1
|
Jeon YG, Kim SW, Kim JB. Decoding temporal thermogenesis: coregulator selectivity and transcriptional control in brown and beige adipocytes. Adipocyte 2024; 13:2391511. [PMID: 39155481 PMCID: PMC11340756 DOI: 10.1080/21623945.2024.2391511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and beige adipocytes in white adipose tissue (WAT) play pivotal roles in maintaining body temperature and energy metabolism. In mice, BAT quickly stimulates thermogenesis by activating brown adipocytes upon cold exposure. In the presence of chronic cold stimuli, beige adipocytes are recruited in inguinal WAT to support heat generation. Accumulated evidence has shown that thermogenic execution of brown and beige adipocytes is regulated in a fat depot-specific manner. Recently, we have demonstrated that ubiquitin ligase ring finger protein 20 (RNF20) regulates brown and beige adipocyte thermogenesis through fat-depot-specific modulation. In BAT, RNF20 regulates transcription factor GA-binding protein alpha (GABPα), whereas in inguinal WAT, RNF20 potentiates transcriptional activity of peroxisome proliferator-activated receptor-gamma (PPARγ) through the degradation of nuclear corepressor 1 (NCoR1). This study proposes the molecular mechanisms by which co-regulator(s) selectively and temporally control transcription factors to coordinate adipose thermogenesis in a fat-depot-specific manner. In this Commentary, we provide molecular features of brown and beige adipocyte thermogenesis and discuss the underlying mechanisms of distinct thermogenic processes in two fat depots.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Wang T, Sharma AK, Wu C, Maushart CI, Ghosh A, Yang W, Stefanicka P, Kovanicova Z, Ukropec J, Zhang J, Arnold M, Klug M, De Bock K, Schneider U, Popescu C, Zheng B, Ding L, Long F, Dewal RS, Moser C, Sun W, Dong H, Takes M, Suelberg D, Mameghani A, Nocito A, Zech CJ, Chirindel A, Wild D, Burger IA, Schön MR, Dietrich A, Gao M, Heine M, Sun Y, Vargas-Castillo A, Søberg S, Scheele C, Balaz M, Blüher M, Betz MJ, Spiegelman BM, Wolfrum C. Single-nucleus transcriptomics identifies separate classes of UCP1 and futile cycle adipocytes. Cell Metab 2024; 36:2130-2145.e7. [PMID: 39084216 DOI: 10.1016/j.cmet.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of Ucp1. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.
Collapse
Affiliation(s)
- Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Chunyan Wu
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Kovanicova
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jing Zhang
- Laboratory of Exercise and Health, Health Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Manuel Klug
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Health Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ulrich Schneider
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Cristina Popescu
- Department of Nuclear Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Bo Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lianggong Ding
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Fen Long
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Revati Sumukh Dewal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Caroline Moser
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Martin Takes
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Dominique Suelberg
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Alexander Mameghani
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Antonio Nocito
- Department of Surgery, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Christoph Johannes Zech
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland; Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplant and Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Min Gao
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Susanna Søberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miroslav Balaz
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia; Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany & Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany.
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Undrakhbayar E, Zhang XY, Wang CZ, Wang DH. The function of brown adipose tissue at different sites of the body in Brandt's voles during cold acclimation. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111655. [PMID: 38723743 DOI: 10.1016/j.cbpa.2024.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.
Collapse
Affiliation(s)
- Enkhbat Undrakhbayar
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Branquinho J, Neves RL, Martin RP, Arata JG, Bittencourt CA, Araújo RC, Icimoto MY, Pesquero JB. Kinin B1 receptor deficiency promotes enhanced adipose tissue thermogenic response to β3-adrenergic stimulation. Inflamm Res 2024; 73:1565-1579. [PMID: 39017739 DOI: 10.1007/s00011-024-01917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE AND DESIGN Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis. MATERIAL OR SUBJECTS Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure. METHODS Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice. RESULTS B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT. CONCLUSION B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Cold Temperature
- Dioxoles/pharmacology
- Energy Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Thermogenesis/drug effects
- Thiazoles/pharmacology
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Jéssica Branquinho
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Raquel L Neves
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Renan P Martin
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Júlia G Arata
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa A Bittencourt
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ronaldo C Araújo
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Y Icimoto
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - João B Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Fu C, Xiao Y, Jiang N, Yang Y. Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera. BMC Genomics 2024; 25:702. [PMID: 39026173 PMCID: PMC11264790 DOI: 10.1186/s12864-024-10622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes' promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - YuJie Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| |
Collapse
|
6
|
Soskic MB, Zakic T, Korac A, Korac B, Jankovic A. Metabolic remodeling of visceral and subcutaneous white adipose tissue during reacclimation of rats after cold. Appl Physiol Nutr Metab 2024; 49:649-658. [PMID: 38241659 DOI: 10.1139/apnm-2023-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Deciphering lipid metabolism in white adipose tissue (WAT) depots during weight gain is important to understand the heterogeneity of WAT and its roles in obesity. Here, we examined the expression of key enzymes of lipid metabolism and changes in the morphology of representative visceral (epididymal) and subcutaneous (inguinal) WAT (eWAT and iWAT, respectively)-in adult male rats acclimated to cold (4 ± 1 °C) for 45 days and reacclimated to room temperature (RT, 22 ± 1 °C) for 1, 3, 7, 12, 21, or 45 days. The relative mass of both depots decreased to a similar extent after cold acclimation. However, fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase (G6PDH), and medium-chain acyl-CoA dehydrogenase (ACADM) protein level increased only in eWAT, whereas adipose triglyceride lipase (ATGL) expression increased only in iWAT. During reacclimation, the relative mass of eWAT reached control values on day 12 and that of iWAT on day 45 of reacclimation. The faster recovery of eWAT mass is associated with higher expression of FAS, acetyl-CoA carboxylase (ACC), G6PDH, and ACADM during reacclimation and a delayed increase in ATGL. The absence of an increase in proliferating cell nuclear antigen suggests that the observed depot-specific mass increase is predominantly due to metabolic adjustments. In summary, this study shows a differential rate of visceral and subcutaneous adipose tissue weight regain during post-cold reacclimation of rats at RT. Faster recovery of the visceral WAT as compared to subcutaneous WAT during reacclimation at RT could be attributed to observed differences in the expression patterns of lipid metabolic enzymes.
