accumulation, and root cell death. At lower concentrations, WcAgNPs have shown a positive effect on in-planta withanolides biosynthesis stimulating withanolide A and withaferin A up to 11.15-22.8-fold, respectively. Furthermore, the expression of withanolides biosynthetic genes were also quantified upon WcAgNPs exposure and terpenes biosynthetic genes showed over-expression. Thus, the present study concludes that the lower concentrations of WcAgNPs positively induced plant growth via improved root organogenesis and also have potential to act as an elicitor for withanolides production.
Collapse
Affiliation(s)
- Deepika Tripathi
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Krishna Kumar Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
11
|
Adal AM, Doshi K, Holbrook L, Mahmoud SS. Comparative RNA-Seq analysis reveals genes associated with masculinization in female Cannabis sativa. PLANTA 2021; 253:17. [PMID: 33392743 PMCID: PMC7779414 DOI: 10.1007/s00425-020-03522-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Using RNA profiling, we identified several silver thiosulfate-induced genes that potentially control the masculinization of female Cannabis sativa plants. Genetically female Cannabis sativa plants normally bear female flowers, but can develop male flowers in response to environmental and developmental cues. In an attempt to elucidate the molecular elements responsible for sex expression in C. sativa plants, we developed genetically female lines producing both female and chemically-induced male flowers. Furthermore, we carried out RNA-Seq assays aimed at identifying differentially expressed genes responsible for male flower development in female plants. The results revealed over 10,500 differentially expressed genes, of which around 200 potentially control masculinization of female cannabis plants. These genes include transcription factors and other genes involved in male organ (i.e., anther and pollen) development, as well as genes involved in phytohormone signalling and male-biased phenotypes. The expressions of 15 of these genes were further validated by qPCR assay confirming similar expression patterns to that of RNA-Seq data. These genes would be useful for understanding predisposed plants producing flowers of both sex types in the same plant, and help breeders to regulate the masculinization of female plants through targeted breeding and plant biotechnology.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Ketan Doshi
- Zyus Life Sciences Inc., 204-407 Downey Rd, Saskatoon, SK, Canada
| | - Larry Holbrook
- Zyus Life Sciences Inc., 204-407 Downey Rd, Saskatoon, SK, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
12
|
Yoon J, Cho LH, Yang W, Pasriga R, Wu Y, Hong WJ, Bureau C, Wi SJ, Zhang T, Wang R, Zhang D, Jung KH, Park KY, Périn C, Zhao Y, An G. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5348-5364. [PMID: 32449922 PMCID: PMC7501826 DOI: 10.1093/jxb/eraa209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 05/11/2023]
Abstract
Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Lae-Hyeon Cho
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Wenzhu Yang
- Department of Crop Genomics and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Richa Pasriga
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Yunfei Wu
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Woo-Jong Hong
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Charlotte Bureau
- Agricultural Research Centre For International Development, Paris, France
| | - Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon, Chonnam, Korea
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide Urrbrae, SA, Australia
| | - Ki-Hong Jung
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ky Young Park
- Department of Biology, Sunchon National University, Sunchon, Chonnam, Korea
| | - Christophe Périn
- Agricultural Research Centre For International Development, Paris, France
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
- Correspondence:
| |
Collapse
|
13
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Kruszka D, Sawikowska A, Kamalabai Selvakesavan R, Krajewski P, Kachlicki P, Franklin G. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135361. [PMID: 31839324 DOI: 10.1016/j.scitotenv.2019.135361] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles are widely used in industry, medicine, biotechnology and agriculture. As a consequence, these nanoparticles are reaching the environment as waste products, which might have a negative impact on the environment, especially on plants. This includes the elicitation of various biochemical processes in plants. In this article, we report on the changes in secondary metabolic profile of Arabidopsis thaliana seedlings subjected to silver nanoparticle treatment in vitro. Briefly, various sizes (10 nm, 40 nm and 100 nm in diameter) and concentrations (0.5-5.0 ppm) of silver nanoparticles were tested. Ultraperformance liquid chromatography coupled with ultraviolet and fluorescence detectors as well as hyphenated to a high-resolution mass spectrometer (UPLC-PDA-FLR, UPLC-HESI-HRMS) and HPLC - ion trap mass spectrometer (HPLC-ESI-MS/MS), were applied to identify and quantify secondary metabolites. To understand whether silver ions could induce changes in the secondary metabolite profile, seedlings treated with silver nitrate in concentrations equivalent to these of nanoparticles were also analysed. The results showed significant differences in the accumulation of phenolic and indole compounds between treatments. Silver nanoparticles and silver ions induced the biosynthesis of camalexin, hydroxycamalexin O-hexoside and hydroxycamalexin malonyl-hexoside. These compounds are important phytoalexins for Brassicaceae family (especially for Camelinae clad) and are also synthetized in response to biotic and abiotic stresses. Statistically significant changes have been also observed for five phenolic compounds and 5'Glucosyl-dihydroneoascorbigen in different treatment conditions.
Collapse
Affiliation(s)
- Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| | - Aneta Sawikowska
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland; Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | | | - Paweł Krajewski
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland.
| |
Collapse
|
15
|
Sun X, Chen F, Yuan L, Mi G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. PLANTA 2020; 251:84. [PMID: 32189077 DOI: 10.1007/s00425-020-03376-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation. Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Munkager V, Vestergård M, Priemé A, Altenburger A, de Visser E, Johansen JL, Ekelund F. AgNO 3 Sterilizes Grains of Barley ( Hordeum vulgare) without Inhibiting Germination-A Necessary Tool for Plant-Microbiome Research. PLANTS 2020; 9:plants9030372. [PMID: 32192219 PMCID: PMC7154866 DOI: 10.3390/plants9030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022]
Abstract
To understand and manipulate the interactions between plants and microorganisms, sterile seeds are a necessity. The seed microbiome (inside and surface microorganisms) is unknown for most plant species and seed-borne microorganisms can persist and transfer to the seedling and rhizosphere, thereby obscuring the effects that purposely introduced microorganisms have on plants. This necessitates that these unidentified, seed-borne microorganisms are removed before seeds are used for studies on plant–microbiome interactions. Unfortunately, there is no single, standardized protocol for seed sterilization, hampering progress in experimental plant growth promotion and our study shows that commonly applied sterilization protocols for barley grains using H2O2, NaClO, and AgNO3 yielded insufficient sterilization. We therefore developed a sterilization protocol with AgNO3 by testing several concentrations of AgNO3 and added two additional steps: Soaking the grains in water before the sterilization and rinsing with salt water (1% (w/w) NaCl) after the sterilization. The most efficient sterilization protocol was to soak the grains, sterilize with 10% (w/w) AgNO3, and to rinse with salt water. By following those three steps, 97% of the grains had no culturable, viable microorganism after 21 days based on microscopic inspection. The protocol left small quantities of AgNO3 residue on the grain, maintained germination percentage similar to unsterilized grains, and plant biomass was unaltered. Hence, our protocol using AgNO3 can be used successfully for experiments on plant–microbiome interactions.
