1
|
Pande A, Kinkade CW, Prout N, Chowdhury SF, Rivera-Núñez Z, Barrett ES. Prenatal exposure to synthetic chemicals in relation to HPA axis activity: A systematic review of the epidemiological literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177300. [PMID: 39488279 DOI: 10.1016/j.scitotenv.2024.177300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Pregnant people are widely exposed to numerous synthetic chemicals with known endocrine-disrupting properties (e.g., phthalates, phenols, per- and poly-fluoroalkyl substances (PFAS)). To date, most epidemiological research on how endocrine-disrupting chemicals (EDCs) disrupt hormone pathways has focused on estrogens, androgens, and thyroid hormones. Far less research has examined the impact of EDCs on the hypothalamic-pituitary-adrenal (HPA) axis, despite its central role in the physiologic stress response and metabolic function. OBJECTIVE To systematically review the epidemiological literature on prenatal synthetic EDC exposures in relation to HPA axis hormones (e.g., corticotropin-releasing hormone, adrenocorticotropic hormone, cortisol, cortisone) in pregnant people and their offspring. METHODS A literature search of PubMed, Scopus, and Embase was conducted. Primary research studies were selected for inclusion by two independent reviewers and risk of bias was assessed using the Office of Health Assessment and Translation guidelines established by the National Toxicology Program with customization for the specific research topic. Data were extracted from each study and included in a qualitative synthesis. RESULTS 22 published studies met the inclusion criteria. Phthalates were the most prevalent EDC studied, followed by PFAS, phenols, and parabens, with fewer studies considering other synthetic chemicals. Offspring glucocorticoids were the most commonly considered outcome, followed by maternal glucocorticoids and placental corticotropin-releasing hormone. There was considerable heterogeneity in methods across studies, particularly in HPA axis outcome measures and matrices, making cross-study comparisons challenging. Numerous studies suggested disruption of HPA axis hormones and sex differences in association, but results varied considerably across studies and EDC classes. CONCLUSIONS The limited literature to date suggests the HPA axis may be vulnerable to disruption by synthetic EDCs. Carefully designed studies that prioritize biospecimen collection specific to HPA axis hormones are needed along with greater standardization of biospecimen collection and analysis protocols to facilitate cross-study comparisons and interpretation.
Collapse
Affiliation(s)
- Anushka Pande
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Nashae Prout
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Sadia F Chowdhury
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Translational Biomedical Sciences Program, University of Rochester, Rochester, NY 14642, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Cavaleiro Rufo J, Chauhan J, Kalayci Ö, Eigenmann P. Editorial comments on "Multiarray screening identifies plasma proteins associated with Th17 cell differentiation and viral defense in coincident asthma and obesity". Pediatr Allergy Immunol 2024; 35:e14242. [PMID: 39286994 DOI: 10.1111/pai.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Abstractimage
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- Indoor Air Quality and Respiratory Health Laboratory, EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
- Center for Translational Health and Medical Biotechnology, Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Ömer Kalayci
- Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Agache I, Canelo-Aybar C, Annesi-Maesano I, Cecchi L, Biagioni B, Chung F, D'Amato G, Damialis A, Del Giacco S, De Las Vecillas L, Dominguez-Ortega J, Galàn C, Gilles S, Giovannini M, Holgate S, Jeebhay M, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Traidl-Hoffmann C, Walusiak-Skorupa J, Sousa-Pinto B, Salazar J, Rodríguez-Tanta LY, Cantero Y, Montesinos-Guevara C, Song Y, Alvarado-Gamarra G, Sola I, Alonso-Coello P, Nieto-Gutierrez W, Jutel M, Akdis CA. The impact of indoor pollution on asthma-related outcomes: A systematic review for the EAACI guidelines on environmental science for allergic diseases and asthma. Allergy 2024; 79:1761-1788. [PMID: 38366695 DOI: 10.1111/all.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Systematic review using GRADE of the impact of exposure to volatile organic compounds (VOCs), cleaning agents, mould/damp, pesticides on the risk of (i) new-onset asthma (incidence) and (ii) adverse asthma-related outcomes (impact). MEDLINE, EMBASE and Web of Science were searched for indoor pollutant exposure studies reporting on new-onset asthma and critical and important asthma-related outcomes. Ninety four studies were included: 11 for VOCs (7 for incidenceand 4 for impact), 25 for cleaning agents (7 for incidenceand 8 for impact), 48 for damp/mould (26 for incidence and 22 for impact) and 10 for pesticides (8 for incidence and 2 for impact). Exposure to damp/mould increases the risk of new-onset wheeze (moderate certainty evidence). Exposure to cleaning agents may be associated with a higher risk of new-onset asthma and with asthma severity (low level of certainty). Exposure to pesticides and VOCs may increase the risk of new-onset asthma (very low certainty evidence). The impact on asthma-related outcomes of all major indoor pollutants is uncertain. As the level of certainty is low or very low for most of the available evidence on the impact of indoor pollutants on asthma-related outcomes more rigorous research in the field is warranted.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Carlos Canelo-Aybar
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence, Italy
| | | | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- Medical School of Respiratory Allergy, University of Naples Federico II, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Leticia De Las Vecillas
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Javier Dominguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Carmen Galàn
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Kari Nadeau
- Department of Environmental Health, Center for Climate, Health, and the Global Environment, Climate and Population Studies, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich -German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Bernardo Sousa-Pinto
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Josefina Salazar
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - L Yesenia Rodríguez-Tanta
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Yahveth Cantero
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Camila Montesinos-Guevara
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Yang Song
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Giancarlo Alvarado-Gamarra
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Ivan Sola
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Pablo Alonso-Coello
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Wendy Nieto-Gutierrez
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro Cochrane Iberoamericano, Sant Antoni Maria Claret, Barcelona, Spain
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Rufo JC, Annesi-Maesano I, Carreiro-Martins P, Moreira A, Sousa AC, Pastorinho MR, Neuparth N, Taborda-Barata L. Issue 2 - "Update on adverse respiratory effects of indoor air pollution" Part 1): Indoor air pollution and respiratory diseases: A general update and a Portuguese perspective. Pulmonology 2024; 30:378-389. [PMID: 37230882 DOI: 10.1016/j.pulmoe.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE To quantify the impact of different air pollutants on respiratory health based on robust estimates based on international data and to summarise the evidence of associations between indoor exposure to those pollutants and respiratory morbidity in the Portuguese population. RESULTS Several systematic reviews and meta-analyses (MA) at the world level demonstrate the impact of indoor air quality on respiratory health, with indoor particulate matter and gasses exerting a significant effect on the airways. Volatile organic compounds (VOC) have been related to asthma and lung cancer. However, only meta-analyses on biomass use allowed documentation of long-term respiratory effects. While early publications concerning Portuguese-based populations mainly focused on indoor exposure to environmental tobacco smoke, later studies relocated the attention to relevant exposure environments, such as day care buildings, schools, residences and nursing homes. Looking at the pooled effects from the reviewed studies, high levels of carbon dioxide and particulate matter in Portuguese buildings were significantly associated with asthma and wheezing, with VOC and fungi showing a similar effect in some instances. CONCLUSIONS Despite the significant reduction of indoor air pollution effects after the 2008 indoor smoking prohibition in public buildings, studies show that several indoor air parameters are still significantly associated with respiratory health in Portugal. The country shares the worldwide necessity of standardisation of methods and contextual data to increase the reach of epidemiological studies on household air pollution, allowing a weighted evaluation of interventions and policies focused on reducing the associated respiratory morbidity.
Collapse
Affiliation(s)
- J C Rufo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal
| | - I Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - P Carreiro-Martins
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Immunoallergology Service, Dona Estefânia Hospital, Centro Hospitalar e Universitário de Lisboa Central (CHULC), Lisbon, Portugal.
| | - A Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - A C Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, University of Évora, Évora, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - M R Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC) and Department of Medical and Health Sciences, University of Évora, Évora, Portugal
| | - N Neuparth
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Immunoallergology Service, Dona Estefânia Hospital, Centro Hospitalar e Universitário de Lisboa Central (CHULC), Lisbon, Portugal
| | - L Taborda-Barata
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; UBIAir-Clinical & Experimental Lung Centre, University of Beira Interior, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal; CICS-Health Sciences Research Centre, University of Beira Interior, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal; Immunoallergology Service, Centro Hospitalar Universitário Cova da Beira, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal
| |
Collapse
|
5
|
Lian X, Guo J, Wang Y, Wang S, Li J. Association between Volatile Organic Compound Exposure and Sex Hormones in Adolescents: The Mediating Role of Serum Albumin. TOXICS 2024; 12:438. [PMID: 38922118 PMCID: PMC11209113 DOI: 10.3390/toxics12060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The associations between VOCs and sex hormones in adolescents remain unclear, and the role of serum albumin in these associations deserves to be explored. We conducted cross-sectional analyses using generalized linear models (GLMs), weighted quantile sum (WQS) regression, and mediation analysis, based on data from 584 adolescents from the National Health and Nutrition Examination Survey (NHANES). The GLM analyses revealed that seven kinds of mVOCs potentially affected sex hormone levels. According to the WQS regression results, 2-aminothiazoline-4-carboxylic acid (ATCA) was the major contributor to the significant associations of mixed mVOC exposure with testosterone, estradiol, and free androgen index in males; N-acetyl-S-(N-methylcarbamoyl)-L-cysteine (AMCC) was the major contributor to the significant associations of mixed mVOC exposure with sex hormone-binding globulin in males; and N-acetyl-S-(benzyl)-L-cysteine (BMA) was the major contributor to the significant associations of mixed mVOC exposure with the ratio of testosterone to estradiol in females. Moreover, serum albumin could mediate up to 9.2% of the associations between mixed exposure to mVOCs and sex hormones. Our findings could provide a reference for studies on the mechanisms underlying the effects of VOCs on sex hormones in adolescents and emphasize the necessity of reducing exposure to ATCA, AMCC, BMA, and their parent compounds.
