1
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Zhou H, Kember RL, Deak JD, Xu H, Toikumo S, Yuan K, Lind PA, Farajzadeh L, Wang L, Hatoum AS, Johnson J, Lee H, Mallard TT, Xu J, Johnston KJA, Johnson EC, Nielsen TT, Galimberti M, Dao C, Levey DF, Overstreet C, Byrne EM, Gillespie NA, Gordon S, Hickie IB, Whitfield JB, Xu K, Zhao H, Huckins LM, Davis LK, Sanchez-Roige S, Madden PAF, Heath AC, Medland SE, Martin NG, Ge T, Smoller JW, Hougaard DM, Børglum AD, Demontis D, Krystal JH, Gaziano JM, Edenberg HJ, Agrawal A, Justice AC, Stein MB, Kranzler HR, Gelernter J. Multi-ancestry study of the genetics of problematic alcohol use in over 1 million individuals. Nat Med 2023; 29:3184-3192. [PMID: 38062264 PMCID: PMC10719093 DOI: 10.1038/s41591-023-02653-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Problematic alcohol use (PAU), a trait that combines alcohol use disorder and alcohol-related problems assessed with a questionnaire, is a leading cause of death and morbidity worldwide. Here we conducted a large cross-ancestry meta-analysis of PAU in 1,079,947 individuals (European, N = 903,147; African, N = 122,571; Latin American, N = 38,962; East Asian, N = 13,551; and South Asian, N = 1,716 ancestries). We observed a high degree of cross-ancestral similarity in the genetic architecture of PAU and identified 110 independent risk variants in within- and cross-ancestry analyses. Cross-ancestry fine mapping improved the identification of likely causal variants. Prioritizing genes through gene expression and chromatin interaction in brain tissues identified multiple genes associated with PAU. We identified existing medications for potential pharmacological studies by a computational drug repurposing analysis. Cross-ancestry polygenic risk scores showed better performance of association in independent samples than single-ancestry polygenic risk scores. Genetic correlations between PAU and other traits were observed in multiple ancestries, with other substance use traits having the highest correlations. This study advances our knowledge of the genetic etiology of PAU, and these findings may bring possible clinical applicability of genetics insights-together with neuroscience, biology and data science-closer.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA.
| | - Rachel L Kember
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Leila Farajzadeh
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Lu Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jessica Johnson
- Pamela Sklar Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyunjoon Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Travis T Mallard
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiayi Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Trine Tollerup Nielsen
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Marco Galimberti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cecilia Dao
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Enda M Byrne
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nathan A Gillespie
- Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Anders D Børglum
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs Healthcare System, Boston, MA, USA
- Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Henry R Kranzler
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Wang Y, Zuo J, Hao W, Wu L, Liu F, Wang Q, He L, Peng P, Zhou Y, Li M, Yang Q, Wang X, Liu T, Potenza MN. Relationships Between Impulsivity, Methamphetamine use Disorder and Gambling Disorder. J Gambl Stud 2023; 39:1635-1650. [PMID: 36973505 DOI: 10.1007/s10899-023-10201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Methamphetamine use disorder (MAUD) and gambling disorder (GD) frequently co-occur. Individuals with both conditions are typically more difficult to treat than those with either disorder alone. This study aimed to investigate the co-occurrence and clinical characteristics of people with MAUD and GD. Between March 2018 and August 2020, 350 men with methamphetamine use entering a compulsory drug rehabilitation center in Changsha, Hunan Province received semi-structured interviews. Participants completed the Barratt Impulsiveness Scale-11 and provided information on childhood upbringings and drug use characteristics. Independent sample t-tests compared differences between individuals with MAUD and with and without co-occurring GD. Dichotomous logistic regression was used to statistically predict co-occurring GD. The prevalence of GD was 45.1%. Most individuals (39.1% overall) had post-onset methamphetamine use (PoMAU-GD). The number of MAUD symptoms, history of gambling by family members, age of first sexual activity, and non-planning impulsivity statistically predicted PoMAU-GD, jointly explaining 24.0% of the total variance. The regression model fit well (HLχ2 = 5.503, p = 0.70), in which the specificity was 0.80, the sensitivity was 0.64, and the area under the curve was 0.79 (95%CI: 0.75-0.84). This study clarifies the prevalence of and potential risk factors for GD among individuals engaging in compulsory MAUD treatment in China. The high prevalence and associated clinical features of GD in the MAUD group highlight the importance of screening for GD in this population and intervening accordingly.
Collapse
Affiliation(s)
- Yingying Wang
- School of Physical Education and Health, Hunan University of Technology and Business, Changsha, China
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Jinsong Zuo
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Wei Hao
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Lingxiang Wu
- School of Science, Shaoyang University, Shaoyang, China
| | - Feng Liu
- Compulsory detoxification center of Changsha Public Security Bureau, Changsha, Hunan, China
| | - Qianjin Wang
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Li He
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Pu Peng
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Yanan Zhou
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, China
| | - Manyun Li
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Qian Yang
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Xin Wang
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China
| | - Tieqiao Liu
- Department of Psychiatry, The Second Xiangya, National Clinical Research Center for Mental Disorders, Hospital of Central South University, Changsha, China.
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA.