Collapse
Affiliation(s)
- Victoria Munkager
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark (J.L.J.)
- Correspondence: ; Tel.: +45-27-12-16-33
| | - Mette Vestergård
- Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark
| | - Anders Priemé
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark (J.L.J.)
| | - Andreas Altenburger
- The Arctic University Museum of Norway, UiT—The Arctic University of Norway, 9006 Tromsø, Norway
| | - Eva de Visser
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark (J.L.J.)
| | | | - Flemming Ekelund
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark (J.L.J.)
| |
Collapse
|
17
|
El-Bahr MK, El-Ashry AAEL, Gabr AMM. Impact of Antioxidants on <i>in vitro </i>Rooting and Acclimatization of Two Egyptian Dry Date Palm Cultivars. Pak J Biol Sci 2020; 22:435-443. [PMID: 31930874 DOI: 10.3923/pjbs.2019.435.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Date palm (Phoenix dactylifera L.) is propagated vegetatively via offshoots, which is limited by either the offshoots numbers produced from a superior selected plant, or the occurrence of these offshoots only during the juvenile phase of the date palm life cycle. As a result, the in vitro propagation could be considered an alternative technique for large scale propagation of date palm. Obtaining well-developed root system is considered the most important step in establishment of reliable protocol for successful production of date palm and subsequently successful acclimatization of the in vitro derived plants. The aim of this study is to obtain a well-developed root system through using different antioxidants, with detecting the similarity between the in vitro derived plants and the mother plants using RAPD, long RAPD and ISSR techniques. MATERIALS AND METHODS Individual plantlets obtained from maturation of somatic embryos in vitro of about 5-7 cm in length with 2-3 leaves were used as plant material. Plantlets were cultured on half strength MS liquid medium supplemented with 0.5 mg L-1 thiamine-HCl+2.0 mg L-1 glycine+0.1 mg L-1 biotin+40 g L-1 sucrose+ 0.1mg L-1 NAA with different concentrations from either AgNO3 or citric or ascorbic acids (0.0, 0.5, 1, 2 mg L-1). Growth development, root number and root length (cm) were evaluated at the end of the second subculture (12 weeks). Data were reported as Mean±Standard deviation (SD). Data were subjected to one way-analysis of variance (p<0.05). Results were processed by Excel (2010). RESULTS Among the different antioxidants with different concentrations used, generally it was found that 2 mg L-1 of each agent gave the highest values of growth development, roots number and roots length. However, using 2 mg L-1 AgNO3 gave the best results with all parameters. Regarding the response of date palm cultivar, it was remarkable that Bartamoda showed relatively better results than Sakkoty cultivar. According to PCR reactions, the results of RAPD, long RAPD and ISSR profile of tissue culture-derived plantlets grown on a medium supplemented with 2 mg L-1 AgNO3 obviously revealed high similarity to mother plants. CONCLUSION It could be concluded that using 2 mg L-1 AgNO3 gave the best results for growth development, root numbers and length of the two cultivars but Bartamoda showed relatively better results than Sakkoty cultivar. The tissue culture-derived plantlets on this medium (2 mg L-1 AgNO3) revealed high similarity to mother plant as a result to RAPD, long RAPD and ISSR profiles.
Collapse
|
18
|
Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Sci Rep 2019; 9:18361. [PMID: 31797981 PMCID: PMC6892883 DOI: 10.1038/s41598-019-54787-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Malformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of β-cyanoalanine synthase (β-CAS) transcript was associated with decreased cellular β-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.
Collapse
|
19
|
Zhao C, Zhang L, Zhang X, Xu Y, Wei Z, Sun B, Liang M, Li H, Hu F, Xu L. Regulation of endogenous phytohormones alters the fluoranthene content in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:935-943. [PMID: 31726575 DOI: 10.1016/j.scitotenv.2019.06.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Phytohormones are crucial endogenous modulators that regulate and integrate plant growth and responses to various environmental pollutants, including the uptake of pollutants into the plant. However, possible links between endogenous phytohormone pathways and pollutant accumulation are unclear. Here we describe the fluoranthene uptake, plant growth, and superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) activities in relation to different endogenous phytohormones and different levels in Arabidopsis thaliana. Three phytohormone inhibitors-N-1-naphthyl-phthalamic acid (NPA), daminozide (DZ), and silver nitrate (SN)-were used to regulate endogenous auxin, gibberellin, and ethylene levels, respectively. Fluoranthene inhibited plant growth and root proliferation while increasing GST and SOD activity. The three inhibitors reduced fluoranthene levels in Arabidopsis by either affecting plant growth or modulating antioxidant enzyme activity. NPA reduced plant growth and increased CAT activity. SN promoted plant growth and increased POD and CAT activity, whereas DZ increased POD activity.
Collapse
Affiliation(s)
- Chenyu Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xuhui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhimin Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingxiang Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| |
Collapse
|
20
|
Okamoto T, Takahashi T. Ethylene signaling plays a pivotal role in mechanical-stress-induced root-growth cessation in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2019; 14:1669417. [PMID: 31554459 PMCID: PMC6804722 DOI: 10.1080/15592324.2019.1669417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 05/10/2023]
Abstract
Plant roots show growth cessation as a primary response to mechanical stress. To clarify the molecular basis of this response, we have previously established an assay system to monitor the root growth response of Arabidopsis seedlings to mechanical stimuli using dialysis membrane-covered agar media. Here we examined the effect of plant hormones and their related molecules on this response. Amino-cyclopropane carboxylate, a precursor of ethylene, remarkably enhanced the growth reduction while silver ions, which block ethylene perception, nullified the response. Furthermore, salicylic acid, which inhibits ethylene biosynthesis, alleviated the root growth reduction, whereas methyl jasmonate had no apparent effect on the response. These results suggest that the root-growth cessation observed in response to mechanical stress involves ethylene signaling; however, this response may be independent from the pathway that integrates signals from ethylene and jasmonate.