Collapse
Affiliation(s)
| | | | | | | | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; (X.L.); (J.G.); (S.W.)
| |
Collapse
|
6
|
Zhang D, Yan Z, He J, Yao Y, Liu K. The exposure to volatile organic compounds associate positively with overactive bladder risk in U.S. adults: a cross-sectional study of 2007-2020 NHANES. Front Public Health 2024; 12:1374959. [PMID: 38912261 PMCID: PMC11190323 DOI: 10.3389/fpubh.2024.1374959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Objective The aim of this study was to comprehensively investigate the potential relationship between blood volatile organic compounds (VOCs) and overactive bladder (OAB) risk. Methods A total of 11,183 participants from the 2007-2020 National Health and Nutrition Examination Survey (NHANES) were included in this cross-sectional study. We used multivariate logistic regression models to investigate the relationship between nine blood VOCs and OAB risk. Restricted cubic spline (RCS) analysis was used to investigate the dose-response relationship between blood VOCs and OAB. In addition, the overall association of blood VOCs with OAB risk was assessed by weighted quantile sum (WQS) regression model. Finally, we conducted subgroup analyses to explore the findings in different high-risk populations. Results After adjusting for potential confounders, logistic regression analysis revealed that blood 2,5-dimethylfuran (aOR = 2.940, 95% CI: 1.096-7.890, P = 0.032), benzene (aOR = 1.460, 95% CI: 1.044-2.043, P = 0.027) and furan (aOR = 9.426, 95% CI: 1.421-62.500, P = 0.020) were positively independent associated with the risk of OAB. And dose-response risk curves indicated that 2,5-dimethylfuran, benzene and furan in the blood were linearly positive associated with OAB risk. WQS regression analysis showed that exposure to mixed blood VOCs increased the risk of OAB (OR = 1.29, 95% CI: 1.11-1.49), with furans having the greatest weight. In subgroup analyses, we found that OAB was more susceptible to blood VOCs in young and middle-aged, male, non-hypertensive, and alcohol-drinking populations. Conclusions The results of this study indicate that high exposure to VOCs is independently and positively associated with OAB risk in U.S. adults, particularly 2,5-dimethylfuran, benzene, and furan. In addition, age, gender, hypertension and alcohol consumption may influence the association. Our study provided novel epidemiologic evidence to explore the potential role of environmental pollutants in OAB.
Collapse
Affiliation(s)
| | | | | | - Yunmin Yao
- Department of Urology, The Fifth People's Hospital of Wujiang District, Suzhou, China
| | - Kai Liu
- Department of Urology, The Fifth People's Hospital of Wujiang District, Suzhou, China
| |
Collapse
|
7
|
Wijsman PC, Goorsenberg AWM, d'Hooghe JNS, Weersink EJM, Fenn DW, Maitland van der Zee AH, Annema JT, Brinkman P, Bonta PI. Exhaled breath analyses for bronchial thermoplasty in severe asthma patients. Respir Med 2024; 225:107583. [PMID: 38447787 DOI: 10.1016/j.rmed.2024.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma. Although multiple trials have demonstrated clinical improvement after BT, optimal patient selection remains a challenge and the mechanism of action is incompletely understood. The aim of this study was to examine whether exhaled breath analysis can contribute to discriminate between BT-responders and non-responders at baseline and to explore pathophysiological insights of BT. METHODS Exhaled breath was collected from patients at baseline and six months post-BT. Patients were defined as responders or non-responders based on a half point increase in asthma quality of life questionnaire scores. Gas chromatography-mass spectrometry was used for volatile organic compounds (VOCs) detection and analyses. Analytical workflow consisted of: 1) detection of VOCs that differentiate between responders and non-responders and those that differ between baseline and six months post-BT, 2) identification of VOCs of interest and 3) explore correlations between clinical biomarkers and VOCs. RESULTS Data was available from 14 patients. Nonanal, 2-ethylhexanol and 3-thujol showed a significant difference in intensity between responders and non-responders at baseline (p = 0.04, p = 0.01 and p = 0.03, respectively). After BT, no difference was found in the compound intensity of these VOCs. A negative correlation was observed between nonanal and IgE and BALF eosinophils (r = -0.68, p < 0.01 and r = -0.61, p = 0.02 respectively) and 3-thujol with BALF neutrophils (r = -0.54, p = 0.04). CONCLUSIONS This explorative study identified discriminative VOCs in exhaled breath between BT responders and non-responders at baseline. Additionally, correlations were found between VOC's and inflammatory BALF cells. Once validated, these findings encourage research in breath analysis as a non-invasive easy to apply technique for identifying airway inflammatory profiles and eligibility for BT or immunotherapies in severe asthma.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Annika W M Goorsenberg
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Julia N S d'Hooghe
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Els J M Weersink
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Dominic W Fenn
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | | | - Jouke T Annema
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Paul Brinkman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands.
| |
Collapse
|
8
|
Zhang L, Wan B, Zheng J, Chen L, Xuan Y, Zhang R, Chen Z, Hu C, Zhang Y, Yan C. Polystyrene nanoplastics inhibit beige fat function and exacerbate metabolic disorder in high-fat diet-fed mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170700. [PMID: 38331288 DOI: 10.1016/j.scitotenv.2024.170700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Global health concerns about micro- and nanoplastics are increasing. The newly discovered beige adipocytes play a vital role in energy homeostasis through their high thermogenic capacity upon activation. However, the effects of micro- and nanoplastics on beige adipocytes have not yet been studied. We investigated whether the effects of oral exposure to polystyrene nanoparticles (PS-NPs) on systemic metabolic performance can be induced by disrupting beige adipocyte function, and the potential mechanism. In the present study, C57BL/6J male mice were fed a high-fat diet (HFD) with or without PS-NPs exposure for 12 weeks to investigate the differences in metabolic performance. We also isolated stromal vascular fraction from C57BL/6J male mice to differentiate and prepare primary beige adipocyte cultures. Primary beige adipocytes were treated with PS-NPs on the sixth day of differentiation. The results showed that oral intake of PS-NPs exacerbated metabolic disorders of mice under HFD, including suppressed energy expenditure, increased fat mass and liver steatosis, decreased insulin sensitivity, disrupted glucose homeostasis, and decreased cold-tolerance capability compared with the control group. Intriguingly, we observed that, after a 12-week exposure, PS-NPs accumulated in the inguinal white adipose tissue (iWAT), a fat depot rich in beige adipocytes, further suppressing thermogenic gene programs, particularly the level of uncoupling protein 1 (UCP1), a master regulator in the browning process of beige adipocytes. These effects ultimately led to decreased energy expenditure and subsequent disorders of glucolipid metabolism. Mechanistically, we revealed that PS-NPs disrupt mitochondrial function and induce oxidative damage and inflammation in beige adipocytes to inhibit their function. These negative metabolic effects of PS-NPs were ameliorated by antioxidant supplementation. Our study is the first to demonstrate that PS-NPs exposure exacerbates metabolic disorder in HFD-fed mice by disrupting beige adipocyte function.
Collapse
Affiliation(s)
- Lina Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiangfei Zheng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Wang X, He W, Wu X, Song X, Yang X, Zhang G, Niu P, Chen T. Exposure to volatile organic compounds is a risk factor for diabetes: A cross-sectional study. CHEMOSPHERE 2023; 338:139424. [PMID: 37419158 DOI: 10.1016/j.chemosphere.2023.139424] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Currently, more studies showed that environmental chemicals were associated with the development of diabetes. However, the effect of volatile organic compounds (VOCs) on diabetes remained uncertain and needed to be studied. This cross-sectional study examined whether exposure to low levels of VOCs was associated with diabetes, insulin resistance (TyG index) and glucose-related indicators (FPG,HbA1c, insulin) in the general population by using the NHANES dataset (2013-2014 and 2015-2016). We analyzed the association between urinary VOC metabolism (mVOCs) and these indicators in 1409 adults by multiple linear regression models or logistic regression models, further Bayesian kernel machine regression (BKMR) models were performed for mixture exposure analysis. The results showed positive associations between multiple mVOCs and diabetes, TyG index, FPG, HbA1c and insulin, respectively. Among them, HPMMA concentration in urine was significantly positively correlated with diabetes and related indicators (TyG index, FPG and HbA1c), and the concentration of CEMA was significantly positively correlated with insulin. The positive association of mVOCs with diabetes and its related indicators was more significant in the female group and in the 40-59 years group. Thus, our study suggested that exposure to VOCs affected insulin resistance and glucose homeostasis, further affecting diabetes levels, which had important public health implications.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaojuan Wu
- Department of Endocrinology, Fu Xing Hospital, Capital Medical University, 100038, Beijing, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Chen WY, Fu YP, Tu H, Zhong W, Zhou L. The association between exposure to volatile organic compounds and serum lipids in the US adult population. Lipids Health Dis 2023; 22:129. [PMID: 37568143 PMCID: PMC10422774 DOI: 10.1186/s12944-023-01895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND AND AIM Epidemiological evidence on the relationship between exposure to volatile organic compounds (VOCs), both single and mixed, and serum lipid levels is limited, and their relationship remains unclear. Our study aimed to investigate the associations of exposure to VOCs with serum lipid levels in the US adult population. METHODS AND RESULTS The study examined the association of 16 VOC levels (2-methylhippuric acid, 3- and 4-methylhippuric acid, N-acetyl-S-(2-carbamoylethyl)-L-cysteine, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine, 2-aminothiazoline-4-carboxylic acid, N-acetyl-S-(benzyl)-L-cysteine, N-acetyl-S-(n-propyl)-L-cysteine, N-acetyl-S-(2-carboxyethyl)-L-cysteine, N-acetyl-S-(2-cyanoethyl)-L-cysteine, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine, N-acetyl-S-(2-hydroxypropyl)-L-cysteine. N-Acetyl-S-(3-hydroxypropyl)-L-cysteine, mandelic acid, N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine, phenylglyoxylic acid and N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine) with total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) using data from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2015, and a total of 1410 adults were enrolled. The association was evaluated by Bayesian kernel machine regression (BKMR), multiple linear regression and weighted quantile sum (WQS) regression. In BKMR analysis, exposure to VOCs is positively correlated with levels of TC, TG, and LDL-C. However, statistical significance was observed only for the impact on TG. Our linear regression analysis and WQS regression generally support the BKMR results. Several VOCs were positively associated with serum lipid profiles (e.g., the ln-transformed level of mandelic acid (MA) displayed an increase in estimated changes of 7.01 (95% CIs: 2.78, 11.24) mg/dL for TC level), even after the effective number of tests for multiple testing (P < 0.05). CONCLUSIONS Exposure to VOCs was associated with serum lipids, and more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Wen-Yu Chen
- Cardiovascular Medicine Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| | - Yan-Peng Fu
- Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006 China
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Hui Tu
- Nusring Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| | - Wen Zhong
- Cardiovascular Medicine Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| | - Liang Zhou
- Cardiovascular Medicine Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| |
Collapse
|
11
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
12
|
Gonçalves Teixeira B, Paciência I, Cavaleiro Rufo J, Mendes F, Farraia M, Padrão P, Moreira P, Moreira A. The Influence of Obesity in the Autonomic Nervous System Activity in School-Aged Children in Northern Portugal: A Cross-Sectional Study. ACTA MEDICA PORT 2023; 36:317-325. [PMID: 37130573 DOI: 10.20344/amp.17144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/19/2022] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Obesity is one of the most prevalent chronic diseases in childhood, being an important public health issue. Excessive weight has been associated with autonomic dysfunction but the evidence in children is scarce. Therefore, the aim of this study was to assess the effect of overweight and obesity on the autonomic nervous system activity, in children. MATERIAL AND METHODS Data from a cross-sectional study of 1602 children, aged 7 to 12 years, was used and 858 children were included in the analysis. Body mass index was calculated and classified according to criteria of the World Health Organization (WHO), Centers for Disease Control and Prevention (CDC) and the International Obesity Task Force (IOTF). Body composition was characterized by bioelectrical impedance. Linear regression models were used to determine the association between body mass index, body composition and the autonomic nervous system activity, assessed by pupillometry. RESULTS Average dilation velocity was higher among children with obesity, according to the CDC and percentage of body fat criteria (β = 0.053, 95% CI = 0.005 to 0.101 and β = 0.063, 95% CI = 0.016 to 0.109, respectively). The same trend was observed for WHO and IOTF criteria (β = 0.045, 95% CI = -0.001 to 0.091, and β = 0.055, 95% CI = -0.001 to 0.111, respectively). CDC and WHO body mass index z-scores were also positively associated with the values of average dilation velocity (rs = 0.030, p = 0.048; and rs = 0.027, p = 0.042, respectively). CONCLUSION Our findings suggest an association between body mass and changes in the autonomic activity, Moreover, this study provides proof of concept for interventions targeting the prevention/treatment of obesity in children that may offer some benefit in re-establishing the balance of the autonomic nervous system, and subsequently preventing the consequences associated with the autonomic nervous system dysfunction.