- Connecticut Mental Health Center, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Zhou H, Kember RL, Deak JD, Xu H, Toikumo S, Yuan K, Lind PA, Farajzadeh L, Wang L, Hatoum AS, Johnson J, Lee H, Mallard TT, Xu J, Johnston KJ, Johnson EC, Galimberti M, Dao C, Levey DF, Overstreet C, Byrne EM, Gillespie NA, Gordon S, Hickie IB, Whitfield JB, Xu K, Zhao H, Huckins LM, Davis LK, Sanchez-Roige S, Madden PAF, Heath AC, Medland SE, Martin NG, Ge T, Smoller JW, Hougaard DM, Børglum AD, Demontis D, Krystal JH, Gaziano JM, Edenberg HJ, Agrawal A, Justice AC, Stein MB, Kranzler HR, Gelernter J. Multi-ancestry study of the genetics of problematic alcohol use in >1 million individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.24.23284960. [PMID: 36747741 PMCID: PMC9901058 DOI: 10.1101/2023.01.24.23284960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. To improve our understanding of the genetics of PAU, we conducted a large cross-ancestry meta-analysis of PAU in 1,079,947 individuals. We observed a high degree of cross-ancestral similarity in the genetic architecture of PAU and identified 110 independent risk variants in within- and cross-ancestry analyses. Cross-ancestry fine-mapping improved the identification of likely causal variants. Prioritizing genes through gene expression and/or chromatin interaction in brain tissues identified multiple genes associated with PAU. We identified existing medications for potential pharmacological studies by drug repurposing analysis. Cross-ancestry polygenic risk scores (PRS) showed better performance in independent sample than single-ancestry PRS. Genetic correlations between PAU and other traits were observed in multiple ancestries, with other substance use traits having the highest correlations. The analysis of diverse ancestries contributed significantly to the findings, and fills an important gap in the literature.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- These authors contributed equally
| | - Rachel L. Kember
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- These authors contributed equally
| | - Joseph D. Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Penelope A. Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Leila Farajzadeh
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Lu Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jessica Johnson
- Pamela Sklar Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyunjoon Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Travis T. Mallard
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiayi Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Marco Galimberti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cecilia Dao
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Daniel F. Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Enda M. Byrne
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Nathan A. Gillespie
- Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ian B. Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - John B. Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Laura M. Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lea K. Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pamela A. F. Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jordan W. Smoller
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David M. Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Anders D. Børglum
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - J. Michael Gaziano
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs Healthcare System, Boston, MA, USA
- Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Henry R. Kranzler
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- These authors jointly supervised this work
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- These authors jointly supervised this work
| |
Collapse
|
5
|
Prasartpornsirichoke J, Kalayasiri R, Vichitkunakorn P, Ratta-apha W, Atsariyasing W, Anekwit N, Lamyai W, Thongpanich C, Likhitsathian S, Rungnirundorn T, Rattanasumawong W, Chuatai N, Srisuklorm S, Tanaree A, Patanavanich R. Association of supply sources of alcohol and alcohol-related harms in adolescent drinkers: the baseline characteristics of a high school cohort across Thailand. BMC Public Health 2022; 22:2277. [PMID: 36471267 PMCID: PMC9724364 DOI: 10.1186/s12889-022-14767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The main objective of this study was to investigate the association between parental supply of alcohol, alcohol-related harms, and the severity of alcohol use disorder in Thai 7th grade middle school students. METHODS A cross-sectional descriptive study obtained the baseline data from the project named the Thailand Parental Supply and Use of Alcohol, Cigarettes & Drugs Longitudinal Study Cohort in Secondary School Students in 2018. The sample size was 1187 students who have ever sipped or drank alcohol in the past 12 months. Pearson's Chi square, binary logistic regression, and ordinal logistic regression are applied in the analysis. RESULTS A single source of parental supply is not significantly associated with any alcohol-related harm and the severity of alcohol use disorder, while parental supply with peers and siblings supply of alcohol plays an important role in both outcomes. The increasing number of sources of alcohol supply increases the risk of alcohol-related harm and the severity of alcohol use disorder. Other risk factors found in both associations included binge drinking, alcohol flushing, low household economic status, distance from the student's family, and poor academic performance. Gender, exposure to alcohol ads on social media and location of residency were not associated with alcohol-related harms or severity of alcohol use disorder. CONCLUSIONS The results did not support parental guidance in teaching or giving children a drink or sip of alcohol within family to prevent related harms when drinking outside with their peers.
Collapse
Affiliation(s)
- Jirada Prasartpornsirichoke
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330 Thailand
| | - Rasmon Kalayasiri
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330 Thailand ,grid.411628.80000 0000 9758 8584Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Polathep Vichitkunakorn
- grid.7130.50000 0004 0470 1162Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Woraphat Ratta-apha
- grid.10223.320000 0004 1937 0490Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanlop Atsariyasing
- grid.10223.320000 0004 1937 0490Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natwarat Anekwit
- Department of Mental Health, Psychiatry and Drugs, Mahasarakham Hospital, Mahasarakham, Thailand
| | - Warot Lamyai
- Nakhon Phanom Rajanagarindra Psychiatric Hospital, Nakhon Phanom, Thailand
| | | | - Surinporn Likhitsathian
- grid.7132.70000 0000 9039 7662Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teerayuth Rungnirundorn
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330 Thailand ,grid.411628.80000 0000 9758 8584Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Wanida Rattanasumawong
- grid.414965.b0000 0004 0576 1212Department of Psychiatry and Neurology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Nawapat Chuatai
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330 Thailand
| | - Sakol Srisuklorm
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330 Thailand
