1
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
2
|
Vishal B, Krishnamurthy P, Kumar PP. Arabidopsis class II TPS controls root development and confers salt stress tolerance through enhanced hydrophobic barrier deposition. PLANT CELL REPORTS 2024; 43:115. [PMID: 38613634 DOI: 10.1007/s00299-024-03215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
KEY MESSAGE The mechanism of conferring salt tolerance by AtTPS9 involves enhanced deposition of suberin lamellae in the Arabidopsis root endodermis, resulting in reduction of Na+ transported to the leaves. Members of the class I trehalose-6-phosphate synthase (TPS) enzymes are known to play an important role in plant growth and development in Arabidopsis. However, class II TPSs and their functions in salinity stress tolerance are not well studied. We characterized the function of a class II TPS gene, AtTPS9, to understand its role in salt stress response and root development in Arabidopsis. The attps9 mutant exhibited significant reduction of soluble sugar levels in the leaves and formation of suberin lamellae (SL) in the endodermis of roots compared to the wild type (WT). The reduction in SL deposition (hydrophobic barriers) leads to increased apoplastic xylem loading, resulting in enhanced Na+ content in the plants, which explains salt sensitivity of the mutant plants. Conversely, AtTPS9 overexpression lines exhibited increased SL deposition in the root endodermis along with increased salt tolerance, showing that regulation of SL deposition is one of the mechanisms of action of AtTPS9 in conferring salt tolerance to Arabidopsis plants. Our data showed that besides salt tolerance, AtTPS9 also regulates seed germination and root development. qRT-PCR analyses showed significant downregulation of selected SNF1-RELATED PROTEIN KINASE2 genes (SnRK2s) and ABA-responsive genes in the mutant, suggesting that AtTPS9 may regulate the ABA-signaling intermediates as part of the mechanism conferring salinity tolerance.
Collapse
Affiliation(s)
- Bhushan Vishal
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Queenstown, 117543, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Science Drive 2, Queenstown, 117456, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Queenstown, 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Queenstown, 117543, Singapore.
| |
Collapse
|
3
|
Zhao N, Geng Z, Zhao G, Liu J, An Z, Zhang H, Ai P, Wang Y. Integrated analysis of the transcriptome and metabolome reveals the molecular mechanism regulating cotton boll abscission under low light intensity. BMC PLANT BIOLOGY 2024; 24:182. [PMID: 38475753 DOI: 10.1186/s12870-024-04862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Zetong An
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, P.R. China.
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China.
| |
Collapse
|
4
|
Hu CC, Wu CY, Yang MY, Huang JZ, Wu CW, Hong CY. Catalase associated with antagonistic changes of abscisic acid and gibberellin response, biosynthesis and catabolism is involved in eugenol-inhibited seed germination in rice. PLANT CELL REPORTS 2023; 43:10. [PMID: 38135798 DOI: 10.1007/s00299-023-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE The inhibitory effect of eugenol on rice germination is mediated by a two-step modulatory process: Eugenol first regulates the antagonism of GA and ABA, followed by activation of catalase activity. The natural monoterpene eugenol has been reported to inhibit preharvest sprouting in rice. However, the inhibitory mechanism remains obscure. In this study, simultaneous monitoring of GA and ABA responses by the in vivo GA and ABA-responsive dual-luciferase reporter system showed that eugenol strongly inhibited the GA response after 6 h of imbibition, whereas eugenol significantly enhanced the ABA response after 12 h of imbibition. Gene expression analysis revealed that eugenol significantly induced the ABA biosynthetic genes OsNCED2, OsNCED3, and OsNCED5, but notably suppressed the ABA catabolic genes OsABA8ox1 and OsABA8ox2. Conversely, eugenol inhibited the GA biosynthetic genes OsGA3ox2 and OsGA20ox4 but significantly induced the GA catabolic genes OsGA2ox1 and OsGA2ox3 during imbibition. OsABI4, the key signaling regulator of ABA and GA antagonism, was notably induced before 12 h and suppressed after 24 h by eugenol. Moreover, eugenol markedly reduced the accumulation of H2O2 in seeds after 36 h of imbibition. Further analysis showed that eugenol strongly induced catalase activity, protein accumulation, and the expression of three catalase genes. Most importantly, mitigation of eugenol-inhibited seed germination was found in the catc mutant. These findings indicate that catalase associated with antagonistic changes of ABA and GA is involved in the sequential regulation of eugenol-inhibited seed germination in rice.
Collapse
Affiliation(s)
- Chi-Chieh Hu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan
- Kaohsiung District Agricultural Research and Extension Station, Changzhi Township, Pingtung County, 908126, Taiwan
| | - Chin-Yu Wu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan
| | - Min-Yu Yang
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan
| | - Jian-Zhi Huang
- Department of Plant Industry, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, 91201, Taiwan
| | - Chih-Wen Wu
- Kaohsiung District Agricultural Research and Extension Station, Changzhi Township, Pingtung County, 908126, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Emenecker RJ, Cammarata J, Yuan I, Howard C, Ebrahimi Naghani S, Robert HS, Nambara E, Strader LC. Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development 2023; 150:dev202106. [PMID: 37846593 PMCID: PMC10730017 DOI: 10.1242/dev.202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | | | - Irene Yuan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Caroline Howard
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shekufeh Ebrahimi Naghani
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czechia
| | - Helene S. Robert
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Lucia C. Strader
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Çelik S. Assessing Drought Tolerance in a Large Number of Upland Cotton Plants ( Gossypium hirsutum L.) under Different Irrigation Regimes at the Seedling Stage. Life (Basel) 2023; 13:2067. [PMID: 37895448 PMCID: PMC10608038 DOI: 10.3390/life13102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The cotton plant is important since it provides raw materials for various industry branches. Even though cotton is generally drought-tolerant, it is affected negatively by long-term drought stress. The trial was conducted according to the applied experimental design as a completely randomized design (CRD) with three replications to determine a panel of 93 cotton genotypes' genotypic responses against drought under controlled conditions in 2022. All genotypes were watered with 80 mL-1 of water (100% irrigation, field capacity) until three true leaves appeared, and then water stress was applied at a limited irrigation of 75% (60 mL-1), 50% (40 mL-1), and 25% (20 mL-1) of the field capacity. After the trial terminated at 52 days, the cv. G56, G44, G5, and G86 in RL; G1, G56, G44, G86, G51, and G88 in RFW; advanced line G5, followed by the cv. G56, advanced line G44, G75, and the cv. G90 in RDW; G44, followed by G86, the cv. G56, and elite lines G13 and G5 in NLRs were observed as drought-tolerant genotypes, respectively, while G35, G15, G26, G67, and G56 in SL; G15, G52, G60, G31, and G68 in SFW; G35, G52, G57, G41, and G60 in SDW show the highest drought tolerance means, respectively. In conclusion, the commercial varieties with high means in roots, namely G86, G56, G88, and G90, and the genotypes G67, G20, G60, and G57 showing tolerance in shoots, are suggested to be potential parent plants for developing cotton varieties resistant to drought. Using the cultivars found tolerant in the current study as parents in a drought-tolerant variety development marker-assisted selection (MAS) plant breeding program will increase the chance of success in reaching the target after genetic diversity analyses are performed. On the other hand, it is highly recommended to continue the plant breeding program with the G44, G30, G19, G1, G5, G75, G35, G15, G52, G29, and G76 genotypes, which show high tolerance in both root and shoot systems.
