1
|
Malik A, Singh R, Goyal A, Gupta R. Adipsic arginine vasopressin deficiency: challenges in managing the intricate interplay of adipsia with polyuria. BMJ Case Rep 2024; 17:e261497. [PMID: 39477460 DOI: 10.1136/bcr-2024-261497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Adipsic arginine vasopressin deficiency (AAVP-D) is caused by hypothalamic dysfunction (HD) due to varied aetiologies, including craniopharyngiomas. Its management is extremely challenging because two of the three regulatory mechanisms (thirst, arginine vasopressin, and renal medullary tonicity) for maintaining plasma osmolality are impaired (thirst, arginine vasopressin). These individuals develop severe dehydration and hypernatraemia, necessitating multiple emergency visits despite the administration of arginine vasopressin analogue (desmopressin). Here, we describe a case with HD secondary to craniopharyngioma treatment manifesting as AAVP-D, short stature, central hypothyroidism, hypoadrenalism and probable hypogonadism. AAVP-D was managed by fixing the renal water losses (using desmopressin) and water intake in a predetermined range. The treatment monitoring was done using total body weight and weekly to fortnightly serum sodium. Using this approach, the serum sodium was maintained in the range of 140-150 mmol/L, and there were no emergency visits for hypernatraemia or hyponatraemia (dysnatraemia) at 3 months.
Collapse
Affiliation(s)
- Aayush Malik
- Endocrinology and Metabolism, All India Institute of Medical Science, Bhopal, Madhya Pradesh, India
| | - Rekha Singh
- Endocrinology and Metabolism, All India Institute of Medical Science, Bhopal, Madhya Pradesh, India
| | - Alpesh Goyal
- Endocrinology and Metabolism, All India Institute of Medical Science, Bhopal, Madhya Pradesh, India
| | - Rahul Gupta
- Endocrinology and Metabolism, All India Institute of Medical Science, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Sweet SR, Biddinger JE, Zimmermann JB, Yu GL, Simerly RB. Early perturbations to fluid homeostasis alter development of hypothalamic feeding circuits with context-specific changes in ingestive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620307. [PMID: 39484367 PMCID: PMC11527132 DOI: 10.1101/2024.10.25.620307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Drinking and feeding are tightly coordinated homeostatic events and the paraventricular nucleus of the hypothalamus (PVH) represents a possible node of neural integration for signals related to energy and fluid homeostasis. We used TRAP2;Ai14 and Fos labeling to visualize neurons in the PVH and median preoptic nucleus (MEPO) responding to both water deprivation and hunger. Moreover, we determined that structural and functional development of dehydration-sensitive inputs to the PVH from the MEPO precedes those of agouti-related peptide (AgRP) neurons, which convey hunger signals and are known to be developmentally programmed by nutrition. We also determined that osmotic hyperstimulation of neonatal mice led to enhanced AgRP inputs to the PVH in adulthood, as well as disruptions to ingestive behaviors during high-fat diet feeding and dehydration-anorexia. Thus, development of feeding circuits is impacted not only by nutritional signals, but also by early perturbations to fluid homeostasis with context-specific consequences for coordination of ingestive behavior.
Collapse
|
3
|
Plott C, Harb T, Arvanitis M, Gerstenblith G, Blumenthal R, Leucker T. Neurocardiac Axis Physiology and Clinical Applications. IJC HEART & VASCULATURE 2024; 54:101488. [PMID: 39224460 PMCID: PMC11367645 DOI: 10.1016/j.ijcha.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The neurocardiac axis constitutes the neuronal circuits between the arteries, heart, brain, and immune organs (including thymus, spleen, lymph nodes, and mucosal associated lymphoid tissue) that together form the cardiovascular brain circuit. This network allows the individual to maintain homeostasis in a variety of environmental situations. However, in dysfunctional states, such as exposure to environments with chronic stressors and sympathetic activation, this axis can also contribute to the development of atherosclerotic vascular disease as well as other cardiovascular pathologies and it is increasingly being recognized as an integral part of the pathogenesis of cardiovascular disease. This review article focuses on 1) the normal functioning of the neurocardiac axis; 2) pathophysiology of the neurocardiac axis; 3) clinical implications of this axis in hypertension, atherosclerotic disease, and heart failure with an update on treatments under investigation; and 4) quantification methods in research and clinical practice to measure components of the axis and future research areas.
Collapse
Affiliation(s)
- Caroline Plott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Tarek Harb
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marios Arvanitis
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gary Gerstenblith
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Roger Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thorsten Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Wang DC, Wu Y, Mehaffy C, Espinoza-Campomanes LA, Luo L. Distinct Neural Representations of Hunger and Thirst in Neonatal Mice before the Emergence of Food- and Water-seeking Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614378. [PMID: 39386432 PMCID: PMC11463676 DOI: 10.1101/2024.09.22.614378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hunger and thirst are two fundamental drives for maintaining homeostasis, and elicit distinct food- and water-seeking behaviors essential for survival. For neonatal mammals, however, both hunger and thirst are sated by consuming milk from their mother. While distinct neural circuits underlying hunger and thirst drives in the adult brain have been characterized, it is unclear when these distinctions emerge in neonates and what processes may affect their development. Here we show that hypothalamic hunger and thirst regions already exhibit specific responses to starvation and dehydration well before a neonatal mouse can seek food and water separately. At this early age, hunger drives feeding behaviors more than does thirst. Within neonatal regions that respond to both hunger and thirst, subpopulations of neurons respond distinctly to one or the other need. Combining food and water into a liquid diet throughout the animal's life does not alter the distinct representations of hunger and thirst in the adult brain. Thus, neural representations of hunger and thirst become distinct before food- and water-seeking behaviors mature and are robust to environmental changes in food and water sources.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
- Stanford MSTP
| | - Yunming Wu
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| | | | | | - Liqun Luo
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| |
Collapse
|
5
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Fjell AM, Walhovd KB. Individual sleep need is flexible and dynamically related to cognitive function. Nat Hum Behav 2024; 8:422-430. [PMID: 38379065 DOI: 10.1038/s41562-024-01827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Given that sleep deprivation studies consistently show that short sleep causes neurocognitive deficits, the effects of insufficient sleep on brain health and cognition are of great interest and concern. Here we argue that experimentally restricted sleep is not a good model for understanding the normal functions of sleep in naturalistic settings. Cross-disciplinary research suggests that human sleep is remarkably dependent on environmental conditions and social norms, thus escaping universally applicable rules. Sleep need varies over time and differs between individuals, showing a complex relationship with neurocognitive function. This aspect of sleep is rarely addressed in experimental work and is not reflected in expert recommendations about sleep duration. We recommend focusing on the role of individual and environmental factors to improve our understanding of the relationship between human sleep and cognition.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.
- Center for Computational Radiology and Artificial Intelligence, Oslo University Hospital, Oslo, Norway.
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Center for Computational Radiology and Artificial Intelligence, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Santiago HP, Leite LHR, Lima PMA, Fóscolo DRC, Natali AJ, Prímola-Gomes TN, Szawka RE, Coimbra CC. Effects of physical training on hypothalamic neuronal activation and expressions of vasopressin and oxytocin in SHR after running until fatigue. Pflugers Arch 2024; 476:365-377. [PMID: 38308122 DOI: 10.1007/s00424-024-02916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.
Collapse
Affiliation(s)
- Henrique P Santiago
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura H R Leite
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Paulo M A Lima
- Núcleo de Pesquisa da Faculdade de Medicina da Universidade de Rio Verde, Universidade de Rio Verde, Campus Goiânia, Goiânia, Brazil
| | - Daniela R C Fóscolo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio José Natali
- Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
8
|
Yang T, Wang Z, Li J, Shan F, Huang QY. Cerebral Lactate Participates in Hypoxia-induced Anapyrexia Through its Receptor G Protein-coupled Receptor 81. Neuroscience 2024; 536:119-130. [PMID: 37979840 DOI: 10.1016/j.neuroscience.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Hypoxia-induced anapyrexia is thought to be a regulated decrease in body core temperature (Tcore), but the underlying mechanism remains unclear. Recent evidence suggests that lactate, a glycolysis product, could modulate neuronal excitability through the G protein-coupled receptor 81 (GPR81). The present study aims to elucidate the role of central lactate and GPR81 in a rat model of hypoxia-induced anapyrexia. The findings revealed that hypoxia (11.1% O2, 2 h) led to an increase in lactate in cerebrospinal fluid (CSF) and a decrease in Tcore. Injection of dichloroacetate (DCA, 5 mg/kg, 1 μL), a lactate production inhibitor, to the third ventricle (3 V), alleviated the increase in CSF lactate and the decrease in Tcore under hypoxia. Immunofluorescence staining showed GPR81 was expressed in the preoptic area of hypothalamus (PO/AH), the physiological thermoregulation integration center. Under normoxia, injection of GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA, 0.05 mg/kg, 1 μL) to the 3 V, reduced Tcore significantly. In addition, hypoxia led to a dramatic increase in tail skin temperature and a decrease in interscapular brown adipose tissue skin temperature. The number of c-Fos+ cells in the PO/AH increased after exposure to 11.1% O2 for 2 h, but administration of DCA to the 3 V blunted this response. Injection of CHBA to the 3 V also increased the number of c-Fos+ cells in the PO/AH under normoxia. In light of these, our research has uncovered the pivotal role of central lactate-GPR81 signaling in anapyrexia, thereby providing novel insights into the mechanism of hypoxia-induced anapyrexia.