| | - Athip Tanaree
- Songkhla Rajanagarindra Psychiatric Hospital, Songkhla, Thailand
| | - Roengrudee Patanavanich
- grid.10223.320000 0004 1937 0490Department of Community Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Zhou H, Kalayasiri R, Sun Y, Nuñez YZ, Deng HW, Chen XD, Justice AC, Kranzler HR, Chang S, Lu L, Shi J, Sanichwankul K, Mutirangura A, Malison RT, Gelernter J. Genome-wide meta-analysis of alcohol use disorder in East Asians. Neuropsychopharmacology 2022; 47:1791-1797. [PMID: 35094024 PMCID: PMC9372033 DOI: 10.1038/s41386-022-01265-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. Genome-wide association studies (GWAS) have identified ~30 AUD risk genes in European populations, but many fewer in East Asians. We conducted GWAS and genome-wide meta-analysis of AUD in 13,551 subjects with East Asian ancestry, using published summary data and newly genotyped data from five cohorts: (1) electronic health record (EHR)-diagnosed AUD in the Million Veteran Program (MVP) sample; (2) DSM-IV diagnosed alcohol dependence (AD) in a Han Chinese-GSA (array) cohort; (3) AD in a Han Chinese-Cyto (array) cohort; and (4) two AD Thai cohorts. The MVP and Thai samples included newly genotyped subjects from ongoing recruitment. In total, 2254 cases and 11,297 controls were analyzed. An AUD polygenic risk score was analyzed in an independent sample with 4464 East Asians (Genetic Epidemiology Research in Adult Health and Aging (GERA)). Phenotypes from survey data and ICD-9-CM diagnoses were tested for association with the AUD PRS. Two risk loci were detected: the well-known functional variant rs1229984 in ADH1B and rs3782886 in BRAP (near the ALDH2 gene locus) are the lead variants. AUD PRS was significantly associated with days per week of alcohol consumption (beta = 0.43, SE = 0.067, p = 2.47 × 10-10) and nominally associated with pack years of smoking (beta = 0.09, SE = 0.05, p = 4.52 × 10-2) and ever vs. never smoking (beta = 0.06, SE = 0.02, p = 1.14 × 10-2). This is the largest GWAS of AUD in East Asians to date. Building on previous findings, we were able to analyze pleiotropy, but did not identify any new risk regions, underscoring the importance of recruiting additional East Asian subjects for alcohol GWAS.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Rasmon Kalayasiri
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yan Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yaira Z Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Amy C Justice
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert T Malison
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Chang XW, Sun Y, Muhai JN, Li YY, Chen Y, Lu L, Chang SH, Shi J. Common and distinguishing genetic factors for substance use behavior and disorder: an integrated analysis of genomic and transcriptomic studies from both human and animal studies. Addiction 2022; 117:2515-2529. [PMID: 35491750 DOI: 10.1111/add.15908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Genomic and transcriptomic findings greatly broaden the biological knowledge regarding substance use. However, systematic convergence and comparison evidence of genome-wide findings is lacking for substance use. Here, we combined all the genome-wide findings from both substance use behavior and disorder (SUBD) and identified common and distinguishing genetic factors for different SUBDs. METHODS Systemic literature search for genome-wide association (GWAS) and RNA-seq studies of alcohol/nicotine/drug use behavior (partially meets or not reported diagnostic criteria) and alcohol use behavior and disorder (AUBD), nicotine use behavior and disorder (NUBD) and drug use behavior and disorder (DUBD) was performed using PubMed and the GWAS catalog. Drug use was focused upon cannabis, opioid, cocaine and methamphetamine use. GWAS studies required case-control or case/cohort samples. RNA-seq studies were based on brain tissues. The genes which contained significant single nucleotide polymorphism (P ≤ 1 × 10-6 ) in GWAS and reported as significant in RNA-seq studies were extracted. Pathway enrichment was performed by using Metascape. Gene interaction networks were identified by using the Protein Interaction Network Analysis database. RESULTS Total SUBD-related 2910 genes were extracted from 75 GWAS studies (2 773 889 participants) and 17 RNA-seq studies. By overlapping the genes and pathways of AUBD, NUBD and DUBD, four shared genes (CACNB2, GRIN2B, PLXDC2 and PKNOX2), four shared pathways [two Gene Ontology (GO) terms of 'modulation of chemical synaptic transmission', 'regulation of trans-synaptic signaling', two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 'dopaminergic synapse', 'cocaine addiction'] were identified (significantly higher than random, P < 1 × 10-5 ). The top shared KEGG pathways (Benjamini-Hochberg-corrected P-value < 0.05) in the pairwise comparison of AUBD versus DUBD, NUBD versus DUBD, AUBD versus NUBD were 'Epstein-Barr virus infection', 'protein processing in endoplasmic reticulum' and 'neuroactive ligand-receptor interaction', respectively. We also identified substance-specific genetic factors: i.e. ADH1B and ALDH2 were unique for AUBD, while CHRNA3 and CHRNA4 were unique for NUBD. CONCLUSIONS This systematic review identifies the shared and unique genes and pathways for alcohol, nicotine and drug use behaviors and disorders at the genome-wide level and highlights critical biological processes for the common and distinguishing vulnerability of substance use behaviors and disorders.
Collapse
Affiliation(s)
- Xiang-Wen Chang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jia-Na Muhai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yang-Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Su-Hua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China.,Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
8
|
de Marco A, Scozia G, Manfredi L, Conversi D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes (Basel) 2022; 13:genes13081303. [PMID: 35893041 PMCID: PMC9330731 DOI: 10.3390/genes13081303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
It is currently unknown which genetic polymorphisms are involved in substance use disorder (SUD) comorbid with bipolar disorder (BD). The research on polymorphisms in BD comorbid with SUD (BD + SUD) is summarized in this systematic review. We looked for case-control studies that genetically compared adults and adolescents with BD and SUD, healthy controls, and BD without SUD. PRISMA was used to create our protocol, which is PROSPERO-registered (identification: CRD4221270818). The following bibliographic databases were searched indefinitely until December 2021 to identify potentially relevant articles: PubMed, PsycINFO, Scopus, and Web of Science. This systematic review, after the qualitative analysis of the study selection, included 17 eligible articles. In the selected studies, 66 polymorphisms in 29 genes were investigated. The present work delivers a group of potentially valuable genetic polymorphisms associated with BD + SUD: rs11600996 (ARNTL), rs228642/rs228682/rs2640909 (PER3), PONQ192R (PON1), rs945032 (BDKRB2), rs1131339 (NR4A3), and rs6971 (TSPO). It is important to note that none of those findings have been confirmed by two or more studies; thus, we believe that all the polymorphisms identified in this review require additional evidence to be confirmed.