Collapse
Affiliation(s)
- Sadettin Çelik
- Department of Forestry, Genç Vocational School, University of Bingol, Bingol 12500, Turkey
| |
Collapse
|
7
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
8
|
Yop GDS, Gair LHV, da Silva VS, Machado ACZ, Santiago DC, Tomaz JP. Abscisic Acid Is Involved in the Resistance Response of Arabidopsis thaliana Against Meloidogyne paranaensis. PLANT DISEASE 2023; 107:2778-2783. [PMID: 36774560 DOI: 10.1094/pdis-07-22-1726-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Abscisic acid (ABA) is a classical hormone involved in the plant defense against abiotic stresses, especially drought. However, its role in the defense response against biotic stresses is controversial: it can induce resistance to some pathogens but can also increase the susceptibility to other pathogens. Information regarding the effect of ABA on the relationship between plants and sedentary phytonematodes, such as Meloidogyne paranaensis, is scarce. In this study, we found that ABA changed the susceptibility level of Arabidopsis thaliana against M. paranaensis. The population of M. paranaensis was reduced by 58.3% with the exogenous application of ABA 24 h before the nematode inoculation, which demonstrated that ABA plays an important role in the preinfectional defense of A. thaliana against M. paranaensis. The increase in the nematode population density in the ABA biosynthesis mutant, aba2-1, corroborated the results observed with the exogenous application of ABA. The phytohormone did not show nematicide or nematostatic effects on M. paranaensis juveniles in in vitro tests, indicating that the response is linked to intrinsic plant factors, which was corroborated by the decrease in the number of nematodes in the abi4-1 mutant. This reduction indicates that the gene expression regulation by transcript factors is possibly related to regulatory cascades mediated by ABA in the response of A. thaliana against M. paranaensis.
Collapse
Affiliation(s)
| | | | - Victoria Stern da Silva
- Instituto de Desenvolvimento Rural do Paraná - IDR-Paraná, 86047-902 Londrina, Paraná, Brazil
| | | | | | - Juarez Pires Tomaz
- Instituto de Desenvolvimento Rural do Paraná - IDR-Paraná, 86047-902 Londrina, Paraná, Brazil
| |
Collapse
|
9
|
Shao A, Xu X, Amombo E, Wang W, Fan S, Yin Y, Li X, Wang G, Wang H, Fu J. CdWRKY2 transcription factor modulates salt oversensitivity in bermudagrass [ Cynodon dactylon (L.) Pers.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1164534. [PMID: 37528987 PMCID: PMC10388543 DOI: 10.3389/fpls.2023.1164534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
Common bermudagrass [Cynodon dactylon (L.) Pers.] has higher utilization potential on saline soil due to its high yield potential and excellent stress tolerance. However, key functional genes have not been well studied partly due to its hard transformation. Here, bermudagrass "Wrangler" successfully overexpressing CdWRKY2 exhibited significantly enhanced salt and ABA sensitivity with severe inhibition of shoot and root growth compared to the transgenic negative line. The reduced auxin accumulation and higher ABA sensitivity of the lateral roots (LR) under salt stress were observed in CdWRKY2 overexpression Arabidopsis lines. IAA application could rescue or partially rescue the salt hypersensitivity of root growth inhibition in CdWRKY2-overexpressing Arabidopsis and bermudagrass, respectively. Subsequent experiments in Arabidopsis indicated that CdWRKY2 could directly bind to the promoter region of AtWRKY46 and downregulated its expression to further upregulate the expression of ABA and auxin pathway-related genes. Moreover, CdWRKY2 overexpression in mapk3 background Arabidopsis could partly rescue the salt-inhibited LR growth caused by CdWRKY2 overexpression. These results indicated that CdWRKY2 could negatively regulate LR growth under salt stress via the regulation of ABA signaling and auxin homeostasis, which partly rely on AtMAPK3 function. CdWRKY2 and its homologue genes could also be useful targets for genetic engineering of salinity-tolerance plants.
Collapse
|
10
|
Zhang J, Zhao P, Chen S, Sun L, Mao J, Tan S, Xiang C. The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence. Cell Rep 2023; 42:112809. [PMID: 37450369 DOI: 10.1016/j.celrep.2023.112809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Abscisic acid (ABA) is involved in lateral root (LR) development, but how ABA signaling interacts with auxin signaling to regulate LR formation is not well understood. Here, we report that ABA-responsive ERF1 mediates the crosstalk between ABA and auxin signaling to regulate Arabidopsis LR emergence. ABI3 is a negative factor in LR emergence and transcriptionally activates ERF1 by binding to its promoter, and reciprocally, ERF1 activates ABI3, which forms a regulatory loop that enables rapid signal amplification. Notably, ABI3 physically interacts with ERF1, reducing the cis element-binding activities of both ERF1 and ABI3 and thus attenuating the expression of ERF1-/ABI3-regulated genes involved in LR emergence and ABA signaling, such as PIN1, AUX1, ARF7, and ABI5, which may provide a molecular rheostat to avoid overamplification of auxin and ABA signaling. Taken together, our findings identify the role of the ABI3-ERF1 module in mediating crosstalk between ABA and auxin signaling in LR emergence.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Liangqi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
11
|
Sahu A, Singh R, Verma PK. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. PLANTA 2023; 258:31. [PMID: 37368167 DOI: 10.1007/s00425-023-04188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
MAIN CONCLUSION This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Collapse
Affiliation(s)
- Anubhav Sahu
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
13
|
Korobova A, Ivanov R, Timergalina L, Vysotskaya L, Nuzhnaya T, Akhiyarova G, Kusnetsov V, Veselov D, Kudoyarova G. Effect of Low Light Stress on Distribution of Auxin (Indole-3-acetic Acid) between Shoot and Roots and Development of Lateral Roots in Barley Plants. BIOLOGY 2023; 12:787. [PMID: 37372072 DOI: 10.3390/biology12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Depending on their habitat conditions, plants can greatly change the growth rate of their roots. However, the mechanisms of such responses remain insufficiently clear. The influence of a low level of illumination on the content of endogenous auxins, their localization in leaves and transport from shoots to roots were studied and related to the lateral root branching of barley plants. Following two days' reduction in illumination, a 10-fold reduction in the emergence of lateral roots was found. Auxin (IAA, indole-3-acetic acid) content decreased by 84% in roots and by 30% in shoots, and immunolocalization revealed lowered IAA levels in phloem cells of leaf sections. The reduced content of IAA found in the plants under low light suggests an inhibition of production of this hormone under these conditions. At the same time, two-fold downregulation of the LAX3 gene expression, facilitating IAA influx into the cells, was detected in the roots, as well as a decline in auxin diffusion from shoots through the phloem by about 60%. It was suggested that the reduced emergence of lateral roots in barley under a low level of illumination was due to a disturbance of auxin transport through the phloem and down-regulation of the genes responsible for auxin transport in plant roots. The results confirm the importance of the long distance transport of auxins for the control of the growth of roots under conditions of low light. Further study of the mechanisms that control the transport of auxins from shoots to roots in other plant species is required.
Collapse
Affiliation(s)
- Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Leila Timergalina
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Victor Kusnetsov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| |
Collapse
|
14
|
Mukherjee A, Dwivedi S, Bhagavatula L, Datta S. Integration of light and ABA signaling pathways to combat drought stress in plants. PLANT CELL REPORTS 2023; 42:829-841. [PMID: 36906730 DOI: 10.1007/s00299-023-02999-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
Drought is one of the most critical stresses, which causes an enormous reduction in crop yield. Plants develop various strategies like drought escape, drought avoidance, and drought tolerance to cope with the reduced availability of water during drought. Plants adopt several morphological and biochemical modifications to fine-tune their water-use efficiency to alleviate drought stress. ABA accumulation and signaling plays a crucial role in the response of plants towards drought. Here, we discuss how drought-induced ABA regulates the modifications in stomatal dynamics, root system architecture, and the timing of senescence to counter drought stress. These physiological responses are also regulated by light, indicating the possibility of convergence of light- and drought-induced ABA signaling pathways. In this review, we provide an overview of investigations reporting light-ABA signaling cross talk in Arabidopsis as well as other crop species. We have also tried to describe the potential role of different light components and their respective photoreceptors and downstream factors like HY5, PIFs, BBXs, and COP1 in modulating drought stress responses. Finally, we highlight the possibilities of enhancing the plant drought resilience by fine-tuning light environment or its signaling components in the future.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India.