Collapse
Affiliation(s)
- Marta Budnar Soskic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Zakic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Yang Z, Jiang J, Tan Y, Yang G, Chen M, Huang J, Liu J, Wei X, Wang S, Luo X, Han Z. Sexual dimorphism in thermogenic regulators and metrnl expression in adipose tissue of offspring mice exposed to maternal and postnatal overnutrition. J Physiol Biochem 2024; 80:407-420. [PMID: 38492180 DOI: 10.1007/s13105-024-01013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Current study investigated the impact of maternal and postnatal overnutrition on phenotype of adipose, in relation to offspring thermogenesis and sex. Female C57BL/6 J mice were fed with CHOW or high fat diet (HFD) for 2 weeks before mating, throughout gestation and lactation. At weaning, pups were fed to 9 weeks old with CHOW or HFD, which resulted in four groups for each gender--male or female: CHOW-CHOW (CC), CHOW-HFD (CH), HFD-CHOW (HC), HFD-HFD (HH). Maternal and post-weaning HFD enhanced thermogenic factors such as Acox1, Dio2 and Cox8b in iBAT of male and female offspring, but increased SIRT1, PGC-1α and UCP1 only in female. However, Acox1, Dio2 and Cox8b mRNA expression and SIRT1, PGC-1α and UCP1 protein expression were only enhanced upon maternal and post-weaning HFD in sWAT and pWAT of female offspring. Increased metrnl expression in adipose were observed in sex- and depot-specific manner, while enhanced circulating metrnl level was only observed in male offspring undergoing maternal HFD. Palmitic acid changed metrnl expression during preadipocytes differentiation and siRNA-mediated knockdown of metrnl inhibited preadipocyte differentiation. Female offspring were more prone to resist adverse outcomes induced by maternal and post-weaning overnutrition, which probably related to metrnl expression and thermogenesis.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yutian Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guiying Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Miao Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Siyao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Zhen Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
9
|
Rodó J, Garcia M, Casana E, Muñoz S, Jambrina C, Sacristan V, Franckhauser S, Grass I, Jimenez V, Bosch F. Integrated gene expression profiles reveal a transcriptomic network underlying the thermogenic response in adipose tissue. Sci Rep 2023; 13:7266. [PMID: 37142619 PMCID: PMC10160086 DOI: 10.1038/s41598-023-33367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Obesity and type 2 diabetes are two closely related diseases representing a serious threat worldwide. An increase in metabolic rate through enhancement of non-shivering thermogenesis in adipose tissue may represent a potential therapeutic strategy. Nevertheless, a better understanding of thermogenesis transcriptional regulation is needed to allow the development of new effective treatments. Here, we aimed to characterize the specific transcriptomic response of white and brown adipose tissues after thermogenic induction. Using cold exposure to induce thermogenesis in mice, we identified mRNAs and miRNAs that were differentially expressed in several adipose depots. In addition, integration of transcriptomic data in regulatory networks of miRNAs and transcription factors allowed the identification of key nodes likely controlling metabolism and immune response. Moreover, we identified the putative role of the transcription factor PU.1 in the regulation of PPARγ-mediated thermogenic response of subcutaneous white adipose tissue. Therefore, the present study provides new insights into the molecular mechanisms that regulate non-shivering thermogenesis.
Collapse
Affiliation(s)
- Jordi Rodó
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Johnson JM, Peterlin AD, Balderas E, Sustarsic EG, Maschek JA, Lang MJ, Jara-Ramos A, Panic V, Morgan JT, Villanueva CJ, Sanchez A, Rutter J, Lodhi IJ, Cox JE, Fisher-Wellman KH, Chaudhuri D, Gerhart-Hines Z, Funai K. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis. SCIENCE ADVANCES 2023; 9:eade7864. [PMID: 36827367 PMCID: PMC9956115 DOI: 10.1126/sciadv.ade7864] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/24/2023] [Indexed: 05/08/2023]
Abstract
Thermogenesis by uncoupling protein 1 (UCP1) is one of the primary mechanisms by which brown adipose tissue (BAT) increases energy expenditure. UCP1 resides in the inner mitochondrial membrane (IMM), where it dissipates membrane potential independent of adenosine triphosphate (ATP) synthase. Here, we provide evidence that phosphatidylethanolamine (PE) modulates UCP1-dependent proton conductance across the IMM to modulate thermogenesis. Mitochondrial lipidomic analyses revealed PE as a signature molecule whose abundance bidirectionally responds to changes in thermogenic burden. Reduction in mitochondrial PE by deletion of phosphatidylserine decarboxylase (PSD) made mice cold intolerant and insensitive to β3 adrenergic receptor agonist-induced increase in whole-body oxygen consumption. High-resolution respirometry and fluorometry of BAT mitochondria showed that loss of mitochondrial PE specifically lowers UCP1-dependent respiration without compromising electron transfer efficiency or ATP synthesis. These findings were confirmed by a reduction in UCP1 proton current in PE-deficient mitoplasts. Thus, PE performs a previously unknown role as a temperature-responsive rheostat that regulates UCP1-dependent thermogenesis.