Collapse
Affiliation(s)
- Adriano de Marco
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - Gabriele Scozia
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- PhD Program in Behavioral Neuroscience, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
| | - Lucia Manfredi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - David Conversi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- Correspondence:
| |
Collapse
|
9
|
Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11071374. [PMID: 35883865 PMCID: PMC9311529 DOI: 10.3390/antiox11071374] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a highly prevalent, comorbid, and disabling disorder. The underlying mechanism of ethanol neurotoxicity and the involvement of oxidative stress is still not fully elucidated. However, ethanol metabolism has been associated with increased oxidative stress through alcohol dehydrogenase, the microsomal ethanol oxidation system, and catalase metabolic pathways. We searched the PubMed and genome-wide association studies (GWAS) catalog databases to review the literature systematically and summarized the findings focusing on AUD and alcohol abstinence in relation to oxidative stress. In addition, we reviewed the ClinicalTrials.gov resource of the US National Library of Medicine to identify all ongoing and completed clinical trials that include therapeutic interventions based on antioxidants. The retrieved clinical and preclinical studies show that oxidative stress impacts AUD through genetics, alcohol metabolism, inflammation, and neurodegeneration.
Collapse
|
10
|
Ng KH, Subrayan V, Ramachandran V, Ismail F. Screening of single nucleotide polymorphisms among fuchs’ endothelial corneal dystrophy subjects in Malaysia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The pathophysiology underlying Fuchs' Endothelial Corneal Dystrophy (FECD), especially in older individuals, remains unclear, with a genetic predisposition being reported as the single best predictor of the disease. Genetic studies have shown that several genes in various loci such as COL8A2, SLC4A11, TCF8/ZEB1 and TCF4 are associated with FECD in different populations and ethnicities. A case–control study was conducted to determine the association between genetic variants and FECD in a tertiary care setting in Malaysia. A total number of 12 patients with clinically diagnosed FECD and 12 age, gender and race matched control subjects were recruited. Extracted genomic DNA were genotyped using Infinium Global Screening Array (GSA)-24 version 1.0 BeadChip with iScan high-throughput system. Illumina GenomeStudio 2.0 Data Analysis and PLINK version 1.9 software were used to perform association tests and determine the distribution of obtained variants among the cases and controls.
Results
A significant novel genetic variant, rs11626651, a variant of the LOC105370676 gene or known as the LINC02320 gene, located at chromosome 14, has been identified as a suggestive association with FECD (p < 5 × 10−6). Further analysis in this study suggested that candidate genes such as COL8A2, ZEB1/TCF8, TCF4 and SLC4A11 had no significant associations with FECD.
Conclusions
The discovery of a novel variant may influence the underlying pathogenic basis of FECD in Malaysia. The current study is the first genetic study on FECD to use Infinium GSA. It is the first comprehensive report in Malaysia to provide genetic information of potential relevance to FECD, which may pave the way for new therapeutic strategies in the future. A detailed analysis with a larger sample size is recommended for further evaluation.
Collapse
|
11
|
De Angelis F, Wendt FR, Pathak GA, Tylee DS, Goswami A, Gelernter J, Polimanti R. Drinking and smoking polygenic risk is associated with childhood and early-adulthood psychiatric and behavioral traits independently of substance use and psychiatric genetic risk. Transl Psychiatry 2021; 11:586. [PMID: 34775470 PMCID: PMC8590689 DOI: 10.1038/s41398-021-01713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Alcohol drinking and tobacco smoking are hazardous behaviors associated with a wide range of adverse health outcomes. In this study, we explored the association of polygenic risk scores (PRS) related to drinks per week, age of smoking initiation, smoking initiation, cigarettes per day, and smoking cessation with 433 psychiatric and behavioral traits in 4498 children and young adults (aged 8-21) of European ancestry from the Philadelphia neurodevelopmental cohort. After applying a false discovery rate multiple testing correction accounting for the number of PRS and traits tested, we identified 36 associations related to psychotic symptoms, emotion and age recognition social competencies, verbal reasoning, anxiety-related traits, parents' education, and substance use. These associations were independent of the genetic correlations among the alcohol-drinking and tobacco-smoking traits and those with cognitive performance, educational attainment, risk-taking behaviors, and psychopathology. The removal of participants endorsing substance use did not affect the associations of each PRS with psychiatric and behavioral traits identified as significant in the discovery analyses. Gene-ontology enrichment analyses identified several neurobiological processes underlying mechanisms of the PRS associations we report. In conclusion, we provide novel insights into the genetic overlap of smoking and drinking behaviors in children and young adults, highlighting their independence from psychopathology and substance use.