Collapse
Affiliation(s)
| | - Inês Paciência
- Serviço de Imunologia Básica e Clínica. Departamento de Patologia. Faculdade de Medicina da Universidade do Porto. Centro Hospitalar Universitário de São João. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| | - João Cavaleiro Rufo
- Serviço de Imunologia Básica e Clínica. Departamento de Patologia. Faculdade de Medicina da Universidade do Porto. Centro Hospitalar Universitário de São João. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| | - Francisca Mendes
- Serviço de Imunologia Básica e Clínica. Departamento de Patologia. Faculdade de Medicina da Universidade do Porto. Centro Hospitalar Universitário de São João. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| | - Mariana Farraia
- Serviço de Imunologia Básica e Clínica. Departamento de Patologia. Faculdade de Medicina da Universidade do Porto. Centro Hospitalar Universitário de São João. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| | - Patrícia Padrão
- Faculdade de Ciências da Nutrição e Alimentação. Universidade do Porto. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| | - Pedro Moreira
- Faculdade de Ciências da Nutrição e Alimentação. Universidade do Porto. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| | - André Moreira
- Serviço de Imunologia Básica e Clínica. Departamento de Patologia. Faculdade de Medicina da Universidade do Porto. Centro Hospitalar Universitário de São João. Porto; EPIUnit. Instituto de Saúde Pública. Universidade do Porto. Porto; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR). Porto. Portugal
| |
Collapse
|
13
|
Lei T, Qian H, Yang J, Hu Y. The association analysis between exposure to volatile organic chemicals and obesity in the general USA population: A cross-sectional study from NHANES program. CHEMOSPHERE 2023; 315:137738. [PMID: 36608892 DOI: 10.1016/j.chemosphere.2023.137738] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Increasing evidence have been provided that the exposure to environment pollutants was associated obesity, while whether the exposure to volatile organic chemicals (VOC) was associated with obesity or abdominal obesity is yet to be clarified. METHOD A cross-sectional study using data from the 6 survey cycles (2005-2006, 2011-2018, 2017-2020) of NHANES program was performed. Obesity and abdominal obesity were identified as a BMI >30 and a waist circumference >102 cm for men or >88 cm for women respectively. The quantile logistic regression method was used to analyze the association between VOC metabolites (VOCs) in urine and obesity, and the quantile regression method was used for the association analysis between VOCs in urine and BMI, as well as waist circumference. RESULTS A total of 17 524 participants (4965 obesity, 7317 abdominal obesity) were included, and participants in the obesity or abdominal obesity groups showed higher VOCs in urine than that in the control group. The CEMA was identified as the risk factor for obesity and abdominal obesity in all the 4 models, and its detected OR for obesity in the Q2 to Q4 of model 3 was 1.169 (Q2, p < 0.05), 1.306 (Q3, p < 0.001) and 1.217 (Q4, p < 0.01) respectively. And its OR for abdominal obesity in the Q2 to Q4 of model 3 was 1.222 (Q2, p < 0.01), 1.448 (Q3, p < 0.001) and 1.208 (Q4, p < 0.05) respectively. A significantly positive association between CEMA and BMI, as well as waist circumference, was also detected. CONCLUSION In this study, we found that the exposure to VOC (Acrolein, Acrylamide, Acrylonitrile, 1,3-Butadiene, Crotonaldehyde, Cyanide, N,N-Dimethylformamide, Ethylbenzene, styrene, Propylene oxide, Toluene and Xylene) was significantly associated with obesity or abdominal obesity. And also, more prospective studies and related experimental researches should be carried out to further demonstrate the conclusion of this study.
Collapse
Affiliation(s)
- Ting Lei
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Junxiao Yang
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| |
Collapse
|
14
|
Chatterjee N, Kim C, Im J, Kim S, Choi J. Mixture and individual effects of benzene, toluene, and formaldehyde in zebrafish (Danio rerio) development: Metabolomics, epigenetics, and behavioral approaches. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104031. [PMID: 36460283 DOI: 10.1016/j.etap.2022.104031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, we aimed to investigate the potential hazards of volatile organic compounds (VOCs) on the development of zebrafish. To this end, zebrafish embryos were exposed in two different windows, either alone or in a mixture with VOCs (benzene, toluene, and formaldehyde) [EW1: 4 ± 2 h post-fertilization (hpf) to 24 hpf and EW2: 24 ± 2 hpf to 48 hpf]. Alterations in global DNA methylation and related gene expression, behavioral responses, and stress-related gene expression were observed. In addition to these endpoints, non-targeted NMR-based global metabolomics followed by pathway analysis showed significant changes in the metabolism of various amino acids during VOC exposure. Regardless of the analyzed endpoints, toluene was the most toxic chemical when exposed individually and possibly played the most pivotal role in the mixture treatment conditions. In conclusion, our data show that exposure to VOCs at embryonic developmental stages causes physiological perturbations and adverse outcomes at later life stages.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Chanhee Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
15
|
Martin L, Zhang Y, First O, Mustieles V, Dodson R, Rosa G, Coburn-Sanderson A, Adams CD, Messerlian C. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. ENVIRONMENT INTERNATIONAL 2022; 170:107576. [PMID: 36283156 PMCID: PMC9890927 DOI: 10.1016/j.envint.2022.107576] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 10/08/2022] [Indexed: 05/04/2023]
Abstract
Non-persistent endocrine-disrupting chemicals (EDCs), including phthalates and phenols, are ubiquitous in both the environment and human body. A growing body of epidemiologic studies have identified concerning links between EDCs and adverse reproductive and developmental health effects. Despite consistent evidence, risk assessments and policy interventions often arrive late. This presents an urgent need to identify evidence-based interventions for implementation at both clinical and community levels to reduce EDC exposure, especially in susceptible populations. The reproductive life cycle (menarche to menopause for females and after pubertal onset for males) includes some of the most vulnerable periods to environmental exposures, such as the preconception and perinatal stages, representing a key window of opportunity to intervene and prevent unfavorable health outcomes. This review aims to synthesize and assess behavioral, dietary, and residential EDC-driven interventions to develop recommendations for subsequent, larger-scale studies that address knowledge-gaps in current interventions during the reproductive life cycle. We selected 21 primary interventions for evaluation, in addition to four supplemental interventions. Among these, accessible (web-based) educational resources, targeted replacement of (known) toxic products, and personalization of the intervention through meetings and support groups, were the most promising strategies for reducing EDC concentrations. However, we document a paucity of interventions to prevent phthalate and phenol exposures during the reproductive years, especially among men. Accordingly, we recommend additional, larger clinical and community-based intervention studies to reduce EDC exposure. Specifically, future intervention studies should focus on short-term, mid-, and long-term exposure reduction to phthalates and phenols. The latter, especially, is required for the development of clinical and public health guidelines to promote reproductive and developmental health globally.