| |
Collapse
|
15
|
Yin C, Sun A, Zhou Y, Liu K, Wang P, Ye W, Fang Y. The dynamics of Arabidopsis H2A.Z on SMALL AUXIN UP RNAs regulates abscisic acid-auxin signaling crosstalk. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad131. [PMID: 37022978 DOI: 10.1093/jxb/erad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stresses, plant hormone ABA activates stress responses and restricts plant growth. However, the epigenetic regulation of the ABA signaling and ABA-auxin crosstalk are not well known. Here we report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has altered ABA signaling and stress performances. RNA-sequencing data showed that a majority of stress related genes are activated in h2a.z-kd. In addition, we revealed that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), which is involved in ABA-repressed SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhou
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Xu Y, Qian X, Li K, Zhou T, Tian Y, Yuan L, Wang Z, Yang J. Differential roles of abscisic acid in maize roots in the adaptation to soil drought. Food Energy Secur 2023. [DOI: 10.1002/fes3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
17
|
Ortiz-García P, González Ortega-Villaizán A, Onejeme FC, Müller M, Pollmann S. Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. Int J Mol Sci 2023; 24:ijms24043090. [PMID: 36834499 PMCID: PMC9960826 DOI: 10.3390/ijms24043090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Plants are constantly exposed to a variety of different environmental stresses, including drought, salinity, and elevated temperatures. These stress cues are assumed to intensify in the future driven by the global climate change scenario which we are currently experiencing. These stressors have largely detrimental effects on plant growth and development and, therefore, put global food security in jeopardy. For this reason, it is necessary to expand our understanding of the underlying mechanisms by which plants respond to abiotic stresses. Especially boosting our insight into the ways by which plants balance their growth and their defense programs appear to be of paramount importance, as this may lead to novel perspectives that can pave the way to increase agricultural productivity in a sustainable manner. In this review, our aim was to present a detailed overview of different facets of the crosstalk between the antagonistic plant hormones abscisic acid (ABA) and auxin, two phytohormones that are the main drivers of plant stress responses, on the one hand, and plant growth, on the other.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Francis Chukwuma Onejeme
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| |
Collapse
|
18
|
Fernandez M, Malagoli P, Vincenot L, Vernay A, Améglio T, Balandier P. Molinia caerulea alters forest Quercus petraea seedling growth through reduced mycorrhization. AOB PLANTS 2023; 15:plac043. [PMID: 36751368 PMCID: PMC9893876 DOI: 10.1093/aobpla/plac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 06/18/2023]
Abstract
Oak regeneration is jeopardized by purple moor grass, a well-known competitive perennial grass in the temperate forests of Western Europe. Below-ground interactions regarding resource acquisition and interference have been demonstrated and have led to new questions about the negative impact of purple moor grass on ectomycorrhizal colonization. The objective was to examine the effects of moor grass on root system size and ectomycorrhization rate of oak seedlings as well as consequences on nitrogen (N) content in oak and soil. Oak seedlings and moor grass tufts were planted together or separately in pots under semi-controlled conditions (irrigated and natural light) and harvested 1 year after planting. Biomass, N content in shoot and root in oak and moor grass as well as number of lateral roots and ectomycorrhizal rate in oak were measured. Biomass in both oak shoot and root was reduced when planting with moor grass. Concurrently, oak lateral roots number and ectomycorrhization rate decreased, along with a reduction in N content in mixed-grown oak. An interference mechanism of moor grass is affecting oak seedlings performance through reduction in oak lateral roots number and its ectomycorrhization, observed in conjunction with a lower growth and N content in oak. By altering both oak roots and mycorrhizas, moor grass appears to be a species with a high allelopathic potential. More broadly, these results show the complexity of interspecific interactions that involve various ecological processes involving the soil microbial community and need to be explored in situ.
Collapse
Affiliation(s)
- Marine Fernandez
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | | | - Lucie Vincenot
- Normandie Univ, UNIROUEN, Laboratoire ECODIV USC INRAE 1499, 76000 Rouen, France
| | - Antoine Vernay
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Philippe Balandier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
19
|
Root ABA Accumulation Delays Lateral Root Emergence in Osmotically Stressed Barley Plants by Decreasing Root Primordial IAA Accumulation. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased auxin levels in root primordia are important in controlling root branching, while their interaction with abscisic acid (ABA) likely regulates lateral root development in water-deficient plants. The role of ABA accumulation in regulating root branching was investigated using immunolocalization to detect auxin (indoleacetic acid, IAA) and ABA (abscisic acid) in root primordia of the ABA-deficient barley mutant Az34 and its parental genotype (cv. Steptoe) barley plants. Osmotic stress strongly inhibited lateral root branching in Steptoe plants, but hardly affected Az34. Root primordial cells of Steptoe plants had increased immunostaining for ABA but diminished staining for IAA. ABA did not accumulate in root primordia of the Az34, and IAA levels and distribution were unaltered. Treating Az34 plants with exogenous ABA decreased root IAA concentration, while increasing root primordial ABA accumulation and decreasing root primordial IAA concentration. Although ABA treatment of Az34 plants increased the root primordial number, it decreased the number of visible emerged lateral roots. These effects were qualitatively similar to that of osmotic stress on the number of lateral root primordia and emerged lateral roots in Steptoe. Thus ABA accumulation (and its crosstalk with auxin) in root primordia seems important in regulating lateral root branching in response to water stress.
Collapse
|
20
|
Luo X, Xu J, Zheng C, Yang Y, Wang L, Zhang R, Ren X, Wei S, Aziz U, Du J, Liu W, Tan W, Shu K. Abscisic acid inhibits primary root growth by impairing ABI4-mediated cell cycle and auxin biosynthesis. PLANT PHYSIOLOGY 2023; 191:265-279. [PMID: 36047837 PMCID: PMC9806568 DOI: 10.1093/plphys/kiac407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 06/01/2023]
Abstract
Cell cycle progression and the phytohormones auxin and abscisic acid (ABA) play key roles in primary root growth, but how ABA mediates the transcription of cell cycle-related genes and the mechanism of crosstalk between ABA and auxin requires further research. Here, we report that ABA inhibits primary root growth by regulating the ABA INSENSITIVE4 (ABI4)-CYCLIN-DEPENDENT KINASE B2;2 (CDKB2;2)/CYCLIN B1;1 (CYCB1;1) module-mediated cell cycle as well as auxin biosynthesis in Arabidopsis (Arabidopsis thaliana). ABA induced ABI4 transcription in the primary root tip, and the abi4 mutant showed an ABA-insensitive phenotype in primary root growth. Compared with the wild type (WT), the meristem size and cell number of the primary root in abi4 increased in response to ABA. Further, the transcription levels of several cell-cycle positive regulator genes, including CDKB2;2 and CYCB1;1, were upregulated in abi4 primary root tips. Subsequent chromatin immunoprecipitation (ChIP)-seq, ChIP-qPCR, and biochemical analysis revealed that ABI4 repressed the expression of CDKB2;2 and CYCB1;1 by physically interacting with their promoters. Genetic analysis demonstrated that overexpression of CDKB2;2 or CYCB1;1 fully rescued the shorter primary root phenotype of ABI4-overexpression lines, and consistently, abi4/cdkb2;2-cr or abi4/cycb1;1-cr double mutations largely rescued the ABA-insensitive phenotype of abi4 with regard to primary root growth. The expression levels of DR5promoter-GFP and PIN1promoter::PIN1-GFP in abi4 primary root tips were significantly higher than those in WT after ABA treatment, with these changes being consistent with changes in auxin concentration and expression patterns of auxin biosynthesis genes. Taken together, these findings indicated that ABA inhibits primary root growth through ABI4-mediated cell cycle and auxin-related regulatory pathways.