Collapse
Affiliation(s)
- Flavio De Angelis
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
12
|
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 2021; 22:712-729. [PMID: 34211176 PMCID: PMC9210391 DOI: 10.1038/s41576-021-00377-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies - including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples - have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| |
Collapse
|
13
|
Abstract
Substance use disorders (SUDs) are prevalent and result in an array of negative consequences. They are influenced by genetic factors (h2 = ~50%). Recent years have brought substantial progress in our understanding of the genetic etiology of SUDs and related traits. The present review covers the current state of the field for SUD genetics, including the epidemiology and genetic epidemiology of SUDs, findings from the first-generation of SUD genome-wide association studies (GWAS), cautions about translating GWAS findings to clinical settings, and suggested prioritizations for the next wave of SUD genetics efforts. Recent advances in SUD genetics have been facilitated by the assembly of large GWAS samples, and the development of state-of-the-art methods modeling the aggregate effect of genome-wide variation. These advances have confirmed that SUDs are highly polygenic with many variants across the genome conferring risk, the vast majority of which are of small effect. Downstream analyses have enabled finer resolution of the genetic architecture of SUDs and revealed insights into their genetic relationship with other psychiatric disorders. Recent efforts have also prioritized a closer examination of GWAS findings that have suggested non-uniform genetic influences across measures of substance use (e.g. consumption) and problematic use (e.g. SUD). Additional highlights from recent SUD GWAS include the robust confirmation of loci in alcohol metabolizing genes (e.g. ADH1B and ALDH2) affecting alcohol-related traits, and loci within the CHRNA5-CHRNA3-CHRNB4 gene cluster influencing nicotine-related traits. Similar successes are expected for cannabis, opioid, and cocaine use disorders as sample sizes approach those assembled for alcohol and nicotine.
Collapse
Affiliation(s)
- Joseph D. Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Edenberg HJ. Perspective on Beyond Statistical Significance: Finding Meaningful Effects. Complex Psychiatry 2021; 7:1-8. [DOI: 10.1159/000517237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
|
15
|
Bagley JR, Chesler EJ, Philip VM, Jentsch JD. Heritability of ethanol consumption and pharmacokinetics in a genetically diverse panel of collaborative cross mouse strains and their inbred founders. Alcohol Clin Exp Res 2021; 45:697-708. [PMID: 33619752 PMCID: PMC8441258 DOI: 10.1111/acer.14582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Interindividual variation in voluntary ethanol consumption and ethanol response is partially influenced by genetic variation. Discovery of the genes and allelic variants that affect these phenotypes may clarify the etiology and pathophysiology of problematic alcohol use, including alcohol use disorder. Genetically diverse mouse populations, which demonstrate heritable variation in ethanol consumption, can be utilized to discover the genes and gene networks that influence this trait. The Collaborative Cross (CC) recombinant inbred strains, Diversity Outbred (DO) population and their 8 founder strains are complementary mouse resources that capture substantial genetic diversity and can demonstrate expansive phenotypic variation in heritable traits. These populations may be utilized to discover candidate genes and gene networks that moderate ethanol consumption and other ethanol-related traits. METHODS We characterized ethanol consumption, preference, and pharmacokinetics in the 8 founder strains and 10 CC strains in 12-hour drinking sessions during the dark phase of the circadian cycle. RESULTS Ethanol consumption was substantially heritable, both early in ethanol access and over a chronic intermittent access schedule. Ethanol pharmacokinetics were also heritable; however, no association between strain-level ethanol consumption and pharmacokinetics was detected. The PWK/PhJ strain was the highest drinking strain, with consumption substantially exceeding that of the C57BL/6J strain, which is commonly used as a model of "high" or "binge" drinking. Notably, we found strong evidence that sex moderated genetic effects on voluntary ethanol drinking. CONCLUSIONS Collectively, this research serves as a foundation for expanded genetic study of ethanol consumption in the CC/DO and related populations. Moreover, we identified reference strains with extreme consumption phenotypes that effectively represent polygenic models of excessive ethanol use.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
16
|
Huggett SB, Bubier JA, Chesler EJ, Palmer RHC. Do gene expression findings from mouse models of cocaine use recapitulate human cocaine use disorder in reward circuitry? GENES BRAIN AND BEHAVIOR 2020; 20:e12689. [PMID: 32720468 DOI: 10.1111/gbb.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022]
Abstract
Animal models of drug use have investigated possible mechanisms governing human substance use traits for over 100 years. Most cross-species research on drug use/addiction examines behavioral overlap, but studies assessing neuromolecular (e.g. RNA) correspondence are lacking. Our study utilized transcriptome-wide data from the hippocampus and ventral tegmental area (VTA)/midbrain from a total of 35 human males with cocaine use disorder/controls and 49 male C57BL/6J cocaine/saline administering/exposed mice. We hypothesized differential expressed genes and systems of co-expressed genes (gene networks) would show appreciable overlap across mouse cocaine self-administration and human cocaine use disorder. We found modest, but significant relationships between differentially expressed genes associated with cocaine self-administration (short access) and cocaine use disorder within reward circuitry. Differentially expressed genes underlying models of acute cocaine exposure (cocaine), context re-exposure and cocaine + context re-exposure were not consistently associated with human CUD across brain regions. Investigating systems of co-expressed genes, we found several validated gene networks with weak to moderate conservation between cocaine/saline self-administering mice and disordered cocaine users/controls. The most conserved hippocampal and VTA gene networks demonstrated substantial overlap (2029 common genes) and included both novel and previously implicated targets for cocaine use/addiction. Lastly, we conducted (expression-based) phenome-wide association studies of the nine common hub genes across conserved gene networks. Common hub genes were associated with dopamine/serotonin function, cocaine self-administration and other relevant mouse traits. Overall, our study pinpointed and characterized conserved brain-related RNA patterns across mouse cocaine self-administration and human cocaine use disorder. We offer recommendations for future research and add to the dialogue surrounding pre-clinical animal research for human disease.