Collapse
Affiliation(s)
- Takashi Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Foroud NA, Pordel R, Goyal RK, Ryabova D, Eranthodi A, Chatterton S, Kovalchuk I. Chemical Activation of the Ethylene Signaling Pathway Promotes Fusarium graminearum Resistance in Detached Wheat Heads. PHYTOPATHOLOGY 2019; 109:796-803. [PMID: 30540553 DOI: 10.1094/phyto-08-18-0286-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant signaling hormones such as ethylene have been shown to affect the host response to various pathogens. Often, the resistance responses to necrotrophic fungi are mediated through synergistic interactions of ethylene (ET) with the jasmonate signaling pathway. On the other hand, ET is also an inducer of senescence and cell death, which could be beneficial for some invading necrotrophic pathogens. Fusarium graminearum, a causative agent in Fusarium head blight of wheat, is a hemibiotrophic pathogen, meaning it has both biotrophic and necrotrophic phases during the course of infection. However, the role of ET signaling in the host response to Fusarium spp. is unclear; some studies indicate that ET mediates resistance, while others have shown that it is associated with susceptibility. These discrepancies could be related to various aspects of different experimental designs, and suggest that the role of ET signaling in the host response to FHB is potentially dependent on interactions with some undetermined factors. To investigate whether wheat genotype can influence the ET-mediated response to FHB, the effect of chemical treatments affecting the ET pathway was studied in six wheat genotypes in detached-head assays. ET-inhibitor treatments broke down resistance to both initial infection and disease spread in three resistant wheat genotypes, whereas ET-enhancer treatments resulted in reduced susceptibility in three susceptible genotypes. The results presented here show that the ET signaling can mediate FHB resistance to F. graminearum in different wheat backgrounds.
Collapse
Affiliation(s)
- Nora A Foroud
- 1 Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Reyhaneh Pordel
- 1 Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
- 2 Department of Biological Sciences, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada; and
| | - Ravinder K Goyal
- 3 Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Daria Ryabova
- 1 Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Anas Eranthodi
- 1 Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Syama Chatterton
- 1 Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, T1J 4B1, Canada
| | - Igor Kovalchuk
- 2 Department of Biological Sciences, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada; and
| |
Collapse
|
22
|
Öktem M, Keleş Y. The role of silver ions in the regulation of the senescence process in Triticum aestivum. Turk J Biol 2019; 42:517-526. [PMID: 30983866 PMCID: PMC6451841 DOI: 10.3906/biy-1802-95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The control of senescence has economic importance due to its effects on parameters such as herbal product quality and shelf life. This study is on the control of induced senescence in Triticum aestivum L. 'Gün-91' plants with silver nitrate (AgNO3) treatments. It was observed that some changes that occurred with dark and indole-1-acetic acid (IAA) treatments could be reduced with AgNO3 treatments. After dark-induced senescence, it was observed in plants that seedling length, relative water content (RWC), chlorophyll, β-carotene, xanthophylls, total antioxidant capacity, soluble phenol, total soluble protein, catalase (CAT), total superoxide dismutase (SOD), copper-zinc superoxide dismutase (Cu/Zn-SOD) activities, and expression of genes encoding these enzymes declined. After IAA treatments, seedling length, RWC, chlorophyll, β-carotene, xanthophylls, total antioxidant capacity, soluble phenolics, and soluble protein levels declined, whereas activities of CAT, total SOD, and Cu/Zn-SOD enzymes and expression of Cu/Zn-SOD and CAT genes increased. AgNO3 (200 mg L-1 ) applied by spraying onto leaves led to an increase in seedling length, RWC, chlorophyll, β-carotene, xanthophylls, total antioxidant capacity, soluble phenolics, soluble protein levels, and expression of Cu/Zn-SOD, CAT genes, CAT, SOD, and Cu/Zn-SOD enzyme activities compared to controls. Findings obtained from this study showed that the senescence process was related to changes in the levels of antioxidant compounds and enzymes. It was defined that the role of silver ions in slowing senescence was related to antioxidant defense capacity.
Collapse
Affiliation(s)
- Mert Öktem
- Department of Biotechnology, Institute of Sciences, Mersin University , Mersin , Turkey
| | - Yüksel Keleş
- Department of Biology Education, Faculty of Education, Mersin University , Mersin , Turkey
| |
Collapse
|
23
|
Huang YC, Yeh TH, Yang CY. Ethylene signaling involves in seeds germination upon submergence and antioxidant response elicited confers submergence tolerance to rice seedlings. RICE (NEW YORK, N.Y.) 2019; 12:23. [PMID: 30972510 PMCID: PMC6458221 DOI: 10.1186/s12284-019-0284-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/02/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Flooding has negative impact on agriculture. The plant hormone ethylene is involved in plant growth and stress responses, which are important role in tolerance and adaptation regulatory mechanisms during submergence stress. Ethylene signaling crosstalk with gibberellin signaling enhances tolerance in lowland rice (Flood Resistant 13A) through a quiescence strategy or in deepwater rice through an escape strategy when rice is submerged. Information regarding ethylene-mediated priming in submergence stress tolerance in rice is scant. Here, we used 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, to evaluate the response in submerged rice seedlings. RESULTS The germination rate and mean germination times of rice seeds was higher in seedlings under submergence only when ethylene signaling was inhibited by supplemented with silver nitrate (AgNO3). Reduced leaf chlorophyll contents and induced senescence-associated genes in rice seedlings under submergence were relieved by pretreatment with an ethylene precursor. The ethylene-mediated priming by pretreatment with an ethylene precursor enhanced the survival rate and hydrogen peroxide (H2O2) and superoxide (O2-) anion accumulation and affected antioxidant response in rice seedlings. CONCLUSIONS Pretreatment with an ethylene precursor leads to reactive oxygen species generation, which in turn triggered the antioxidant response system, thus improving the tolerance of rice seedlings to complete submergence stress. Thus, H2O2 signaling may contribute to ethylene-mediated priming to submergence stress tolerance in rice seedlings.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tsun-Hao Yeh
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
24
|
Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci Rep 2019; 9:1983. [PMID: 30760853 PMCID: PMC6374390 DOI: 10.1038/s41598-018-38093-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
The growing population requires sustainable, environmentally-friendly crops. The plant growth-enhancing properties of algal extracts have suggested their use as biofertilisers. The mechanism(s) by which algal extracts affect plant growth are unknown. We examined the effects of extracts from the common green seaweed Ulva intestinalis on germination and root development in the model land plant Arabidopsis thaliana. Ulva extract concentrations above 0.1% inhibited Arabidopsis germination and root growth. Ulva extract <0.1% stimulated root growth. All concentrations of Ulva extract inhibited lateral root formation. An abscisic-acid-insensitive mutant, abi1, showed altered sensitivity to germination- and root growth-inhibition. Ethylene- and cytokinin-insensitive mutants were partly insensitive to germination-inhibition. This suggests that different mechanisms mediate each effect of Ulva extract on early Arabidopsis development and that multiple hormones contribute to germination-inhibition. Elemental analysis showed that Ulva contains high levels of Aluminium ions (Al3+). Ethylene and cytokinin have been suggested to function in Al3+-mediated root growth inhibition: our data suggest that if Ulva Al3+ levels inhibit root growth, this is via a novel mechanism. We suggest algal extracts should be used cautiously as fertilisers, as the inhibitory effects on early development may outweigh any benefits if the concentration of extract is too high.