Collapse
Affiliation(s)
- Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zejun Wang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Qing-Yuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| |
Collapse
|
9
|
Pool AH, Poldsam H, Chen S, Thomson M, Oka Y. Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. Nat Methods 2023; 20:1506-1515. [PMID: 37697162 DOI: 10.1038/s41592-023-02003-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Single-cell RNA-sequencing (scRNA-seq) is an indispensable tool for characterizing cellular diversity and generating hypotheses throughout biology. Droplet-based scRNA-seq datasets often lack expression data for genes that can be detected with other methods. Here we show that the observed sensitivity deficits stem from three sources: (1) poor annotation of 3' gene ends; (2) issues with intronic read incorporation; and (3) gene overlap-derived read loss. We show that missing gene expression data can be recovered by optimizing the reference transcriptome for scRNA-seq through recovering false intergenic reads, implementing a hybrid pre-mRNA mapping strategy and resolving gene overlaps. We demonstrate, with a diverse collection of mouse and human tissue data, that reference optimization can substantially improve cellular profiling resolution and reveal missing cell types and marker genes. Our findings argue that transcriptomic references need to be optimized for scRNA-seq analysis and warrant a reanalysis of previously published datasets and cell atlases.
Collapse
Affiliation(s)
- Allan-Hermann Pool
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Helen Poldsam
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Wang J, Lv F, Yin W, Gao Z, Liu H, Wang Z, Sun J. The organum vasculosum of the lamina terminalis and subfornical organ: regulation of thirst. Front Neurosci 2023; 17:1223836. [PMID: 37732311 PMCID: PMC10507174 DOI: 10.3389/fnins.2023.1223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Thirst and water intake are regulated by the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO), located around the anteroventral third ventricle, which plays a critical role in sensing dynamic changes in sodium and water balance in body fluids. Meanwhile, neural circuits involved in thirst regulation and intracellular mechanisms underlying the osmosensitive function of OVLT and SFO are reviewed. Having specific Nax channels in the glial cells and other channels (such as TRPV1 and TRPV4), the OVLT and SFO detect the increased Na+ concentration or hyperosmolality to orchestrate osmotic stimuli to the insular and cingulate cortex to evoke thirst. Meanwhile, the osmotic stimuli are relayed to the supraoptic nucleus (SON) and paraventricular nucleus of the hypothalamus (PVN) via direct neural projections or the median preoptic nucleus (MnPO) to promote the secretion of vasopressin which plays a vital role in the regulation of body fluid homeostasis. Importantly, the vital role of OVLT in sleep-arousal regulation is discussed, where vasopressin is proposed as the mediator in the regulation when OVLT senses osmotic stimuli.
Collapse
Affiliation(s)
- Jiaxu Wang
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenglin Lv
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhanpeng Gao
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongyu Liu
- Institute of Sport and Exercise Medicine, North University of China, Taiyuan, China
| | - Zhen Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Zagmutt S, Mera P, González-García I, Ibeas K, Romero MDM, Obri A, Martin B, Esteve-Codina A, Soler-Vázquez MC, Bastias-Pérez M, Cañes L, Augé E, Pelegri C, Vilaplana J, Ariza X, García J, Martinez-González J, Casals N, López M, Palmiter R, Sanz E, Quintana A, Herrero L, Serra D. CPT1A in AgRP neurons is required for sex-dependent regulation of feeding and thirst. Biol Sex Differ 2023; 14:14. [PMID: 36966335 PMCID: PMC10040140 DOI: 10.1186/s13293-023-00498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.
Collapse
Affiliation(s)
- Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Martin
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Marianela Bastias-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Elisabeth Augé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carme Pelegri
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neurosciences of the Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vilaplana
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neurosciences of the Universitat de Barcelona, Barcelona, Spain
| | - Xavier Ariza
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - José Martinez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Miguel López
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Richard Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Elisenda Sanz
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Quintana
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Coolen RL, Cambier JC, van Asselt E, Blok BFM. Androgen receptors in the forebrain: A study in adult male cats. J Morphol 2023; 284:e21553. [PMID: 36601705 PMCID: PMC10107852 DOI: 10.1002/jmor.21553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Androgens and their receptors are present throughout the body. Various structures such as muscles, genitals, and prostate express androgen receptors. The central nervous system also expresses androgen receptors. Androgens cross the blood-brain barrier to reach these central areas. In the central nervous system, androgens are involved in multiple functions. The current study investigated in which forebrain areas androgens are expressed in the male cat. Androgen receptor immunoreactive (AR-IR) nuclei were plotted and the results were quantified with a Heidelberg Topaz II + scanner and Linocolor 5.0 software. The density and intensity of the labeled cells were the main outcomes of interest. The analysis revealed a dense distribution of AR-IR nuclei in the preoptic area, periventricular complex of the hypothalamus, posterior hypothalamic area, ventromedial hypothalamic, parvocellular hypothalamic, infundibular, and supramammillary nucleus. Numerous AR-IR cells were also observed in the dorsal division of the anterior olfactory nucleus, lateral septal nucleus, medial and lateral divisions of the bed nucleus of the stria terminalis, lateral olfactory tract nucleus, anterior amygdaloid area, and the central and medial amygdaloid nuclei. AR-IR nuclei were predominantly observed in areas involved in autonomic and neuroendocrinergic responses which are important for many physiological processes and behaviors.
Collapse
Affiliation(s)
- Rosa L Coolen
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Els van Asselt
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Effects of Voluntary Sodium Consumption during the Perinatal Period on Renal Mechanisms, Blood Pressure, and Vasopressin Responses after an Osmotic Challenge in Rats. Nutrients 2023; 15:nu15020254. [PMID: 36678125 PMCID: PMC9860675 DOI: 10.3390/nu15020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular control is vulnerable to forced high sodium consumption during the per-inatal period, inducing programming effects, with anatomical and molecular changes at the kidney, brain, and vascular levels that increase basal and induce blood pressure. However, the program- ming effects of the natriophilia proper of the perinatal period on blood pressure control have not yet been elucidated. In order to evaluate this, we studied the effect of a sodium overload challenge (SO) on blood pressure response and kidney and brain gene expression in adult offspring exposed to voluntary hypertonic sodium consumption during the perinatal period (PM-NaCl group). Male PM-NaCl rats showed a more sustained increase in blood pressure after SO than controls (PM-Ctrol). They also presented a reduced number of glomeruli, decreased expression of TRPV1, and increased expression of At1a in the kidney cortex. The relative expression of heteronuclear vaso- pressin (AVP hnRNA) and AVP in the supraoptic nucleus was unchanged after SO in PM-NaCl in contrast to the increase observed in PM-Ctrol. The data indicate that the availability of a rich source of sodium during the perinatal period induces a long-term effect modifying renal, cardiovascular, and neuroendocrine responses implicated in the control of hydroelectrolyte homeostasis.