Collapse
Affiliation(s)
- Spencer B Huggett
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, Georgia, USA
| | - Jason A Bubier
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Elissa J Chesler
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Sanchez-Roige S, Palmer AA, Clarke TK. Recent Efforts to Dissect the Genetic Basis of Alcohol Use and Abuse. Biol Psychiatry 2020; 87:609-618. [PMID: 31733789 PMCID: PMC7071963 DOI: 10.1016/j.biopsych.2019.09.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Alcohol use disorder (AUD) is defined by several symptom criteria, which can be dissected further at the genetic level. Over the past several years, our understanding of the genetic factors influencing alcohol use and abuse has progressed tremendously; numerous loci have been implicated in different aspects of alcohol use. Previously known associations with alcohol-metabolizing enzymes (ADH1B, ALDH2) have been replicated definitively. In addition, novel associations with loci containing the genes KLB, GCKR, CRHR1, and CADM2 have been reported. Downstream analyses have leveraged these genetic findings to reveal important relationships between alcohol use behaviors and both physical and mental health. AUD and aspects of alcohol misuse have been shown to overlap strongly with psychiatric disorders, whereas aspects of alcohol consumption have shown stronger links to metabolism. These results demonstrate that the genetic architecture of alcohol consumption only partially overlaps with the genetics of clinically defined AUD. We discuss the limitations of using quantitative measures of alcohol use as proxy measures for AUD, and we outline how future studies will require careful phenotype harmonization to properly capture the genetic liability to AUD.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California; Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Lai D, Wetherill L, Kapoor M, Johnson EC, Schwandt M, Ramchandani VA, Goldman D, Joslyn G, Rao X, Liu Y, Farris S, Mayfield RD, Dick D, Hesselbrock V, Kramer J, McCutcheon VV, Nurnberger J, Tischfield J, Goate A, Edenberg HJ, Porjesz B, Agrawal A, Foroud T, Schuckit M. Genome-wide association studies of the self-rating of effects of ethanol (SRE). Addict Biol 2020; 25:e12800. [PMID: 31270906 PMCID: PMC6940552 DOI: 10.1111/adb.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
Abstract
The level of response (LR) to alcohol as measured with the Self-Report of the Effects of Alcohol Retrospective Questionnaire (SRE) evaluates the number of standard drinks usually required for up to four effects. The need for a higher number of drinks for effects is genetically influenced and predicts higher risks for heavy drinking and alcohol problems. We conducted genome-wide association study (GWAS) in the African-American (COGA-AA, N = 1527 from 309 families) and European-American (COGA-EA, N = 4723 from 956 families) subsamples of the Collaborative Studies on the Genetics of Alcoholism (COGA) for two SRE scores: SRE-T (average of first five times of drinking, the period of heaviest drinking, and the most recent 3 months of consumption) and SRE-5 (the first five times of drinking). We then meta-analyzed the two COGA subsamples (COGA-AA + EA). Both SRE-T and SRE-5 were modestly heritable (h2 : 21%-31%) and genetically correlated with alcohol dependence (AD) and DSM-IV AD criterion count (rg : 0.35-0.76). Genome-wide significant associations were observed (SRE-T: chromosomes 6, rs140154945, COGA-EA P = 3.30E-08 and 11, rs10647170, COGA-AA+EA P = 3.53E-09; SRE-5: chromosome13, rs4770359, COGA-AA P = 2.92E-08). Chromosome 11 was replicated in an EA dataset from the National Institute on Alcohol Abuse and Alcoholism intramural program. In silico functional analyses and RNA expression analyses suggest that the chromosome 6 locus is an eQTL for KIF25. Polygenic risk scores derived using the COGA SRE-T and SRE-5 GWAS predicted 0.47% to 2.48% of variances in AD and DSM-IV AD criterion count in independent datasets. This study highlights the genetic contribution of alcohol response phenotypes to the etiology of alcohol use disorders.
Collapse
Affiliation(s)
- Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at
Mt. Sinai, New York, NY
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on
Alcohol Abuse & Alcoholism, Bethesda, MD
| | - Vijay A. Ramchandani
- Section on Human Psychopharmacology, Division of
Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and
Alcoholism, Bethesda, MD
| | - David Goldman
- Office of the Clinical Director, National Institute on
Alcohol Abuse & Alcoholism, Bethesda, MD
| | - Geoff Joslyn
- Ernest Gallo Clinic and Research Center, Emeryville,
CA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Sean Farris
- Waggoner Center for Alcohol and Addiction Research, The
University of Texas at Austin, Austin, TX
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The
University of Texas at Austin, Austin, TX
| | - Danielle Dick
- Department of Psychology, Virginia Commonwealth
University, Richmond, VA
| | | | - John Kramer
- Department of Psychiatry, Roy Carver College of
Medicine, University of Iowa, Iowa City, IA
| | - Vivia V. McCutcheon
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO
| | - John Nurnberger
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
- Department of Psychiatry, Indiana University School of
Medicine, Indianapolis, IN
| | - Jay Tischfield
- Department of Genetics and the Human Genetics Institute
of New Jersey, Rutgers University, Piscataway, NJ
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at
Mt. Sinai, New York, NY
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology,
Indiana University School of Medicine, Indianapolis, IN
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of
Psychiatry, State University of New York, Downstate Medical Center, Brooklyn,
NY
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Marc Schuckit
- Department of Psychiatry, University of California, San
Diego Medical School, San Diego, CA
| |
Collapse
|
19
|