Collapse
|
25
|
Li W, Li H, Xu P, Xie Z, Ye Y, Li L, Li D, Zhang Y, Li L, Zhao Y. Identification of Auxin Activity Like 1, a chemical with weak functions in auxin signaling pathway. PLANT MOLECULAR BIOLOGY 2018; 98:275-287. [PMID: 30311174 DOI: 10.1007/s11103-018-0779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/17/2018] [Indexed: 05/05/2023]
Abstract
A new synthetic auxin AAL1 with new structure was identified. Different from known auxins, it has weak effects. By AAL1, we found specific amino acids could restore the effects of auxin with similar structure. Auxin, one of the most important phytohormones, plays crucial roles in plant growth, development and environmental response. Although many critical regulators have been identified in auxin signaling pathway, some factors, especially those with weak fine-tuning roles, are still yet to be discovered. Through chemical genetic screenings, we identified a small molecule, Auxin Activity Like 1 (AAL1), which can effectively inhibit dark-grown Arabidopsis thaliana seedlings. Genetic screening identified AAL1 resistant mutants are also hyposensitive to indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). AAL1 resistant mutants such as shy2-3c and ecr1-2 are well characterized as mutants in auxin signaling pathway. Genetic studies showed that AAL1 functions through auxin receptor Transport Inhibitor Response1 (TIR1) and its functions depend on auxin influx and efflux carriers. Compared with known auxins, AAL1 exhibits relatively weak effects on plant growth, with 20 µM and 50 µM IC50 (half growth inhibition chemical concentration) in root and hypocotyl growth respectively. Interestingly, we found the inhibitory effects of AAL1 and IAA could be partially restored by tyrosine and tryptophan respectively, suggesting some amino acids can also affect auxin signaling pathway in a moderate manner. Taken together, our results demonstrate that AAL1 acts through auxin signaling pathway, and AAL1, as a weak auxin activity analog, provides us a tool to study weak genetic interactions in auxin pathway.
Collapse
Affiliation(s)
- Wenbo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haimin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajin Ye
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lingting Li
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deqiang Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Zhao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 68 Wenchang Road, Yunnan, 650000, China.
| |
Collapse
|
26
|
Gupta SD, Agarwal A, Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:624-633. [PMID: 29933132 DOI: 10.1016/j.ecoenv.2018.06.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/22/2018] [Accepted: 06/09/2018] [Indexed: 05/23/2023]
Abstract
The knowledge on the mode of action, biocompatibility and ecological tolerance of silver nanoparticles (AgNPs) is gradually accumulating over the years with contradictory findings. Most of the studies indicated the toxic impact of AgNPs on plant growth and development, where induction of oxidative stress was considered to be one of the causal factors. The present study demonstrates the phytostimulatory effect of bio-synthesized silver nanoparticles (AgNPs) during seed germination and seedling growth of rice (Oryza sativa L., cv. Swarna) under in vitro condition. All the tested concentrations of AgNPs (10, 20, 40 ppm) promote both the shoot and root growth which was evident from the increased length and biomass of the seedlings. Exposure to AgNPs also significantly increased the chlorophyll a and carotenoid contents. The content and the pattern of distribution of phenolic metabolites among the different treatments are indicative of non-toxic impact of AgNP mimicking mild or no stress to the seedlings. Growth stimulation of rice seedlings by AgNPs was further supported by a low level of reactive oxygen species (ROS) concomitant with decreased amount of lipid peroxidation and H2O2 content, compared to control. In order to unravel the stimulatory impact of AgNPs on rice seedling growth, the present study also describes the AgNPs induced changes in antioxidative enzyme activity and related gene expression levels. Elevated levels of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities were recorded in all the AgNPs treated seedlings with improved growth. The activity of superoxide dismutase (SOD) was not significantly altered at low concentration of AgNPs. It appears that enzymes of ascorbate cycle, APX and GR are more active in ensuring protection against oxidative damage than SOD. There was significant up-regulation of CAT and APX gene expressions in seedlings exposed to AgNPs, whereas the expression level of CuZnSOD gene was decreased gradually with an increase in the concentration of AgNPs. The antioxidant enzyme activities and gene expression patterns coupled with the levels of H2O2 and lipid peroxidation indicates that the efficiency of redox reactions was increased in the presence of AgNPs and that accelerates the seedling growth.
Collapse
Affiliation(s)
- S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - A Agarwal
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - S Pradhan
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
27
|
Klíma P, Laňková M, Vandenbussche F, Van Der Straeten D, Petrášek J. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells. PLANT CELL REPORTS 2018; 37:809-818. [PMID: 29502206 DOI: 10.1007/s00299-018-2269-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/26/2018] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane.
Collapse
Affiliation(s)
- Petr Klíma
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Martina Laňková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium
| | - Jan Petrášek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
28
|
Abstract
Ethylene is a gas biosynthesized by plants which has many physiological and developmental effects on their growth. Ethylene affects agriculturally and horticulturally important traits such as fruit ripening, post-harvest physiology, senescence, and abscission, and so ethylene action is often inhibited to improve the shelf life of fruits, vegetables, and cut flowers. Chemical inhibitors of ethylene action are also useful for research to characterize the mechanisms of ethylene biosynthesis and signal transduction, and the role that ethylene plays in various physiological processes. Here, we describe the use of three inhibitors commonly used for the study of ethylene action in plants: 2-aminoethoxyvinyl glycine (AVG), silver ions (Ag), and the gaseous compound 1-methylcyclopropene (1-MCP). AVG is an inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme involved in ethylene biosynthesis. Silver and 1-MCP are both inhibitors of the ethylene receptors. Inhibitor use as well as off-target effects are described with a focus on ethylene responses in dark-grown Arabidopsis seedlings. Methods for the use of these inhibitors can be applied to other plant growth assays.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, 37996, USA.
| |
Collapse
|
29
|
Street IH, Mathews DE, Yamburkenko MV, Sorooshzadeh A, John RT, Swarup R, Bennett MJ, Kieber JJ, Schaller GE. Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development 2016; 143:3982-3993. [PMID: 27697901 DOI: 10.1242/dev.132035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 09/19/2016] [Indexed: 02/05/2023]
Abstract
Hormonal interactions are crucial for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here, we define key mechanistic elements in a regulatory network by which cytokinin inhibits root cell elongation in concert with the hormones auxin and ethylene. The auxin importer AUX1 functions as a positive regulator of cytokinin responses in the root; mutation of AUX1 specifically affects the ability of cytokinin to inhibit cell elongation but not cell proliferation. AUX1 is required for cytokinin-dependent changes of auxin activity in the lateral root cap associated with the control of cell elongation. Cytokinin regulates root cell elongation through ethylene-dependent and -independent mechanisms, both hormonal signals converging on AUX1 as a regulatory hub. An autoregulatory circuit is identified involving the control of ARR10 and AUX1 expression by cytokinin and auxin, this circuit potentially functioning as an oscillator to integrate the effects of these two hormones. Taken together, our results uncover several regulatory circuits controlling interactions of cytokinin with auxin and ethylene, and support a model in which cytokinin regulates shootward auxin transport to control cell elongation and root growth.