Collapse
Affiliation(s)
- Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jiahui Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chuan Zheng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingzeng Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ranran Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xiaotong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Usman Aziz
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
21
|
Li Y, Jin F, Wu X, Teixeira da Silva JA, Xiong Y, Zhang X, Ma G. Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153866. [PMID: 36399836 DOI: 10.1016/j.jplph.2022.153866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Feng Jin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiuju Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150040, China.
| | | | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
22
|
Gan L, Chen M, Zhang J, Fan J, Yan X. A Novel Beta-Glucosidase Gene for Plant Type Was Identified by Genome-Wide Association Study and Gene Co-Expression Analysis in Widespread Bermudagrass. Int J Mol Sci 2022; 23:ijms231911432. [PMID: 36232734 PMCID: PMC9570203 DOI: 10.3390/ijms231911432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Bermudagrass (Cynodon spp.) is one of the most widely distributed warm-season grasses globally. The growth habits and plant type of bermudagrass are strongly associated with the applied purpose of the landscape, livestock, and eco-remediation. Therefore, persistent efforts are made to investigate the genetic basis of plant type and growth habits of bermudagrass. Here, we dissect the genetic diversity of 91 wild bermudagrass resources by genome-wide association studies (GWAS) combined with weighted gene co-expression analysis (WGCNA). This work is based on the RNA-seq data and the genome of African bermudagrass (Cynodon transvaalensis Burtt Davy). Sixteen reliable single-nucleotide polymorphisms (SNPs) in transcribed regions were identified to be associated with the plant height and IAA content in diverse bermudagrass by GWAS. The integration of the results from WGCNA indicates that beta-glucosidase 31 (CdBGLU31) is a candidate gene underlying a G/A SNP signal. Furthermore, both qRT-PCR and correlation coefficient analyses indicate that CdBGLU31 might play a comprehensive role in plant height and IAA biosynthesis and signal. In addition, we observe lower plant height in Arabidopsis bglu11 mutants (homologs of CdBGLU31). It uncovers the breeding selection history of different plant types from diverse bermudagrass and provides new insights into the molecular function of CdBGLU31 both in plant types and in IAA biosynthetic pathways.
Collapse
Affiliation(s)
- Lu Gan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (L.G.); (X.Y.)
| | - Minghui Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
| | - Jingxue Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (L.G.); (X.Y.)
| |
Collapse
|
23
|
Cha JY, Jeong SY, Ahn G, Shin GI, Ji MG, Lee SC, Khakurel D, Macoy DM, Lee YB, Kim MG, Lee SY, Yun DJ, Kim WY. The thiol-reductase activity of YUCCA6 enhances nickel heavy metal stress tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1007542. [PMID: 36237515 PMCID: PMC9551240 DOI: 10.3389/fpls.2022.1007542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities cause the leaching of heavy metals into groundwater and their accumulation in soil. Excess levels of heavy metals cause toxicity in plants, inducing the production of reactive oxygen species (ROS) and possible death caused by the resulting oxidative stress. Heavy metal stresses repress auxin biosynthesis and transport, inhibiting plant growth. Here, we investigated whether nickel (Ni) heavy metal toxicity is reduced by exogenous auxin application and whether Ni stress tolerance in Arabidopsis thaliana is mediated by the bifunctional enzyme YUCCA6 (YUC6), which functions as an auxin biosynthetic enzyme and a thiol-reductase (TR). We found that an application of up to 1 µM exogenous indole-3-acetic acid (IAA) reduces Ni stress toxicity. yuc6-1D, a dominant mutant of YUC6 with high auxin levels, was more tolerant of Ni stress than wild-type (WT) plants, despite absorbing significantly more Ni. Treatments of WT plants with YUCASIN, a specific inhibitor of YUC-mediated auxin biosynthesis, increased Ni toxicity; however yuc6-1D was not affected by YUCASIN and remained tolerant of Ni stress. This suggests that rather than the elevated IAA levels in yuc6-1D, the TR activity of YUC6 might be critical for Ni stress tolerance. The loss of TR activity in YUC6 caused by the point-mutation of Cys85 abolished the YUC6-mediated Ni stress tolerance. We also found that the Ni stress-induced ROS accumulation was inhibited in yuc6-1D plants, which consequently also showed reduced oxidative damage. An enzymatic assay and transcriptional analysis revealed that the peroxidase activity and transcription of PEROXIREDOXIN Q were enhanced by Ni stress to a greater level in yuc6-1D than in the WT. These findings imply that despite the need to maintain endogenous IAA levels for basal Ni stress tolerance, the TR activity of YUC6, not the elevated IAA levels, plays the predominant role inNi stress tolerance by lowering Ni-induced oxidative stress.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gyeongik Ahn
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Myung Geun Ji
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Cheol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dhruba Khakurel
- Department of Biology, Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Donah Mary Macoy
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Woe-Yeon Kim
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
24
|
Li Y, Wang M, Guo T, Li S, Teng K, Dong D, Liu Z, Jia C, Chao Y, Han L. Overexpression of abscisic acid-insensitive gene ABI4 from Medicago truncatula, which could interact with ABA2, improved plant cold tolerance mediated by ABA signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:982715. [PMID: 36212309 PMCID: PMC9545351 DOI: 10.3389/fpls.2022.982715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
ABI4 is considered an important transcription factor with multiple regulatory functions involved in many biological events. However, its role in abiotic stresses, especially low-temperature-induced stress, is poorly understood. In this study, the MtABI4 gene was derived from M. truncatula, a widely used forage grass. Analysis of subcellular localization indicated that ABI4 was localized in the nucleus. Identification of expression characteristics showed that ABI4 was involved in the regulatory mechanisms of multiple hormones and could be induced by the low temperature. IP-MS assay revealed that MtABI4 protein could interact with xanthoxin dehydrogenase protein (ABA2). The two-hybrid yeast assay and the biomolecular fluorescence complementarity assay further supported this finding. Expression analysis demonstrated that overexpression of MtABI4 induced an increase in ABA2 gene expression both in M. truncatula and Arabidopsis, which in turn increased the ABA level in transgenic plants. In addition, the transgenic lines with the overexpression of MtABI4 exhibited enhanced tolerance to low temperature, including lower malondialdehyde content, electrical conductivity, and cell membrane permeability, compared with the wide-type lines after being cultivated for 5 days in 4°C. Gene expression and enzyme activities of the antioxidant system assay revealed the increased activities of SOD, CAT, MDHAR, and GR, and higher ASA/DHA ratio and GSH/GSSG ratio in transgenic lines. Additionally, overexpression of ABI4 also induced the expression of members of the Inducer of CBF expression genes (ICEs)-C-repeat binding transcription factor genes(CBFs)-Cold regulated genes (CORs) low-temperature response module. In summary, under low-temperature conditions, overexpression of ABI4 could enhance the content of endogenous ABA in plants through interactions with ABA2, which in turn reduced low-temperature damage in plants. This provides a new perspective for further understanding the molecular regulatory mechanism of plant response to low temperature and the improvement of plant cold tolerance.
Collapse
Affiliation(s)
- Yinruizhi Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Mengdi Wang
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Tao Guo
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing, China
| | - Shuwen Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Di Dong
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhuocheng Liu
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Chenyan Jia
- Inner Mongolia Mengcao Ecological Environment (Group) Co., Ltd., Hohhot, China
| | - Yuehui Chao
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
The ABCISIC ACID INSENSITIVE (ABI) 4 Transcription Factor Is Stabilized by Stress, ABA and Phosphorylation. PLANTS 2022; 11:plants11162179. [PMID: 36015481 PMCID: PMC9414092 DOI: 10.3390/plants11162179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
The Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response to abiotic stress and development. Expression of the ABI4 gene is tightly regulated, with low basal expression. Maximal transcript levels occur during the seed maturation and early seed germination stages. Moreover, ABI4 is an unstable, lowly expressed protein. Here, we studied factors affecting the stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV promoter, low steady-state levels of ABI4 were detected in the roots of seedlings grown under optimal conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and ABA. ABI4 is degraded rapidly by the 26S proteasome, and we report on the role of phosphorylation of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for controlling ABI4 reflects its central role in plant development and cellular metabolism.