Collapse
|
14
|
Sudbury JR, Zaelzer C, Trudel E, Bumagin A, Bourque CW. Synaptic control of rat magnocellular neurosecretory cells by warm-sensing neurons in the organum vasculosum lamina terminalis. J Neuroendocrinol 2022; 34:e13214. [PMID: 36426844 DOI: 10.1111/jne.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Increases in core body temperature cause secretion of vasopressin (vasopressin, antidiuretic hormone) to promote water reabsorption and blunt water losses incurred through homeostatic evaporative cooling. Subtypes of transient receptor potential vanilloid (Trpv) channels have been shown to contribute to the intrinsic regulation of vasopressin-releasing magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN). However, MNCs in vivo can also be excited by local heating of the adjacent preoptic area, indicating they receive thermosensory information from other areas. Here, we investigated whether neurons in the organum vasculosum lamina terminalis (OVLT) contribute to this process using in vitro electrophysiological approaches in male rats. We found that the majority of OVLT neurons are thermosensitive in the physiological range (36-39°C) and that this property is retained under conditions blocking synaptic transmission. A subset of these neurons could be antidromically activated by electrical stimulation in the SON. Whole cell recordings from SON MNCs revealed that heating significantly increases the rate of spontaneous excitatory postsynaptic currents (sEPCSs), and that this response is abolished by lesions targeting the OVLT, but not by bilateral lesions placed in the adjacent preoptic area. Finally, local heating of the OVLT caused a significant excitation of MNCs in the absence of temperature changes in the SON, and this effect was blocked by inhibitors of ionotropic glutamate receptors. These findings indicate that the OVLT serves as an important thermosensory nucleus and contributes to the activation of MNCs during physiological heating.
Collapse
Affiliation(s)
- Jessica R Sudbury
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cristian Zaelzer
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eric Trudel
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Anna Bumagin
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Zhang F, Mak SOK, Liu Y, Ke Y, Rao F, Yung WH, Zhang L, Chow BKC. Secretin receptor deletion in the subfornical organ attenuates the activation of excitatory neurons under dehydration. Curr Biol 2022; 32:4832-4841.e5. [PMID: 36220076 DOI: 10.1016/j.cub.2022.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
In mammals, thirst is strongly influenced by the subfornical organ (SFO), a forebrain structure that integrates circulating signals including osmotic pressure and sodium contents. Secretin (SCT), a classical gastrointestinal hormone, has been implicated as a humoral factor regulating body-fluid homeostasis. However, the neural mechanism of secretin in the central nervous system in managing thirst remains unclear. In this study, we report that the local ablation of SCT receptor (SCTR) in the SFO reduces water but not salt intake in dehydrated mice and this effect could not be rescued by exogenous SCT administration. Electrophysiology with single-cell RT-PCR indicates that SCT elicits inward currents in the SFO neuronal nitric oxide synthase (SFOnNOS) neurons via SCTR in the presence of glutamate receptor antagonists. We further show that the SCTR in the SFO permits the activation of SFOnNOS neurons under distinct thirst types. Projection-specific gene deletion of SCTR in SFO to the median preoptic nucleus (MnPO) pathway also reduces water intake in dehydrated animals. SCT signaling thus plays an indispensable role in driving thirst. These data not only expand the functional boundaries of SCTR but also provide insights into the central mechanisms of homeostatic regulation.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Sarah O K Mak
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuchu Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Rao
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
| | | |
Collapse
|
16
|
Xu C, Xie Y, Zhong T, Liang S, Guan H, Long Z, Cao H, Xing L, Xue X, Zhan Y. A self-powered wearable brain-machine-interface system for real-time monitoring and regulating body temperature. NANOSCALE 2022; 14:12483-12490. [PMID: 35983766 DOI: 10.1039/d2nr03115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heat stroke that may cause acute central nervous system dysfunction, multiple organ dysfunction and even death has become a typical health problem in tropical developing countries. The primary goal of heat stroke treatment is to lower core body temperature, which necessitates physical or medical cooling in time. Here, we design a new self-powered wearable brain-machine-interface system for real-time monitoring and regulating body temperature. This system can monitor body temperature in real time and transmit neural electrical stimulation signals into specific brain regions to lower the body temperature. The whole system can work without an external power supply and be powered by the body itself through the piezoelectric effect. The system comprises a temperature detecting unit, a power supply unit, a data processing module, and a brain stimulator. Demonstration of the system with stimulation electrodes implanted in the median preoptic nucleus brain region in mice reveals an evident decrease in body temperature (1.0 °C within 15 min). This self-powered strategy provides a new concept for future treatment of heat stroke and can extend the application of brain-machine-interface systems in medical care.
Collapse
Affiliation(s)
- Chengze Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yan Xie
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Tianyan Zhong
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Shan Liang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Hongye Guan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhihe Long
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Hanyu Cao
- Xiamen University, Xiamen 361005, China
| | - Lili Xing
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xinyu Xue
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yang Zhan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022; 227:2409-2437. [PMID: 35838792 PMCID: PMC9418111 DOI: 10.1007/s00429-022-02534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to areas of the forebrain involved in regulating behavior. Homeostatic challenges and salient cues activate the PVT and evidence shows that the PVT regulates appetitive and aversive responses. The brainstem is a source of afferents to the PVT and the present study was done to determine if the lateral parabrachial nucleus (LPB) is a relay for inputs to the PVT. Retrograde tracing experiments with cholera toxin B (CTB) demonstrate that the LPB contains more PVT projecting neurons than other regions of the brainstem including the catecholamine cell groups. The hypothesis that the LPB is a relay for signals to the PVT was assessed using an intersectional monosynaptic rabies tracing approach. Sources of inputs to LPB included the reticular formation; periaqueductal gray (PAG); nucleus cuneiformis; and superior and inferior colliculi. Distinctive clusters of input cells to LPB-PVT projecting neurons were also found in the dorsolateral bed nucleus of the stria terminalis (BSTDL) and the lateral central nucleus of the amygdala (CeL). Anterograde viral tracing demonstrates that LPB-PVT neurons densely innervate all regions of the PVT in addition to providing collateral innervation to the preoptic area, lateral hypothalamus, zona incerta and PAG but not the BSTDL and CeL. The paper discusses the anatomical evidence that suggests that the PVT is part of a network of interconnected neurons involved in arousal, homeostasis, and the regulation of behavioral states with forebrain regions potentially providing descending modulation or gating of signals relayed from the LPB to the PVT.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada. .,Departments of Psychiatry and Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| | - Shuanghong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| |
Collapse
|
18
|
Kurt G, Kodur N, Quiles CR, Reynolds C, Eagle A, Mayer T, Brown J, Makela A, Bugescu R, Seo HD, Carroll QE, Daniels D, Robison AJ, Mazei-Robison M, Leinninger G. Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner. Physiol Behav 2022; 247:113707. [PMID: 35063424 PMCID: PMC8844224 DOI: 10.1016/j.physbeh.2022.113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts → LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.
Collapse
Key Words
- ARC, Arcuate nucleus
- CEA, Central amygdala
- CNO, Clozapine N-Oxide
- CPP, Conditioned place preference
- DR, Dorsal raphe
- DREADD
- DREADD, Designer receptor exclusively activated by designer drugs
- FR-1, Fixed ratio-1
- LHA
- LHA(Nts), Lateral hypothalamic area neuotensin-expressing
- LHA, Lateral hypothalamic area
- LPO, Lateral preoptic area
- LT, Lateral terminalis
- LepRb, Long form of the leptin receptor
- MnPO, Median preoptic area
- ModRabies, Genetically modified rabies virus, EnvA-∆G-Rabies-mCherry
- NTS, Nucleus of solitary tract
- Nts, Neurotensin
- NtsR1, Neurotensin receptor-1
- NtsR2, Neurotensin receptor-2
- OVLT, Organum vasculosum lamina terminalis
- PAG, Periaqueductal gray
- PB, Parabrachial area
- PR, Progressive ratio
- PVH, Paraventricular nucleus of hypothalamus
- SFO, Subfornical organ
- SNc, Substantia nigra compacta
- SO, Supraoptic nucleus
- TVA, avian viral receptor protein
- VEH, Vehicle
- VTA, Ventral tegmental area
- WT, Wild type
- Water
- aCSF, Artificial cerebrospinal fluid
- body weight
- feeding
- homeostasis
- lHb, Lateral habenula
- lateral preoptic area (LPO)
- neurotensin receptor
- reward
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nandan Kodur
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chelsea Reynolds
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Tom Mayer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Juliette Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Harim Delgado Seo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Quinn E Carroll
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Machado NL, Todd WD, Kaur S, Saper CB. Median preoptic GABA and glutamate neurons exert differential control over sleep behavior. Curr Biol 2022; 32:2011-2021.e3. [PMID: 35385692 PMCID: PMC9090993 DOI: 10.1016/j.cub.2022.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 11/10/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Previous studies suggest that the median preoptic nucleus (MnPO) of the hypothalamus plays an important role in regulating the wake-sleep cycle and, in particular, homeostatic sleep drive. However, the precise cellular phenotypes, targets, and central mechanisms by which the MnPO neurons regulate the wake-sleep cycle remain unknown. Both excitatory and inhibitory MnPO neurons innervate brain regions implicated in sleep promotion and maintenance, suggesting that both cell types may participate in sleep control. Using genetically targeted approaches, we investigated the role of the MnPO GABAergic (MnPOVgat) and glutamatergic (MnPOVglut2) neurons in modulating wake-sleep behavior of mice. We found that both neuron populations differentially participate in wake-sleep control, with MnPOVgat neurons being involved in sleep homeostasis and MnPOVglut2 neurons facilitating sleep during allostatic (stressful) challenges.