Collapse
Affiliation(s)
- Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gabriela Rosa
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Charleen D Adams
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
16
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
17
|
Effects of Ambient Particulate Matter (PM 2.5) Exposure on Calorie Intake and Appetite of Outdoor Workers. Nutrients 2022; 14:nu14224858. [PMID: 36432544 PMCID: PMC9699249 DOI: 10.3390/nu14224858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Malaysia has been experiencing smoke-haze episodes almost annually for the past few decades. PM2.5 is the main component in haze and causes harmful impacts on health due to its small aerodynamic size. This study aimed to explore the implications of PM2.5 exposure on the dietary intake of working individuals. Two phased 13-weeks follow-up study was conducted involving 440 participants, consisting of two cohorts of outdoor and indoor workers. Ambient PM2.5 concentrations were monitored using DustTrakTM DRX Aerosol Monitor. Data on Simplified Nutritional Appetite Questionnaire (SNAQ) and 24 h diet recall were collected weekly. The highest PM2.5 concentration of 122.90 ± 2.07 µg/m3 was recorded in August, and it vastly exceeded the standard value stipulated by US EPA and WHO. SNAQ scores and calorie intake were found to be significantly (p < 0.05) associated with changes in PM2.5 exposure of outdoor workers. Several moderate and positive correlations (R-value ranged from 0.4 to 0.6) were established between SNAQ scores, calorie intake and PM2.5 exposure. Overall findings suggested that long hours of PM2.5 exposure affect personal dietary intake, potentially increasing the risk of metabolic syndromes and other undesired health conditions. The current policy should be strengthened to safeguard the well-being of outdoor workers.
Collapse
|
18
|
Li L, Xu S, Lian Q. The mediating function of obesity on endocrine-disrupting chemicals and insulin resistance in children. J Pediatr Endocrinol Metab 2022; 35:1169-1176. [PMID: 36069769 DOI: 10.1515/jpem-2022-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To explore the association of endocrine-disrupting chemicals (EDCs) with insulin resistance (IR) in children as well as whether obesity played a mediation role between EDCs and IR. METHODS In this cross-sectional study, the data of 878 subjects were included, and divided into the non-IR group (n=501) and IR group (n=377). The associations of EDC and IR, obesity, abdominal obesity were shown by restricted cubic spline (RCS). Univariate and multivariable logistic analysis were applied to explore the associations between EDCs and IR as well as EDCs and obesity, respectively. Bootstrap coefficient product was used to analyze the medication effect of obesity on EDCs and IR. RESULTS RCS showed that increase of benzophenone-3 (BP-3) level was associated with increased risk of IR, obesity and abdominal obesity. After adjusting for confounders, BP-3>100 ng/mL was a risk factor for IR (OR=1.42, 95%CI: 1.11-1.81). In the adjusted model, we found BP-3>100 ng/mL was a risk factor for both obesity (OR=1.52, 95%CI: 1.13-2.04) and abdominal obesity (OR=1.68, 95%CI: 1.11-2.54). The indirect effect of obesity as a mediator on the relationship between BP-3 and IR was 0.038 (95%CI: 0.016-0.090) and the direct effect of obesity as a mediator on the relationship between BP-3 and IR was 0.077 (95%CI: 0.001-0.160). As for abdominal obesity, the indirect effect of it on the relationship between BP-3 and IR was 0.039 (95%CI: 0.007-0.070). CONCLUSIONS BP-3 level might be a risk factor for IR and obesity in children, and obesity was a mediator on the relationship between BP-3 and IR in children.
Collapse
Affiliation(s)
- Lingli Li
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Qun Lian
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
19
|
Wong M, Forno E, Celedón JC. Asthma interactions between obesity and other risk factors. Ann Allergy Asthma Immunol 2022; 129:301-306. [PMID: 35500862 PMCID: PMC10825856 DOI: 10.1016/j.anai.2022.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To review and critically discuss published evidence on interactions between obesity and selected risk factors on asthma in children and adults, and to discuss potential future directions in this field. DATA SOURCES National Library of Medicine (via PubMed) STUDY SELECTION: A literature search was conducted for human studies on obesity and selected interactions (with sex, race and ethnicity, socioeconomic status, indoor and outdoor pollutants, depression, anxiety, and diet) on asthma. Studies that were published in English and contained a full text were considered for inclusion in this review. RESULTS Current evidence supports interactions between obesity and outdoor and indoor air pollutants (including second-hand smoke [SHS]) on enhancing asthma risk, although there are sparse data on the specific pollutants underlying such interactions. Limited evidence also suggests that obesity may modify the effects of depression or anxiety on asthma, whereas little is known about potential interactions between obesity and sex-hormone levels or dietary patterns. CONCLUSION Well-designed observational prospective studies (eg, for pollutants and sex hormones) and randomized clinical trials (eg, for the treatment of depression) should help establish the impact of modifying coexisting exposures to reduce the harmful effects of obesity on asthma. Such studies should be designed to have a sample size that is large enough to allow adequate testing of interactions between obesity and risk factors that are identified a priori and thus, well characterized, using objective measures and biomarkers (eg, urinary or serum cotinine for SHS, epigenetic marks of specific environmental exposures).
Collapse
Affiliation(s)
- Matthew Wong
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Currently, the effect of exposure to indoor air contaminants and the presence of dampness at home on respiratory/atopic health is of particular concern to physicians. The measurement of volatile organic compounds (VOCs) in exhaled breath is a useful approach for monitoring environmental exposures. A great advantage of this strategy is that it allows the study of the impact of pollutants on the metabolism through a non-invasive method. In this paper, the levels of nine VOCs (acetone, isoprene, toluene, p/m-xylene, o-xylene, styrene, benzaldehyde, naphthalene, and 2-ethyl-1-hexanol) in the exhaled breath of subjects exposed and not exposed to home dampness were assessed. Exhaled breath samples were collected from 337 mother–child pairs of a birth cohort and analysed by gas-chromatography–mass-spectrometry. It was observed that the levels of 2-ethyl-1-hexanol in the exhaled breath of the mothers were significantly influenced by exposure to household humidity. In the case of the infants, differences in some of the VOC levels related to home dampness exposure; however, they did not reach statistical significance. In addition, it was also found that the eosinophil counts of the mothers exposed to home dampness were significantly elevated compared to those of the non-exposed mothers. To our knowledge, these findings show, for the first time, that exposure to home dampness may influence VOC patterns in exhaled breath.
Collapse
|
21
|
Paciência I, Cavaleiro Rufo J, Moreira A. Environmental inequality: Air pollution and asthma in children. Pediatr Allergy Immunol 2022; 33. [PMID: 35754123 DOI: 10.1111/pai.13818] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Whether you benefit from high-quality urban environments, such as those rich in green and blue spaces, that may offer benefits to allergic and respiratory health depends on where you live and work. Environmental inequality, therefore, results from the unequal distribution of the risks and benefits that stem from interactions with our environment. METHODS Within this perspective, this article reviews the evidence for an association between air pollution caused by industrial activities, traffic, disinfection-by-products, and tobacco/e-cigarettes, and asthma in children. We also discuss the proposed mechanisms by which air pollution increases asthma risk, including environmental epigenetic regulations, oxidative stress, and damage, disrupted barrier integrity, inflammatory pathways, and enhancement of respiratory sensitization to aeroallergens. RESULTS AND CONCLUSIONS Environmental air pollution is a major determinant of childhood asthma, but the magnitude of effect is not shared equally across the population, regions, and settings where people live, work, and spend their time. Improvement of the exposure assessment, a better understanding of critical exposure time windows, underlying mechanisms, and drivers of heterogeneity may improve the risk estimates. Urban conditions and air quality are not only important features for national and local authorities to shape healthy cities and protect their citizens from environmental and health risks, but they also provide opportunities to mitigate inequalities in the most deprived areas where the environmental burden is highest. Actions to avoid exposure to indoor and outdoor air pollutants should be complementary at different levels-individual, local, and national levels-to take effective measures to protect children who have little or no control over the air they breathe.
Collapse
Affiliation(s)
- Inês Paciência
- EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal.,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.,Center for Environmental and Respiratory Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - João Cavaleiro Rufo
- EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal.,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - André Moreira
- EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal.,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.,Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Liang J, Yang C, Liu T, Tang P, Huang H, Wei H, Liao Q, Long J, Zeng X, Liu S, Huang D, Qiu X. Single and mixed effects of prenatal exposure to multiple bisphenols on hemoglobin levels and the risk of anemia in pregnant women. ENVIRONMENTAL RESEARCH 2022; 207:112625. [PMID: 34973942 DOI: 10.1016/j.envres.2021.112625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Bisphenols have endocrine-disrupting effects, which may disrupt hemoglobin (Hb) homeostasis and lead to anemia. However, the effects of bisphenols on anemia remain unknown. Therefore, we assessed the effects of single- and multiple-exposure to bisphenols on Hb levels and anemia of pregnant women. METHODS The study involved 2035 pregnant women from Guangxi Zhuang Birth Cohort in China. Generalized linear regression, principal component analysis (PCA), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) were performed to examine the effects of serum bisphenols on Hb levels and the risk of anemia. RESULTS After adjustment, elevated bisphenol A (BPA) levels were correlated with decreased Hb concentrations (β = -0.51; 95%CI: -0.92, -0.10) in the first trimester, and these correlations were more sensitive in mothers of males. Compared with the low-exposure group, bisphenol B (BPB) levels in the high-exposure group led to a 1.52 g/L (95%CI: -3.01, -0.03) decrease in Hb levels in the second trimester; tetrabromobisphenol A (TBBPA) levels in the high-exposure group led to a higher the risk of anemia in the third trimester (OR = 1.46; 95%CI: 1.07, 1.99); bisphenol F (BPF) in the high-exposure group led to lower Hb levels (β = -2.42; 95%CI:-4.69, -0.14) in mothers of male fetuses in the third trimester. Qgcomp showed that elevated levels of bisphenol mixture was correlated with (β = -1.42; 95%CI: -2.61, -0.24) decrease in Hb levels in the second trimester. PCA revealed a negative association between PC2 and Hb levels in the first trimester (β = -0.89; 95%CI: -1.61, -0.17). Similarly, a negative relationship was observed between PC1 and Hb levels in the third trimester among mothers with male fetuses (β = -1.00; 95%CI: -1.94, -0.06). CONCLUSIONS Prenatal exposure to single and mixed bisphenols may decrease Hb levels and increase the risk of anemia during pregnancy, the associations may be greater in mothers with male fetuses than those with female fetuses.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunxiu Yang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, 418000, Hunan, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huanni Wei
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
23
|
Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children. Nutrients 2022; 14:nu14061147. [PMID: 35334803 PMCID: PMC8949211 DOI: 10.3390/nu14061147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Individual nutrients and bioactive compounds have been implicated in the expression of microRNAs (miRNAs), which are related to inflammation and asthma. However, evidence about the impact of diet is scarce. Therefore, we aimed to assess the association between dietary acid load and asthma-related miRNA in the exhaled breath condensate (EBC) of school-aged children. This cross-sectional analysis included 150 participants aged 7 to 12 years (52% girls) from a nested case–control study, which randomly selected 186 children attending 71 classrooms from 20 public schools located in city of Porto, Portugal. Dietary data were collected by one 24 h-recall questionnaire. Dietary acid load was assessed using the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores. Based on previous studies, eleven asthma-related miRNAs were chosen and analyzed in EBC by reverse transcription-quantitative real-time PCR. PRAL, NEAP and miRNAs were categorized as high or low according to the median. Logistic regression models were performed to assess the association between dietary acid load scores and miRNAs. Children in high dietary acid load groups (PRAL ≥ 14.43 and NEAP ≥ 55.79 mEq/day) have significantly increased odds of having high miR-133a-3p levels. In conclusion, higher dietary acid loads possibly modulate asthma-related miRNAs of school-aged children.