Sun Y, Chang S, Wang F, Sun H, Ni Z, Yue W, Zhou H, Gelernter J, Malison RT, Kalayasiri R, Wu P, Lu L, Shi J. Genome-wide association study of alcohol dependence in male Han Chinese and cross-ethnic polygenic risk score comparison. Transl Psychiatry 2019; 9:249. [PMID: 31591379 PMCID: PMC6779867 DOI: 10.1038/s41398-019-0586-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Alcohol-related behaviors are moderately heritable and have ethnic-specific characteristics. At present, genetic studies for alcohol dependence (AD) in Chinese populations are underrepresented. We are the first to conduct a genome-wide association study (GWAS) for AD using 533 male alcoholics and 2848 controls of Han Chinese ethnicity and replicate our findings in 146 male alcoholics and 200 male controls. We then assessed genetic effects on AD characteristics (drinking volume/age onset/Michigan Alcoholism Screening Test (MAST)/Barratt Impulsiveness Scale (BIS-11)), and compared the polygenic risk of AD in Han Chinese with other populations (Thai, European American and African American). We found and validated two significant loci, one located in 4q23, with lead SNP rs2075633*ADH1B (Pdiscovery = 6.64 × 10-16) and functional SNP rs1229984*ADH1B (Pdiscovery = 3.93 × 10-13); and the other located in 12q24.12-12q24.13, with lead SNP rs11066001*BRAP (Pdiscovery = 1.63 × 10-9) and functional SNP rs671*ALDH2 (Pdiscovery = 3.44 × 10-9). ADH1B rs1229984 was associated with MAST, BIS_total score and average drinking volume. Polygenic risk scores from the Thai AD and European American AD GWAS were significantly associated with AD in Han Chinese, which were entirely due to the top two loci, however there was no significant prediction from African Americans. This is the first case-control AD GWAS in Han Chinese. Our findings demonstrate that these variants, which were highly linked with ALDH2 rs671 and ADH1B rs1229984, were significant modulators for AD in our Han Chinese cohort. A larger replication cohort is still needed to validate our findings.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Fan Wang
- Beijing Hui Long Guan Hospital, 100096, Beijing, China
- The Second Affiliated Hospital, Xinjiang Medical University, 830063, Urumqi, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Robert T Malison
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, 06519, USA
| | - Rasmon Kalayasiri
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China.
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, Beijing, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
20
|
Gelernter J, Sun N, Polimanti R, Pietrzak RH, Levey DF, Lu Q, Hu Y, Li B, Radhakrishnan K, Aslan M, Cheung KH, Li Y, Rajeevan N, Sayward F, Harrington K, Chen Q, Cho K, Honerlaw J, Pyarajan S, Lencz T, Quaden R, Shi Y, Hunter-Zinck H, Gaziano JM, Kranzler HR, Concato J, Zhao H, Stein MB. Genome-wide Association Study of Maximum Habitual Alcohol Intake in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol Psychiatry 2019; 86:365-376. [PMID: 31151762 PMCID: PMC6919570 DOI: 10.1016/j.biopsych.2019.03.984] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Habitual alcohol use can be an indicator of alcohol dependence, which is associated with a wide range of serious health problems. METHODS We completed a genome-wide association study in 126,936 European American and 17,029 African American subjects in the Veterans Affairs Million Veteran Program for a quantitative phenotype based on maximum habitual alcohol consumption. RESULTS ADH1B, on chromosome 4, was the lead locus for both populations: for the European American sample, rs1229984 (p = 4.9 × 10-47); for African American, rs2066702 (p = 2.3 × 10-12). In the European American sample, we identified three additional genome-wide-significant maximum habitual alcohol consumption loci: on chromosome 17, rs77804065 (p = 1.5 × 10-12), at CRHR1 (corticotropin-releasing hormone receptor 1); the protein product of this gene is involved in stress and immune responses; and on chromosomes 8 and 10. European American and African American samples were then meta-analyzed; the associated region at CRHR1 increased in significance to 1.02 × 10-13, and we identified two additional genome-wide significant loci, FGF14 (p = 9.86 × 10-9) (chromosome 13) and a locus on chromosome 11. Besides ADH1B, none of the five loci have prior genome-wide significant support. Post-genome-wide association study analysis identified genetic correlation to other alcohol-related traits, smoking-related traits, and many others. Replications were observed in UK Biobank data. Genetic correlation between maximum habitual alcohol consumption and alcohol dependence was 0.87 (p = 4.78 × 10-9). Enrichment for cell types included dopaminergic and gamma-aminobutyric acidergic neurons in midbrain, and pancreatic delta cells. CONCLUSIONS The present study supports five novel alcohol-use risk loci, with particularly strong statistical support for CRHR1. Additionally, we provide novel insight regarding the biology of harmful alcohol use.
Collapse
Affiliation(s)
- Joel Gelernter
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Ning Sun
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Renato Polimanti
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H Pietrzak
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel F Levey
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Qiongshi Lu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Yiming Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Boyang Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Krishnan Radhakrishnan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut
| | - Mihaela Aslan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kei-Hoi Cheung
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yuli Li
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Nallakkandi Rajeevan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Fred Sayward
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Harrington
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Quan Chen
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Todd Lencz
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, New York; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Rachel Quaden
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Yunling Shi
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Haley Hunter-Zinck
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Henry R Kranzler
- Veterans Integrated Services Networks (VISN) 4 Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John Concato
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Hongyu Zhao
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California.
| |
Collapse
|
21
|
Enculescu C, Kerr ED, Yeo KYB, Schenk G, Fortes MRS, Schulz BL. Proteomics Reveals Profound Metabolic Changes in the Alcohol Use Disorder Brain. ACS Chem Neurosci 2019; 10:2364-2373. [PMID: 30807102 DOI: 10.1021/acschemneuro.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Changes in brain metabolism are a hallmark of alcohol use disorder (AUD). Determining how AUD changes the brain proteome is critical for understanding the effects of alcohol consumption on biochemical processes in the brain. We used data-independent acquisition mass spectrometry proteomics to study differences in the abundance of proteins associated with AUD in prefrontal lobe and motor cortex from autopsy brain. AUD had a substantial effect on the overall brain proteome exceeding the inherent differences between brain regions. Proteins associated with glycolysis, trafficking, the cytoskeleton, and excitotoxicity were altered in abundance in AUD. We observed extensive changes in the abundance of key metabolic enzymes, consistent with a switch from glucose to acetate utilization in the AUD brain. We propose that metabolic adaptations allowing efficient acetate utilization contribute to ethanol dependence in AUD.