Collapse
Affiliation(s)
- Jordan M. Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Alek D. Peterlin
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Utah Center for Clinical and Translational Research, University of Utah, Salt Lake City, UT, USA
| | - Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Elahu G. Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J. Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Marisa J. Lang
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Alejandro Jara-Ramos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vanja Panic
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey T. Morgan
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Claudio J. Villanueva
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alejandro Sanchez
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - James E. Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Li T, Bai H, Yang L, Wang H, Wei S, Yan P. Cold exposure induces browning of bovine subcutaneous white fat in vivo and in vitro. J Therm Biol 2023; 112:103446. [PMID: 36796901 DOI: 10.1016/j.jtherbio.2022.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
White adipocytes can be transformed into beige adipocytes through the process of browning under cold exposure. To investigate the effects and underlying mechanisms of cold exposure on subcutaneous white fat in cattle, in vitro and in vivo studies were performed. Eight bulls of Jinjiang cattle breed (Bos taurus) aged 18 months were allocated to the control group (n = 4, autumn) or the cold group (n = 4, winter) by different slaughter seasons. Biochemical and histomorphological parameters were detected in blood and backfat samples. Subcutaneous adipocytes from Simental cattle (Bos taurus) were then isolated and cultured at a normal body temperature (37 °C) and at a cold temperature (31 °C) in vitro. In the in vivo study, cold exposure stimulated subcutaneous white adipose tissue (sWAT) browning by reducing adipocyte sizes and up-regulating the expression levels of browning-specific makers (UCP1, PRDM16, and PGC-1α) in cattle. In addition, cold-exposed cattle displayed lower lipogenesis transcriptional regulator levels (PPARγ and CEBPα) and higher lipolysis regulator levels (HSL) in sWAT. In the in vitro study, cold temperature inhibited subcutaneous white adipocytes (sWA) adipogenic differentiation by reducing lipid contents and decreasing the expression of adipogenic marker genes and proteins. Furthermore, cold temperature led to sWA browning which was characterized by increased browning-related genes, mitochondrial contents, and mitochondrial biogenesis-specific markers. In addition, p38 MAPK signaling pathway activity was stimulated by the incubation in cold temperature for 6 h in sWA. We concluded that the cold-induced browning of the subcutaneous white fat was beneficial to the production of heat and the maintenance of body temperature regulation in cattle.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongzhuang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
12
|
Recruitment of Muscle Genes as an Effect of Brown Adipose Tissue Ablation in Cold-Acclimated Brandt's Voles ( Lasiopodomys brandtii). Int J Mol Sci 2022; 24:ijms24010342. [PMID: 36613791 PMCID: PMC9820317 DOI: 10.3390/ijms24010342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle-based nonshivering thermogenesis (NST) plays an important role in the regulation and maintenance of body temperature in birds and large mammals, which do not contain brown adipose tissue (BAT). However, the relative contribution of muscle-based NST to thermoregulation is not clearly elucidated in wild small mammals, which have evolved an obligate thermogenic organ of BAT. In this study, we investigated whether muscle would become an important site of NST when BAT function is conditionally minimized in Brandt's voles (Lasiopodomys brandtii). We surgically removed interscapular BAT (iBAT, which constitutes 52%~56% of total BAT) and exposed the voles to prolonged cold (4 °C) for 28 days. The iBAT-ablated voles were able to maintain the same levels of NST and body temperature (~37.9 °C) during the entire period of cold acclimation as sham voles. The expression of uncoupling protein 1 (UCP1) and its transcriptional regulators at both protein and mRNA levels in the iBAT of cold-acclimated voles was higher than that in the warm group. However, no difference was observed in the protein or mRNA levels of these thermogenesis-related markers except for PGC-1α in other sites of BAT (including infrascapular region, neck, and axilla) between warm and cold groups either in sham or iBAT-ablated voles. The iBAT-ablated voles showed higher UCP1 expression in white adipose tissue (WAT) than sham voles during cold acclimation. The expression of sarcolipin (SLN) and sarcoplasmic endoplasmic reticulum Ca2+-dependent adenosine triphosphatase (SERCA) in skeletal muscles was higher in cold than in warm, but no alteration in phospholamban (PLB) and phosphorylated-PLB (P-PLB) was observed. Additionally, there was increased in iBAT-ablated voles compared to that in the sham group in cold. Moreover, these iBAT-ablated voles underwent extensive remodeling of mitochondria and genes of key components related with mitochondrial metabolism. These data collectively indicate that recruitment of skeletal muscle-based thermogenesis may compensate for BAT impairment and suggest a functional interaction between the two forms of thermogenic processes of iBAT and skeletal muscle in wild small mammals for coping cold stress.
Collapse
|
13
|
Zhang YM, Erdene K, Zhao YB, Li CQ, Wang L, Tian F, Ao CJ, Jin H. Role of white adipose tissue browning in cold seasonal acclimation in grazing Mongolian sheep (Ovis aries). J Therm Biol 2022; 109:103333. [DOI: 10.1016/j.jtherbio.2022.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
14
|
Altınova AE. Beige Adipocyte as the Flame of White Adipose Tissue: Regulation of Browning and Impact of Obesity. J Clin Endocrinol Metab 2022; 107:e1778-e1788. [PMID: 34967396 DOI: 10.1210/clinem/dgab921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/19/2022]
Abstract
Beige adipocyte, the third and relatively new type of adipocyte, can emerge in white adipose tissue (WAT) under thermogenic stimulations that is termed as browning of WAT. Recent studies suggest that browning of WAT deserves more attention and therapies targeting browning of WAT can be helpful for reducing obesity. Beyond the major inducers of browning, namely cold and β 3-adrenergic stimulation, beige adipocytes are affected by several factors, and excess adiposity per se may also influence the browning process. The objective of the present review is to provide an overview of recent clinical and preclinical studies on the hormonal and nonhormonal factors that affect the browning of WAT. This review further focuses on the role of obesity per se on browning process.
Collapse
Affiliation(s)
- Alev Eroğlu Altınova
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, 06500 Ankara, Turkey
| |
Collapse
|
15
|
Kirschner KM, Scholz H. WT1 in Adipose Tissue: From Development to Adult Physiology. Front Cell Dev Biol 2022; 10:854120. [PMID: 35372335 PMCID: PMC8965737 DOI: 10.3389/fcell.2022.854120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Much of the fascination of the Wilms tumor protein (WT1) emanates from its unique roles in development and disease. Ubiquitous Wt1 deletion in adult mice causes multiple organ failure including a reduction of body fat. WT1 is expressed in fat cell progenitors in visceral white adipose tissue (WAT) but detected neither in energy storing subcutaneous WAT nor in heat producing brown adipose tissue (BAT). Our recent findings indicate that WT1 represses thermogenic genes and maintains the white adipose identity of visceral fat. Wt1 heterozygosity in mice is associated with molecular and morphological signs of browning including elevated levels of uncoupling protein 1 (UCP1) in epididymal WAT. Compared to their wild-type littermates, Wt1 heterozygous mice exhibit significantly improved whole-body glucose tolerance and alleviated hepatic steatosis under high-fat diet. Partial protection of heterozygous Wt1 knockout mice against metabolic dysfunction is presumably related to browning of their epididymal WAT. In the light of recent advancements, this article reviews the role of WT1 in the development of visceral WAT and its supposed function as a regulator of white adipose identity.
