1
|
Sieng CKT, Yi CJ, Yasui T, Yamashita K, Sanda R, Sakamoto K, Kondo Y, Suzuki K, Idogawa S, Seikoba Y, Numano R, Koida K, Kawano T. Magnetic assembly of microwires on a flexible substrate for minimally invasive electrophysiological recording. Biosens Bioelectron 2025; 271:116927. [PMID: 39642530 DOI: 10.1016/j.bios.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate. Two-channel 15-μm-diameter and 400-μm-length nickel-microwire electrodes on a 5-μm-thick flexible parylene film are designed and fabricated. Impedance characteristics of these electrodes are <500 kΩ at 1 kHz, with output/input signal amplitude ratios of over 90%. In vivo neural recording in mice demonstrates that both local field potentials and action potentials are detected through each wire electrode, confirming the minimal invasiveness during the electrode penetration and through immunohistochemical tissue analysis.
Collapse
Affiliation(s)
- Claire King Teck Sieng
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Chan Jun Yi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Taiki Yasui
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Koji Yamashita
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Rioki Sanda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kensei Sakamoto
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Yuki Kondo
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Ko Suzuki
- TechnoPro, Inc., TechnoPro R&D, Company, Roppongi Hills Mori Tower 35F, 6-10-1 Roppongi, Minato-ku, Tokyo, 106-6135, Japan
| | - Shinnosuke Idogawa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; National Institute of Technology, Kushiro College, Otanoshike-Nishi 2-32-1, Kushiro-Shi, Hokkaido, 084-0916, Japan
| | - Yu Seikoba
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Rika Numano
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kowa Koida
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Takeshi Kawano
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan.
| |
Collapse
|
2
|
Yi D, Yao Y, Wang Y, Chen L. Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-Of-the-Art Review. JOURNAL OF MICRO- AND NANO-MANUFACTURING 2022; 10:041001. [PMID: 37860671 PMCID: PMC10583290 DOI: 10.1115/1.4063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Indexed: 10/21/2023]
Abstract
Electrophysiological recording and stimulation of neuron activities are important for us to understand the function and dysfunction of the nervous system. To record/stimulate neuron activities as voltage fluctuation extracellularly, microelectrode array (MEA) implants are a promising tool to provide high temporal and spatial resolution for neuroscience studies and medical treatments. The design configuration and recording capabilities of the MEAs have evolved dramatically since their invention and manufacturing process development has been a key driving force for such advancement. Over the past decade, since the White House Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative launched in 2013, advanced manufacturing processes have enabled advanced MEAs with increased channel count and density, access to more brain areas, more reliable chronic performance, as well as minimal invasiveness and tissue reaction. In this state-of-the-art review paper, three major types of electrophysiological recording MEAs widely used nowadays, namely, microwire-based, silicon-based, and flexible MEAs are introduced and discussed. Conventional design and manufacturing processes and materials used for each type are elaborated, followed by a review of further development and recent advances in manufacturing technologies and the enabling new designs and capabilities. The review concludes with a discussion on potential future directions of manufacturing process development to enable the long-term goal of large-scale high-density brain-wide chronic recordings in freely moving animals.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, 416 South 6th Street, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, E3437C Thomas & Nell Lafferre Hall, 416 South 6th Street, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854
| |
Collapse
|
3
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
4
|
Li X, Liu C, Wang R. Light Modulation of Brain and Development of Relevant Equipment. J Alzheimers Dis 2021; 74:29-41. [PMID: 32039856 DOI: 10.3233/jad-191240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Light modulation plays an important role in understanding the pathology of brain disorders and improving brain function. Optogenetic techniques can activate or silence targeted neurons with high temporal and spatial accuracy and provide precise control, and have recently become a method for quick manipulation of genetically identified types of neurons. Photobiomodulation (PBM) is light therapy that utilizes non-ionizing light sources, including lasers, light emitting diodes, or broadband light. It provides a safe means of modulating brain activity without any irreversible damage and has established optimal treatment parameters in clinical practice. This manuscript reviews 1) how optogenetic approaches have been used to dissect neural circuits in animal models of Alzheimer's disease, Parkinson's disease, and depression, and 2) how low level transcranial lasers and LED stimulation in humans improves brain activity patterns in these diseases. State-of-the-art brain machine interfaces that can record neural activity and stimulate neurons with light have good prospects in the future.
Collapse
Affiliation(s)
- Xiaoran Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
5
|
Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. MICROSYSTEMS & NANOENGINEERING 2019; 5:41. [PMID: 31636931 PMCID: PMC6799813 DOI: 10.1038/s41378-019-0077-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 05/22/2023]
Abstract
Microneedle technologies have the potential for expanding the capabilities of wearable health monitoring from physiology to biochemistry. This paper presents the fabrication of silicon hollow microneedles by a deep-reactive ion etching (DRIE) process, with the aim of exploring the feasibility of microneedle-based in-vivo monitoring of biomarkers in skin fluid. Such devices shall have the ability to allow the sensing elements to be integrated either within the needle borehole or on the backside of the device, relying on capillary filling of the borehole with dermal interstitial fluid (ISF) for transporting clinically relevant biomarkers to the sensor sites. The modified DRIE process was utilized for the anisotropic etching of circular holes with diameters as small as 30 μm to a depth of >300 μm by enhancing ion bombardment to efficiently remove the fluorocarbon passivation polymer. Afterward, isotropic wet and/or dry etching was utilized to sharpen the needle due to faster etching at the pillar top, achieving tip radii as small as 5 μm. Such sharp microneedles have been demonstrated to be sufficiently robust to penetrate porcine skin without needing any aids such as an impact-insertion applicator, with the needles remaining mechanically intact after repetitive penetrations. The capillary filling of DRIE-etched through-wafer holes with water has also been demonstrated, showing the feasibility of use to transport the analyte to the target sites.