Collapse
Affiliation(s)
- Charmaine Enculescu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Edward D. Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - K. Y. Benjamin Yeo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
22
|
Cornelis MC. Genetic determinants of beverage consumption: Implications for nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:1-52. [PMID: 31351524 PMCID: PMC7047661 DOI: 10.1016/bs.afnr.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beverages make important contributions to nutritional intake and their role in health has received much attention. This review focuses on the genetic determinants of common beverage consumption and how research in this field is contributing insight to what and how much we consume and why this genetic knowledge matters from a research and public health perspective. The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate gene analysis but these approaches have been largely replaced by genome-wide association studies (GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important behavior-reward component (as opposed to taste) to beverage consumption which may serve as a potential barrier to dietary interventions. Loci identified have been used in Mendelian randomization and gene×beverage interaction analysis of disease but results have been mixed. This research is necessary as it informs the clinical relevance of SNP-beverage associations and thus genotype-based personalized nutrition, which is gaining interest in the commercial and public health sectors.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
23
|
Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, Tsao PS, Klarin D, Baras A, Reid J, Overton J, Rader DJ, Cheng Z, Tate JP, Becker WC, Concato J, Xu K, Polimanti R, Zhao H, Gelernter J. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun 2019; 10:1499. [PMID: 30940813 PMCID: PMC6445072 DOI: 10.1038/s41467-019-09480-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
Alcohol consumption level and alcohol use disorder (AUD) diagnosis are moderately heritable traits. We conduct genome-wide association studies of these traits using longitudinal Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) scores and AUD diagnoses in a multi-ancestry Million Veteran Program sample (N = 274,424). We identify 18 genome-wide significant loci: 5 associated with both traits, 8 associated with AUDIT-C only, and 5 associated with AUD diagnosis only. Polygenic Risk Scores (PRS) for both traits are associated with alcohol-related disorders in two independent samples. Although a significant genetic correlation reflects the overlap between the traits, genetic correlations for 188 non-alcohol-related traits differ significantly for the two traits, as do the phenotypes associated with the traits' PRS. Cell type group partitioning heritability enrichment analyses also differentiate the two traits. We conclude that, although heavy drinking is a key risk factor for AUD, it is not a sufficient cause of the disorder.
Collapse
Affiliation(s)
- Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA.
| | - Hang Zhou
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Rachel L Kember
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Rachel Vickers Smith
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- University of Louisville School of Nursing, Louisville, KY, 40202, USA
| | - Amy C Justice
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Scott Damrauer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Derek Klarin
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Jeffrey Reid
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - John Overton
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Daniel J Rader
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Zhongshan Cheng
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Janet P Tate
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - William C Becker
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - John Concato
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Ke Xu
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Renato Polimanti
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Hongyu Zhao
- Yale School of Medicine, New Haven, CT, 06511, USA
- Yale School of Public Health, New Haven, CT, 06511, USA
| | - Joel Gelernter
- Yale School of Medicine, New Haven, CT, 06511, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW We review the search for genetic variants that affect the risk for alcohol dependence and alcohol consumption. RECENT FINDINGS Variations in genes affecting alcohol metabolism (ADH1B, ALDH2) are protective against both alcohol dependence and excessive consumption, but different variants are found in different populations. There are different patterns of risk variants for alcohol dependence vs. consumption. Variants for alcohol dependence, but not consumption, are associated with risk for other psychiatric illnesses. ADH1B and ALDH2 strongly affect both consumption and dependence. Variations in many other genes affect both consumption and dependence-or one or the other of these traits-but individual effect sizes are small. Evidence for other specific genes that affect dependence is not yet strong. Most current knowledge derives from studies of European-ancestry populations, and large studies of carefully phenotyped subjects from different populations are needed to understand the genetic contributions to alcohol consumption and alcohol use disorders.
Collapse
|
25
|
Edenberg HJ, McClintick JN. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol Clin Exp Res 2018; 42:2281-2297. [PMID: 30320893 PMCID: PMC6286250 DOI: 10.1111/acer.13904] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex traits, meaning that variations in many genes contribute to the risk, as does the environment. Although the total genetic contribution to risk is substantial, most individual variations make only very small contributions. By far the strongest contributors are functional variations in 2 genes involved in alcohol (ethanol [EtOH]) metabolism. A functional variant in alcohol dehydrogenase 1B (ADH1B) is protective in people of European and Asian descent, and a different functional variant in the same gene is protective in those of African descent. A strongly protective variant in aldehyde dehydrogenase 2 (ALDH2) is essentially only found in Asians. This highlights the need to study a wide range of populations. The likely mechanism of protection against heavy drinking and AUDs in both cases is alteration in the rate of metabolism of EtOH that at least transiently elevates acetaldehyde. Other ADH and ALDH variants, including functional variations in ADH1C, have also been implicated in affecting drinking behavior and risk for alcoholism. The pattern of linkage disequilibrium in the ADH region and the differences among populations complicate analyses, particularly of regulatory variants. This critical review focuses upon the ADH and ALDH genes as they affect AUDs.
Collapse
Affiliation(s)
- Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jeanette N. McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
26
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|