Collapse
Affiliation(s)
- Ian H Street
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Dennis E Mathews
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Maria V Yamburkenko
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Ali Sorooshzadeh
- Department of Agronomy, Tarbiat Modares University, Tehran, Iran
| | - Roshen T John
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
30
|
Le Deunff E, Lecourt J, Malagoli P. Fine-tuning of root elongation by ethylene: a tool to study dynamic structure-function relationships between root architecture and nitrate absorption. ANNALS OF BOTANY 2016; 118:607-620. [PMID: 27411681 PMCID: PMC5055632 DOI: 10.1093/aob/mcw123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/26/2016] [Accepted: 05/12/2016] [Indexed: 05/08/2023]
Abstract
Background Recently developed genetic and pharmacological approaches have been used to explore NO3-/ethylene signalling interactions and how the modifications in root architecture by pharmacological modulation of ethylene biosynthesis affect nitrate uptake. Key Results Structure-function studies combined with recent approaches to chemical genomics highlight the non-specificity of commonly used inhibitors of ethylene biosynthesis such as AVG (l-aminoethoxyvinylglycine). Indeed, AVG inhibits aminotransferases such as ACC synthase (ACS) and tryptophan aminotransferase (TAA) involved in ethylene and auxin biosynthesis but also some aminotransferases implied in nitrogen (N) metabolism. In this framework, it can be assumed that the products of nitrate assimilation and hormones may interact through a hub in carbon (C) and N metabolism to drive the root morphogenetic programme (RMP). Although ethylene/auxin interactions play a major role in cell division and elongation in root meristems, shaping of the root system depends also on energetic considerations. Based on this finding, the analysis is extended to nutrient ion-hormone interactions assuming a fractal or constructal model for root development. Conclusion Therefore, the tight control of root structure-function in the RMP may explain why over-expressing nitrate transporter genes to decouple structure-function relationships and improve nitrogen use efficiency (NUE) has been unsuccessful.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Université de Caen Basse-Normandie, UMR Écophysiologie Végétale & Agronomie, Nutritions NCS, F-14032 Caen, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, F-14032 Caen, France
| | - Julien Lecourt
- East Malling Research, New Road, East Malling ME19 6BJ, Kent, UK
| | - Philippe Malagoli
- Université Blaise Pascal-INRA, 24, avenue des Landais, BP 80 006, F-63177 Aubière, France
- INRA, UMR 547 PIAF, Bâtiment Biologie Végétale Recherche, BP 80 006, F-63177 Aubière, France
| |
Collapse
|
31
|
Le Deunff E, Lecourt J. Non-specificity of ethylene inhibitors: 'double-edged' tools to find out new targets involved in the root morphogenetic programme. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:353-61. [PMID: 26434926 DOI: 10.1111/plb.12405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 05/23/2023]
Abstract
In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.
Collapse
Affiliation(s)
- E Le Deunff
- Normandie Université, UMR EVA, F-14032, Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, INRA F-14032 Caen cedex, France
| | - J Lecourt
- East Malling Research, East Malling, Kent, UK
| |
Collapse
|
32
|
El-Batal AI, Gharib FAEL, Ghazi SM, Hegazi AZ, Hafz AGMAE. Physiological Responses of Two Varieties of Common Bean ( Phaseolus VulgarisL.) to Foliar Application of Silver Nanoparticles. NANOMATERIALS AND NANOTECHNOLOGY 2016; 6:13. [DOI: 10.5772/62202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ahmed Ibrahim El-Batal
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | | | - Safia Mohammed Ghazi
- Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt
| | | | | |
Collapse
|
33
|
Baskar V, Venkatesh J, Park SW. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17672-82. [PMID: 26154034 DOI: 10.1007/s11356-015-4864-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/08/2015] [Indexed: 05/25/2023]
Abstract
Silver nanoparticles (AgNPs) were extensively used in various fields, particularly in medicine as an antimicrobial agent. The unavoidable and extensive usage of AgNPs in turn accumulates in the environment. Plants are the essential base of ecosystem and are ready to disturb by environmental pollutants. Therefore, in the present study, we have planned to evaluate the impact of biologically synthesized AgNPs on the essential food crop Chinese cabbage (Brassica rapa ssp. pekinensis). The effects of AgNP-induced plant morphological and physiological changes were investigated in different concentrations (100, 250, and 500 mg/L). The results of morphological features showed that AgNPs at lower concentrations (100 mg/L) exhibit growth-stimulating activity, whereas at higher concentrations (250 and 500 mg/L), particularly, 500 mg/L exhibited growth-suppressing activities which are in terms of reduced root, shoot growth, and fresh biomass. The increased reactive oxygen species (ROS) generation, malondialdehyde production, anthocyanin biosynthesis, and decreased chlorophyll content were also more obviously present at higher concentrations of AgNPs. The concentration-dependent DNA damage was observed in the AgNP-treated plants. The molecular responses of AgNPs indicate that most of the genes related to secondary metabolism (glucosinolates, anthocyanin) and antioxidant activities were induced at higher concentrations of AgNP treatment. The dose-dependent phytotoxicity effects of AgNPs were also observed. Taken together, the highest concentration of AgNPs (500 mg/L) could induce growth-suppressing activities via the induction of ROS generation and other molecular changes in B. rapa seedlings.
Collapse
Affiliation(s)
- Venkidasamy Baskar
- Department of Molecular Biotechnology, School of Life & Environmental Sciences, Konkuk University, Seoul, Korea Republic
| | - Jelli Venkatesh
- Department of Molecular Biotechnology, School of Life & Environmental Sciences, Konkuk University, Seoul, Korea Republic
| | - Se Won Park
- Department of Molecular Biotechnology, School of Life & Environmental Sciences, Konkuk University, Seoul, Korea Republic.
| |
Collapse
|
34
|
Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem. PLANT PHYSIOLOGY 2015; 169:338-50. [PMID: 26149574 PMCID: PMC4577392 DOI: 10.1104/pp.15.00415] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/04/2015] [Indexed: 05/18/2023]
Abstract
The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.