Collapse
|
24
|
Pregnant Women and Endocrine Disruptors: Role of P2X7 Receptor and Mitochondrial Alterations in Placental Cell Disorders. Cells 2022; 11:cells11030495. [PMID: 35159304 PMCID: PMC8834275 DOI: 10.3390/cells11030495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
In pregnant women, the lungs, skin and placenta are exposed daily to endocrine-disrupting chemicals (EDCs). EDCs induce multiple adverse effects, not only on endocrine organs, but also on non-endocrine organs, with the P2X7 cell death receptor being potentially the common key element. Our objective was first to investigate mechanisms of EDCs toxicity in both endocrine and non-endocrine cells through P2X7 receptor activation, and second, to compare the level of activation in lung, skin and placental cells. In addition, apoptosis in placental cells was studied because the placenta is the most exposed organ to EDCs and has essential endocrine functions. A total of nine EDCs were evaluated on three human cell models. We observed that the P2X7 receptor was not activated by EDCs in lung non-endocrine cells but was activated in skin and placenta cells, with the highest activation in placenta cells. P2X7 receptor activation and apoptosis are pathways shared by all tested EDCs in endocrine placental cells. P2X7 receptor activation along with apoptosis induction could be key elements in understanding endocrine placental and skin disorders induced by EDCs.
Collapse
|
25
|
Song W, Han Q, Wan Y, Qian X, Wei M, Jiang Y, Wang Q. Repeated measurements of 21 urinary metabolites of volatile organic compounds and their associations with three selected oxidative stress biomarkers in 0-7-year-old healthy children from south and central China. CHEMOSPHERE 2022; 287:132065. [PMID: 34496338 DOI: 10.1016/j.chemosphere.2021.132065] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Human beings are extensively and concurrently exposed to multiple volatile organic compounds (VOCs, including some Class I human carcinogens), which may induce oxidative stress in human body. Data on urinary metabolites of VOCs (mVOCs) among young children are limited. No studies have examined their inter-day variability of mVOCs and their associations with oxidative stress biomarkers (OSBs) using repeated urine samples from children. In this study, we measured twenty one mVOCs and three OSBs [8-hydroxy-2'-deoxyguanosine (8-OHdG; for DNA), 8-hydroxyguanosine (8-OHG; for RNA], and 4-hydroxy nonenal mercapturic acid (HNEMA; for lipid)] in 390 urine samples of 130 children (three samples on three consecutive days provided by each participant) aged 0-7 years from September 2018 to January 2019 in Shenzhen, south China, and Wuhan, central China. HPMMA (3-hydroxypropyl-1-methyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine), 3HPMA (3-hydroxypropyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl)-l-cysteine), and ATCA (2-aminothiazoline-4-carboxylic acid) had higher specific gravity-adjusted median concentrations (1 383, 286, and 273 μg/L, respectively) than the others. Intraclass correlation coefficients of mVOCs ranged from 0.29 to 0.71. After false-discovery rate (FDR, defined as FDR q-value < 0.05) adjustment, linear mixed-effects models revealed that 14 mVOCs were positively associated with 8-OHdG (β range: 0.09-0.37), 11 mVOCs were positively associated with 8-OHG (β range: 0.08-0.30), and 11 mVOCs were positively associated with HNEMA (β range: 0.21-0.70) in urine. Considering the weight of the mVOC index accounted for the associations, based on the weighted quantile sum regression model, parent compounds of DHBMA (3,4-dihydroxybutyl mercapturic acid/N-Acetyl-S-(3,4-dihydroxybutyl)-l-cysteine) and t,t-MA (trans,trans-muconic acid) should be listed as priority VOCs for management to mitigate health risks. For the first time, this study characterized the inter-day variability of urinary mVOCs and their associations with selected OSBs (8-OHdG, 8-OHG, and NHEMA) in young, healthy Chinese children.
Collapse
Affiliation(s)
- Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Qing Han
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
26
|
Kelsey JR. Ethylene oxide derived glycol ethers: A review of the alkyl glycol ethers potential to cause endocrine disruption. Regul Toxicol Pharmacol 2021; 129:105113. [PMID: 34974128 DOI: 10.1016/j.yrtph.2021.105113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
The 'ethylene glycol ethers' (EGE) are a broad family of solvents and hydraulic fluids produced through the reaction of ethylene oxide and a monoalcohol. Certain EGE derived from methanol and ethanol are well known to cause toxicity to the testes and fetotoxicity and that this is caused by the common metabolites methoxy and ethoxyacetic acid, respectively. There have been numerous published claims that EGE fall into the category of 'endocrine disruptors' often without substantiated evidence. This review systematically evaluates all of the available and relevant in vitro and in vivo data across this family of substances using an approach based around the EFSA/ECHA 2018 guidance for the identification of endocrine disruptors. The conclusion reached is that there is no significant evidence to show that EGE target any endocrine organs or perturb endocrine pathways and that any toxicity that is seen occurs by non-endocrine modes of action.
Collapse
|
27
|
Liang J, Yang C, Liu T, Tan HJJ, Sheng Y, Wei L, Tang P, Huang H, Zeng X, Liu S, Huang D, Qiu X. Prenatal exposure to bisphenols and risk of preterm birth: Findings from Guangxi Zhuang birth cohort in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112960. [PMID: 34781130 DOI: 10.1016/j.ecoenv.2021.112960] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Preterm birth (PTB), a serious adverse birth outcome, is the leading cause of perinatal mortality and morbidity. Bisphenols induce endocrine disruption that spreads across the placenta, which may affect fetal growth and development. However, the effects of bisphenols on PTB, particularly their combined effects, remain unknown. This study investigated the association between prenatal bisphenol exposure and PTB. Study participants were 2023 mother-infant pairs that were selected from the Guangxi Zhuang Birth Cohort. Maternal serum bisphenol levels were measured using ultrahigh performance liquid chromatography-tandem mass spectrometry, and pregnancy outcomes were obtained from medical records. Multivariate logistic regression, restricted cubic spline, principal component analysis (PCA), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) were used to examine the association between serum bisphenol levels and PTB. Ln-transformed BPA concentrations were associated with an increased risk of PTB only in female infants (OR = 1.30, 95% CI: 1.02, 1.64). Ln-transformed bisphenol F (BPF) concentrations were positively associated with the risk of PTB (OR = 1.73, 95% CI: 1.18, 2.55). Inverse U-shaped relationships were observed between bisphenol B (BPB), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) levels and the risk of PTB (P-overall < 0.05, P-non-linear < 0.05). After sex stratification, the association between BPA analogs and PTB was only observed in males. In Qgcomp analysis, bisphenol mixtures were related to an increased risk of PTB (OR = 1.52, 95% CI: 1.04, 2.21), with BPF (43.7%), BPS (29.6%) and BPA (26.8%) having the greatest positive contribution. Results indicate that prenatal exposure to bisphenol mixtures might increase the risk of PTB, which might be primarily driven by BPA, BPF and BPS. There may also be sex-specific and nonmonotonic dose-dependent effects.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chunxiu Yang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua 418000, Hunan, China
| | - Hui Juan Jennifer Tan
- Ngee Ann Polytechnic, School of Life Sciences & Chemical Technology, 535 Clementi Rd, Singapore 599489, Singapore
| | - Yonghong Sheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Liangjia Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
28
|
Chae HW. Commentary on "Ambient air pollution and endocrinologic disorders in childhood". Ann Pediatr Endocrinol Metab 2021; 26:135. [PMID: 34610699 PMCID: PMC8505041 DOI: 10.6065/apem.2121066edi01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea,Address for correspondence: Hyun Wook Chae Department of Pediatrics, Yonsei University College of Medicine, 211 Eonjuro, Gangnamgu, Seoul 06273, Korea
| |
Collapse
|
29
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. NF-κB-An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021; 10:1799. [PMID: 34359968 PMCID: PMC8304139 DOI: 10.3390/cells10071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (E.J.); (W.R.-W.)
| | | | | |
Collapse
|
30
|
Sola-Martínez RA, Lozano-Terol G, Gallego-Jara J, Morales E, Cantero-Cano E, Sanchez-Solis M, García-Marcos L, Jiménez-Guerrero P, Noguera-Velasco JA, Cánovas Díaz M, de Diego Puente T. Exhaled volatilome analysis as a useful tool to discriminate asthma with other coexisting atopic diseases in women of childbearing age. Sci Rep 2021; 11:13823. [PMID: 34226570 PMCID: PMC8257728 DOI: 10.1038/s41598-021-92933-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of asthma is considerably high among women of childbearing age. Most asthmatic women also often have other atopic disorders. Therefore, the differentiation between patients with atopic diseases without asthma and asthmatics with coexisting diseases is essential to avoid underdiagnosis of asthma and to design strategies to reduce symptom severity and improve quality of life of patients. Hence, we aimed for the first time to conduct an analysis of volatile organic compounds in exhaled breath of women of childbearing age as a new approach to discriminate between asthmatics with other coexisting atopic diseases and non-asthmatics (with or without atopic diseases), which could be a helpful tool for more accurate asthma detection and monitoring using a noninvasive technique in the near future. In this study, exhaled air samples of 336 women (training set (n = 211) and validation set (n = 125)) were collected and analyzed by thermal desorption coupled with gas chromatography-mass spectrometry. ASCA (ANOVA (analysis of variance) simultaneous component analysis) and LASSO + LS (least absolute shrinkage and selection operator + logistic regression) were employed for data analysis. Fifteen statistically significant models (p-value < 0.05 in permutation tests) that discriminated asthma with other coexisting atopic diseases in women of childbearing age were generated. Acetone, 2-ethyl-1-hexanol and a tetrahydroisoquinoline derivative were selected as discriminants of asthma with other coexisting atopic diseases. In addition, carbon disulfide, a tetrahydroisoquinoline derivative, 2-ethyl-1-hexanol and decane discriminated asthma disease among patients with other atopic disorders. Results of this study indicate that refined metabolomic analysis of exhaled breath allows asthma with other coexisting atopic diseases discrimination in women of reproductive age.