Collapse
Affiliation(s)
- Yan Li
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Hang Zhang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Ruifeng Yang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Yohan Laffitte
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Ulises Schmill
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Wenhan Hu
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Moufeed Kaddoura
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | | | - Bo Cui
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
6
|
Sharma M, Gardner AT, Strathman HJ, Warren DJ, Silver J, Walker RM. Acquisition of Neural Action Potentials Using Rapid Multiplexing Directly at the Electrodes. MICROMACHINES 2018; 9:E477. [PMID: 30424410 PMCID: PMC6215140 DOI: 10.3390/mi9100477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 02/02/2023]
Abstract
Neural recording systems that interface with implanted microelectrodes are used extensively in experimental neuroscience and neural engineering research. Interface electronics that are needed to amplify, filter, and digitize signals from multichannel electrode arrays are a critical bottleneck to scaling such systems. This paper presents the design and testing of an electronic architecture for intracortical neural recording that drastically reduces the size per channel by rapidly multiplexing many electrodes to a single circuit. The architecture utilizes mixed-signal feedback to cancel electrode offsets, windowed integration sampling to reduce aliased high-frequency noise, and a successive approximation analog-to-digital converter with small capacitance and asynchronous control. Results are presented from a 180 nm CMOS integrated circuit prototype verified using in vivo experiments with a tungsten microwire array implanted in rodent cortex. The integrated circuit prototype achieves <0.004 mm² area per channel, 7 µW power dissipation per channel, 5.6 µVrms input referred noise, 50 dB common mode rejection ratio, and generates 9-bit samples at 30 kHz per channel by multiplexing at 600 kHz. General considerations are discussed for rapid time domain multiplexing of high-impedance microelectrodes. Overall, this work describes a promising path forward for scaling neural recording systems to numbers of electrodes that are orders of magnitude larger.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Avery Tye Gardner
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Hunter J Strathman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jason Silver
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Ross M Walker
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Qiang Y, Artoni P, Seo KJ, Culaclii S, Hogan V, Zhao X, Zhong Y, Han X, Wang PM, Lo YK, Li Y, Patel HA, Huang Y, Sambangi A, Chu JSV, Liu W, Fagiolini M, Fang H. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. SCIENCE ADVANCES 2018; 4:eaat0626. [PMID: 30191176 PMCID: PMC6124910 DOI: 10.1126/sciadv.aat0626] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/24/2018] [Indexed: 05/06/2023]
Abstract
Transparent microelectrode arrays have emerged as increasingly important tools for neuroscience by allowing simultaneous coupling of big and time-resolved electrophysiology data with optically measured, spatially and type resolved single neuron activity. Scaling down transparent electrodes to the length scale of a single neuron is challenging since conventional transparent conductors are limited by their capacitive electrode/electrolyte interface. In this study, we establish transparent microelectrode arrays with high performance, great biocompatibility, and comprehensive in vivo validations from a recently developed, bilayer-nanomesh material composite, where a metal layer and a low-impedance faradaic interfacial layer are stacked reliably together in a same transparent nanomesh pattern. Specifically, flexible arrays from 32 bilayer-nanomesh microelectrodes demonstrated near-unity yield with high uniformity, excellent biocompatibility, and great compatibility with state-of-the-art wireless recording and real-time artifact rejection system. The electrodes are highly scalable, with 130 kilohms at 1 kHz at 20 μm in diameter, comparable to the performance of microelectrodes in nontransparent Michigan arrays. The highly transparent, bilayer-nanomesh microelectrode arrays allowed in vivo two-photon imaging of single neurons in layer 2/3 of the visual cortex of awake mice, along with high-fidelity, simultaneous electrical recordings of visual-evoked activity, both in the multi-unit activity band and at lower frequencies by measuring the visual-evoked potential in the time domain. Together, these advances reveal the great potential of transparent arrays from bilayer-nanomesh microelectrodes for a broad range of utility in neuroscience and medical practices.
Collapse
Affiliation(s)
- Yi Qiang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Pietro Artoni
- Center for Life Science, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kyung Jin Seo
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Victoria Hogan
- Center for Life Science, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xuanyi Zhao
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yiding Zhong
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Xun Han
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Po-Min Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi-Kai Lo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yueming Li
- School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Henil A. Patel
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yifu Huang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Abhijeet Sambangi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jung Soo V. Chu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michela Fagiolini
- Center for Life Science, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hui Fang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| |
Collapse
|
8
|
|
9
|
Guvanasen GS, Guo L, Aguilar RJ, Cheek AL, Shafor CS, Rajaraman S, Nichols TR, DeWeerth SP. A Stretchable Microneedle Electrode Array for Stimulating and Measuring Intramuscular Electromyographic Activity. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1440-1452. [DOI: 10.1109/tnsre.2016.2629461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Guo Y, Jiang S, Grena BJB, Kimbrough IF, Thompson EG, Fink Y, Sontheimer H, Yoshinobu T, Jia X. Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces. ACS NANO 2017; 11:6574-6585. [PMID: 28570813 DOI: 10.1021/acsnano.6b07550] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microelectrodes provide a direct pathway to investigate brain activities electrically from the external world, which has advanced our fundamental understanding of brain functions and has been utilized for rehabilitative applications as brain-machine interfaces. However, minimizing the tissue response and prolonging the functional durations of these devices remain challenging. Therefore, the development of next-generation microelectrodes as neural interfaces is actively progressing from traditional inorganic materials toward biocompatible and functional organic materials with a miniature footprint, good flexibility, and reasonable robustness. In this study, we developed a miniaturized all polymer-based neural probe with carbon nanofiber (CNF) composites as recording electrodes via the scalable thermal drawing process. We demonstrated that in situ CNF unidirectional alignment can be achieved during the thermal drawing, which contributes to a drastic improvement of electrical conductivity by 2 orders of magnitude compared to a conventional polymer electrode, while still maintaining the mechanical compliance with brain tissues. The resulting neural probe has a miniature footprint, including a recording site with a reduced size comparable to a single neuron and maintained impedance that was able to capture neural activities. Its stable functionality as a chronic implant has been demonstrated with the long-term reliable electrophysiological recording with single-spike resolution and the minimal tissue response over the extended period of implantation in wild-type mice. Technology developed here can be applied to basic chronic electrophysiological studies as well as clinical implementation for neuro-rehabilitative applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Biomedical Engineering, Tohoku University , Sendai, Miyagi 9808579, Japan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| | - Benjamin J B Grena