Collapse
|
26
|
Zhai L, Yang L, Xiao X, Jiang J, Guan Z, Fang W, Chen F, Chen S. PIN and PILS family genes analyses in Chrysanthemum seticuspe reveal their potential functions in flower bud development and drought stress. Int J Biol Macromol 2022; 220:67-78. [PMID: 35970365 DOI: 10.1016/j.ijbiomac.2022.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Auxin affects almost all plant growth and developmental processes. The PIN-FORMED (PIN) and PIN-LIKES (PILS) family genes determine the direction and distribution gradient of auxin flow by polar localization on the cell membrane. However, there are no systematic studies on PIN and PILS family genes in chrysanthemum. Here, 18 PIN and 13 PILS genes were identified in Chrysanthemum seticuspe. The evolutionary relationships, physicochemical properties, conserved motifs, cis-acting elements, chromosome localization, collinearity, and expression characteristics of these genes were analyzed. CsPIN10a, CsPIN10b, and CsPIN10c are unique PIN genes in C. seticuspe. Expression pattern analysis showed that these genes had different tissue specificities, and the expression levels of CsPIN8, CsPINS1, CsPILS6, and CsPILS10 were linearly related to the developmental period of the flower buds. In situ hybridization assay showed that CsPIN1a, CsPIN1b, and CsPILS8 were expressed in floret primordia and petal tips, and CsPIN1a was specifically expressed in the middle of the bract primordia, which might regulate lateral expansion of the bracts. CsPIN and CsPILS family genes are also involved in drought stress responses. This study provides theoretical support for the cultivation of new varieties with attractive flower forms and high drought tolerance.
Collapse
Affiliation(s)
- Lisheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuhui Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Ortiz-García P, Pérez-Alonso MM, González Ortega-Villaizán A, Sánchez-Parra B, Ludwig-Müller J, Wilkinson MD, Pollmann S. The Indole-3-Acetamide-Induced Arabidopsis Transcription Factor MYB74 Decreases Plant Growth and Contributes to the Control of Osmotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:928386. [PMID: 35812959 PMCID: PMC9257185 DOI: 10.3389/fpls.2022.928386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 05/27/2023]
Abstract
The accumulation of the auxin precursor indole-3-acetamide (IAM) in the ami1 mutant has recently been reported to reduce plant growth and to trigger abiotic stress responses in Arabidopsis thaliana. The observed response includes the induction of abscisic acid (ABA) biosynthesis through the promotion of NCED3 expression. The mechanism by which plant growth is limited, however, remained largely unclear. Here, we investigated the transcriptional responses evoked by the exogenous application of IAM using comprehensive RNA-sequencing (RNA-seq) and reverse genetics approaches. The RNA-seq results highlighted the induction of a small number of genes, including the R2R3 MYB transcription factor genes MYB74 and MYB102. The two MYB factors are known to respond to various stress cues and to ABA. Consistent with a role as negative plant growth regulator, conditional MYB74 overexpressor lines showed a considerable growth reduction. RNA-seq analysis of MYB74 mutants indicated an association of MYB74 with responses to osmotic stress, water deprivation, and seed development, which further linked MYB74 with the observed ami1 osmotic stress and seed phenotype. Collectively, our findings point toward a role for MYB74 in plant growth control and in responses to abiotic stress stimuli.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
- Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
- Institute of Biology, University of Graz, Graz, Austria
| | | | - Mark D. Wilkinson
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
28
|
Liu WC, Song RF, Zheng SQ, Li TT, Zhang BL, Gao X, Lu YT. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:973-990. [PMID: 35488429 DOI: 10.1016/j.molp.2022.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/12/2021] [Accepted: 04/25/2022] [Indexed: 05/12/2023]
Abstract
To adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase β subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses. Plants experiencing high salinity or drought display reduced TSB1 expression, resulting in decreased Trp and auxin accumulation and thus reduced growth. In comparison with the wild type, amiR-TSB1 lines and TSB1 mutants exhibited repressed growth under non-stress conditions but had enhanced ABA accumulation and stress tolerance when subjected to salt or drought stress. Furthermore, we found that TSB1 interacts with and inhibits β-glucosidase 1 (BG1), which hydrolyses glucose-conjugated ABA into active ABA. Mutation of BG1 in the amiR-TSB1 lines compromised their increased ABA accumulation and enhanced stress tolerance. Moreover, stress-induced H2O2 disrupted the interaction between TSB1 and BG1 by sulfenylating cysteine-308 of TSB1, relieving the TSB1-mediated inhibition of BG1 activity. Taken together, we revealed that TSB1 serves as a key coordinator of plant growth and stress responses by balancing Trp and ABA homeostasis.
Collapse
Affiliation(s)
- Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Si-Qiu Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Bing-Lei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
29
|
Lv Y, Li Y, Liu X, Xu K. A positive response of ginger root zone and rhizome development to suitable sowing depth. PROTOPLASMA 2022; 259:327-342. [PMID: 34075471 DOI: 10.1007/s00709-021-01647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Sowing depth significantly affects ginger (Zingiber officinale Roscoe) yields, and sowing depth can affect rhizosphere community structure through root exudates. However, the relationship between the reaction process in root zone and ginger rhizome development is unclear. In this study, we investigated the rhizome and root development and rhizosphere environment at different sowing depths (2 cm (SD2), 5 cm (SD5), and 10 cm (SD10)). It was found that SD10 significantly increased ginger yield, which is related to the development of vascular bundles and the expression of aquaporin. PLS-PM analysis found that root length, root absorption capacity, and soil enzymes have the strongest correlation with yield, while root diameter is negatively correlated with yield. Under SD10, the increase of auxin and ethylene content together with the expression of ARF7, LBD16, and PIN1 promoted the development of lateral roots. In addition, SD10 increased the secretion of root organic acids, amino acids, and carbohydrates, which in turn promoted the development of rhizosphere bacteria. The promotion of SD10 on nitrogen cycle and nitrogen fixation ability in turn promoted the development of ginger.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China.
- State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
30
|
Li F, Wu Q, Liao B, Yu K, Huo Y, Meng L, Wang S, Wang B, Du M, Tian X, Li Z. Thidiazuron Promotes Leaf Abscission by Regulating the Crosstalk Complexities between Ethylene, Auxin, and Cytokinin in Cotton. Int J Mol Sci 2022; 23:ijms23052696. [PMID: 35269837 PMCID: PMC8910847 DOI: 10.3390/ijms23052696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Thidiazuron (TDZ) is widely used as a defoliant to induce leaf abscission in cotton. However, the underlying molecular mechanism is still unclear. In this study, RNA-seq and enzyme-linked immunosorbent assays (ELISA) were performed to reveal the dynamic transcriptome profiling and the change of endogenous phytohormones upon TDZ treatment in leaf, petiole, and abscission zone (AZ). We found that TDZ induced the gene expression of ethylene biosynthesis and signal, and promoted ethylene accumulation earlier in leaf than that in AZ. While TDZ down-regulated indole-3-acetic acid (IAA) biosynthesis genes mainly in leaf and IAA signal and transport genes. Furthermore, the IAA content reduced more sharply in the leaf than that in AZ to change the auxin gradient for abscission. TDZ suppressed CTK biosynthesis genes and induced CTK metabolic genes to reduce the IPA accumulation for the reduction of ethylene sensitivity. Furthermore, TDZ regulated the gene expression of abscisic acid (ABA) biosynthesis and signal and induced ABA accumulation between 12-48 h, which could up-regulate ABA response factor genes and inhibit IAA transporter genes. Our data suggest that TDZ orchestrates metabolism and signal of ethylene, auxin, and cytokinin, and also the transport of auxin in leaf, petiole, and AZ, to control leaf abscission.