Collapse
Affiliation(s)
- Rosa A Sola-Martínez
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Department of Public Health Sciences, University of Murcia, Murcia, Spain
| | | | - Manuel Sanchez-Solis
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, Murcia, Spain
- Department of Paediatrics, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Respiratory and Allergy Units, Arrixaca Children's University Hospital, University of Murcia, Murcia, Spain
- Department of Paediatrics, University of Murcia, Murcia, Spain
- Network of Asthma and Adverse and Allergy Reactions (ARADyAL), Health Institute Carlos III, Madrid, Spain
| | - Pedro Jiménez-Guerrero
- Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - José A Noguera-Velasco
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
- Biomedical Research Institute of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
31
|
Mendes FDC, Paciência I, Cavaleiro Rufo J, Farraia M, Silva D, Padrão P, Delgado L, Garcia-Larsen V, Moreira A, Moreira P. Higher diversity of vegetable consumption is associated with less airway inflammation and prevalence of asthma in school-aged children. Pediatr Allergy Immunol 2021; 32:925-936. [PMID: 33394508 DOI: 10.1111/pai.13446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND A diet rich in fruits and vegetables has been suggested to counteract the oxidative stress and inflammation that characterize asthma. We aimed to assess the association between vegetable and fruit diversity consumption and asthma and its related outcomes in school-aged children. METHODS Participants included 647 children (49% females, aged 7-12 years) recruited from 20 public schools across the city of Porto, in Portugal. Vegetable intake and fruit intake were ascertained using a single self-reported 24-hour recall questionnaire. A diversity score was built taking into account the different number of individual vegetables and fruits consumed and categorized into two groups based on the total reported median consumption, which was rounded to the nearest whole number (≤3 and >3, for vegetables; and ≤1 and >1, for fruits). A questionnaire was used to enquire about self-reported medical diagnosis of asthma and respiratory symptoms. Airway inflammation was assessed measuring exhaled fractional nitric oxide concentration (eNO) and was categorized into two groups (<35 and ≥35 ppb). The association between fruit and vegetable diversity and respiratory outcomes was examined using logistic regression models, adjusting for confounders. RESULTS A higher vegetable diversity consumption per day was negatively associated with having self-reported asthma (OR = 0.67; 95% CI 0.47, 0.95), while having a vegetable diversity consumption superior to 3 items per day was negatively associated with levels of eNO ≥ 35 ppb (OR = 0.38; 95% CI 0.16, 0.88) and breathing difficulties (OR = 0.39; 95% CI 0.16, 0.97). CONCLUSION Eating a greater variety of vegetables was associated with a lower chance of airway inflammation and prevalence of self-reported asthma in school children.
Collapse
Affiliation(s)
- Francisca de Castro Mendes
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Inês Paciência
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - João Cavaleiro Rufo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Mariana Farraia
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Diana Silva
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Serviço de Imunoalergologia, Centro Hospitalar São João, Porto, Portugal
| | - Patrícia Padrão
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Luís Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Serviço de Imunoalergologia, Centro Hospitalar São João, Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - André Moreira
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Serviço de Imunoalergologia, Centro Hospitalar São João, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Pedro Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int J Mol Sci 2021; 22:ijms22083939. [PMID: 33920428 PMCID: PMC8069594 DOI: 10.3390/ijms22083939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.
Collapse
|
33
|
Uncovering Evidence for Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility through Gene-Environment Interactions. TOXICS 2021; 9:toxics9040077. [PMID: 33917455 PMCID: PMC8067468 DOI: 10.3390/toxics9040077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is linked to myriad disorders, characterized by the disruption of the complex endocrine signaling pathways that govern development, physiology, and even behavior across the entire body. The mechanisms of endocrine disruption involve a complex system of pathways that communicate across the body to stimulate specific receptors that bind DNA and regulate the expression of a suite of genes. These mechanisms, including gene regulation, DNA binding, and protein binding, can be tied to differences in individual susceptibility across a genetically diverse population. In this review, we posit that EDCs causing such differential responses may be identified by looking for a signal of population variability after exposure. We begin by summarizing how the biology of EDCs has implications for genetically diverse populations. We then describe how gene-environment interactions (GxE) across the complex pathways of endocrine signaling could lead to differences in susceptibility. We survey examples in the literature of individual susceptibility differences to EDCs, pointing to a need for research in this area, especially regarding the exceedingly complex thyroid pathway. Following a discussion of experimental designs to better identify and study GxE across EDCs, we present a case study of a high-throughput screening signal of putative GxE within known endocrine disruptors. We conclude with a call for further, deeper analysis of the EDCs, particularly the thyroid disruptors, to identify if these chemicals participate in GxE leading to differences in susceptibility.
Collapse
|
34
|
The Influence of Eating at Home on Dietary Diversity and Airway Inflammation in Portuguese School-Aged Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052646. [PMID: 33808006 PMCID: PMC7967357 DOI: 10.3390/ijerph18052646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
Considering the negative impact of a lack of dietary diversity on children’s nutritional status, we aimed to describe dietary variety according to eating at home frequency and assessed its association with respiratory outcomes in school-aged children. This cross-sectional study included 590 children (49% girls) aged 7 to 12 years from 20 public schools located in city of Porto, Portugal. Daily frequency of eating at home groups were calculated and dietary diversity was calculated using a 10-food group score from a 24 h recall questionnaire. Spirometry and exhaled nitric oxide levels (eNO; <35 and ≥35 ppb) were assessed. The comparison of diet diversity according to the groups was performed by ANOVA and ANCOVA. The association between dietary diversity and respiratory outcomes was examined using regression models. In multivariate analysis, children in the highest group of eating at home episodes (≥4 occasions) obtained the lowest dietary diversity mean score, while the lowest group (<2) had the highest mean score (p-value 0.026). After adjustment for confounders, higher diet diversity (≥5 food groups) significantly decreased the odds of having an eNO ≥35. Diet diversity might decrease the chance of airway inflammation among children. However, having more eating episodes at home could be a barrier to a more diverse diet.
Collapse
|
35
|
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J Clin Med 2021; 10:jcm10020169. [PMID: 33418879 PMCID: PMC7825135 DOI: 10.3390/jcm10020169] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma and obesity are two epidemics affecting the developed world. The relationship between obesity and both asthma and severe asthma appears to be weight-dependent, causal, partly genetic, and probably bidirectional. There are two distinct phenotypes: 1. Allergic asthma in children with obesity, which worsens a pre-existing asthma, and 2. An often non allergic, late-onset asthma developing as a consequence of obesity. In obesity, infiltration of adipose tissue by macrophages M1, together with an increased expression of multiple mediators that amplify and propagate inflammation, is considered as the culprit of obesity-related inflammation. Adipose tissue is an important source of adipokines, such as pro-inflammatory leptin, produced in excess in obesity, and adiponectin with anti-inflammatory effects with reduced synthesis. The inflammatory process also involves the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and TGFβ, which also contribute to asthma pathogenesis. In contrast, asthma pro-inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-33 contribute to maintain the lean state. The resulting regulatory effects of the immunomodulatory pathways underlying both diseases have been hypothesized to be one of the mechanisms by which obesity increases asthma risk and severity. Reduction of weight by diet, exercise, or bariatric surgery reduces inflammatory activity and improves asthma and lung function.
Collapse
Affiliation(s)
- Marina Bantulà
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, 08036 Barcelona, Spain
| | - César Picado
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-5400
| |
Collapse
|
36
|
Cavaleiro Rufo J, Paciência I, Hoffimann E, Moreira A, Barros H, Ribeiro AI. The neighbourhood natural environment is associated with asthma in children: A birth cohort study. Allergy 2021; 76:348-358. [PMID: 32654186 DOI: 10.1111/all.14493] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND A lower exposure to the natural environment has been hypothesized to adversely affect the human microbiome and its immunomodulatory capacity. However, the underlying effects of this hypothesis are still not understood. We aimed to evaluate the effect of early-life exposure to greenness and species richness on the development of allergic diseases and asthma in children. METHODS A longitudinal study was conducted comprising 1050 children from a population-based birth cohort recruited in Portugal. Residential normalized difference vegetation index (NDVI) and species richness index (SRI) were assessed at baseline to estimate their association with allergic diseases and asthma at the ages of 4 and 7. RESULTS Significant predisposing associations were observed between the exposure to species richness at baseline and the onset of asthma and wheezing at the age of 7. Children living in neighbourhoods surrounded by high levels of SRI were at a significantly higher risk developing allergic sensitization(OR [95% CI] = 2.00 [1.04:3.86] at age 4; 2.35 [1.20:4.63] at age 7). Living surrounded by greener environments was significantly associated with a lower prevalence of asthma and rhinitis at the age of 7(0.41 [0.18:0.97] and 0.37 [0.15:0.93], respectively). CONCLUSIONS Living in close proximity to a greener environment at birth has a protective effect on the development of allergic diseases and asthma at the age of 7. Conversely, living in neighbourhoods with a high number of fauna species appears to be associated with a higher risk for allergy, asthma and wheezing.