- Department of Material Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 24139, United States
| | - Ian F Kimbrough
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 14016, United States
| | - Emily G Thompson
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 14016, United States
| | - Yoel Fink
- Department of Material Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 24139, United States
| | - Harald Sontheimer
- Virginia Tech Carilion Research Institute , Roanoke, Virginia 14016, United States
| | - Tatsuo Yoshinobu
- Department of Biomedical Engineering, Tohoku University , Sendai, Miyagi 9808579, Japan
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24060, United States
| |
Collapse
|
11
|
Obien MEJ, Gong W, Frey U, Bakkum DJ. CMOS-Based High-Density Microelectrode Arrays: Technology and Applications. SERIES IN BIOENGINEERING 2017. [DOI: 10.1007/978-981-10-3957-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Harris KD, Quian Quiroga R, Freeman J, Smith S. Improving data quality in neuronal population recordings. Nat Neurosci 2016; 19:1165-74. [PMID: 27571195 PMCID: PMC5244825 DOI: 10.1038/nn.4365] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022]
Abstract
Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds that complicate the interpretation of such recordings, and could lead to erroneous scientific conclusions. Here we discuss methods for assessing and improving the quality of data from these techniques and outline likely future directions in this field.
Collapse
Affiliation(s)
- Kenneth D. Harris
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- UCL Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | | | - Jeremy Freeman
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn VA 20147, USA
| | - Spencer Smith
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill NC 27599, USA
| |
Collapse
|
13
|
Fiáth R, Beregszászi P, Horváth D, Wittner L, Aarts AAA, Ruther P, Neves HP, Bokor H, Acsády L, Ulbert I. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. J Neurophysiol 2016; 116:2312-2330. [PMID: 27535370 DOI: 10.1152/jn.00318.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/13/2016] [Indexed: 12/12/2022] Open
Abstract
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.
Collapse
Affiliation(s)
- Richárd Fiáth
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Patrícia Beregszászi
- Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary
| | - Domonkos Horváth
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Lucia Wittner
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Hercules P Neves
- Unitec Semicondutores, Ribeirão das Neves, Brazil.,Solid State Electronics, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden; and
| | - Hajnalka Bokor
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Ulbert
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; .,Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary
| |
Collapse
|
14
|
Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell N, Fonstad CG, Boyden ES. Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording. IEEE Trans Biomed Eng 2016; 63:120-130. [PMID: 26699649 DOI: 10.1109/tbme.2015.2406113] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neural recording electrodes are important tools for understanding neural codes and brain dynamics. Neural electrodes that are closely packed, such as in tetrodes, enable spatial oversampling of neural activity, which facilitates data analysis. Here we present the design and implementation of close-packed silicon microelectrodes to enable spatially oversampled recording of neural activity in a scalable fashion. METHODS Our probes are fabricated in a hybrid lithography process, resulting in a dense array of recording sites connected to submicron dimension wiring. RESULTS We demonstrate an implementation of a probe comprising 1000 electrode pads, each 9 × 9 μm, at a pitch of 11 μm. We introduce design automation and packaging methods that allow us to readily create a large variety of different designs. SIGNIFICANCE We perform neural recordings with such probes in the live mammalian brain that illustrate the spatial oversampling potential of closely packed electrode sites.
Collapse
Affiliation(s)
- Jorg Scholvin
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA
| | - Justin P Kinney
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA
| | - Jacob G Bernstein
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | - Edward S Boyden
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
A Low Noise Amplifier for Neural Spike Recording Interfaces. SENSORS 2015; 15:25313-35. [PMID: 26437411 PMCID: PMC4634474 DOI: 10.3390/s151025313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
Abstract
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.
Collapse
|
16
|
Kozai TDY, Catt K, Du Z, Na K, Srivannavit O, Haque RUM, Seymour J, Wise KD, Yoon E, Cui XT. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans Biomed Eng 2015; 63:111-9. [PMID: 26087481 DOI: 10.1109/tbme.2015.2445713] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Subcellular-sized chronically implanted recording electrodes have demonstrated significant improvement in single unit (SU) yield over larger recording probes. Additional work expands on this initial success by combining the subcellular fiber-like lattice structures with the design space versatility of silicon microfabrication to further improve the signal-to-noise ratio, density of electrodes, and stability of recorded units over months to years. However, ultrasmall microelectrodes present very high impedance, which must be lowered for SU recordings. While poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) coating have demonstrated great success in acute to early-chronic studies for lowering the electrode impedance, concern exists over long-term stability. Here, we demonstrate a new blend of PEDOT doped with carboxyl functionalized multiwalled carbon nanotubes (CNTs), which shows dramatic improvement over the traditional PEDOT/PSS formula. METHODS Lattice style subcellular electrode arrays were fabricated using previously established method. PEDOT was polymerized with carboxylic acid functionalized carbon nanotubes onto high-impedance (8.0 ± 0.1 MΩ: M ± S.E.) 250-μm(2) gold recording sites. RESULTS PEDOT/CNT-coated subcellular electrodes demonstrated significant improvement in chronic spike recording stability over four months compared to PEDOT/PSS recording sites. CONCLUSION These results demonstrate great promise for subcellular-sized recording and stimulation electrodes and long-term stability. SIGNIFICANCE This project uses leading-edge biomaterials to develop chronic neural probes that are small (subcellular) with excellent electrical properties for stable long-term recordings. High-density ultrasmall electrodes combined with advanced electrode surface modification are likely to make significant contributions to the development of long-term (permanent), high quality, and selective neural interfaces.