Collapse
Affiliation(s)
- Fangjun Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Qian Wu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Baopeng Liao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Keke Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Yini Huo
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Lu Meng
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
- High Latitude Crops Institute, Shanxi Agriculture University, Datong 037008, China
| | - Songman Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Baomin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Mingwei Du
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
- Correspondence: ; Tel.: +86-10-6273-3049
| | - Xiaoli Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (F.L.); (B.L.); (K.Y.); (Y.H.); (L.M.); (S.W.); (B.W.); (X.T.); (Z.L.)
| |
Collapse
|
31
|
Yang W, Liu W, Niu K, Ma X, Jia Z, Ma H, Wang Y, Liu M. Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in Poa pratensis. DNA Cell Biol 2022; 41:151-168. [PMID: 34813368 DOI: 10.1089/dna.2021.0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A strong rhizome can enhance the ability of a plant to resist drought, low temperature, and other stresses, as it can help plants rapidly obtain water and nutrients. Poa pratensis var. anceps Gaud. cv. Qinghai (QH) is a variant of P. pratensis that is widely distributed in natural grasslands above 3000 m above sea level on the Qinghai-Tibet Plateau. It forms turf easily and has strong soil-fixing ability due to its well-developed rhizomes. Understanding the molecular mechanism of rhizome development in this species is essential for cultivating new varieties of rhizome-type pasture for ecological protection. To clarify the transcriptional regulatory changes in different parts of the rhizome, we analyzed three different rhizome parts (rhizome buds, rhizome nodes, and rhizome internodes) of QH and weak-rhizome wild P. pratensis material (SN) using RNA sequencing. A total of 3806 genes were specifically expressed in Q_B, 1104 genes were specifically expressed in Q_N, and 1181 genes were specifically expressed in Q_I. Analysis showed that MYB, B3, NAC, BBR-BPC, AP2 MIKC_MADS, BSE1, and C2H2 may be key transcription factors regulating rhizome development. These genes interacted with multiple functional genes related to carbohydrate, secondary metabolism, and signal transduction, thus ensuring the normal development of the rhizomes. In particular, SUS (sucrose synthase) [EC:2.4.1.13] is specifically expressed in Q_I, which may be an inducing factor for the production of new plants from Q_B and Q_N. Additionally, PYL, PP2C, and SNRK2, which are involved in the abscisic acid signaling pathway, were differentially expressed in Q_N. In addition, genes related to protein modification and degradation, such as CIPKs, MAPKs, E2, and E3 ubiquitin ligases, were also involved in rhizome development. This study laid a foundation for further functional genomics studies on rhizome development in P. pratensis.
Collapse
Affiliation(s)
- Wei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Xiang Ma
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Zhifeng Jia
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Minjie Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| |
Collapse
|
32
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
33
|
Rivas MÁ, Friero I, Alarcón MV, Salguero J. Auxin-Cytokinin Balance Shapes Maize Root Architecture by Controlling Primary Root Elongation and Lateral Root Development. FRONTIERS IN PLANT SCIENCE 2022; 13:836592. [PMID: 35548278 PMCID: PMC9081935 DOI: 10.3389/fpls.2022.836592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
The root system is responsible for water and nutrients uptake from the soil, and therefore, its extension is basic for an efficient acquisition. The maize root system is formed by different types of roots, and the lateral root branching substantially increases the surface for nutrient uptake. Therefore, the regulation of lateral root formation is fundamental in the development of root functions. Root architecture is basically controlled by auxin and cytokinins, which antagonize in the formation of lateral roots (LR) along the primary root axis, with auxin, a stimulator, and cytokinins inhibitors of LR development. This interaction has been analyzed in several zones along the primary root where LRs in different developmental stages were located. The root has been divided into several zones, such as meristem, elongation zone, and mature zone, according to the developmental processes occurring in each one. As Arabidopsis root elongated more slowly than maize root, these zones are shorter, and its delimitation is more difficult. However, these zones have previously been delimitated clearly in maize, and therefore, they analyze the effect of exogenous hormones in several LR developmental stages. The inhibitory effect of cytokinin on lateral root formation was observed in already elongated primary root zones in which initial events to form new lateral roots are taking place. Contrarily, auxin increased LR formation in the primary root segments elongated in the presence of the hormone. The inhibitory effect of cytokinin was reversed by auxin in a concentration-dependent manner when both hormones were combined. However, auxin is unable to recover LR development in primary root zones that have been previously elongated only in the presence of cytokinin. This antagonistic auxin-cytokinin effect on LR development depended on the balance between both hormones, which controls the root system architecture and determines the formation of LR during the process of initiation.
Collapse
Affiliation(s)
- M. Ángeles Rivas
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
| | - Iván Friero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
| | - M. Victoria Alarcón
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias “La Orden-Valdesequera”, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Junta de Extremadura, Badajoz, Spain
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Julio Salguero,
| |
Collapse
|
34
|
Abhilasha A, Roy Choudhury S. Molecular and Physiological Perspectives of Abscisic Acid Mediated Drought Adjustment Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122769. [PMID: 34961239 PMCID: PMC8708728 DOI: 10.3390/plants10122769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
Drought is the most prevalent unfavorable condition that impairs plant growth and development by altering morphological, physiological, and biochemical functions, thereby impeding plant biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimulation of several signaling cascades. Predominantly, water deficit signals cause the increase in the level of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable information, and a comprehensive understanding of the resistance mechanisms will help researchers design ways to improve crop performance under water limiting conditions. This review deals with the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to cope with the challenges of drought stress.
Collapse
|
35
|
Brookbank BP, Patel J, Gazzarrini S, Nambara E. Role of Basal ABA in Plant Growth and Development. Genes (Basel) 2021; 12:genes12121936. [PMID: 34946886 PMCID: PMC8700873 DOI: 10.3390/genes12121936] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development.
Collapse
Affiliation(s)
- Benjamin P. Brookbank
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
| | - Jasmin Patel
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Correspondence: (S.G.); (E.N.)
| | - Eiji Nambara
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Correspondence: (S.G.); (E.N.)
| |
Collapse
|
36
|
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:738694. [PMID: 34691115 PMCID: PMC8526897 DOI: 10.3389/fpls.2021.738694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 06/07/2023]
Abstract
Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Ifat Matityahu
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Dafna Tidhar
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
37
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
38
|
Zhu JD, Wang J, Guo XN, Shang BS, Yan HR, Zhang X, Zhao X. A high concentration of abscisic acid inhibits hypocotyl phototropism in Gossypium arboreum by reducing accumulation and asymmetric distribution of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6365-6381. [PMID: 34145440 DOI: 10.1093/jxb/erab298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Hypocotyl phototropism is mediated by the phototropins and plays a critical role in seedling morphogenesis by optimizing growth orientation. However, the mechanisms by which phototropism influences morphogenesis require additional study, especially for polyploid crops such as cotton. Here, we found that hypocotyl phototropism was weaker in Gossypium arboreum than in G. raimondii (two diploid cotton species), and LC-MS analysis indicated that G. arboreum hypocotyls had a higher content of abscisic acid (ABA) and a lower content of indole-3-acetic acid (IAA) and bioactive gibberellins (GAs). Consistently, the expression of ABA2, AAO3, and GA2OX1 was higher in G. arboreum than in G. raimondii, and that of GA3OX was lower; these changes promoted ABA synthesis and the transformation of active GA to inactive GA. Higher concentrations of ABA inhibited the asymmetric distribution of IAA across the hypocotyl and blocked the phototropic curvature of G. raimondii. Application of IAA or GA3 to the shaded and illuminated sides of the hypocotyl enhanced and inhibited phototropic curvature, respectively, in G. arboreum. The application of IAA, but not GA, to one side of the hypocotyl caused hypocotyl curvature in the dark. These results indicate that the asymmetric distribution of IAA promotes phototropic growth, and the weakened phototropic curvature of G. arboreum may be attributed to its higher ABA concentrations that inhibit the action of auxin, which is regulated by GA signaling.