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Inês Paciência
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Elaine Hoffimann
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
| | - André Moreira
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Henrique Barros
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Ana Isabel Ribeiro
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| |
Collapse
|
37
|
Cevhertas L, Ogulur I, Maurer DJ, Burla D, Ding M, Jansen K, Koch J, Liu C, Ma S, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Satitsuksanoa P, Globinska A, Veen W, Sokolowska M, Baerenfaller K, Gao Y, Agache I, Akdis M, Akdis CA. Advances and recent developments in asthma in 2020. Allergy 2020; 75:3124-3146. [PMID: 32997808 DOI: 10.1111/all.14607] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
In this review, we discuss recent publications on asthma and review the studies that have reported on the different aspects of the prevalence, risk factors and prevention, mechanisms, diagnosis, and treatment of asthma. Many risk and protective factors and molecular mechanisms are involved in the development of asthma. Emerging concepts and challenges in implementing the exposome paradigm and its application in allergic diseases and asthma are reviewed, including genetic and epigenetic factors, microbial dysbiosis, and environmental exposure, particularly to indoor and outdoor substances. The most relevant experimental studies further advancing the understanding of molecular and immune mechanisms with potential new targets for the development of therapeutics are discussed. A reliable diagnosis of asthma, disease endotyping, and monitoring its severity are of great importance in the management of asthma. Correct evaluation and management of asthma comorbidity/multimorbidity, including interaction with asthma phenotypes and its value for the precision medicine approach and validation of predictive biomarkers, are further detailed. Novel approaches and strategies in asthma treatment linked to mechanisms and endotypes of asthma, particularly biologicals, are critically appraised. Finally, due to the recent pandemics and its impact on patient management, we discuss the challenges, relationships, and molecular mechanisms between asthma, allergies, SARS-CoV-2, and COVID-19.
Collapse
Affiliation(s)
- Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Medical Immunology Institute of Health Sciences, Bursa Uludag University Bursa Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Marmara University Istanbul Turkey
| | - Debbie J. Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Daniel Burla
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan Hubei China
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Institute for Bioinformatics (SIB) Davos Switzerland
| | - Chengyao Liu
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Otorhinolaryngology HospitalThe First Affiliated HospitalSun Yat‐sen University Guangzhou China
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Regenerative Medicine and Immune Regulation Medical University of Bialystok Bialystok Poland
| | - Arturo O. Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Institute for Bioinformatics (SIB) Davos Switzerland
| | - Ya‐dong Gao
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan Hubei China
| | - Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
38
|
Yu J, Tuo F, Luo Y, Yang Y, Xu J. Toxic effects of perinatal maternal exposure to nonylphenol on lung inflammation in male offspring rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139238. [PMID: 32512292 DOI: 10.1016/j.scitotenv.2020.139238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The incidence of asthma and its related allergic diseases has increased dramatically over the last decade. Asthma is a complex disease caused by genetic and environmental factors. Nonylphenol (NP), a typical endocrine disrupting chemical (EDC), is a major current focus in asthma research. Pregnant Sprague-Dawley rats (n = 8-10 per group) were given a consecutive daily dose of NP (25, 50, or 100 mg/kg/day) or an equivalent volume of vehicle by gavage from gestational day 7 until postnatal day (PND) 21. Exposure to 100 mg/kg NP increased the body mass of the offspring on PND 43. Perinatal exposure to NP in maternal rats led to a dose-dependent increase of NP level in the lung tissue of the offspring. The numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid were significantly higher in the 100 mg/kg NP group than those in the control. Histopathological examination of the lung showed that exposure to high dose NP resulted in a slightly thickened bronchiolar smooth muscles with inflammatory cell infiltration. In the cytoplasm of type II epithelial cells, osmiophilic lamellar bodies were observed, with emptied lamellar bodies. NP significantly increased the expressions of high mobility group box 1 protein (HMGB1) mRNA and nuclear factor κB (NF-κB) mRNA in the lung tissue of the offspring in a dose dependent manner. Similarly, the expressions of HMGB1, NF-κBp65 and estrogen receptor-β (ER-β) proteins increased with an increase of NP dose. NP content was positively correlated with the expressions of HMGB1 and NF-κB mRNA as well as HMGB1, NF-κBp65, and ER-β proteins in the lung tissue of offspring. Perinatal exposure to NP from the maternal rats might induce airway inflammation in the offspring, which may be due to NP-induced infiltration of inflammatory cells into the airway, and pathological alterations in airway structure as well as abnormal expression patterns of inflammation-related genes, proteins (including HMGB1 and NF-κB) and estrogen receptor β.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yu Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
39
|
de Castro Mendes F, Paciência I, Cavaleiro Rufo J, Silva D, Cunha P, Farraia M, Delgado L, Garcia-Larsen V, Severo M, Moreira A, Moreira P. The inflammatory potential of diet impacts the association between air pollution and childhood asthma. Pediatr Allergy Immunol 2020; 31:290-296. [PMID: 31816137 DOI: 10.1111/pai.13185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inhalation of fine particulate matter (PM) can cause systematic inflammation and oxidative stress, which may further aggravate the development and progression of asthma. Although nutritional intake of fatty acids and antioxidants may attenuate some effects of fine PM, the role of the inflammatory potential of diet has not been addressed. Therefore, we aimed to investigate possible modulatory effects of dietary inflammatory potential on the association between indoor air pollution and childhood asthma-related outcomes. METHODS In a sample of 501 children (48.1% females, aged 7-12 years) from 20 public schools located in Porto, Portugal, we evaluated airway reversibility, exhaled nitric oxide levels, atopy, and current respiratory symptoms. Dietary inflammatory index was calculated based on information collected through a reported 24-hour recall questionnaire, and participants were categorized as having an anti-inflammatory or pro-inflammatory diet. Concentrations of indoor PM2.5 and PM10 were measured to assess indoor air quality. Generalized linear mixed models were used to investigate the proportion of effects explained by the exposure to PM2.5 and PM10. RESULTS After adjustment, the exposure effect of PM2.5 and PM10 levels on children with asthma was higher for those having a pro-inflammatory diet (OR = 1.44, 95% CI: 1.01-2.21; and OR = 1.29, 95% CI: 1.03-1.68, respectively) compared to those having an anti-inflammatory diet. CONCLUSION These findings suggest that the quality of diet might affect the association between indoor pollution and asthma in children, highlighting the relevance of children's diet as a potential protective factor to pollutant exposure in childhood asthma.
Collapse
Affiliation(s)
- Francisca de Castro Mendes
- The Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Inês Paciência
- The Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,The Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
| | - João Cavaleiro Rufo
- The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Diana Silva
- The Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,The Serviço de Imunoalergologia, Centro Hospitalar São João, Porto, Portugal
| | - Pedro Cunha
- The Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Mariana Farraia
- The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Luís Delgado
- The Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,The Serviço de Imunoalergologia, Centro Hospitalar São João, Porto, Portugal
| | - Vanessa Garcia-Larsen
- The Program in Human Nutrition, Department of International Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Milton Severo
- The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,The Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - André Moreira
- The Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,The Serviço de Imunoalergologia, Centro Hospitalar São João, Porto, Portugal.,The Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Pedro Moreira
- The EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,The Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Urban-level environmental factors related to pediatric asthma. Porto Biomed J 2020; 5:e57. [PMID: 33299939 PMCID: PMC7722407 DOI: 10.1097/j.pbj.0000000000000057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
During the 20th century, urbanization has increasing and represented a major demographic and environmental change in developed countries. This ever-changing urban environment has an impact on disease patterns and prevalence, namely on noncommunicable diseases, such as asthma and allergy, and poses many challenges to understand the relationship between the changing urban environment and the children health. The complex interaction between human beings and urbanization is dependent not only on individual determinants such as sex, age, social or economic resources, and lifestyles and behaviors, but also on environment, including air pollution, indoors and outdoors, land use, biodiversity, and handiness of green areas. Therefore, the assessment and identification of the impact of urban environment on children's health have become a priority and many recent studies have been conducted with the goal of better understanding the impacts related to urbanization, characterizing indoor air exposure, identifying types of neighborhoods, or characteristics of neighborhoods that promote health benefits. Thus, this review focuses on the role of urban environmental factors on pediatric asthma.