Collapse
|
20
|
Sanada K, Ueno H, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Onaka T, Otsuji Y, Kataoka M, Ueta Y. AVP-eGFP was significantly upregulated by hypovolemia in the parvocellular division of the paraventricular nucleus in the transgenic rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R161-R169. [PMID: 35018823 DOI: 10.1152/ajpregu.00107.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.
Collapse
Affiliation(s)
- Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsu Miyamoto
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaharu Kataoka
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
21
|
Ramirez-Plascencia OD, Saderi N, Cárdenas Romero S, Flores Sandoval O, Báez-Ruiz A, Martínez Barajas H, Salgado-Delgado R. Temporal dysregulation of hypothalamic integrative and metabolic nuclei in rats fed during the rest phase. Chronobiol Int 2022; 39:374-385. [PMID: 34906015 DOI: 10.1080/07420528.2021.2002352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Temporal coordination of organisms according to the daytime allows a better performance of physiological processes. However, modern lifestyle habits, such as food intake during the rest phase, promote internal desynchronization and compromise homeostasis and health. The hypothalamic suprachiasmatic nucleus (SCN) synchronizes body physiology and behavior with the environmental light-dark cycle by transmitting time information to several integrative hypothalamic nuclei, such as the paraventricular nucleus (PVN), dorsomedial hypothalamic nucleus (DMH) and median preoptic area (MnPO). The SCN receives metabolic information mainly via Neuropeptide Y (NPY) inputs from the intergeniculate nucleus of the thalamus (IGL). Nowadays, there is no evidence of the response of the PVN, DMH and MnPO when the animals are subjected to internal desynchronization by restricting food access to the rest phase of the day. To explore this issue, we compared the circadian activity of the SCN, PVN, DMH and MnPO. In addition, we analyzed the daily activity of the satiety centers of the brainstem, the nucleus of the tractus solitarius (NTS) and area postrema (AP), which send metabolic information to the SCN, directly or via the thalamic intergeniculate leaflet (IGL). For that, male Wistar rats were assigned to three meal protocols: fed during the rest phase (Day Fed); fed during the active phase (Night Fed); free access to food (ad libitum). After 21 d, the daily activity patterns of these nuclei were analyzed by c-Fos immunohistochemistry, as well as NPY immunohistochemistry, in the SCN. The results show that eating during the rest period produces a phase advance in the activity of the SCN, changes the daily activity pattern in the MnPO, NTS and AP and flattens the c-Fos rhythm in the PVN and DMH. Altogether, these results validate previous observations of circadian dysregulation that occurs within the central nervous system when meals are consumed during the rest phase, a behavior that is involved in the metabolic alterations described in the literature.
Collapse
Affiliation(s)
- Oscar D Ramirez-Plascencia
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Omar Flores Sandoval
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adrián Báez-Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | |
Collapse
|
22
|
Shi Y, Hu X, Cui J, Li J, Bi Z, Li J, Fu H, Wang Y, Cui L, Xu J. Correlation Analysis of Data of Tongue and Pulse in Patients With Disease Fatigue and Sub-health Fatigue. INQUIRY: THE JOURNAL OF HEALTH CARE ORGANIZATION, PROVISION, AND FINANCING 2022; 59:469580211060781. [PMID: 35112891 PMCID: PMC8819780 DOI: 10.1177/00469580211060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fatigue is one of the most common subjective symptoms of abnormal health state,
there is still no reliable and stable evaluation method to distinguish disease
fatigue and non-disease fatigue. Studies have shown that tongue diagnosis and
pulse diagnosis are the reflection of overall state of the body. This study aims
to explore the distribution rules and correlation of data of tongue and pulse in
population with disease fatigue and sub-health fatigue and provide a new method
of clinical diagnosis of fatigue from the perspective of tongue diagnosis and
pulse diagnosis. In this study, a total of 736 people were selected and divided
into healthy controls (n = 250), sub-health fatigue group (n = 242), and disease
fatigue group (n = 244). TFDA-1 tongue diagnosis instrument and PDA-1 pulse
diagnosis instrument were used to collect tongue image and sphygmogram, simple
correlation analysis and canonical correlation analysis were used to analyze the
correlation of tongue and pulse data about the two groups of fatigue people. The
study had shown that tongue and pulse data could provide a certain reference for
the diagnosis of different types of fatigue, tongue and pulse data in disease
fatigue and sub-health fatigue population had different distribution rules, and
there was a simple correlation and canonical correlation in the disease fatigue
population, the coefficient of canonical correlation was .649 (P <.05).
Collapse
Affiliation(s)
- Yulin Shi
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojuan Hu
- Shanghai Collaborative Innovation Center of Health Service in Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Cui
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Li
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zijuan Bi
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacai Li
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyuan Fu
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longtao Cui
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiatuo Xu
- Department of Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, van der Vinne V, Huang YG, McKillop LE, Jagannath A, Peirson SN, Mann EO, Foster RG, Vyazovskiy VV. The hypothalamic link between arousal and sleep homeostasis in mice. Proc Natl Acad Sci U S A 2021; 118:e2101580118. [PMID: 34903646 PMCID: PMC8713782 DOI: 10.1073/pnas.2101580118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.
Collapse
Affiliation(s)
- Tomoko Yamagata
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - José Prius-Mengual
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Merima Šabanović
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Mathilde C C Guillaumin
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vincent van der Vinne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Yi-Ge Huang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
24
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
25
|
Ahmed SR, Liu E, Yip A, Lin Y, Balaban E, Pompeiano M. Novel localizations of TRPC5 channels suggest novel and unexplored roles: A study in the chick embryo brain. Dev Neurobiol 2021; 82:41-63. [PMID: 34705331 DOI: 10.1002/dneu.22857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
Mammalian TRPC5 channels are predominantly expressed in the brain, where they increase intracellular Ca2+ and induce depolarization. Because they augment presynaptic vesicle release, cause persistent neural activity, and show constitutive activity, TRPC5s could play a functional role in late developmental brain events. We used immunohistochemistry to examine TRPC5 in the chick embryo brain between 8 and 20 days of incubation, and provide the first detailed description of their distribution in birds and in the whole brain of any animal species. Stained areas substantially increased between E8 and E16, and staining intensity in many areas peaked at E16, a time when chick brains first show organized patterns of whole-brain metabolic activation like what is seen consistently after hatching. Areas showing cell soma staining match areas showing Trpc5 mRNA or protein in adult rodents (cerebral cortex, hippocampus, amygdala, cerebellar Purkinje cells). Chick embryos show protein staining in the optic tectum, cerebellar nuclei, and several brainstem nuclei; equivalent areas in the Allen Institute mouse maps express Trpc5 mRNA. The strongest cell soma staining was found in a dorsal hypothalamic area (matching a group of parvicellular arginine vasotocin neurons and a pallial amygdalohypothalamic cell corridor) and the vagal motor complex. Purkinje cells showed strong dendritic staining at E20. Unexpectedly, we also describe neurite staining in the septum, several hypothalamic nuclei, and a paramedian raphe area; the strongest neurite staining was in the median eminence. These novel localizations suggest new unexplored TRPC5 functions, and possible roles in late embryonic brain development.