Collapse
Affiliation(s)
- Jin-Dong Zhu
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jing Wang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xi-Ning Guo
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bao-Shuan Shang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hong-Ru Yan
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiao Zhang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
39
|
Chen B, Fiers M, Dekkers BJW, Maas L, van Esse GW, Angenent GC, Zhao Y, Boutilier K. ABA signalling promotes cell totipotency in the shoot apex of germinating embryos. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6418-6436. [PMID: 34175924 PMCID: PMC8483786 DOI: 10.1093/jxb/erab306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Somatic embryogenesis (SE) is a type of induced cell totipotency where embryos develop from vegetative tissues of the plant instead of from gamete fusion after fertilization. SE can be induced in vitro by exposing explants to growth regulators, such as the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The plant hormone abscisic acid (ABA) has been proposed to be a downstream signalling component at the intersection between 2,4-D- and stress-induced SE, but it is not known how these pathways interact to induce cell totipotency. Here we show that 2,4-D-induced SE from the shoot apex of germinating Arabidopsis thaliana seeds is characterized by transcriptional maintenance of an ABA-dependent seed maturation pathway. Molecular-genetic analysis of Arabidopsis mutants revealed a role for ABA in promoting SE at three different levels: ABA biosynthesis, ABA receptor complex signalling, and ABA-mediated transcription, with essential roles for the ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI4 transcription factors. Our data suggest that the ability of mature Arabidopsis embryos to maintain the ABA seed maturation environment is an important first step in establishing competence for auxin-induced cell totipotency. This finding provides further support for the role of ABA in directing processes other than abiotic stress response.
Collapse
Affiliation(s)
- Baojian Chen
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Bas J W Dekkers
- Wageningen Seed Lab, Laboratory for Plant Physiology, Wageningen University and Research Centre, AA, Netherlands
| | - Lena Maas
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - G Wilma van Esse
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Gerco C Angenent
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Correspondence:
| |
Collapse
|
40
|
Hydrogen Sulfide Enhances Plant Tolerance to Waterlogging Stress. PLANTS 2021; 10:plants10091928. [PMID: 34579462 PMCID: PMC8468677 DOI: 10.3390/plants10091928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) is considered the third gas signal molecule in recent years. A large number of studies have shown that H2S not only played an important role in animals but also participated in the regulation of plant growth and development and responses to various environmental stresses. Waterlogging, as a kind of abiotic stress, poses a serious threat to land-based waterlogging-sensitive plants, and which H2S plays an indispensable role in response to. In this review, we summarized that H2S improves resistance to waterlogging stress by affecting lateral root development, photosynthetic efficiency, and cell fates. Here, we reviewed the roles of H2S in plant resistance to waterlogging stress, focusing on the mechanism of its promotion to gained hypoxia tolerance. Finally, we raised relevant issues that needed to be addressed.
Collapse
|
41
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Mohareb F, Estelles-Lopez L, Kevei Z, Ferrández-Ayela A, Pérez-Pérez JM, Gifford ML, Pérez-Alfocea F. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. PLANT, CELL & ENVIRONMENT 2021; 44:2966-2986. [PMID: 34053093 DOI: 10.1111/pce.14121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.
Collapse
Affiliation(s)
| | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | | |
Collapse
|
42
|
Zhang G, Yang J, Zhao X, Li Q, Wu Y, Li F, Wang Y, Hao Q, Wang W. Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110913. [PMID: 34134840 DOI: 10.1016/j.plantsci.2021.110913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Abscisic acid (ABA) is an important regulator of plant growth, development, and biotic and abiotic stress responses. Ubiquitination plays important roles in regulating ABA signaling. E3 ligase, a key member in ubiquitination, actively participates in the regulation of biosynthesis, de-repression, and activation of ABA response and degradation of signaling components. In this study, we found that that overexpression of wheat E3 ligase TaPUB1 decreased the sensitivity of wheat seedlings to ABA, whereas TaPUB1-RNA interference (TaPUB1-RNAi) lines increased wheat sensitivity to ABA during germination, root growth, and stomatal opening. TaPUB1 influenced the expression of several ABA-responsive genes, and also interacted with TaPYL4 and TaABI5, which are involved in ABA signal transduction, and promoted their degradation. Additionally, we observed that TaPUB1-OE lines resulted in lower single-split grain numbers, larger seed size, and higher thousand kernel weight, when compared with the WT lines. Contrasting results were obtained for TaPUB1-RNAi lines. It suggests that TaPUB1 acts as a negative regulator in the ABA signaling pathway by interacting with TaPYL4 and TaABI5, subsequently affecting seed development in wheat. In addition, the enhanced abiotic tolerance of overexpression lines due to enhanced photosynthesis and root development may be related to the degradation of TaABI5 by TaPUB1.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, PR China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Fangyuan Li
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, PR China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
43
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
44
|
Zhang A, Yang X, Lu J, Song F, Sun J, Wang C, Lian J, Zhao L, Zhao B. OsIAA20, an Aux/IAA protein, mediates abiotic stress tolerance in rice through an ABA pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110903. [PMID: 34034863 DOI: 10.1016/j.plantsci.2021.110903] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 05/04/2023]
Abstract
In plants, auxin and ABA play significant roles in conferring tolerance to environmental abiotic stresses. Earlier studies have been shown that some Aux/IAA genes, with important signaling factors in the auxin pathway, were induced in response to drought and other abiotic stresses. However, the mechanistic links between Aux/IAA expression and general drought response remain largely unknown. In this study, OsIAA20, a rice Aux/IAA protein, shown with important roles in abiotic stress. Phenotypic analyses revealed that OsIAA20 RNAi transgenic rice reduced drought and salt tolerance; whereas, OsIAA20 overexpression plants displayed the opposite phenotype. Physiological analyses of OsIAA20 RNAi rice grown under drought or salt stress showed that proline and chlorophyll content significantly decreased, while malondialdehyde content and the ratio of Na+/ K+ significantly increased. In addition, OsIAA20down-regulation reduced stomatal closure and increased the rate of water loss, while transgenic plants overexpressing OsIAA20 exhibited the opposite physiological responses. Furthermore, an ABA-responsive gene, OsRab21, was down-regulated in OsIAA20 RNAi rice lines and upregulated in OsIAA20 overexpression plants. Those results means OsIAA20 played an important role in plant drought and salt stress responses, by an ABA dependent mechanism, and it will be a candidate target gene used to breed abiotic stress tolerance.
Collapse
Affiliation(s)
- Aiyuan Zhang
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Xu Yang
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China; Boustead College, Tianjin University of Commerce, Jinjing Road 28, 300384, Tianjin, China
| | - Jia Lu
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Fangyuan Song
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Jinghuan Sun
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Cong Wang
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Juan Lian
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Lili Zhao
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China
| | - Baocun Zhao
- College of Life Science, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang 050024, Hebei, China.