Collapse
|
17
|
Buzsáki G, Stark E, Berényi A, Khodagholy D, Kipke DR, Yoon E, Wise KD. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 2015; 86:92-105. [PMID: 25856489 PMCID: PMC4392339 DOI: 10.1016/j.neuron.2015.01.028] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state of the art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, School of Medicine, New York, NY 10016, USA.
| | - Eran Stark
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Antal Berényi
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; MTA-SZTE "Lendület" Oscillatory Neural Networks Research Group, University of Szeged, Department of Physiology, Szeged H-6720, Hungary
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Daryl R Kipke
- NeuroNexus Technologies, Inc., Ann Arbor, MI 48108, USA
| | - Euisik Yoon
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| | - Kensall D Wise
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| |
Collapse
|
18
|
A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2015; 2015:172396. [PMID: 25977683 PMCID: PMC4419262 DOI: 10.1155/2015/172396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/02/2015] [Indexed: 12/01/2022]
Abstract
The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs.
Collapse
|
19
|
Shulyzki R, Abdelhalim K, Bagheri A, Salam MT, Florez CM, Velazquez JLP, Carlen PL, Genov R. 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:34-49. [PMID: 25486647 DOI: 10.1109/tbcas.2014.2312552] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a 320-channel active probe for high-spatial-resolution neuromonitoring and responsive neurostimulation. The probe comprises an integrated circuit (IC) cell array bonded to the back side of a pitch-matched microelectrode array. The IC enables up to 256-site neural recording and 64-site neural stimulation at the spatial resolution of 400 μ m and 200 μ m, respectively. It is suitable for direct integration with electrode arrays with the shank pitch of integer multiples of 200 μm. In the presented configuration, the IC is bonded with a 8 × 8 400 μ m-pitch Utah electrode array (UEA) and up to additional 192 recording channels are used for peripheral neuromonitoring. The 0.35 μ m CMOS circuit array has a total die size of 3.5 mm × 3.65 mm. Each stimulator channel employs a current memory for simultaneous multi-site neurostimulation, outputs 20 μA-250 μA square or arbitrary waveform current, occupies 0.02 mm (2), and dissipates 2.76 μ W quiescent power. Each fully differential recording channel has two stages of amplification and filtering and an 8-bit single-slope ADC, occupies 0.035 mm (2) , and consumes 51.9 μ W. The neural probe has been experimentally validated in epileptic seizure propagation studies in a mouse hippocampal slice in vitro and in responsive neurostimulation for seizure suppression in an acute epilepsy rat model in vivo .
Collapse
|
20
|
Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U. Revealing neuronal function through microelectrode array recordings. Front Neurosci 2015; 8:423. [PMID: 25610364 PMCID: PMC4285113 DOI: 10.3389/fnins.2014.00423] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 12/26/2022] Open
Abstract
Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.
Collapse
Affiliation(s)
| | - Kosmas Deligkaris
- RIKEN Quantitative Biology Center, RIKEN Kobe, Japan ; Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | | | - Douglas J Bakkum
- Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| | - Urs Frey
- RIKEN Quantitative Biology Center, RIKEN Kobe, Japan ; Graduate School of Frontier Biosciences, Osaka University Osaka, Japan ; Department of Biosystems Science and Engineering, ETH Zurich Basel, Switzerland
| |
Collapse
|
21
|
Ruther P, Paul O. New approaches for CMOS-based devices for large-scale neural recording. Curr Opin Neurobiol 2014; 32:31-7. [PMID: 25463562 DOI: 10.1016/j.conb.2014.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/17/2022]
Abstract
Extracellular, large scale in vivo recording of neural activity is mandatory for elucidating the interaction of neurons within large neural networks at the level of their single unit activity. Technological achievements in MEMS-based multichannel electrode arrays offer electrophysiological recording capabilities that go far beyond those of classical wire electrodes. Despite their impressive channel counts, recording systems with modest interconnection overhead have been demonstrated thanks to the hybrid integration of CMOS circuitry for signal preprocessing and data handling. The number of addressable channels is increased even further by a switch matrix for electrode selection co-integrated along the slender probe shafts. When realized by IC fabrication technologies, these probes offer highest recording site densities along the entire shaft length.
Collapse
Affiliation(s)
- Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Oliver Paul
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
22
|
Grahn PJ, Mallory GW, Berry BM, Hachmann JT, Lobel DA, Lujan JL. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis. Front Neurosci 2014; 8:296. [PMID: 25278830 PMCID: PMC4166363 DOI: 10.3389/fnins.2014.00296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/31/2014] [Indexed: 11/13/2022] Open
Abstract
Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles.