Collapse
Affiliation(s)
- Sharifuddin Rifat Ahmed
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Faculté de médecine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Elise Liu
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Institute du Cerveau - ICM, Paris Brain Institute, Paris, 75013, France
| | - Alissa Yip
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Yuqi Lin
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Evan Balaban
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Department of Bioengineering and Aerospace Engineering, Carlo III University of Madrid, Avda. de la Universidad 30, Leganés, Madrid, E-28911, Spain
| | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, Quebec, Canada.,Department of Bioengineering and Aerospace Engineering, Carlo III University of Madrid, Avda. de la Universidad 30, Leganés, Madrid, E-28911, Spain
| |
Collapse
|
26
|
Han B, Cui S, Liu FY, Wan Y, Shi Y, Yi M. Suppression of ventral hippocampal CA1 pyramidal neuronal activities enhances water intake. Am J Physiol Cell Physiol 2021; 321:C992-C999. [PMID: 34705585 DOI: 10.1152/ajpcell.00211.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirst is an important interoceptive response and drives water consumption. The hippocampus actively modulates food intake and energy metabolism, but direct evidence for the exact role of the hippocampus in modulating drinking behaviors is lacking. We observed decreased number of c-Fos-positive neurons in the ventral hippocampal CA1 (vCA1) after water restriction or hypertonic saline injection in rats. Suppressed vCA1 neuronal activities under the hypertonic state were further confirmed with in vivo electrophysiological recording and the level of suppression paralleled both the duration and the total amount of water consumption. Chemogenetic inhibition of vCA1 pyramidal neurons increased water consumption in rats injected with both normal and hypertonic saline. These findings suggest that suppression of vCA1 pyramidal neuronal activities enhances water intake.
Collapse
Affiliation(s)
- Bingxuan Han
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China
| | - Yan Shi
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China
| |
Collapse
|
27
|
Kim A, Madara JC, Wu C, Andermann ML, Lowell BB. Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality. eLife 2021; 10:66609. [PMID: 34585668 PMCID: PMC8601670 DOI: 10.7554/elife.66609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli. Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated ‘switches off’ the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this ‘anticipatory’ information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons ‘foresee’ that food or water will be consumed.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| |
Collapse
|
28
|
Hicks AI, Kobrinsky S, Zhou S, Yang J, Prager-Khoutorsky M. Anatomical Organization of the Rat Subfornical Organ. Front Cell Neurosci 2021; 15:691711. [PMID: 34552469 PMCID: PMC8450496 DOI: 10.3389/fncel.2021.691711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/14/2022] Open
Abstract
The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors. Circumventricular organs are characterized by the presence of unique populations of non-neuronal cells, such as tanycytes and fenestrated endothelium. However, how these populations are organized within the SFO is not well understood. In this study, we used histological techniques to analyze the anatomical organization of the rat SFO and examined the distribution of neurons, fenestrated and non-fenestrated vasculature, tanycytes, ependymocytes, glia cells, and pericytes within its confines. Our data show that the shell of SFO contains non-fenestrated vasculature, while fenestrated capillaries are restricted to the medial-posterior core region of the SFO and associated with a higher BBB permeability. In contrast to non-fenestrated vessels, fenestrated capillaries are encased in a scaffold created by pericytes and embedded in a network of tanycytic processes. Analysis of c-Fos expression following systemic injections of angiotensin II or hypertonic NaCl reveals distinct neuronal populations responding to these stimuli. Hypertonic NaCl activates ∼13% of SFO neurons located in the shell. Angiotensin II-sensitive neurons represent ∼35% of SFO neurons and their location varies between sexes. Our study provides a comprehensive description of the organization of diverse cellular elements within the SFO, facilitating future investigations in this important brain area.
Collapse
Affiliation(s)
| | - Simona Kobrinsky
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Suijian Zhou
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Jieyi Yang
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
29
|
Farmer GE, Little JT, Marciante AB, Cunningham JT. AT1a-dependent GABA A inhibition in the MnPO following chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R469-R481. [PMID: 34189959 PMCID: PMC8530756 DOI: 10.1152/ajpregu.00030.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic intermittent hypoxia (CIH) is associated with diurnal hypertension, increased sympathetic nerve activity (SNA), and increases in circulating angiotensin II (ANG II). In rats, CIH increases angiotensin type 1 (AT1a) receptor expression in the median preoptic nucleus (MnPO), and pharmacological blockade or viral knockdown of this receptor prevents CIH-dependent increases in diurnal blood pressure. The current study investigates the role of AT1a receptor in modulating the activity of MnPO neurons following 7 days of CIH. Male Sprague-Dawley rats received MnPO injections of an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. Rats were then exposed to CIH for 8 h a day for 7 days. In vitro, loose patch recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. In addition, MnPO K-Cl cotransporter isoform 2 (KCC2) protein expression was assessed using Western blot. CIH impaired the duration but not the magnitude of ANG II-mediated excitation in the MnPO. Both CIH and AT1a knockdown also impaired GABAA-mediated inhibition, and CIH with AT1a knockdown produced GABAA-mediated excitation. Recordings using the ratiometric Cl- indicator ClopHensorN showed CIH was associated with Cl- efflux in MnPO neurons that was associated with decreased KCC2 phosphorylation. The combination of CIH and AT1a knockdown attenuated reduced KCC2 phosphorylation seen with CIH alone. The current study shows that CIH, through the activity of AT1a receptors, can impair GABAA-mediated inhibition in the MnPO and contribute to sustained hypertension.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Alexandria B Marciante
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
30
|
Fry WM, Ferguson AV. The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:203-215. [PMID: 34225930 DOI: 10.1016/b978-0-12-820107-7.00013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.
Collapse
Affiliation(s)
- W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
31
|
Piñol RA, Mogul AS, Hadley CK, Saha A, Li C, Škop V, Province HS, Xiao C, Gavrilova O, Krashes MJ, Reitman ML. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab 2021; 33:1389-1403.e6. [PMID: 34038711 PMCID: PMC8266747 DOI: 10.1016/j.cmet.2021.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022]
Abstract
The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POABRS3) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb. POABRS3 neurons that project to either the paraventricular nucleus of the hypothalamus or the dorsomedial hypothalamus increased Tb, heart rate, and blood pressure via the sympathetic nervous system. Long-term inactivation of POABRS3 neurons caused increased Tb variability, overshooting both increases and decreases in Tb set point, with RNA expression profiles suggesting multiple types of POABRS3 neurons. Thus, POABRS3 neuronal populations regulate Tb and heart rate, contribute to cold defense, and fine-tune feedback control of Tb. These findings advance understanding of homeothermy, a defining feature of mammalian biology.
Collapse
Affiliation(s)
- Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Allison S Mogul
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen K Hadley
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atreyi Saha
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haley S Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci 2021; 15:664781. [PMID: 34276287 PMCID: PMC8280336 DOI: 10.3389/fnins.2021.664781] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep and body temperature are tightly interconnected in mammals: warming up our body helps to fall asleep and the body temperature in turn drops while falling asleep. The preoptic area of the hypothalamus (POA) serves as an essential brain region to coordinate sleep and body temperature. Understanding how these two behaviors are controlled within the POA requires the molecular identification of the involved circuits and mapping their local and brain-wide connectivity. Here, we review our current understanding of how sleep and body temperature are regulated with a focus on recently discovered sleep- and thermo-regulatory POA neurons. We further discuss unresolved key questions including the anatomical and functional overlap of sleep- and thermo-regulatory neurons, their pathways and the role of various signaling molecules. We suggest that analysis of genetically defined circuits will provide novel insights into the mechanisms underlying the coordinated regulation of sleep and body temperature in health and disease.
Collapse
Affiliation(s)
- Rebecca Rothhaas
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Abstract
Sleep is essential for healthy being and healthy functioning of human body as a whole, as well as each organ and system. Sleep disorders, such as sleep-disordered breathing, insomnia, sleep fragmentation, and sleep deprivation are associated with the deterioration in human body functioning and increased cardiovascular risks. However, owing to the complex regulation and heterogeneous state sleep per se can be associated with cardiovascular dysfunction in susceptible subjects. The understanding of sleep as a multidimensional concept is important for better prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia.