Collapse
|
16
|
Zhou Y, Xu Z, Wang L, Ling D, Nong Q, Xie J, Zhu X, Shan T. Cold Exposure Induces Depot-Specific Alterations in Fatty Acid Composition and Transcriptional Profile in Adipose Tissues of Pigs. Front Endocrinol (Lausanne) 2022; 13:827523. [PMID: 35282453 PMCID: PMC8905645 DOI: 10.3389/fendo.2022.827523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cold exposure promotes fat oxidation and modulates the energy metabolism in adipose tissue through multiple mechanisms. However, it is still unclear about heat-generating capacity and lipid mobilization of different fat depots without functional mitochondrial uncoupling protein 1 (UCP1). In this study, we kept finishing pigs (lack a functional UCP1 gene) under cold (5-7°C) or room temperature (22-25°C) and determined the effects of overnight cold exposure on fatty acid composition and transcriptional profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). And the plasma metabolomes of porcine was also studied by LC-MS-based untargeted metabolomics. We found that the saturated fatty acids (SFAs) content was decreased in SAT upon cold exposure. While in VAT, the relative content of lauric acid (C12:0), myristic acid (C14:0) and lignoceric acid (C24:0) were decreased without affecting total SFA content. RNA-seq results showed SAT possess active organic acid metabolism and energy mobilization upon cold exposure. Compared with SAT, cold-induced transcriptional changes were far less broad in VAT, and the differentially expressed genes (DEGs) were mainly enriched in fat cell differentiation and cell proliferation. Moreover, we found that the contents of organic acids like creatine, acamprosate, DL-3-phenyllactic acid and taurine were increased in plasma upon overnight cold treatment, suggesting that cold exposure induced lipid and fatty acid metabolism in white adipose tissue (WAT) might be regulated by functions of organic acids. These results provide new insights into the effects of short-term cold exposure on lipid metabolism in adipose tissues without functional UCP1.
Collapse
Affiliation(s)
- Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintang Xie
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Xiaodong Zhu
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Tizhong Shan,
| |
Collapse
|
17
|
White Adipose Tissue Depots Respond to Chronic Beta-3 Adrenergic Receptor Activation in a Sexually Dimorphic and Depot Divergent Manner. Cells 2021; 10:cells10123453. [PMID: 34943961 PMCID: PMC8700379 DOI: 10.3390/cells10123453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERβ) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERβ.
Collapse
|
18
|
NNMT is induced dynamically during beige adipogenesis in adipose tissues depot-specific manner. J Physiol Biochem 2021; 78:169-183. [PMID: 34699038 DOI: 10.1007/s13105-021-00851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a novel regulator, shown recently to regulate adipose tissue energy expenditure partly through changing NAD + content, which is essential for mitochondrial. We determine whether NNMT plays important role in energy metabolism during the beige adipogenesis in vivo and in vitro. Male C57BL/6 mice at 8 weeks old were exposed to 4 ℃ for 1, 2, 3, 4, and 5 days, respectively. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT), and epididymal WAT (eWAT) were harvested for gene and protein expression analysis and the correlation analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without β3-adrenoceptor agonist (CL316, 243) were also harvested for these analyses. A combination of NNMT and its related genetic (Nmnat1, Nampt, Cyp2e1, Nrk1, Cd38) and proteic analyses and also the NAD + levels demonstrated the dynamical and depot-specific remodeling of NAD metabolism in different adipose tissues in response to cold exposure. While upon CL316, 243 treatment, gene expression of Nnmt, Nampt, Cyp2e1, and Nrk1 was all significantly decreased in WA but not in BA. The increased NAD + amount in BA and WA during the beige adipogenesis was observed. Besides, it is demonstrated that the expression of NNMT both in sWAT and WA showed significant negative correlation with browning markers UCP-1 and PGC-1α at protein levels. Above all, NNMT was induced in WAT during the 'cold remodeling' phase and correlated negatively with the process of browning in sWAT and WA, indicating the specific role of NNMT in the regulation of energy homeostasis during the process of beige adipogenesis.