Collapse
Affiliation(s)
- Ian H Street
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Yan Zubo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Aleena Ramzan
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Xiaomin Wang
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - Joseph J Kieber
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 (I.H.S., S.A., Y.Z., A.R., X.W., G.E.S.); Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan (S.A., A.R., S.N.S.); and Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.J.K.)
| |
Collapse
|
35
|
Wu T, Kamiya T, Yumoto H, Sotta N, Katsushi Y, Shigenobu S, Matsubayashi Y, Fujiwara T. An Arabidopsis thaliana copper-sensitive mutant suggests a role of phytosulfokine in ethylene production. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3657-67. [PMID: 25908239 PMCID: PMC4473973 DOI: 10.1093/jxb/erv105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To increase our understanding of the adaptation for copper (Cu) deficiency, Arabidopsis mutants with apparent alterations under Cu deficiency were identified. In this report, a novel mutant, tpst-2, was found to be more sensitive than wild-type (Col-0) plants to Cu deficiency during root elongation. The positional cloning of tpst-2 revealed that this gene encodes a tyrosylprotein sulfotransferase (TPST). Moreover, the ethylene production of tpst-2 mutant was higher than that of Col-0 under Cu deficiency, and adding the ethylene response inhibitor AgNO3 partially rescued defects in root elongation. Interestingly, peptide hormone phytosulfokine (PSK) treatment also repressed the ethylene production of tpst-2 mutant plants. Our results revealed that TPST suppressed ethylene production through the action of PSK.
Collapse
Affiliation(s)
- Tao Wu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region, Ministry of Agriculture), Horticultural College, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroko Yumoto
- National Agriculture and Food Research Organization, Institute of Floricultural Science, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Naoyuki Sotta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya Universisy, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
36
|
Ghorbanpour M, Hatami M. Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40502-015-0145-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Moniuszko G. Ethylene signaling pathway is not linear, however its lateral part is responsible for sensing and signaling of sulfur status in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1067742. [PMID: 26340594 PMCID: PMC4883965 DOI: 10.1080/15592324.2015.1067742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 05/20/2023]
Abstract
A secondary, non-linear, lateral part of ethylene signaling pathway has been anticipated and speculated before. Recently, it has been found that part of the proteomic response of Eruca sativa to silver nitrate (which is an inhibitor of ethylene signaling) is related to sulfur metabolism. Using public Arabidopsis thaliana microarray data, I show that silver nitrate mimics the signal of sulfur starvation at the transcriptome level. This, combined with data mined from literature, indicates that ethylene receptors are localized at the beginning of the response to sulfur deficiency in plants. This means that the non-linear, lateral part of ethylene signaling pathway exists and is responsible for transduction of the signal of sulfur deficit. Here, I present a model of such a pathway and anticipate it to be the starting point for more detailed analysis of the lateral part of ethylene signaling pathway and the exact mechanism of sulfur status sensing in plants.
Collapse
Affiliation(s)
- Grzegorz Moniuszko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences; Warsaw, Poland
- Correspondence to: Grzegorz Moniuszko;
| |
Collapse
|
38
|
Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2014; 4:1259-74. [PMID: 24836325 PMCID: PMC4455775 DOI: 10.1534/g3.114.011080] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abscisic acid (ABA) regulates many aspects of plant growth and development, including inhibition of root elongation and seed germination. We performed an ABA resistance screen to identify factors required for ABA response in root elongation inhibition. We identified two classes of Arabidopsis thaliana AR mutants that displayed ABA-resistant root elongation: those that displayed resistance to ABA in both root elongation and seed germination and those that displayed resistance to ABA in root elongation but not in seed germination. We used PCR-based genotyping to identify a mutation in ABA INSENSITIVE2 (ABI2), positional information to identify mutations in AUXIN RESISTANT1 (AUX1) and ETHYLENE INSENSITIVE2 (EIN2), and whole genome sequencing to identify mutations in AUX1, AUXIN RESISTANT4 (AXR4), and ETHYLENE INSENSITIVE ROOT1/PIN-FORMED2 (EIR1/PIN2). Identification of auxin and ethylene response mutants among our isolates suggested that auxin and ethylene responsiveness were required for ABA inhibition of root elongation. To further our understanding of auxin/ethylene/ABA crosstalk, we examined ABA responsiveness of double mutants of ethylene overproducer1 (eto1) or ein2 combined with auxin-resistant mutants and found that auxin and ethylene likely operate in a linear pathway to affect ABA-responsive inhibition of root elongation, whereas these two hormones likely act independently to affect ABA-responsive inhibition of seed germination.
Collapse
|
39
|
Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2014. [PMID: 24836325 DOI: 10.1534/g1533.1114.011080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Abscisic acid (ABA) regulates many aspects of plant growth and development, including inhibition of root elongation and seed germination. We performed an ABA resistance screen to identify factors required for ABA response in root elongation inhibition. We identified two classes of Arabidopsis thaliana AR mutants that displayed ABA-resistant root elongation: those that displayed resistance to ABA in both root elongation and seed germination and those that displayed resistance to ABA in root elongation but not in seed germination. We used PCR-based genotyping to identify a mutation in ABA INSENSITIVE2 (ABI2), positional information to identify mutations in AUXIN RESISTANT1 (AUX1) and ETHYLENE INSENSITIVE2 (EIN2), and whole genome sequencing to identify mutations in AUX1, AUXIN RESISTANT4 (AXR4), and ETHYLENE INSENSITIVE ROOT1/PIN-FORMED2 (EIR1/PIN2). Identification of auxin and ethylene response mutants among our isolates suggested that auxin and ethylene responsiveness were required for ABA inhibition of root elongation. To further our understanding of auxin/ethylene/ABA crosstalk, we examined ABA responsiveness of double mutants of ethylene overproducer1 (eto1) or ein2 combined with auxin-resistant mutants and found that auxin and ethylene likely operate in a linear pathway to affect ABA-responsive inhibition of root elongation, whereas these two hormones likely act independently to affect ABA-responsive inhibition of seed germination.
Collapse
Affiliation(s)
- Julie M Thole
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Erin R Beisner
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - James Liu
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Savina V Venkova
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
40
|
|
41
|
Bours R, van Zanten M, Pierik R, Bouwmeester H, van der Krol A. Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis. PLANT PHYSIOLOGY 2013; 163:882-95. [PMID: 23979970 PMCID: PMC3793065 DOI: 10.1104/pp.113.221648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/22/2013] [Indexed: 05/19/2023]
Abstract
In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.