| | - Mikhail Bochkarev
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| | - Yurii Sviryaev
- Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| |
Collapse
|
34
|
Kelly AM, Seifert AW. Distribution of Vasopressin and Oxytocin Neurons in the Basal Forebrain and Midbrain of Spiny Mice (Acomys cahirinus). Neuroscience 2021; 468:16-28. [PMID: 34102266 DOI: 10.1016/j.neuroscience.2021.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The nonapeptides vasopressin (VP) and oxytocin (OT) are present in some form in most vertebrates. VP and OT play critical roles in modulating physiology and are well-studied for their influences on a variety of social behaviors, ranging from affiliation to aggression. Their anatomical distributions have been mapped for numerous species across taxa, demonstrating relatively strong evolutionary conservation in distributions throughout the basal forebrain and midbrain. Here we examined the distribution of VP-immunoreactive (-ir) and OT-ir neurons in a gregarious, cooperatively breeding rodent species, the spiny mouse (Acomys cahirinus), for which nonapeptide mapping does not yet exist. Immunohistochemical techniques revealed VP-ir and OT-ir neuronal populations throughout the hypothalamus and amygdala of males and females that are consistent with those of other rodents. However, a novel population of OT-ir neurons was observed in the median preoptic nucleus of both sexes, located dorsally to the anterior commissure. Furthermore, we found widespread sex differences in OT neuronal populations, with males having significantly more OT-ir neurons than females. However, we observed a sex difference in only one VP cell group - that of the bed nucleus of the stria terminalis (BST), a VP neuronal population that exhibits a phylogenetically widespread sexual dimorphism. These findings provide mapping distributions of VP and OT neurons in Acomys cahirinus. Spiny mice lend themselves to the study of mammalian cooperation and sociality, and the nonapeptide neuronal mapping presented here can serve as a basic foundation for the study of nonapeptide-mediated behavior in a group of highly social rodents.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington KY 40508, USA
| |
Collapse
|
35
|
Lucera GM, Menani JV, Colombari E, Colombari DSA. ANG II and Aldosterone Acting Centrally Participate in the Enhanced Sodium Intake in Water-Deprived Renovascular Hypertensive Rats. Front Pharmacol 2021; 12:679985. [PMID: 34113255 PMCID: PMC8186501 DOI: 10.3389/fphar.2021.679985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Renovascular hypertension is a type of secondary hypertension caused by renal artery stenosis, leading to an increase in the renin–angiotensin–aldosterone system (RAAS). Two-kidney, 1-clip (2K1C) is a model of renovascular hypertension in which rats have an increased sodium intake induced by water deprivation (WD), a common situation found in the nature. In addition, a high-sodium diet in 2K1C rats induces glomerular lesion. Therefore, the purpose of this study was to investigate whether angiotensin II (ANG II) and/or aldosterone participates in the increased sodium intake in 2K1C rats under WD. In addition, we also verified if central AT1 and mineralocorticoid receptor blockade would change the high levels of arterial pressure in water-replete (WR) and WD 2K1C rats, because blood pressure changes can facilitate or inhibit water and sodium intake. Finally, possible central areas activated during WD or WD followed by partial rehydration (PR) in 2K1C rats were also investigated. Male Holtzman rats (150–180 g) received a silver clip around the left renal artery to induce renovascular hypertension. Six weeks after renal surgery, a stainless-steel cannula was implanted in the lateral ventricle, followed by 5–7 days of recovery before starting tests. Losartan (AT1 receptor antagonist) injected intracerebroventricularly attenuated water intake during the thirst test. Either icv losartan or RU28318 (mineralocorticoid receptor antagonist) reduced 0.3 M NaCl intake, whereas the combination of losartan and RU28318 icv totally blocked 0.3 M NaCl intake induced by WD in 2K1C rats. Losartan and RU28318 icv did not change hypertension levels of normohydrated 2K1C rats, but reduced the increase in mean arterial pressure (MAP) produced by WD. c-Fos expression increased in the lamina terminalis and in the NTS in WD condition, and increased even more after WD-PR. These results suggest the participation of ANG II and aldosterone acting centrally in the enhanced sodium intake in WD 2K1C rats, and not in the maintenance of hypertension in satiated and fluid-replete 2K1C rats.
Collapse
Affiliation(s)
- Gabriela Maria Lucera
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | | |
Collapse
|
36
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
37
|
Stoynev AG, Ikonomov OC, Stoynev NA. Suprachiasmatic hypothalamic nuclei (SCN) in regulation of homeostasis: a role beyond circadian control? BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1920125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexander G. Stoynev
- Department of Pathophysiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Ognian C. Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, USA
| | - Nikolay A. Stoynev
- Department of Physiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| |
Collapse
|
38
|
Activation of Transient Receptor Potential Vanilloid 1 Channels in the Nucleus of the Solitary Tract and Activation of Dynorphin Input to the Median Preoptic Nucleus Contribute to Impaired BAT Thermogenesis in Diet-Induced Obesity. eNeuro 2021; 8:ENEURO.0048-21.2021. [PMID: 33707202 PMCID: PMC8174036 DOI: 10.1523/eneuro.0048-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
The impairment of cold-evoked activation of brown adipose tissue (BAT) in rats fed a high-fat diet (HFD) requires the activity of a vagal afferent to the medial nucleus of the solitary tract (mNTS). We determined the role of transient receptor potential vanilloid 1 (TRPV1) activation in the mNTS, and of a dynorphin input to the median preoptic nucleus (MnPO) in the impaired BAT thermogenic response to cold in HFD-fed rats. The levels of some linoleic acid (LA) metabolites, which can act as endogenous TRPV1 agonists, were elevated in the NTS of HFD rats compared with chow-fed rats. In HFD rats, nanoinjections of the TRPV1 antagonist, capsazepine (CPZ) in the NTS rescued the impaired BAT sympathetic nerve activity (BAT SNA) and thermogenic responses to cold. In contrast, in chow-fed rats, cold-evoked BAT SNA and BAT thermogenesis were not changed by nanoinjections of CPZ into the NTS. Axon terminals of NTS neurons that project to the dorsal lateral parabrachial nucleus (LPBd) were closely apposed to LPBd neurons that project to the MnPO. Many of the neurons in the LPBd that expressed c-fos during cold challenge were dynorphinergic. In HFD rats, nanoinjections of the κ opioid receptor (KOR) antagonist, nor-binaltorphimine (nor-BNI), in the MnPO rescued the impaired BAT SNA and thermogenic responses to cold. These data suggest that HFD increases the content of endogenous ligands of TRPV1 in the NTS, which increases the drive to LPBd neurons that in turn release dynorphin in the MnPO to impair activation of BAT.
Collapse
|
39
|
Marciante AB, Shell B, Farmer GE, Cunningham JT. Role of angiotensin II in chronic intermittent hypoxia-induced hypertension and cognitive decline. Am J Physiol Regul Integr Comp Physiol 2021; 320:R519-R525. [PMID: 33595364 PMCID: PMC8238144 DOI: 10.1152/ajpregu.00222.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 02/03/2023]
Abstract
Sleep apnea is characterized by momentary interruptions in normal respiration and leads to periods of decreased oxygen, or intermittent hypoxia. Chronic intermittent hypoxia is a model of the hypoxemia associated with sleep apnea and results in a sustained hypertension that is maintained during normoxia. Adaptations of the carotid body and activation of the renin-angiotensin system may contribute to the development of hypertension associated with chronic intermittent hypoxia. The subsequent activation of the brain renin-angiotensin system may produce changes in sympathetic regulatory neural networks that support the maintenance of the hypertension associated with intermittent hypoxia. Hypertension and sleep apnea not only increase risk for cardiovascular disease but are also risk factors for cognitive decline and Alzheimer's disease. Activation of the angiotensin system could be a common mechanism that links these disorders.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing REsearch And THErapeutics (BREATHE) Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Brent Shell
- Zuckerberg College of Health Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
- Department of Biomedical and Nutritional Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
40
|
Brain angiotensin converting enzyme-2 in central cardiovascular regulation. Clin Sci (Lond) 2021; 134:2535-2547. [PMID: 33016313 DOI: 10.1042/cs20200483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The brain renin-angiotensin system (RAS) plays an important role in the regulation of autonomic and neuroendocrine functions, and maintains cardiovascular homeostasis. Ang-II is the major effector molecule of RAS and exerts most of its physiological functions, including blood pressure (BP) regulation, via activation of AT1 receptors. Dysregulation of brain RAS in the central nervous system results in increased Ang-II synthesis that leads to sympathetic outflow and hypertension. Brain angiotensin (Ang) converting enzyme-2 (ACE2) was discovered two decades ago as an RAS component, exhibiting a counter-regulatory role and opposing the adverse cardiovascular effects produced by Ang-II. Studies using synthetic compounds that can sustain the elevation of ACE2 activity or genetically overexpressed ACE2 in specific brain regions found various beneficial effects on cardiovascular function. More recently, ACE2 has been shown to play critical roles in neuro-inflammation, gut dysbiosis and the regulation of stress and anxiety-like behaviors. In the present review, we aim to highlight the anatomical locations and functional implication of brain ACE2 related to its BP regulation via modulation of the sympathetic nervous system and discuss the recent developments and future directions in the ACE2-mediated central cardiovascular regulation.