Collapse
|
19
|
Li L, Ma L, Zhao Z, Luo S, Gong B, Li J, Feng J, Zhang H, Qi W, Zhou T, Yang X, Gao G, Yang Z. IL-25-induced shifts in macrophage polarization promote development of beige fat and improve metabolic homeostasis in mice. PLoS Biol 2021; 19:e3001348. [PMID: 34351905 PMCID: PMC8341513 DOI: 10.1371/journal.pbio.3001348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. We found that interleukin (IL)-25 signaling through its cognate receptor, IL-17 receptor B (IL-17RB), increased in adipose tissue after cold exposure and β3-adrenoceptor agonist stimulation. IL-25 induced beige fat formation in white adipose tissue (WAT) by releasing IL-4 and IL-13 and promoting alternative activation of macrophages that regulate innervation and up-regulate tyrosine hydroxylase (TH) up-regulation to produce more catecholamine including norepinephrine (NE). Blockade of IL-4Rα or depletion of macrophages with clodronate-loaded liposomes in vivo significantly impaired the beige fat formation in WAT. Mice fed with a high-fat diet (HFD) were protected from obesity and related metabolic disorders when given IL-25 through a process that involved the uncoupling protein 1 (UCP1)-mediated thermogenesis. In conclusion, the activation of IL-25 signaling in WAT may have therapeutic potential for controlling obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Lingyi Li
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Lei Ma
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zewei Zhao
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shiya Luo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Baoyong Gong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong Province, China
| | - Jin Li
- Department of Gerontology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Juan Feng
- School of Stomatology, Foshan University, Foshan, Guangdong Province, China
| | - Hui Zhang
- Metabolic Innovation Center, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhonghan Yang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Li Y, Ping X, Zhang Y, Li G, Zhang T, Chen G, Ma X, Wang D, Xu L. Comparative Transcriptome Profiling of Cold Exposure and β3-AR Agonist CL316,243-Induced Browning of White Fat. Front Physiol 2021; 12:667698. [PMID: 34017267 PMCID: PMC8129586 DOI: 10.3389/fphys.2021.667698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Beige adipocytes are newly identified thermogenic-poised adipocytes that could be activated by cold or β3-adrenergic receptor (β3-AR) signaling and offer therapeutic potential for treating obesity and metabolic diseases. Here we applied RNA-sequencing analysis in the beige fat of mice under cold exposure or β3-AR agonist CL316,243 (CL) treatment to provide a comparative and comprehensive analysis for the similarity and heterogeneity of these two stimulants. Importantly, via KEGG analysis, we found that cold and CL commonly induced oxidative phosphorylation. Meanwhile, cold increased glycerolipid and amino acids metabolism while CL treatment triggered a broader spectrum of metabolic responses including carbohydrate metabolism. Besides, cold or CL treatment featured greater heterogeneity in downregulated gene programs. Of note, the top changed genes in each category were confirmed by qPCR analysis. Overall, our analysis provided a better understanding of the heterogeneity of differential models for beige adipocytes activation and a possible clue for optimizing β3-AR agonists in the future.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yankang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Ting Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
21
|
Central Apolipoprotein A-IV Stimulates Thermogenesis in Brown Adipose Tissue. Int J Mol Sci 2021; 22:ijms22031221. [PMID: 33513710 PMCID: PMC7865537 DOI: 10.3390/ijms22031221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Stimulation of thermogenesis in brown adipose tissue (BAT) could have far-reaching health benefits in combatting obesity and obesity-related complications. Apolipoprotein A-IV (ApoA-IV), produced by the gut and the brain in the presence of dietary lipids, is a well-known short-term satiating protein. While our previous studies have demonstrated reduced diet-induced thermogenesis in ApoA-IV-deficient mice, it is unclear whether this reduction is due to a loss of peripheral or central effects of ApoA-IV. We hypothesized that central administration of ApoA-IV stimulates BAT thermogenesis and that sympathetic and sensory innervation is necessary for this action. To test this hypothesis, mice with unilateral denervation of interscapular BAT received central injections of recombinant ApoA-IV protein or artificial cerebrospinal fluid (CSF). The effects of central ApoA-IV on BAT temperature and thermogenesis in mice with unilateral denervation of the intrascapular BAT were monitored using transponder probe implantation, qPCR, and immunoblots. Relative to CSF, central administration of ApoA-IV significantly increased temperature and UCP expression in BAT. However, all of these effects were significantly attenuated or prevented in mice with unilateral denervation. Together, these results clearly demonstrate that ApoA-IV regulates BAT thermogenesis centrally, and this effect is mediated through sympathetic and sensory nerves.
Collapse
|
22
|
Jia XW, Fang DL, Shi XY, Lu T, Yang C, Gao Y. Inducible beige adipocytes improve impaired glucose metabolism in interscapular BAT-removal mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158871. [PMID: 33346159 DOI: 10.1016/j.bbalip.2020.158871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/08/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Inducible beige adipocytes are emerging as an interesting issue in obesity and metabolism research. There is a neglected possibility that brown adipocytes are equally activated when external stimuli induce the formation of beige adipocytes. Thus, the question is whether beige adipocytes have the same functions as brown adipocytes when brown adipose tissue (BAT) is lacking. This question has not been well studied. Therefore we determine the beneficial effects of beige adipocytes upon cold challenge or CL316243 treatments in animal models of interscapular BAT (iBAT) ablation by surgical denervation. We found that denervated iBAT were activated by cold exposure and CL316243 treatments. The data show that beige adipocytes partly contribute to the improvement of impaired glucose metabolism resulting from denervated iBAT. Thus, we further used iBAT-removal animal models to abolish iBAT functions completely. We found that beige adipocytes upon cold exposure or CL316243 treatments improved impaired glucose metabolism and enhanced glucose uptake in iBAT-removal mice. The insulin signaling was activated in iBAT-removal mice upon cold exposure. Both the activation of insulin signaling and up-regulation of glucose transporter expression were observed in iBAT-removal mice with CL316243 treatments. The data show that inducible beige adipocytes may have different mechanisms to improve impaired glucose metabolism. Inducible beige adipocytes can also enhance energy expenditure and lipolytic activity of white adipose tissues when iBAT is lacking. We provide direct evidences for the beneficial effect of inducible beige adipocytes in glucose metabolism and energy expenditure in the absence of iBAT in vivo.
Collapse
Affiliation(s)
- Xiao-Wei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong-Liang Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin-Yi Shi
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
23
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Vohralik EJ, Psaila AM, Knights AJ, Quinlan KGR. EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clin Exp Pharmacol Physiol 2020; 47:1495-1505. [PMID: 32163614 DOI: 10.1111/1440-1681.13304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Eosinophils are granular cells of the innate immune system that are found in almost all vertebrates and some invertebrates. Knowledge of their wide-ranging roles in health and disease has largely been attained through studies in mice and humans. Although eosinophils are typically associated with helminth infections and allergic diseases such as asthma, there is building evidence that beneficial homeostatic eosinophils residing in specific niches are important for tissue development, remodelling and metabolic control. In recent years, the importance of immune cells in the regulation of adipose tissue homeostasis has been a focal point of research efforts. There is an abundance of anti-inflammatory innate immune cells in lean white adipose tissue, including macrophages, eosinophils and group 2 innate lymphoid cells, which promote energy homeostasis and stimulate the development of thermogenic beige adipocytes. This review will evaluate evidence for the role of adipose-resident eosinophils in local tissue homeostasis, beiging and systemic metabolism, highlighting where more research is needed to establish the specific effector functions that adipose eosinophils perform in response to different internal and external cues.