Collapse
Affiliation(s)
- Peter J. Grahn
- Mayo Clinic College of Medicine, Mayo ClinicRochester, MN, USA
| | | | | | - Jan T. Hachmann
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | | | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, USA
| |
Collapse
|
23
|
Lee Y, Jun SB. Strategies for minimizing glial response to chronically-implanted microelectrode arrays for neural interface. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0134-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
|
25
|
Grahn PJ, Mallory GW, Khurram OU, Berry BM, Hachmann JT, Bieber AJ, Bennet KE, Min HK, Chang SY, Lee KH, Lujan JL. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci 2014; 8:169. [PMID: 25009455 PMCID: PMC4070176 DOI: 10.3389/fnins.2014.00169] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Obaid U Khurram
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - B Michael Berry
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Allan J Bieber
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Neurology, Mayo Clinic Rochester, MN, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Division of Engineering, Mayo Clinic Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - J L Lujan
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
26
|
Homer ML, Nurmikko AV, Donoghue JP, Hochberg LR. Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng 2014; 15:383-405. [PMID: 23862678 DOI: 10.1146/annurev-bioeng-071910-124640] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intracortical brain computer interfaces (iBCIs) are being developed to enable people to drive an output device, such as a computer cursor, directly from their neural activity. One goal of the technology is to help people with severe paralysis or limb loss. Key elements of an iBCI are the implanted sensor that records the neural signals and the software that decodes the user's intended movement from those signals. Here, we focus on recent advances in these two areas, placing special attention on contributions that are or may soon be adopted by the iBCI research community. We discuss how these innovations increase the technology's capability, accuracy, and longevity, all important steps that are expanding the range of possible future clinical applications.
Collapse
Affiliation(s)
- Mark L Homer
- Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
27
|
Low-Gain, Low-Noise Integrated Neuronal Amplifier for Implantable Artifact-Reduction Recording System. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2013. [DOI: 10.3390/jlpea3030279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Hess AE, Potter KA, Tyler DJ, Zorman CA, Capadona JR. Environmentally-controlled microtensile testing of mechanically-adaptive polymer nanocomposites for ex vivo characterization. J Vis Exp 2013:e50078. [PMID: 23995288 PMCID: PMC3855926 DOI: 10.3791/50078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Implantable microdevices are gaining significant attention for several biomedical applications. Such devices have been made from a range of materials, each offering its own advantages and shortcomings. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control. To this end, a custom microtensile tester was designed to accommodate microscale samples with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation. The overall goal of this method is to quantitatively assess the in vivo mechanical properties, specifically the Young's modulus, of stimuli-responsive, mechanically-adaptive polymer-based materials. This is accomplished by first establishing the environmental conditions that will minimize a change in sample mechanical properties after explantation without contributing to a reduction in stiffness independent of that resulting from implantation. Samples are then prepared for implantation, handling, and testing (Figure 1A). Each sample is implanted into the cerebral cortex of rats, which is represented here as an explanted rat brain, for a specified duration (Figure 1B). At this point, the sample is explanted and immediately loaded into the microtensile tester, and then subjected to tensile testing (Figure 1C). Subsequent data analysis provides insight into the mechanical behavior of these innovative materials in the environment of the cerebral cortex.
Collapse
Affiliation(s)
- Allison E Hess
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, USA.
| | | | | | | | | |
Collapse
|
29
|
Rieger R, Taylor J. A switched-capacitor front-end for velocity-selective ENG recording. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:480-488. [PMID: 23893207 DOI: 10.1109/tbcas.2012.2226719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multi-electrode cuffs (MECs) have been proposed as a means for extracting additional information about the velocity and direction of nerve signals from multi-electrode recordings. This paper discusses certain aspects of the implementation of a system for velocity selective recording (VSR) where multiple neural signals are matched and summed to identify excited axon populations in terms of velocity. The approach outlined in the paper involves the replacement of the digital signal processing stages of a standard delay-matched VSR system with analogue switched-capacitor (SC) delay lines which promises significant savings in both size and power consumption. The system specifications are derived and two circuits, each composed of low-noise preamplifiers connecting to a 2nd rank SC gain stage, are evaluated. One of the systems provides a single-ended SC stage whereas the other system is fully differential. Both approaches are shown to provide the low-noise, low-power operation, practically identical channel gains and sample delay range required for VSR. Measured results obtained from chips fabricated in 0.8 μ m CMOS technology are reported.
Collapse
Affiliation(s)
- Robert Rieger
- Electrical Engineering Department, National Sun Yat-Sen University, 804 Kaohsiung, Taiwan.
| | | |
Collapse
|
30
|
Chou N, Yoo S, Kim S. A Largely Deformable Surface Type Neural Electrode Array Based on PDMS. IEEE Trans Neural Syst Rehabil Eng 2013; 21:544-53. [DOI: 10.1109/tnsre.2012.2210560] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
An implantable neural sensing microsystem with fiber-optic data transmission and power delivery. SENSORS 2013; 13:6014-31. [PMID: 23666130 PMCID: PMC3690043 DOI: 10.3390/s130506014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022]
Abstract
We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device.