Collapse
|
41
|
Caba M, Lehman MN, Caba-Flores MD. Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Front Neurosci 2021; 15:636764. [PMID: 33815041 PMCID: PMC8010146 DOI: 10.3389/fnins.2021.636764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
In the newborn rabbit, the light entrainable circadian system is immature and once a day nursing provides the primary timing cue for entrainment. In advance of the mother's arrival, pups display food anticipatory activity (FAA), and metabolic and physiological parameters are synchronized to this daily event. Central structures in the brain are also entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker, and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic parameters persist in the periphery and brain, including rhythms in the olfactory bulb (OB). Here we provide an overview of these physiological and neurobiological changes and focus on three issues, just beginning to be examined in the rabbit. First, we review evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis of arousal, the latter which also includes the role of the orexigenic system. Second, since FAA in association with the daily visit of the mother is an example of conditioned learning, we review evidence for changes in the corticolimbic system and identified nuclei in the amygdala and extended amygdala as part of the neural substrate responsible for FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that underlies physiological events, which occur in preparation for the upcoming next daily meal. We conclude that the rabbit model has contributed to an overall understanding of food entrainment.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | | |
Collapse
|
42
|
Wu J, Liu D, Li J, Sun J, Huang Y, Zhang S, Gao S, Mei W. Central Neural Circuits Orchestrating Thermogenesis, Sleep-Wakefulness States and General Anesthesia States. Curr Neuropharmacol 2021; 20:223-253. [PMID: 33632102 PMCID: PMC9199556 DOI: 10.2174/1570159x19666210225152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Great progress has been made in specifically identifying the central neural circuits (CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We summarize the neuronal populations and neural pathways of these three CNCs, which gives evidence for the orchestration within these three CNCs, and the integrative regulation of these three CNCs by different environmental light signals. We also outline some transient receptor potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general anesthetics, which makes TRP channels possible targets for addressing the general-anesthetics-induced-hypothermia (GAIH). We suggest this review will provide new orientations for further consummating these CNCs and elucidating the central mechanisms of GAIH.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Jiayan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Yujie Huang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Shuang Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1095, Wuhan 430030. China
| |
Collapse
|
43
|
Wang W, Zheng Y, Li M, Lin S, Lin H. Recent Advances in Studies on the Role of Neuroendocrine Disorders in Obstructive Sleep Apnea-Hypopnea Syndrome-Related Atherosclerosis. Nat Sci Sleep 2021; 13:1331-1345. [PMID: 34349578 PMCID: PMC8326525 DOI: 10.2147/nss.s315375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is a common cause of death worldwide, and atherosclerosis (AS) and obstructive sleep apnea-hypopnea syndrome (OSAHS) critically contribute to the initiation and progression of cardiovascular diseases. OSAHS promotes endothelial injury, vascular smooth muscle cell (VSMC) proliferation, abnormal lipid metabolism, and elevated arterial blood pressure. However, the exact OSAHS mechanism that causes AS remains unclear. The nervous system is widely distributed in the central and peripheral regions. It regulates appetite, energy metabolism, inflammation, oxidative stress, insulin resistance, and vasoconstriction by releasing regulatory factors and participates in the occurrence and development of AS. Studies showed that OSAHS can cause changes in neurophysiological plasticity and affect modulator release, suggesting that neuroendocrine dysfunction may be related to the OSAHS mechanism causing AS. In this article, we review the possible mechanisms of neuroendocrine disorders in the pathogenesis of OSAHS-induced AS and provide a new basis for further research on the development of corresponding effective intervention strategies.
Collapse
Affiliation(s)
- Wanda Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yanli Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Meimei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| |
Collapse
|
44
|
Abstract
Adipsic diabetes insipidus (ADI) is a rare but devastating disorder of water balance with significant associated morbidity and mortality. Most patients develop the disease as a result of hypothalamic destruction from a variety of underlying etiologies. Damage to osmolar-responsive neuroreceptors, primarily within the supraoptic and paraventricular nuclei, results in impaired production and release of arginine vasopressin (AVP). Important regulating circuits of thirst sense and drive are regionally colocalized with AVP centers and therefore are also injured. Patients with central diabetes insipidus with impaired thirst response, defined as ADI, suffer from wide swings of plasma osmolality resulting in repeated hospitalization, numerous associated comorbidities, and significant mortality. Treatment recommendations are based largely on expert advice from case series owing to the rarity of disease prevalence. Acute disease management focuses on fixed dosing of antidiuretic hormone analogues and calculated prescriptions of obligate daily water intake. Long-term care requires patient/family education, frequent reassessment of clinical and biochemical parameters, as well as screening and treatment of comorbidities.
Collapse
Affiliation(s)
- Vallari Kothari
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zulma Cardona
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuval Eisenberg
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
45
|
McKinley MJ, Pennington GL, Ryan PJ. The median preoptic nucleus: A major regulator of fluid, temperature, sleep, and cardiovascular homeostasis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:435-454. [PMID: 34225980 DOI: 10.1016/b978-0-12-819975-6.00028-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Located in the midline lamina terminalis of the anterior wall of the third ventricle, the median preoptic nucleus is a thin elongated nucleus stretching around the rostral border of the anterior commissure. Its neuronal elements, composed of various types of excitatory glutamatergic and inhibitory GABAergic neurons, receive afferent neural signals from (1) neighboring subfornical organ and organum vasculosum of the lamina terminalis related to plasma osmolality and hormone concentrations, e.g., angiotensin II; (2) from peripheral sensors such as arterial baroreceptors and cutaneous thermosensors. Different sets of these MnPO glutamatergic and GABAergic neurons relay output signals to hypothalamic, midbrain, and medullary regions that drive homeostatic effector responses. Included in the effector responses are (1) thirst, antidiuretic hormone secretion and renal sodium excretion that subserve osmoregulation and body fluid homeostasis; (2) vasoconstriction or dilatation of skin blood vessels, and shivering and brown adipose tissue thermogenesis for core temperature homeostasis; (3) inhibition of hypothalamic and midbrain nuclei that stimulate wakefulness and arousal, thereby promoting both REM and non-REM sleep; and (4) activation of sympathetic pathways that drive vasoconstriction and heart rate to maintain arterial pressure and the perfusion of vital organs. The small size of MnPO belies its massive homeostatic significance.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| | - Glenn L Pennington
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
46
|
Romano F, Muscogiuri G, Di Benedetto E, Zhukouskaya VV, Barrea L, Savastano S, Colao A, Di Somma C. Vitamin D and Sleep Regulation: Is there a Role for Vitamin D? Curr Pharm Des 2020; 26:2492-2496. [PMID: 32156230 DOI: 10.2174/1381612826666200310145935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/29/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Vitamin D exerts multiple pleiotropic effects beyond its role in calcium-phosphate metabolism. Growing evidence suggests an association between hypovitaminosis D and sleep disorders, thus increasing the interest in the role of this vitamin in the regulatory mechanisms of the sleep-wake cycle. OBJECTIVE The study aimed to explore and summarize the current knowledge about the role of vitamin D in sleep regulation and the impact of vitamin D deficiency on sleep disorders. METHODS The main regulatory mechanisms of vitamin D on sleep are explained in this study. The literature was scanned to identify clinical trials and correlation studies showing an association between vitamin D deficiency and sleep disorders. RESULTS Vitamin D receptors and the enzymes that control their activation and degradation are expressed in several areas of the brain involved in sleep regulation. Vitamin D is also involved in the pathways of production of Melatonin, the hormone involved in the regulation of human circadian rhythms and sleep. Furthermore, vitamin D can affect sleep indirectly through non-specific pain disorders, correlated with alterations in sleep quality, such as restless legs syndrome and obstructive sleep apnea syndrome. CONCLUSION Vitamin D has both a direct and an indirect role in the regulation of sleep. Although vitamin D deficiency has been associated to sleep disorders, there is still scant evidence to concretely support the role of vitamin D supplementation in the prevention or treatment of sleep disturbances; indeed, more intervention studies are needed to better clarify these aspects.