Collapse
Affiliation(s)
- Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nat Commun 2020; 11:2922. [PMID: 32523103 PMCID: PMC7286919 DOI: 10.1038/s41467-020-16758-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/20/2020] [Indexed: 01/01/2023] Open
Abstract
The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis. Immune cells are important regulators of adipose tissue function, including adaptive thermogenesis. Here the authors show that mice with Krüppel-like factor 3 (KLF3) deficiency in bone marrow-derived cells have increased adipose tissue beiging which may at least in part be due to altered eosinophil paracrine signaling.
Collapse
|
26
|
Wei X, Jia R, Yang Z, Jiang J, Huang J, Yan J, Luo X. NAD + /sirtuin metabolism is enhanced in response to cold-induced changes in lipid metabolism in mouse liver. FEBS Lett 2020; 594:1711-1725. [PMID: 32227472 DOI: 10.1002/1873-3468.13779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/22/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+ )/Sirtuin (SIRT) system is linked to metabolic adaptation. This study aimed to determine the temporal profile of metabolic responses of the liver to cold exposure and changes in the hepatic NAD+ /SIRT system. Eight-week-old male C57BL/6 mice were individually housed in conventional cages under cold exposure (4 °C) for up to 5 days. Cold exposure decreased the hepatic triglyceride level and cholesterol level in mice by 1.7- and 1.6-fold, respectively. Lipogenic gene expression was persistently reduced, while gluconeogenic gene expression was transiently increased. Hepatic NAD+ /SIRT metabolism was induced during the 'cold remodeling' phase (days 1-3) and correlated with decreasing lipogenic and increasing gluconeogenic gene expression, contributing to the maintenance of whole-body lipid and glucose homeostasis.
Collapse
Affiliation(s)
- Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Ru Jia
- Department of Prosthodontics, College of Stomatology, Stomatological Hospital, Xi'an Jiaotong University, China
| | - Zhao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| |
Collapse
|
27
|
Lu M, He Y, Gong M, Li Q, Tang Q, Wang X, Wang Y, Yuan M, Yu Z, Xu B. Role of Neuro-Immune Cross-Talk in the Anti-obesity Effect of Electro-Acupuncture. Front Neurosci 2020; 14:151. [PMID: 32180699 PMCID: PMC7059539 DOI: 10.3389/fnins.2020.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
There is evidence to show that electro-acupuncture (EA) has a promotive effect on both lipolysis and thermogenesis, and that these mechanisms underlie the anti-obesity effect of EA. The sympathetic nervous system (SNS) is known to play a role in thermogenesis. Additionally, obesity is characterized by a chronic low-grade inflammatory state. Based on these findings, the aim of the present study is to investigate the potential neuro-immune mechanisms underlying the therapeutic effect of EA in obesity. In the experiment, we used a high fat diet (HFD) rats model to study the effect of EA in reducing body weight. EA increases the activity of sympathetic nerves in inguinal white adipose tissue (iWAT), especially in the HFD group. Compared to HFD rats, EA can decrease sympathetic associated macrophage (SAM) and the level of norepinephrine transporter protein (Slc6a2). The relative uncoupling protein 1 expression shows EA increases thermogenesis in iWAT, and increases β3 receptors. Interestingly, injecting β antagonist in iWAT increases Slc6a2 protein levels. Additionally, the SNS-macrophage cross-talk response to EA showed in iWAT but not in epididymis white adipose tissue. The results of the present study indicate that EA exerts its anti-obesity effect via three mechanisms: (1) inhibition of SAMs and the norepinephrine transporter protein SlC6a2, (2) promoting SNS activity and thermogenesis, and (3) regulating immunologic balance.
Collapse
Affiliation(s)
- Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan He
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meirong Gong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianqian Tang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqian Yuan
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Zhao L, Wang B, Gomez NA, de Avila JM, Zhu MJ, Du M. Even a low dose of tamoxifen profoundly induces adipose tissue browning in female mice. Int J Obes (Lond) 2020; 44:226-234. [PMID: 30705393 PMCID: PMC6669124 DOI: 10.1038/s41366-019-0330-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tamoxifen-inducible Cre/lox site-specific recombination technology has been widely used to generate conditional transgenic mice. As an estrogen receptor ligand, tamoxifen itself potentially affects energy metabolism, which may confound interpretation of data especially in metabolic studies. Considering sexual dimorphism, in this study, the effects of low-dose tamoxifen administration on energy metabolism, and browning of adipose tissues in female and male mice were investigated. METHODS Female and male C57/BL6 mice were injected with tamoxifen oil solution (i.p.) and then housed at both room temperature (23 ± 2 °C) and cold environment (6 ± 1 °C). Serum, brown and white adipose tissues were obtained, and the effects of tamoxifen administration on energy metabolism and the browning of adipose tissues were evaluated. RESULTS At 25 mg/kg body weight (BDW), tamoxifen administration for 3 alternative days decreased the percentage of inguinal and gonadal white adipose tissue weights in female mice accompanied by the up-regulation of thermogenesis in adipose tissues. In contrast, this dosage of tamoxifen did not induce noticeable changes in the energy metabolism and thermogenesis of adipose tissue in male mice under room temperature. Consistently, under cold stimulus, substantial browning of adipose tissues was observed in female mice injected with tamoxifen (50 mg/kg BDW, single injection) but not in male mice. Two-way ANOVA tests also demonstrated significant interactions between tamoxifen treatment and gender on the expression of thermogenic markers in adipose tissues. CONCLUSION Tamoxifen, even at a low dose, remarkably increases thermogenesis in adipose tissues of female mice; meanwhile, such a low dose could be used in male mice for inducing gene recombination without confounding the interpretation of data related to metabolism and thermogenesis of adipose tissues.