Collapse
|
32
|
Chang CW, Chiou JC. A wireless and batteryless microsystem with implantable grid electrode/3-dimensional probe array for ECoG and extracellular neural recording in rats. SENSORS (BASEL, SWITZERLAND) 2013; 13:4624-39. [PMID: 23567528 PMCID: PMC3673103 DOI: 10.3390/s130404624] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
This paper presents the design and implementation of an integrated wireless microsystem platform that provides the possibility to support versatile implantable neural sensing devices in free laboratory rats. Inductive coupled coils with low dropout regulator design allows true long-term recording without limitation of battery capacity. A 16-channel analog front end chip located on the headstage is designed for high channel account neural signal conditioning with low current consumption and noise. Two types of implantable electrodes including grid electrode and 3D probe array are also presented for brain surface recording and 3D biopotential acquisition in the implanted target volume of tissue. The overall system consumes less than 20 mA with small form factor, 3.9 × 3.9 cm2 mainboard and 1.8 × 3.4 cm2 headstage, is packaged into a backpack for rats. Practical in vivo recordings including auditory response, brain resection tissue and PZT-induced seizures recording demonstrate the correct function of the proposed microsystem. Presented achievements addressed the aforementioned properties by combining MEMS neural sensors, low-power circuit designs and commercial chips into system-level integration.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; E-Mail:
| | - Jin-Chern Chiou
- Department of Electrical and Computer Engineering, National Chiao-Tung University, 1001 Ta Hseuh Rd., Hsinchu City 30010, Taiwan
- Department of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung City 40402, Taiwan
| |
Collapse
|
33
|
Guvanasen GS, Tuthill C, Nichols TR, DeWeerth SP. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:1-10. [PMID: 23853274 DOI: 10.1109/tbcas.2012.2192932] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Numerous applications in neuroscience research and neural prosthetics, such as electrocorticogram (ECoG) recording and retinal prosthesis, involve electrical interactions with soft excitable tissues using a surface recording and/or stimulation approach. These applications require an interface that is capable of setting up high-throughput communications between the electrical circuit and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as a substrate material for such neural interfaces. This paper describes an integrated technology for fabrication of PDMS-based stretchable microelectrode arrays (MEAs). Specifically, as an integral part of the fabrication process, a stretchable MEA is directly fabricated with a rigid substrate, such as a thin printed circuit board (PCB), through an innovative bonding technology-via-bonding-for integrated packaging. This integrated strategy overcomes the conventional challenge of high-density packaging for this type of stretchable electronics. Combined with a high-density interconnect technology developed previously, this stretchable MEA technology facilitates a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. In this paper, this PDMS-based integrated stretchable MEA (isMEA) technology is demonstrated by an example design that packages a stretchable MEA with a small PCB. The resulting isMEA is assessed for its biocompatibility, surface conformability, electrode impedance spectrum, and capability to record muscle fiber activity when applied epimysially.
Collapse
|
34
|
Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE Trans Biomed Eng 2012; 59:2085-94. [PMID: 22718688 DOI: 10.1109/tbme.2012.2196274] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We proposed a method of making a flexible depth-type neural probe using liquid crystal polymer. Conventional depth neural probes made of metal or silicon have the limitations of a single recording site per shank or the brittleness of the silicon substrate. To avoid these drawbacks, polymer-based depth neural probes have been developed with biocompatible polymers such as polyimides or parylenes. However, those have suffered from the difficulty of inserting the probes into brain tissues due to their high flexibility, requiring mechanical reinforcements. Herein, we report the first attempt to use a flexible material, liquid crystal polymer (LCP), as a substrate for a depth-type neural probe. The LCP-based probe offers a controllable stiffness vs. flexibility and compatibility with thin-film processes in addition to its inherent characteristics such as high reliability and biocompatibility. In the present study, an LCP neural probe was fabricated to have enough stiffness to penetrate the dura mater of rodent brains without a guide tool or additional reinforcement structures. A simultaneous multichannel neural recording was successfully achieved from the somatosensory motor cortex of the rodents. Immunohistochemistry showed that the electrodes could be inserted into the desired regions in the brain.
Collapse
Affiliation(s)
- Sung Eun Lee
- Department of Electrical Engineering and Computer Science, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 151-744, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Al-Ashmouny KM, Chang SI, Yoon E. A 4 μW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2012; 6:403-413. [PMID: 23853227 DOI: 10.1109/tbcas.2012.2218105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report an analog front-end prototype designed in 0.25 μm CMOS process for hybrid integration into 3-D neural recording microsystems. For scaling towards massive parallel neural recording, the prototype has investigated some critical circuit challenges in power, area, interface, and modularity. We achieved extremely low power consumption of 4 μW/channel, optimized energy efficiency using moderate inversion in low-noise amplifiers (K of 5.98 × 10⁸ or NEF of 2.9), and minimized asynchronous interface (only 2 per 16 channels) for command and data capturing. We also implemented adaptable operations including programmable-gain amplification, power-scalable sampling (up to 50 kS/s/channel), wide configuration range (9-bit) for programmable gain and bandwidth, and 5-bit site selection capability (selecting 16 out of 128 sites). The implemented front-end module has achieved a reduction in noise-energy-area product by a factor of 5-25 times as compared to the state-of-the-art analog front-end approaches reported to date.
Collapse
Affiliation(s)
- Khaled M Al-Ashmouny
- Center for Wireless Integrated MicroSensing and Systems, Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
36
|
Biffi E, Regalia G, Ghezzi D, De Ceglia R, Menegon A, Ferrigno G, Fiore GB, Pedrocchi A. A novel environmental chamber for neuronal network multisite recordings. Biotechnol Bioeng 2012; 109:2553-66. [PMID: 22510865 DOI: 10.1002/bit.24526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/29/2012] [Accepted: 04/02/2012] [Indexed: 11/08/2022]
Abstract
Environmental stability is a critical issue for neuronal networks in vitro. Hence, the ability to control the physical and chemical environment of cell cultures during electrophysiological measurements is an important requirement in the experimental design. In this work, we describe the development and the experimental verification of a closed chamber for multisite electrophysiology and optical monitoring. The chamber provides stable temperature, pH and humidity and guarantees cell viability comparable to standard incubators. Besides, it integrates the electronics for long-term neuronal activity recording. The system is portable and adaptable for multiple network housings, which allows performing parallel experiments in the same environment. Our results show that this device can be a solution for long-term electrophysiology, for dual network experiments and for coupled optical and electrical measurements.
Collapse
Affiliation(s)
- E Biffi
- Politecnico di Milano, Bioengineering Department, Neuroengineering and Medical Robotics Laboratory, p.zza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron 2012; 37:1-5. [PMID: 22633740 DOI: 10.1016/j.bios.2012.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 11/20/2022]
Abstract
Here, we describe new fabrication methods aimed to integrate planar tetrode-like electrodes into a polymer SU-8 based microprobe for neuronal recording applications. New concepts on the fabrication sequences are introduced in order to eliminate the typical electrode-tissue gap associated to the passivation layer. Optimization of the photolithography technique and high step coverage of the sputtering process have been critical steps in this new fabrication process. Impedance characterization confirmed the viability of the electrodes for reliable neuronal recordings with values comparable to commercial probes. Furthermore, a homogeneous sensing behavior was obtained in all the electrodes of each probe. Finally, in vivo action potential and local field potential recordings were successfully obtained from the rat dorsal hippocampus. Peak-to-peak amplitude of action potentials ranged from noise level to up to 400-500 μV. Moreover, action potentials of different amplitudes and shapes were recorded from all the four recording sites, suggesting improved capability of the tetrode to distinguish from different neuronal sources.