Collapse
Affiliation(s)
- Fiammetta Romano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Elea Di Benedetto
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Volha V Zhukouskaya
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| | - Carolina Di Somma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Universita degli Studi di Napoli Federico II, Italy
| |
Collapse
|
47
|
An Angiotensin-Responsive Connection from the Lamina Terminalis to the Paraventricular Nucleus of the Hypothalamus Evokes Vasopressin Secretion to Increase Blood Pressure in Mice. J Neurosci 2020; 41:1429-1442. [PMID: 33328294 DOI: 10.1523/jneurosci.1600-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Blood pressure is controlled by endocrine, autonomic, and behavioral responses that maintain blood volume and perfusion pressure at levels optimal for survival. Although it is clear that central angiotensin type 1a receptors (AT1aR; encoded by the Agtr1a gene) influence these processes, the neuronal circuits mediating these effects are incompletely understood. The present studies characterize the structure and function of AT1aR neurons in the lamina terminalis (containing the median preoptic nucleus and organum vasculosum of the lamina terminalis), thereby evaluating their roles in blood pressure control. Using male Agtr1a-Cre mice, neuroanatomical studies reveal that AT1aR neurons in the area are largely glutamatergic and send projections to the paraventricular nucleus of the hypothalamus (PVN) that appear to synapse onto vasopressin-synthesizing neurons. To evaluate the functionality of these lamina terminalis AT1aR neurons, we virally delivered light-sensitive opsins and then optogenetically excited or inhibited the neurons while evaluating cardiovascular parameters or fluid intake. Optogenetic excitation robustly elevated blood pressure, water intake, and sodium intake, while optogenetic inhibition produced the opposite effects. Intriguingly, optogenetic excitation of these AT1aR neurons of the lamina terminalis also resulted in Fos induction in vasopressin neurons within the PVN and supraoptic nucleus. Further, within the PVN, selective optogenetic stimulation of afferents that arise from these lamina terminalis AT1aR neurons induced glutamate release onto magnocellular neurons and was sufficient to increase blood pressure. These cardiovascular effects were attenuated by systemic pretreatment with a vasopressin-1a-receptor antagonist. Collectively, these data indicate that excitation of lamina terminalis AT1aR neurons induces neuroendocrine and behavioral responses that increase blood pressure.SIGNIFICANCE STATEMENT Hypertension is a widespread health problem and risk factor for cardiovascular disease. Although treatments exist, a substantial percentage of patients suffer from "drug-resistant" hypertension, a condition associated with increased activation of brain angiotensin receptors, enhanced sympathetic nervous system activity, and elevated vasopressin levels. The present study highlights a role for angiotensin Type 1a receptor expressing neurons located within the lamina terminalis in regulating endocrine and behavioral responses that are involved in maintaining cardiovascular homeostasis. More specifically, data presented here reveal functional excitatory connections between angiotensin-sensitive neurons in the lamina terminals and vasopressin neurons in the paraventricular nucleus of the hypothalamus, and further indicate that activation of this circuit raises blood pressure. These neurons may be a promising target for antihypertensive therapeutics.
Collapse
|
48
|
Drummond LR, Campos HO, de Andrade Lima PM, da Fonseca CG, Kunstetter AC, Rodrigues QT, Szawka RE, Natali AJ, Prímola-Gomes TN, Wanner SP, Coimbra CC. Impaired thermoregulation in spontaneously hypertensive rats during physical exercise is related to reduced hypothalamic neuronal activation. Pflugers Arch 2020; 472:1757-1768. [PMID: 33040159 DOI: 10.1007/s00424-020-02474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
This study aimed to evaluate the physical exercise-induced neuronal activation in brain nuclei controlling thermoregulatory responses in hypertensive and normotensive rats. Sixteen-week-old male normotensive Wistar rats (NWRs) and spontaneously hypertensive rats (SHRs) were implanted with an abdominal temperature sensor. After recovery, the animals were subjected to a constant-speed treadmill running (at 60% of the maximum aerobic speed) for 30 min at 25 °C. Core (Tcore) and tail-skin (Tskin) temperatures were measured every minute during exercise. Ninety minutes after the exercise, the rats were euthanized, and their brains were collected to determine the c-Fos protein expression in the following areas that modulate thermoregulatory responses: medial preoptic area (mPOA), paraventricular hypothalamic nucleus (PVN), and supraoptic nucleus (SON). During treadmill running, the SHR group exhibited a greater increase in Tcore and an augmented threshold for cutaneous heat loss relative to the NWR group. In addition, the SHRs showed reduced neuronal activation in the mPOA (< 49.7%) and PVN (< 44.2%), but not in the SON. The lower exercise-induced activation in the mPOA and PVN in hypertensive rats was strongly related to the delayed onset of cutaneous heat loss. We conclude that the enhanced exercise-induced hyperthermia in hypertensive rats can be partially explained by a delayed cutaneous heat loss, which is, in turn, associated with reduced activation of brain areas modulating thermoregulatory responses.
Collapse
Affiliation(s)
- Lucas Rios Drummond
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil.
| | - Helton Oliveira Campos
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Marcelo de Andrade Lima
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Cletiana Gonçalves da Fonseca
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cançado Kunstetter
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Quezia Teixeira Rodrigues
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Raphael Escorsim Szawka
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| | - Antônio José Natali
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Thales Nicolau Prímola-Gomes
- Laboratório de Biologia do Exercício, Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627., Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
49
|
Marciante AB, Farmer GE, Cunningham JT. G q DREADD activation of CaMKIIa MnPO neurons stimulates nitric oxide activity. J Neurophysiol 2020; 124:591-609. [PMID: 32697679 PMCID: PMC7500373 DOI: 10.1152/jn.00239.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) modify cellular activity following administration of the exogenous ligand clozapine-N-oxide (CNO). However, some reports indicate CNO may have off-target effects. The current studies investigate the use of Gq DREADDs in CaMKIIa-expressing neurons in the median preoptic nucleus (MnPO). Male Sprague-Dawley rats (250 g) anesthetized with isoflurane were stereotaxically microinjected in the MnPO with the Gq DREADD (AAV5-CaMKIIa-HM3D-mCherry) or control virus (AAV5-CaMKIIa-mCherry). Following a 2-wk recovery, rats were used for either immunohistochemical Fos analysis or in vitro patch-clamp electrophysiology. In Gq DREADD-injected rats, CNO induced significant increases in Fos staining in the MnPO and in regions that receive direct or indirect projections from the MnPO. In electrophysiological studies, CNO depolarized and augmented firing frequency in both Gq DREADD-positive neurons (Gq DREADD) as well as unlabeled MnPO neurons in slices from Gq DREADD-injected rats (Gq DREADDx). Gq DREADDx neurons also displayed increases in spontaneous postsynaptic current (sPSC) frequency in response to CNO. Additionally, CaMKIIa-positive MnPO neurons, which also express nitric oxide synthase (NOS), were treated with Nω-nitro-l-arginine (l-NNA; competitive inhibitor of NOS) and hemoglobin (NO scavenger) to assess the role of NO in Gq DREADDx neuron recruitment. Both l-NNA and hemoglobin blocked CNO-induced effects in Gq DREADDx neurons without affecting Gq DREADD neurons. These findings indicate that Gq DREADD-mediated activation of CaMKIIa/NOS expressing neurons in the MnPO can influence the activity of neighboring neurons. Future studies utilizing the use of Gq DREADDs will need to consider the potential recruitment of additional cell populations.NEW & NOTEWORTHY Rats were injected in the median preoptic nucleus (MnPO) with either an adeno-associated virus (AAV) and excitatory (Gq) designer receptor exclusively activated by designer drugs (DREADD) construct or a control AAV. In the Gq DREADD-injected rats only, clozapine-N-oxide (CNO) increased Fos staining in the MnPO and its targets and increased neuron action potential frequency. In electrophysiology experiments with slices with DREADD cells, unlabeled cells were activated and this was likely due to nitric oxide release by the DREADD cells.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Fort Worth, Texas
| | - George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Fort Worth, Texas
| | | |
Collapse
|
50
|
Gizowski C, Bourque CW. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature 2020; 583:421-424. [PMID: 32641825 DOI: 10.1038/s41586-020-2471-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/02/2020] [Indexed: 11/10/2022]
Abstract
The suprachiasmatic nucleus (SCN) serves as the body's master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day-night cycle1-4. For example, the SCN opposes overnight adipsia by driving water intake before sleep5,6, and by driving the secretion of anti-diuretic hormone7,8 and lowering body temperature9,10 to reduce water loss during sleep11. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase12-16. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19-a time at which SCNVP (vasopressin) neurons are inactive-excited SCNVP neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCNVP neurons and mimicked by optogenetic stimulation of SCNVP neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLTGAD) relay this information to SCNVP neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLTGAD neuron axon terminals excited SCNVP neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLTGAD neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLTGAD→ SCNVP pathway and was prevented by chemogenetic inhibition of OVLTGAD neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
Collapse
Affiliation(s)
- Claire Gizowski
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|