Collapse
Affiliation(s)
- Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Bo Wang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Noe Alberto Gomez
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Jeanene M de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
29
|
黄 佳, 贾 如, 魏 晓, 罗 肖. [Time-sequential expression of lnc AK079912 during adipose tissue development and browning in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1494-1499. [PMID: 31907161 PMCID: PMC6942996 DOI: 10.12122/j.issn.1673-4254.2019.12.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the time-sequential expression of a novel long non-coding RNA, lnc AK079912, in metabolically related tissues and during adipose tissue development and browning in mice. METHODS The interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), epididymal white adipose tissue (eWAT), liver tissues and muscular tissues were collected from 8-week-old C57BL/6J mice. The iBAT, sWAT and eWAT were also collected from the mice during development (0 day, 21 days, 8 weeks and 6 months after birth) and from 8- to 10-week- mice with cold exposure (4 ℃) and intraperitoneal injections of CL316, 243 (1 μg/g body weight) for 1 to 5 days. Trizol was used to extract the total RNA from the tissues, and RT-qPCR was performed to detect the expressions of lnc AK079912. Isolated mouse preadipocytes in primary culture were induced for adipogenic differentiation for 9 days and then treated with CL316, 243 (2 μmol/L) for different durations (no longer than 24 h); the expression of lnc AK079912 in the cells was detected using RT-qPCR at different time points of the treatment. RESULTS Lnc AK079912 was highly expressed in mouse adipose tissues, the highest in iBAT, followed by the muscular tissue, but was hardly detected in the liver tissue. The expression level of lnc AK079912 increased progressively in iBAT and sWAT during development of the mice, while its expression in eWAT showed an initial increase followed by a reduction at 8 weeks (P < 0.001). No significant difference was found in the expression of lnc AK079912 in the iBAT, sWAT or eWAT in mice with cold stimulation for 1 to 5 days (P > 0.05). The expression of lnc AK079912 was significantly decreased in iBAT and eWAT (P < 0.05) but increased in eWAT from mice with intraperitoneal injection of CL316, 243 for 1 to 5 days (P < 0.05). The expression level in the adipocytes in primary culture was significantly increased in response to treatment with CL316, 243 (P < 0.05). CONCLUSIONS Lnc AK079912 is highly expressed in mouse adipose tissue, and its expression gradually increases with the development of adipose tissue but with a depot-specific difference. Lnc AK079912 is significantly elevated in the early stage of adipose tissue browning, indicating its important role in the development and browning of adipose tissue.
Collapse
Affiliation(s)
- 佳琪 黄
- 西安交通大学医学部基础医学院生理学与病理生理学系,教育部环境与疾病相关基因重点实验室,陕西 西安 710061Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - 如 贾
- 西安交通大学医学部附属口腔医院修复科,陕西 西安 710004Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- 陕西省颅颌面精准医学研究重点实验室,陕西 西安 710004Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - 晓静 魏
- 西安交通大学医学部基础医学院生理学与病理生理学系,教育部环境与疾病相关基因重点实验室,陕西 西安 710061Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - 肖 罗
- 西安交通大学医学部基础医学院生理学与病理生理学系,教育部环境与疾病相关基因重点实验室,陕西 西安 710061Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| |
Collapse
|
30
|
Li D, Liu Y, Gao W, Han J, Yuan R, Zhang M, Pang W. Inhibition of miR-324-5p increases PM20D1-mediated white and brown adipose loss and reduces body weight in juvenile mice. Eur J Pharmacol 2019; 863:172708. [PMID: 31568785 DOI: 10.1016/j.ejphar.2019.172708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a serious public health problem characterized by abnormal or excessive fat accumulation, which is caused by an energy imbalance between calories consumed and calories expended. MiRNAs have been involved in the regulation of occurrence and progression of obesity. This study aims to investigate the role of miR-324-5p in regulating the adipose tissue mass and preliminarily probe into its effect on progression of obesity. MiR-324-5p was upregulated in the epididymal white adipose tissues (eWAT), inguinal white adipose tissues (iWAT) and brown adipose tissues (BAT) of the mice fed with high fat diet (HFD). Under room temperature (RT) or thermoneutrality (TN) condition, when tail intravenously injected with miR-324-5p antagomir (anta-miR-324-5p), the fat mass and total weight of mice were both significantly suppressed. The suppressive effect was more distinct under TN than RT. The weight of iWAT and BAT were both inhibited by anta-miR-324-5p under TN. Moreover, PM20D1 was a direct target gene of miR-324-5p. In primary iWAT cells, the expression of PM20D1 was significantly increased by anta-miR-324-5p, whereas decreased by the miR-324-5p mimic. Furthermore, anta-miR-324-5p noticeably increased the cellular oxygen consumption in primary BAT and iWAT cells. Our findings indicated that inhibition of miR-324-5p increased PM20D1-mediated fat consumption and reduced body weight in mice, suggesting that miR-324-5p may be a novel therapeutic target against obesity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Yang Liu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Wei Gao
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Jiakai Han
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Rongrong Yuan
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Mengdi Zhang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Wuyan Pang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China.
| |
Collapse
|
31
|
Pence S, Zhu Q, Binne E, Liu M, Shi H, Lo CC. Reduced Diet-induced Thermogenesis in Apolipoprotein A-IV Deficient Mice. Int J Mol Sci 2019; 20:E3176. [PMID: 31261740 PMCID: PMC6651278 DOI: 10.3390/ijms20133176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
In the presence of dietary lipids, both apolipoprotein A-IV (ApoA-IV) production and brown adipose tissue (BAT) thermogenesis are increased. The effect of dietary lipid-induced AproA-IV on BAT thermogenesis and energy expenditure remains unknown. In the present study, we hypothesized that ApoA-IV knockout (ApoA-IV-KO) mice exhibited decreased BAT thermogenesis to affect energy homeostasis. To test this hypothesis, BAT thermogenesis in wildtype (WT) and ApoA-IV-KO mice fed either a standard low-fat chow diet or a high-fat diet (HFD) was investigated. When fed a chow diet, energy expenditure and food intake were comparable between WT and ApoA-IV-KO mice. After 1 week of HFD consumption, ApoA-IV-KO mice had comparable energy intake but produced lower energy expenditure relative to their WT controls in the dark phase. After an acute feeding of dietary lipids or 1-week HFD feeding, ApoA-IV-KO mice produced lower levels of uncoupling protein 1 (UCP1) and exhibited reduced expression of thermogenic genes in the BAT compared with WT controls. In response to cold exposure, however, ApoA-IV-KO mice had comparable energy expenditure and BAT temperature relative to WT mice. Thus, ApoA-IV-KO mice exhibited reduced diet-induced BAT thermogenesis and energy expenditure.