Collapse
|
38
|
Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays. BIOSENSORS-BASEL 2011; 1:118-33. [PMID: 25586924 PMCID: PMC4264365 DOI: 10.3390/bios1030118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 11/16/2022]
Abstract
Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.
Collapse
|
39
|
Chen CH, Chuang SC, Su HC, Hsu WL, Yew TR, Chang YC, Yeh SR, Yao DJ. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. LAB ON A CHIP 2011; 11:1647-1655. [PMID: 21448485 DOI: 10.1039/c0lc00718h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work.
Collapse
Affiliation(s)
- Chang-Hsiao Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo L, Meacham KW, Hochman S, DeWeerth SP. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues. IEEE Trans Biomed Eng 2010; 57:2485-94. [PMID: 20550983 PMCID: PMC5839322 DOI: 10.1109/tbme.2010.2052617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A method for fabricating polydimethylsiloxane (PDMS) based microelectrode arrays (MEAs) featuring novel conical-well microelectrodes is described. The fabrication technique is reliable and efficient, and facilitates controllability over both the depth and the slope of the conical wells. Because of the high-PDMS elasticity (as compared to other MEA substrate materials), this type of compliant MEA is promising for acute and chronic implantation in applications that benefit from conformable device contact with biological tissue surfaces and from minimal tissue damage. The primary advantage of the conical-well microelectrodes--when compared to planar electrodes--is that they provide an improved contact on tissue surface, which potentially provides isolation of the electrode microenvironment for better electrical interfacing. The raised wells increase the uniformity of current density distributions at both the electrode and tissue surfaces, and they also protect the electrode material from mechanical damage (e.g., from rubbing against the tissue). Using this technique, electrodes have been fabricated with diameters as small as 10 μm and arrays have been fabricated with center-to-center electrode spacings of 60 μm. Experimental results are presented, describing electrode-profile characterization, electrode-impedance measurement, and MEA-performance evaluation on fiber bundle recruitment in spinal cord white matter.
Collapse
Affiliation(s)
- Liang Guo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
41
|
Development of a three dimensional neural sensing device by a stacking method. SENSORS 2010; 10:4238-52. [PMID: 22399878 PMCID: PMC3292117 DOI: 10.3390/s100504238] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 11/28/2022]
Abstract
This study reports a new stacking method for assembling a 3-D microprobe array. To date, 3-D array structures have usually been assembled with vertical spacers, snap fasteners and a supporting platform. Such methods have achieved 3-D structures but suffer from complex assembly steps, vertical interconnection for 3-D signal transmission, low structure strength and large implantable opening. By applying the proposed stacking method, the previous techniques could be replaced by 2-D wire bonding. In this way, supporting platforms with slots and vertical spacers were no longer needed. Furthermore, ASIC chips can be substituted for the spacers in the stacked arrays to achieve system integration, design flexibility and volume usage efficiency. To avoid overflow of the adhesive fluid during assembly, an anti-overflow design which made use of capillary action force was applied in the stacking method as well. Moreover, presented stacking procedure consumes only 35 minutes in average for a 4 × 4 3-D microprobe array without requiring other specially made assembly tools. To summarize, the advantages of the proposed stacking method for 3-D array assembly include simplified assembly process, high structure strength, smaller opening area and integration ability with active circuits. This stacking assembly technique allows an alternative method to create 3-D structures from planar components.
Collapse
|
42
|
Borton DA, Song YK, Patterson WR, Bull CW, Park S, Laiwalla F, Donoghue JP, Nurmikko AV. Wireless, high-bandwidth recordings from non-human primate motor cortex using a scalable 16-Ch implantable microsystem. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:5531-4. [PMID: 19964128 DOI: 10.1109/iembs.2009.5333189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC).
Collapse
Affiliation(s)
- David A Borton
- Division of Engineering, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
One of the great challenges facing medicine is the repair of the damaged nervous system. Due to the limited capacity of the central (and to a lesser extent the peripheral) nervous systems to regenerate, damage such as spinal cord injury can often result in permanent paralysis. Researchers are attempting to overcome nerve injury by devising methods of sensing neural activity either in the brain or in the spinal cord or peripheral nervous system. This information can act as a control mechanism for either muscle stimulators (e.g. for restoring limb function) or providing function in some other way (such as controlling a cursor on a computer screen). Ideally, sensing devices are implanted into the body, directly accessing the nervous system. Whilst great advancements have been made in implantable neural stimulators, sensing of neural activity has proven to be a more difficult task. This chapter describes how microengineered probes allow construction of neuron-sized neural interfaces for enhanced recording in vivo.
Collapse
Affiliation(s)
- Karla D Bustamante Valles
- Orthopaedic & Rehabilitation Engineering Center, The Medical College of Wisconsin & Marquette University, Milwaukee, WI, USA
| |
Collapse
|
44
|
Nurmikko AV, Donoghue JP, Hochberg LR, Patterson WR, Song YK, Bull CW, Borton DA, Laiwalla F, Park S, Ming Y, Aceros J. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2010; 98:375-388. [PMID: 21654935 PMCID: PMC3108264 DOI: 10.1109/jproc.2009.2038949] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.