Collapse
Affiliation(s)
- Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.B., A.v.d.K.); and
- Plant Ecophysiology, Institute of Environmental Biology (M.v.Z., R.P.), and Molecular Plant Physiology (M.v.Z.), Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Martijn van Zanten
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.B., A.v.d.K.); and
- Plant Ecophysiology, Institute of Environmental Biology (M.v.Z., R.P.), and Molecular Plant Physiology (M.v.Z.), Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.B., A.v.d.K.); and
- Plant Ecophysiology, Institute of Environmental Biology (M.v.Z., R.P.), and Molecular Plant Physiology (M.v.Z.), Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.B., A.v.d.K.); and
- Plant Ecophysiology, Institute of Environmental Biology (M.v.Z., R.P.), and Molecular Plant Physiology (M.v.Z.), Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag⁺ at sublethal concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5442-9. [PMID: 23631766 DOI: 10.1021/es4004334] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increasing likelihood of silver nanoparticle (AgNP) releases to the environment highlights the importance of understanding AgNP interactions with plants, which are cornerstones of most ecosystems. In this study, poplars (Populus deltoides × nigra) and Arabidopsis thaliana were exposed hydroponically to nanoparticles of different sizes (PEG-coated 5 and 10 nm AgNPs, and carbon-coated 25 nm AgNPs) or silver ions (Ag(+), added as AgNO₃) at a wide range of concentrations (0.01 to 100 mg/L). Whereas all forms of silver were phytotoxic above a specific concentration, a stimulatory effect was observed on root elongation, fresh weight, and evapotranspiration of both plants at a narrow range of sublethal concentrations (e.g., 1 mg/L of 25 nm AgNPs for poplar). Plants were most susceptible to the toxic effects of Ag(+) (1 mg/L for poplar, 0.05 mg/L for Arabidopsis), but AgNPs also showed some toxicity at higher concentrations (e.g., 100 mg/L of 25 nm AgNPs for poplar, 1 mg/L of 5 nm AgNPs for Arabidopsis) and this susceptibility increased with decreasing AgNP size. Both poplars and Arabidopsis accumulated silver, but silver distribution in shoot organs varied between plant species. Arabidopsis accumulated silver primarily in leaves (at 10-fold higher concentrations than in the stem or flower tissues), whereas poplars accumulated silver at similar concentrations in leaves and stems. Within the particle subinhibitory concentration range, silver accumulation in poplar tissues increased with exposure concentration and with smaller AgNP size. However, compared to larger AgNPs, the faster silver uptake associated with smaller AgNPs was offset by their toxic effect on evapotranspiration, which was exerted at lower concentrations (e.g., 1 mg/L of 5 nm AgNPs for poplar). Overall, the observed phytostimulatory effects preclude generalizations about the phytotoxicity of AgNPs and encourage further mechanistic research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Civil & Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng Q, Zheng Y, Perry SE. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. PLANT PHYSIOLOGY 2013; 161:2113-27. [PMID: 23457229 PMCID: PMC3613480 DOI: 10.1104/pp.113.216275] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 05/06/2023]
Abstract
Many of the regulatory processes occurring during plant embryogenesis are still unknown. Relatively few cells are involved, and they are embedded within maternal tissues, making this developmental phase difficult to study. Somatic embryogenesis is a more accessible system, and many important regulatory genes appear to function similar to zygotic development, making somatic embryogenesis a valuable model for the study of zygotic processes. To better understand the role of the Arabidopsis (Arabidopsis thaliana) MADS factor AGAMOUS-Like15 (AGL15) in the promotion of somatic embryogenesis, direct target genes were identified by chromatin immunoprecipitation-tiling arrays and expression arrays. One potential directly up-regulated target was At5g61590, which encodes a member of the ethylene response factor subfamily B-3 of APETALA2/ethylene response factor transcription factors and is related to Medicago truncatula somatic embryo-related factor1 (MtSERF1), which has been shown to be required for somatic embryogenesis in M. truncatula. Here, we report confirmation that At5g61590 is a directly expressed target of AGL15 and that At5g61590 is essential for AGL15's promotion of somatic embryogenesis. Because At5g61590 is a member of the ethylene response factor family, effects of ethylene on somatic embryogenesis were investigated. Precursors to ethylene stimulate somatic embryogenesis, whereas inhibitors of ethylene synthesis or perception reduce somatic embryogenesis. To extend findings to a crop plant, we investigated the effects of ethylene on somatic embryogenesis in soybean (Glycine max). Furthermore, we found that a potential ortholog of AGL15 in soybean (GmAGL15) up-regulates ethylene biosynthesis and response, including direct regulation of soybean orthologs of At5g61590/MtSERF1 named here GmSERF1 and GmSERF2, in concordance with the M. truncatula nomenclature.
Collapse
Affiliation(s)
| | | | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
44
|
van Doorn WG, Dole I, Celikel FG, Harkema H. Opening of Iris flowers is regulated by endogenous auxins. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:161-164. [PMID: 23218543 DOI: 10.1016/j.jplph.2012.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 06/01/2023]
Abstract
Flower opening in Iris (Iris×hollandica) requires elongation of the pedicel and ovary. This moves the floral bud upwards, thereby allowing the tepals to move laterally. Flower opening is requires with elongation of the pedicel and ovary. In cv. Blue Magic, we investigated the possible role of hormones other than ethylene in pedicel and ovary elongation and flower opening. Exogenous salicylic acid (SA) and the cytokinins benzyladenine (N6-benzyladenine, BA) and zeatin did not affect opening. Jasmonic acid (JA) and abscisic acid (ABA) were slightly inhibitory, but an inhibitor of ABA synthesis (norflurazon) was without effect. Flower opening was promoted by gibberellic acid (GA(3)), but two inhibitors of gibberellin synthesis (4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate, AMO-1618; ancymidol) did not change opening. The auxins indoleacetic acid (IAA) and naphthaleneacetic acid (NAA) strongly promoted elongation and opening. An inhibitor of auxin transport (2,3,5-triodobenzoic acid, TIBA) and an inhibitor of auxin effects [α-(p-chlorophenoxy)-isobutyric acid; PCIB] inhibited elongation and opening. The data suggest that endogenous auxins are among the regulators of the pedicel and ovary elongation and thus of flower opening in Iris.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Wageningen University and Research Centre, Agrotechnology and Food Sciences Group (AFSG), P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
45
|
McDaniel BK, Binder BM. ethylene receptor 1 (etr1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana. J Biol Chem 2012; 287:26094-103. [PMID: 22692214 PMCID: PMC3406693 DOI: 10.1074/jbc.m112.383034] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/09/2012] [Indexed: 11/06/2022] Open
Abstract
Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the K(d) for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper.