| |
Collapse
|
45
|
Li Z, Wang G, Liu X, Wang Z, Zhang M, Zhang J. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics 2021; 22:456. [PMID: 34139993 PMCID: PMC8212459 DOI: 10.1186/s12864-021-07799-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background The dehydration-responsive element-binding proteins (DREBs) are important transcription factors that interact with a DRE/CRT (C-repeat) sequence and involve in response to multiple abiotic stresses in plants. Modern sugarcane are hybrids from the cross between Saccharum spontaneum and Saccharum officinarum, and the high sugar content is considered to the attribution of S. officinaurm, while the stress tolerance is attributed to S. spontaneum. To understand the molecular and evolutionary characterization and gene functions of the DREBs in sugarcane, based on the recent availability of the whole genome information, the present study performed a genome-wide in silico analysis of DREB genes and transcriptome analysis in the polyploidy S. spontaneum. Results Twelve DREB1 genes and six DREB2 genes were identified in S. spontaneum genome and all proteins contained a conserved AP2/ERF domain. Eleven SsDREB1 allele genes were assumed to be originated from tandem duplications, and two of them may be derived after the split of S. spontaneum and the proximal diploid species sorghum, suggesting tandem duplication contributed to the expansion of DREB1-type genes in sugarcane. Phylogenetic analysis revealed that one DREB2 gene was lost during the evolution of sugarcane. Expression profiling showed different SsDREB genes with variable expression levels in the different tissues, indicating seven SsDREB genes were likely involved in the development and photosynthesis of S. spontaneum. Furthermore, SsDREB1F, SsDREB1L, SsDREB2D, and SsDREB2F were up-regulated under drought and cold condition, suggesting that these four genes may be involved in both dehydration and cold response in sugarcane. Conclusions These findings demonstrated the important role of DREBs not only in the stress response, but also in the development and photosynthesis of S. spontaneum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07799-5.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224051, China
| | - Xihui Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
46
|
TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2102544118. [PMID: 34099554 DOI: 10.1073/pnas.2102544118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differential concentrations of phytohormone trigger distinct outputs, which provides a mechanism for the plasticity of plant development and an adaptation strategy among plants to changing environments. However, the underlying mechanisms of the differential responses remain unclear. Here we report that a high concentration of auxin, distinct from the effect of low auxin concentration, enhances abscisic acid (ABA) responses in Arabidopsis thaliana, which partially relies on TRANS-MEMBERANE KINASE 1 (TMK1), a key regulator in auxin signaling. We show that high auxin and TMK1 play essential and positive roles in ABA signaling through regulating ABA INSENSITIVE 1 and 2 (ABI1/2), two negative regulators of the ABA pathway. TMK1 inhibits the phosphatase activity of ABI2 by direct phosphorylation of threonine 321 (T321), a conserved phosphorylation site in ABI2 proteins, whose phosphorylation status is important for both auxin and ABA responses. This TMK1-dependent auxin signaling in the regulation of ABA responses provides a possible mechanism underlying the high auxin responses in plants and an alternative mechanism involved in the coordination between auxin and ABA signaling.
Collapse
|
47
|
Shao A, Wang W, Fan S, Xu X, Yin Y, Erick A, Li X, Wang G, Wang H, Fu J. Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC PLANT BIOLOGY 2021; 21:175. [PMID: 33838660 PMCID: PMC8035780 DOI: 10.1186/s12870-021-02939-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/25/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Despite its good salt-tolerance level, key genes and pathways involved with temporal salt response of common bermudagrass (Cynodon dactylon (L.) Pers.) have not been explored. Therefore, in this study, to understand the underlying regulatory mechanism following the different period of salt exposure, a comprehensive transcriptome analysis of the bermudagrass roots was conducted. RESULTS The transcripts regulated after 1 h, 6 h, or 24 h of hydroponic exposure to 200 mM NaCl in the roots of bermudagrass were investigated. Dataset series analysis revealed 16 distinct temporal salt-responsive expression profiles. Enrichment analysis identified potentially important salt responsive genes belonging to specific categories, such as hormonal metabolism, secondary metabolism, misc., cell wall, transcription factors and genes encoded a series of transporters. Weighted gene co-expression network analysis (WGCNA) revealed that lavenderblush2 and brown4 modules were significantly positively correlated with the proline content and peroxidase activity and hub genes within these two modules were further determined. Besides, after 1 h of salt treatment, genes belonging to categories such as signalling receptor kinase, transcription factors, tetrapyrrole synthesis and lipid metabolism were immediately and exclusively up-enriched compared to the subsequent time points, which indicated fast-acting and immediate physiological responses. Genes involved in secondary metabolite biosynthesis such as simple phenols, glucosinolates, isoflavones and tocopherol biosynthesis were exclusively up-regulated after 24 h of salt treatment, suggesting a slightly slower reaction of metabolic adjustment. CONCLUSION Here, we revealed salt-responsive genes belonging to categories that were commonly or differentially expressed in short-term salt stress, suggesting possible adaptive salt response mechanisms in roots. Also, the distinctive salt-response pathways and potential salt-tolerant hub genes investigated can provide useful future references to explore the molecular mechanisms of bermudagrass.
Collapse
Affiliation(s)
- An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Amombo Erick
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Hongli Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
48
|
Eisner N, Maymon T, Sanchez EC, Bar-Zvi D, Brodsky S, Finkelstein R, Bar-Zvi D. Phosphorylation of Serine 114 of the transcription factor ABSCISIC ACID INSENSITIVE 4 is essential for activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110847. [PMID: 33691973 DOI: 10.1016/j.plantsci.2021.110847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ABA-INSENSITIVE(ABI)4 has diverse roles in regulating plant growth, including inhibiting germination and reserve mobilization in response to ABA and high salinity, inhibiting seedling growth in response to high sugars, inhibiting lateral root growth, and repressing light-induced gene expression. ABI4 activity is regulated at multiple levels, including gene expression, protein stability, and activation by phosphorylation. Although ABI4 can be phosphorylated at multiple residues by MAPKs, we found that S114 is the preferred site of MPK3. To examine the possible biological role of S114 phosphorylation, we transformed abi4-1 mutant plants with ABI4pro::ABI4 constructs encoding wild type (114S), phosphorylation-null (S114A) or phosphomimetic (S114E) forms of ABI4. Phosphorylation of S114 is necessary for the response to ABA, glucose, salt stress, and lateral root development, where the abi4 phenotype could be complemented by expressing ABI4 (114S) or ABI4 (S114E) but not ABI4 (S114A). Comparison of root transcriptomes in ABA-treated roots of abi4-1 mutant plants transformed with constructs encoding the different phosphorylation-forms of S114 of ABI4 revealed that 85 % of the ABI4-regulated genes whose expression pattern could be restored by expressing ABI4 (114S) are down-regulated by ABI4. Phosphorylation of S114 was required for regulation of 35 % of repressed genes, but only 17 % of induced genes. The genes whose repression requires the phosphorylation of S114 are mainly involved in embryo and seedling development, growth and differentiation, and regulation of gene expression.
Collapse
Affiliation(s)
- Nadav Eisner
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Tzofia Maymon
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Ester Cancho Sanchez
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel
| | - Dana Bar-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dudy Bar-Zvi
- Department of Life Sciences and The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel.
| |
Collapse
|
49
|
Dong T, Yin X, Wang H, Lu P, Liu X, Gong C, Wu Y. ABA-INDUCED expression 1 is involved in ABA-inhibited primary root elongation via modulating ROS homeostasis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110821. [PMID: 33568311 DOI: 10.1016/j.plantsci.2021.110821] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/24/2020] [Accepted: 01/01/2021] [Indexed: 05/12/2023]
Abstract
To endure environmental stresses, plants have evolved complex regulatory mechanisms involving phytohormones, including abscisic acid (ABA). The function of the plant-specific AT-rich sequence zinc-binding protein (PLATZ) family has not yet been extensively characterized in Arabidopsis (Arabidopsis thaliana). In this report, we evaluated the function of a putative member of the PLATZ family in Arabidopsis, ABA-INDUCED expression 1 (AIN1). We determined that AIN1 expression was induced by ABA and abiotic stresses. AIN1 overexpression (OE) enhanced ABA sensitivity and inhibited primary root elongation, but reduced expression of AIN1 in RNA interference (RNAi) plants produced roots less sensitive to ABA. When treated with ABA, we observed a reduction of meristem size and over-accumulation of reactive oxygen species (ROS) at the root tips of OE lines, demonstrating the importance of AIN1 in plant responses to ABA. A set of ROS scavenger genes showed reduced expression in the OE lines but improved in the RNAi plants relative to Col-0. In addition, we report that exogenous application of reduced glutathione (GSH) rescued the root growth defects seen in AIN1 overexpression lines treated with ABA. In summary, our results suggest that Arabidopsis AIN1 is involved in ABA-mediated inhibition of root elongation by modulating ROS homeostasis.
Collapse
Affiliation(s)
- Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengtao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Piaoyin Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunyan Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
50
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|