Collapse
Affiliation(s)
- Arto V. Nurmikko
- Division of Engineering, Department of Physics, and Brown Institute for Brain Science, Brown University, Providence, RI 02912 USA
| | - John P. Donoghue
- Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI 02912 USA
| | - Leigh R. Hochberg
- Division of Engineering and Brown Institute for Brain Science, Brown University, Providence, RI 02912 USA. He is also with Center for Restorative and Regenerative Medicine, Rehabilitation Research and Development Service, Department of Veterans Affairs, Veterans Health Administration, Providence, RI 02908 USA and Department of Neurology, Massachusetts General Hospital, Brigham and Women’s Hospital, and Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114 USA
| | | | - Yoon-Kyu Song
- Division of Engineering, Brown University, Providence, RI 02912 USA, and also with Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | | | - David A. Borton
- Division of Engineering, Brown University, Providence, RI 02912 USA
| | - Farah Laiwalla
- Division of Engineering, Brown University, Providence, RI 02912 USA
| | - Sunmee Park
- Division of Engineering, Brown University, Providence, RI 02912 USA
| | - Yin Ming
- Division of Engineering, Brown University, Providence, RI 02912 USA
| | - Juan Aceros
- Division of Engineering, Brown University, Providence, RI 02912 USA
| |
Collapse
|
45
|
Ward MP, Rajdev P, Ellison C, Irazoqui PP. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res 2009; 1282:183-200. [PMID: 19486899 DOI: 10.1016/j.brainres.2009.05.052] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/27/2009] [Accepted: 05/20/2009] [Indexed: 11/28/2022]
Abstract
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for a chronic and stable electrode-tissue interface. From this interface, they wish to obtain consistent quality recordings and a stable, low impedance pathway for charge injection over extended periods of time. Despite numerous efforts, no microelectrode array design has managed to evade the host immune response and remain fully functional. This study is an initial effort comparing several microelectrode arrays with fundamentally different configurations for use in an implantable epilepsy prosthesis. Specifically, NeuroNexus (Michigan) probes, Cyberkinetics (Utah) Silicon and Iridium Oxide arrays, ceramic-based thin-film microelectrode arrays (Drexel), and Tucker-Davis Technologies (TDT) microwire arrays are evaluated over a 31-day period in an animal model. Microelectrodes are compared in implanted rats through impedance, charge capacity, signal-to-noise ratio, recording stability, and elicited immune response. Results suggest significant variability within and between microelectrode types with no clear superior array. Some applications for the microelectrode arrays are suggested based on data collected throughout the longitudinal study. Additionally, specific limitations of assaying biological phenomena and comparing fundamentally different microelectrode arrays in a highly variable system are discussed with suggestions on how to improve the reliability of observed results and steps needed to develop a more standardized microelectrode design.
Collapse
Affiliation(s)
- Matthew P Ward
- Weldon School of Biomedical Engineering, Purdue University, MJIS 2083, 206 S Martin Jischke Drive West Lafayette, IN 47907 USA.
| | | | | | | |
Collapse
|
46
|
HajjHassan M, Chodavarapu V, Musallam S. NeuroMEMS: Neural Probe Microtechnologies. SENSORS 2008; 8:6704-6726. [PMID: 27873894 PMCID: PMC3707475 DOI: 10.3390/s8106704] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/27/2008] [Accepted: 10/21/2008] [Indexed: 11/25/2022]
Abstract
Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer's, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultra-long multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies.
Collapse
Affiliation(s)
- Mohamad HajjHassan
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7.
| | - Vamsy Chodavarapu
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7.
| | - Sam Musallam
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7.
- Department of Physiology, McGill University, 3655 Promenade Osler, Montreal, Canada H3G 1Y6.
| |
Collapse
|
47
|
Chen CH, Yao DJ, Tseng SH, Lu SW, Chiao CC, Yeh SR. Micro-multi-probe electrode array to measure neural signals. Biosens Bioelectron 2008; 24:1911-7. [PMID: 19027284 DOI: 10.1016/j.bios.2008.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
A multi-electrode array (MEA) with 16 channels was designed to record simultaneously the velocity of conduction of neurons in a measurement system for bio-medical applications. MEA were fabricated with MEMS technology on a silicon-on-insulator (SOI) wafer, which controls the thickness of the probe effectively. All used probes have length 3mm and width 100mum. The thickness of the probe, 25mum, was defined by the thickness of the device layer on the SOI wafer. The multiple probes with a 16-site recording electrode array have been manufactured; their strength was tested with a force gauge and their electrical performance was tested with an impedance measurement system. The readout circuitry comprises an array of 16-site preamplifiers fully integrated on a chip that is capable of signal processing to improve the signal-noise-ratio (SNR). To demonstrate the capability, multiple neural signals were recorded simultaneously with all electrodes from each separate probe. To verify its capability of measuring neural signals, the MEA was used to measure these signals from the electrophysiology system of crayfish. The velocity of neural conduction recorded with a fabricated MEA is shown, and is comparable with a measurement with a traditional glass pipette. The MEA for recording neural signals would be improved in further development.
Collapse
Affiliation(s)
- Chang-Hsiao Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013,Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Paralikar KJ, Clement RS. Collagenase-Aided Intracortical Microelectrode Array Insertion: Effects on Insertion Force and Recording Performance. IEEE Trans Biomed Eng 2008; 55:2258-67. [DOI: 10.1109/tbme.2008.923150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Imfeld K, Neukom S, Maccione A, Bornat Y, Martinoia S, Farine PA, Koudelka-Hep M, Berdondini L. Large-Scale, High-Resolution Data Acquisition System for Extracellular Recording of Electrophysiological Activity. IEEE Trans Biomed Eng 2008; 55:2064-73. [DOI: 10.1109/tbme.2008.919139] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Abstract
Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications.
Collapse
|