Collapse
|
41
|
de Castro Mendes F, Paciência I, Rufo JC, Silva D, Cunha P, Farraia M, Delgado L, Moreira P, Moreira A. Asthma and body mass definitions affect estimates of association: evidence from a community-based cross-sectional survey. ERJ Open Res 2019; 5:00076-2019. [PMID: 31720292 PMCID: PMC6826245 DOI: 10.1183/23120541.00076-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/25/2019] [Indexed: 11/10/2022] Open
Abstract
Asthma and obesity have been on the rise for the past few decades, becoming the most prevalent chronic conditions in children [1, 2]. Obesity has been suggested to increase asthma incidence and prevalence, and change asthma towards a more difficult-to-control phenotype [3]. Yet, the impact of heterogeneous asthma and obesity definitions on the suggested association has been poorly explored. As such, we aimed to evaluate the influence of different asthma and obesity definitions on the obesity–asthma relationship. Differing body mass classifications challenge the strength of the epidemiological evidence suggesting asthma and obesity are linked. The relationship between asthma and overweight in children depends on the body mass definitions adopted.http://bit.ly/2lSxhC5
Collapse
Affiliation(s)
- Francisca de Castro Mendes
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Centro Hospitalar São João, Porto, Portugal
| | - Inês Paciência
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Centro Hospitalar São João, Porto, Portugal.,Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - João Cavaleiro Rufo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Diana Silva
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Centro Hospitalar São João, Porto, Portugal
| | - Pedro Cunha
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Mariana Farraia
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Luís Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Centro Hospitalar São João, Porto, Portugal
| | - Pedro Moreira
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - André Moreira
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Centro Hospitalar São João, Porto, Portugal.,Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Agache I, Annesi‐Maesano I, Bonertz A, Branca F, Cant A, Fras Z, Ingenrieth F, Namazova‐Baranova L, Odemyr M, Spanevello A, Vieths S, Yorgancioglu A, Alvaro‐Lozano M, Barber Hernandez D, Chivato T, Del Giacco S, Diamant Z, Eguiluz‐Gracia I, Wijk RG, Gevaert P, Graessel A, Hellings P, Hoffmann‐Sommergruber K, Jutel M, Lau S, Lauerma A, Maria Olaguibel J, O'Mahony L, Ozdemir C, Palomares O, Pfaar O, Sastre J, Scadding G, Schmidt‐Weber C, Schmid‐Grendelmeier P, Shamji M, Skypala I, Spinola M, Spranger O, Torres M, Vereda A, Bonini S. Prioritizing research challenges and funding for allergy and asthma and the need for translational research-The European Strategic Forum on Allergic Diseases. Allergy 2019; 74:2064-2076. [PMID: 31070805 DOI: 10.1111/all.13856] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) organized the first European Strategic Forum on Allergic Diseases and Asthma. The main aim was to bring together all relevant stakeholders and decision-makers in the field of allergy, asthma and clinical Immunology around an open debate on contemporary challenges and potential solutions for the next decade. The Strategic Forum was an upscaling of the EAACI White Paper aiming to integrate the Academy's output with the perspective offered by EAACI's partners. This collaboration is fundamental for adapting and integrating allergy and asthma care into the context of real-world problems. The Strategic Forum on Allergic Diseases brought together all partners who have the drive and the influence to make positive change: national and international societies, patients' organizations, regulatory bodies and industry representatives. An open debate with a special focus on drug development and biomedical engineering, big data and information technology and allergic diseases and asthma in the context of environmental health concluded that connecting science with the transformation of care and a joint agreement between all partners on priorities and needs are essential to ensure a better management of allergic diseases and asthma in the advent of precision medicine together with global access to innovative and affordable diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Isabella Annesi‐Maesano
- Department of Epidemiology of Allergic and Respiratory Diseases Medical School Saint Antoine, IPLESP, INSERM and Sorbonne Université Paris France
| | - Andreas Bonertz
- Federal Agency for Vaccines and Biomedicines Paul‐Ehrlich‐Institut Langen Germany
| | - Francesco Branca
- Department of Nutrition for Health and Development Geneva Switzerland
- WHO/HQ Geneva Switzerland
| | - Andrew Cant
- University of Newcastle Upon Tyne Newcastle upon Tyne UK
- European Society for Immunodeficiencies Geneva Switzerland
| | - Zlatko Fras
- Division of Medicine University Medical Centre Ljubljana Ljubljana Slovenia
- Medical Faculty University of Ljubljana Ljubljana Slovenia
- UEMS ‐ Union Europeenne des Medecins Specialistes/European Union of Medical Specialists Brussels Belgium
| | | | - Leyla Namazova‐Baranova
- Department of Pediatrics Russian National Research Medical University of MoH RF Moscow Russia
- Department of Pediatrics Central Clinical Hospital of MoSHE (Ministry of Science and High Education) Moscow Russian Federation
| | - Mikaela Odemyr
- European Federation of Allergy and Airways Diseases Patients’ Associations (EFA) Brussels Belgium
| | - Antonio Spanevello
- Dipartimento di Medicina e Chirurgia, Malattie dell'Apparato Respiratorio Università degli Studi dell'Insubria Varese – Como Italy
- Dipartimento di Medicina e Riabilitazione Cardio Respiratoria, U.O. di Pneumologia Riabilitativa Istituti Clinici Scientifici Maugeri, IRCCS Tradate Tradate Italy
| | - Stefan Vieths
- Federal Agency for Vaccines and Biomedicines Paul‐Ehrlich‐Institut Langen Germany
| | - Arzu Yorgancioglu
- Department of Pulmonology Celal Bayar University School of Medicine Manisa Turkey
| | - Montserat Alvaro‐Lozano
- Pediatric Allergy and Clinical Immunology Department Hospital Sant Joan de Déu Barcelona Barcelona Spain
| | - Domingo Barber Hernandez
- Department of Basic Medical Sciences, School of Medicine Universidad CEU San Pablo Madrid Spain
- RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III Madrid Spain
| | - Tomás Chivato
- School of Medicine University CEU San Pablo Madrid Spain
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine, First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Ibon Eguiluz‐Gracia
- Allergy Unit IBIMA, Regional University Hospital of Malaga, UMA Malaga Spain
- ARADyAL Network RD16/0006/0001, Carlos III Health Institute Madrid Spain
| | - Roy Gert Wijk
- Section of Allergology, Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Philippe Gevaert
- Department of Otorhinolaryngology‐Head and Neck Surgery, Upper Airways Research Laboratory Ghent University Ghent Belgium
| | - Anke Graessel
- Allergy Therapeutics Worthing UK
- Bencard Allergie GmbH Munich Germany
| | - Peter Hellings
- Department of Otorhinolaryngology‐Head and Neck Surgery, Upper Airways Research Laboratory Ghent University Ghent Belgium
- Department of Otorhinolaryngology‐Head and Neck Surgery UZ Leuven Leuven Belgium
- Department of Otorhinolaryngology Academic Medical Center Amsterdam The Netherlands
| | | | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- “ALL‐MED” Medical Research Institute Wroclaw Poland
| | - Susanne Lau
- Department for Pediatric Pneumology, Immunology and Intensive Care Charité Universität Medizin Berlin Germany
| | - Antti Lauerma
- Dermatology and Allergology Helsinki University Hospital and University of Helsinki Helsinki Finland
| | | | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland, National University of Ireland Cork Ireland
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health Istanbul University Istanbul Turkey
- Department of Pediatrics, Division of Pediatric Allergy & Immunology, Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Joaquin Sastre
- Department of Allergy Fundación Jimenez Diaz Madrid Spain
- Department of Medicine, Instituto Carlos III CIBERES, Universidad Autónoma de Madrid Madrid Spain
| | | | - Carsten Schmidt‐Weber
- Zentrums Allergie & Umwelt (ZAUM) Technische Universität und Helmholtz Zentrum München Germany
| | - Peter Schmid‐Grendelmeier
- Allergy Unit, Department of Dermatology University Hospital of Zurich Zurich Switzerland
- Christine‐Kühne Center for Allergy Research and Education CK‐CARE Davos Davos Switzerland
| | - Mohamed Shamji
- Allergy & Clinical Immunology, Inflammation, Repair and Development, Imperial College, National Heart and Lung Institute Immunomodulation and Tolerance Group London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Isabel Skypala
- Royal Brompton & Harefield NHS Foundation Trust London UK
- Imperial College London UK
| | | | - Otto Spranger
- Global Allergy and Asthma Patient Platform Vienna Austria
| | - Maria Torres
- Allergy Unit IBIMA, Regional University Hospital of Malaga, UMA Malaga Spain
- ARADyAL Network RD16/0006/0001, Carlos III Health Institute Madrid Spain
| | | | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| |
Collapse
|
43
|
Paciência I, Rufo JC, Silva D, Martins C, Mendes F, Rama T, Rodolfo A, Madureira J, Delgado L, de Oliveira Fernandes E, Padrão P, Moreira P, Severo M, Pina MF, Teixeira JP, Barros H, Ruokolainen L, Haahtela T, Moreira A. School environment associates with lung function and autonomic nervous system activity in children: a cross-sectional study. Sci Rep 2019; 9:15156. [PMID: 31641175 PMCID: PMC6805928 DOI: 10.1038/s41598-019-51659-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 01/10/2023] Open
Abstract
Children are in contact with local environments, which may affect respiratory symptoms and allergic sensitization. We aimed to assess the effect of the environment and the walkability surrounding schools on lung function, airway inflammation and autonomic nervous system activity. Data on 701 children from 20 primary schools were analysed. Lung function, airway inflammation and pH from exhaled breath condensate were measured. Pupillometry was performed to evaluate autonomic activity. Land use composition and walkability index were quantified within a 500 m buffer zone around schools. The proportion of effects explained by the school environment was measured by mixed-effect models. We found that green school areas tended to be associated with higher lung volumes (FVC, FEV1 and FEF25-75%) compared with built areas. FVC was significantly lower in-built than in green areas. After adjustment, the school environment explained 23%, 34% and 99.9% of the school effect on FVC, FEV1, and FEF25-75%, respectively. The walkability of school neighbourhoods was negatively associated with both pupil constriction amplitude and redilatation time, explaining -16% to 18% of parasympathetic and 8% to 29% of sympathetic activity. Our findings suggest that the environment surrounding schools has an effect on the lung function of its students. This effect may be partially mediated by the autonomic nervous system.
Collapse
Affiliation(s)
- Inês Paciência
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal.
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal.
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - João Cavaleiro Rufo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Diana Silva
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Carla Martins
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Francisca Mendes
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Tiago Rama
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Ana Rodolfo
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | - Joana Madureira
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management (INEGI), Porto, Portugal
| | - Luís Delgado
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
| | | | - Patrícia Padrão
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Pedro Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Maria Fátima Pina
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Health Communication and Information Institute, Fundação Oswaldo Cruz (ICICT/FIOCRUZ), Rio de Janeiro, Brazil
| | - João Paulo Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Environmental Health Department, Portuguese National Institute of Health, Porto, Portugal
| | - Henrique Barros
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde Pública da Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - André Moreira
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal & Centro Hospitalar São João, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
44
|
Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma? Nutrients 2019; 11:nu11092255. [PMID: 31546888 PMCID: PMC6770083 DOI: 10.3390/nu11092255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/16/2023] Open
Abstract
Obesity has been repeatedly linked to asthma, and several potential mechanisms have been proposed in the etiologies of the obese-asthma phenotype. Considering that lungs play an important role in systemic pH and acid–base regulation, are a key organ in asthma development, and that nutritional inadequacy of several nutrients and high dietary acid load can affect airway inflammation and reactivity, we aimed to test the hypothesis that dietary acid load may be associated with asthma in children. Data on 699 children (52% females), aged 7–12 years, were analyzed. Anthropometric measurements were performed to assess body mass index. Dietary acid load was calculated using potential renal acid load (PRAL) equations from a 24 h dietary recall administrated to children. Adjusted PRAL for total energy intake was applied with the use of the residual method. Lung function and airway reversibility were assessed with spirometry. Asthma was defined by a positive bronchodilation or self-reported medical diagnosis with reported symptoms (wheezing, dyspnea, or dry cough) in the past 12 months. After adjustment for energy intake, sex, age, parent’s education level, and physical activity, positive and significant associations were found between asthma and PRAL [odds ratio (OR) = 1.953, 95% CI = 1.024, 3.730) in overweight/obese children. Our findings suggest that dietary acid load might be a possible mechanism in overweight/obese-asthma phenotype development.
Collapse
|