Collapse
Affiliation(s)
- Brittany K. McDaniel
- From the Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0849
| | - Brad M. Binder
- From the Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0849
| |
Collapse
|
46
|
Nong PS, Zhou YF, Huang LH, Lou JD, Chen XH, Lu XL. Synthesis, Characterization, and Structure of a Silver(I) Compound With Thymine. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/15533174.2011.610092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ping-Sheng Nong
- a College of Life Sciences, China Jiliang University , Hangzhou , Zhejiang , P. R. China
| | - Yi-Feng Zhou
- a College of Life Sciences, China Jiliang University , Hangzhou , Zhejiang , P. R. China
| | - Li-Hong Huang
- a College of Life Sciences, China Jiliang University , Hangzhou , Zhejiang , P. R. China
| | - Ji-Dong Lou
- a College of Life Sciences, China Jiliang University , Hangzhou , Zhejiang , P. R. China
| | - Xiao-Hong Chen
- b State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing , P. R. China
| | - Xiu Lian Lu
- a College of Life Sciences, China Jiliang University , Hangzhou , Zhejiang , P. R. China
| |
Collapse
|
47
|
Bollhöner B, Prestele J, Tuominen H. Xylem cell death: emerging understanding of regulation and function. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1081-94. [PMID: 22213814 DOI: 10.1093/jxb/err438] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionary, as well as genetic, evidence suggests that vascular development evolved originally as a cell death programme that allowed enhanced movement of water in the extinct protracheophytes, and that secondary wall formation in the water-conducting cells evolved afterwards, providing mechanical support for effective long-distance transport of water. The extant vascular plants possess a common regulatory network to coordinate the different phases of xylem maturation, including secondary wall formation, cell death, and finally autolysis of the cell contents, by the action of recently identified NAC domain transcription factors. Consequently, xylem cell death is an inseparable part of the xylem maturation programme, making it difficult to uncouple cell death mechanistically from secondary wall formation, and thus identify the key factors specifically involved in regulation of cell death. Current knowledge suggests that the necessary components for xylem cell death are produced early during xylem differentiation, and cell death is prevented through the action of inhibitors and storage of hydrolytic enzymes in inactive forms in compartments such as the vacuole. Bursting of the central vacuole triggers autolytic hydrolysis of the cell contents, which ultimately leads to cell death. This cascade of events varies between the different xylem cell types. The water-transporting tracheary elements rely on a rapid cell death programme, with hydrolysis of cell contents taking place for the most part, if not entirely, after vacuolar bursting, while the xylem fibres disintegrate cellular contents at a slower pace, well before cell death. This review includes a detailed description of cell morphology, function of plant growth regulators, such as ethylene and thermospermine, and the action of hydrolytic nucleases and proteases during cell death of the different xylem cell types.
Collapse
Affiliation(s)
- Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
48
|
Coskun D, Britto DT, Jean YK, Schulze LM, Becker A, Kronzucker HJ. Silver ions disrupt K⁺ homeostasis and cellular integrity in intact barley (Hordeum vulgare L.) roots. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:151-62. [PMID: 21948852 PMCID: PMC3245464 DOI: 10.1093/jxb/err267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 05/19/2023]
Abstract
The heavy metals silver, gold, and mercury can strongly inhibit aquaporin-mediated water flow across plant cell membranes, but critical examinations of their side effects are rare. Here, the short-lived radiotracer (42)K is used to demonstrate that these metals, especially silver, profoundly change potassium homeostasis in roots of intact barley (Hordeum vulgare L.) plants, by altering unidirectional K(+) fluxes. Doses as low as 5 μM AgNO(3) rapidly reduced K(+) influx to 5% that of controls, and brought about pronounced and immediate increases in K(+) efflux, while higher doses of Au(3+) and Hg(2+) were required to produce similar responses. Reduced influx and enhanced efflux of K(+) resulted in a net loss of >40% of root tissue K(+) during a 15 min application of 500 μM AgNO(3), comprising the entire cytosolic potassium pool and about a third of the vacuolar pool. Silver also brought about major losses of UV-absorbing compounds, total electrolytes, and NH(4)(+). Co-application, with silver, of the channel blockers Cs(+), TEA(+), or Ca(2+), did not affect the enhanced efflux, ruling out the involvement of outwardly rectifying ion channels. Taken together with an examination of propidium iodide staining under confocal microscopy, the results indicate that silver ions affect K(+) homeostasis by directly inhibiting K(+) influx at lower concentrations, and indirectly inhibiting K(+) influx and enhancing K(+) efflux, via membrane destruction, at higher concentrations. Ni(2+), Cd(2+), and Pb(2+), three heavy metals not generally known to affect aquaporins, did not enhance K(+) efflux or cause propidium iodide incorporation. The study reveals strong and previously unknown effects of major aquaporin inhibitors and recommends caution in their application.
Collapse
Affiliation(s)
| | | | | | | | | | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
49
|
Tsang DL, Edmond C, Harrington JL, Nühse TS. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. PLANT PHYSIOLOGY 2011; 156:596-604. [PMID: 21508182 PMCID: PMC3177261 DOI: 10.1104/pp.111.175372] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/18/2011] [Indexed: 05/18/2023]
Abstract
Cell expansion in plants requires cell wall biosynthesis and rearrangement. During periods of rapid elongation, such as during the growth of etiolated hypocotyls and primary root tips, cells respond dramatically to perturbation of either of these processes. There is growing evidence that this response is initiated by a cell wall integrity-sensing mechanism and dedicated signaling pathway rather than being an inevitable consequence of lost structural integrity. However, the existence of such a pathway in root tissue and its function in a broader developmental context have remained largely unknown. Here, we show that various types of cell wall stress rapidly reduce primary root elongation in Arabidopsis (Arabidopsis thaliana). This response depended on the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC). In agreement with the established ethylene signaling pathway in roots, auxin signaling and superoxide production are required downstream of ACC to reduce elongation. However, this cell wall stress response unexpectedly does not depend on the perception of ethylene. We show that the short-term effect of ACC on roots is partially independent of its conversion to ethylene or ethylene signaling and that this ACC-dependent pathway is also responsible for the rapid reduction of root elongation in response to pathogen-associated molecular patterns. This acute response to internal and external stress thus represents a novel, noncanonical signaling function of ACC.
Collapse
|
50
|
Strader LC, Wheeler DL, Christensen SE, Berens JC, Cohen JD, Rampey RA, Bartel B. Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. THE PLANT CELL 2011; 23:984-99. [PMID: 21406624 PMCID: PMC3082277 DOI: 10.1105/tpc.111.083071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/07/2011] [Accepted: 03/05/2011] [Indexed: 05/18/2023]
Abstract
Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels.
Collapse
Affiliation(s)
- Lucia C. Strader
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Dorthea L. Wheeler
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
- Department of Biology, Harding University, Searcy, Arkansas 72143
| | - Sarah E. Christensen
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
- Department of Biology, Harding University, Searcy, Arkansas 72143
| | - John C. Berens
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
- Address correspondence to
| |
Collapse
|