Collapse
Affiliation(s)
- Sydney Pence
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Qi Zhu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erin Binne
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45215, USA
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
32
|
Cheng H, Qi T, Zhang X, Kong Q, Min X, Mao Q, Cao X, Liu L, Ding Z. Deficiency of heat shock protein A12A promotes browning of white adipose tissues in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1451-1459. [DOI: 10.1016/j.bbadis.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
|
33
|
Senese R, Cioffi F, De Matteis R, Petito G, de Lange P, Silvestri E, Lombardi A, Moreno M, Goglia F, Lanni A. 3,5 Diiodo-l-Thyronine (T₂) Promotes the Browning of White Adipose Tissue in High-Fat Diet-Induced Overweight Male Rats Housed at Thermoneutrality. Cells 2019; 8:cells8030256. [PMID: 30889829 PMCID: PMC6468521 DOI: 10.3390/cells8030256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
The conversion of white adipose cells into beige adipose cells is known as browning, a process affecting energy metabolism. It has been shown that 3,5 diiodo-l-thyronine (T₂), an endogenous metabolite of thyroid hormones, stimulates energy expenditure and a reduction in fat mass. In light of the above, the purpose of this study was to test whether in an animal model of fat accumulation, T₂ has the potential to activate a browning process and to explore the underlying mechanism. Three groups of rats were used: (i) receiving a standard diet for 14 weeks; (ii) receiving a high-fat diet (HFD) for 14 weeks; and (iii) receiving a high fat diet for 10 weeks and being subsequently treated for four weeks with an HFD together with the administration of T₂. We showed that T₂ was able to induce a browning in the white adipose tissue of T₂-treated rats. We also showed that some miRNA (miR133a and miR196a) and MAP kinase 6 were involved in this process. These results indicate that, among others, the browning may be another cellular/molecular mechanism by which T₂ exerts its beneficial effects of contrast to overweight and of reduction of fat mass in rats subjected to HFD.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, 61029 Urbino, Italy.
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
34
|
Peres Valgas da Silva C, Hernández-Saavedra D, White JD, Stanford KI. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. BIOLOGY 2019; 8:biology8010009. [PMID: 30759802 PMCID: PMC6466122 DOI: 10.3390/biology8010009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The rise in obesity over the last several decades has reached pandemic proportions. Brown adipose tissue (BAT) is a thermogenic organ that is involved in energy expenditure and represents an attractive target to combat both obesity and type 2 diabetes. Cold exposure and exercise training are two stimuli that have been investigated with respect to BAT activation, metabolism, and the contribution of BAT to metabolic health. These two stimuli are of great interest because they have both disparate and converging effects on BAT activation and metabolism. Cold exposure is an effective mechanism to stimulate BAT activity and increase glucose and lipid uptake through mitochondrial uncoupling, resulting in metabolic benefits including elevated energy expenditure and increased insulin sensitivity. Exercise is a therapeutic tool that has marked benefits on systemic metabolism and affects several tissues, including BAT. Compared to cold exposure, studies focused on BAT metabolism and exercise display conflicting results; the majority of studies in rodents and humans demonstrate a reduction in BAT activity and reduced glucose and lipid uptake and storage. In addition to investigations of energy uptake and utilization, recent studies have focused on the effects of cold exposure and exercise on the structural lipids in BAT and secreted factors released from BAT, termed batokines. Cold exposure and exercise induce opposite responses in terms of structural lipids, but an important overlap exists between the effects of cold and exercise on batokines. In this review, we will discuss the similarities and differences of cold exposure and exercise in relation to their effects on BAT activity and metabolism and its relevance for the prevention of obesity and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Xu Z, Liu J, You W, Wang Y, Shan T. Cold exposure induces nuclear translocation of CRTC3 in brown adipose tissue. J Cell Biochem 2018; 120:9138-9146. [PMID: 30506739 DOI: 10.1002/jcb.28189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023]
Abstract
In mammals, cold stress activates the cAMP-protein kinase A (PKA) signaling pathway, increases brown adipose tissue (BAT) activity, and induces thermogenesis to maintain body temperature. The cAMP responsive element binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) plays important role in adipose development and energy metabolism. However, the effect of cold exposure on the intracellular localization of CRTC3 in BAT is unclear. Here, we report that cold-treated mice have higher expression of uncoupling protein 1 (UCP1) in adipose tissues and lower body weights and fat masses. Notably, cold exposure results in the nuclear translocation of CRTC3 in BAT. Moreover, forskolin (FSK), the activator of PKA pathway, induces the nuclear translocation of CRTC3 in brown adipocytes. At the molecular level, cold exposure and FSK treatment decrease liver kinase B1 (Lkb1) expression in brown adipocytes, which is related to the nuclear localization of CRTC3. These results demonstrate that the localization of CRTC3 involves in regulating cold-induced upregulation of UCP1 in BAT and provide useful information for understanding the molecular regulation of BAT thermogenesis induced by a cold environment.
Collapse
Affiliation(s)
- Ziye Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqi Liu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenjing You
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tizhong Shan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev 2018; 19 Suppl 1:61-72. [PMID: 30511508 PMCID: PMC6334514 DOI: 10.1111/obr.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
The growth of the intestine requires energy, which is known to be met by catabolism of ingested nutrients. Paradoxically, during whole body energy deficit including calorie restriction, the intestine grows in size. To understand how and why this happens, we reviewed data from several animal models of energetic challenge. These were bariatric surgery, cold exposure, lactation, dietary whey protein intake and calorie restriction. Notably, these challenges all reduced the adipose tissue mass, altered hypothalamic neuropeptide expression and increased intestinal size. Based on these data, we propose that the loss of energy in the adipose tissue promotes the growth of the intestine via a signalling mechanism involving the hypothalamus. We discuss possible candidates in this pathway including data showing a correlative change in intestinal (ileal) expression of the cyclin D1 gene with adipose tissue mass, adipose derived-hormone leptin and hypothalamic expression of leptin receptor and the pro-opiomelanocortin gene. The ability of the intestine to grow in size during depletion of energy stores provides a mechanism to maximize assimilation of ingested energy and in turn sustain critical functions of tissues important for survival.
Collapse
Affiliation(s)
- K N Nilaweera
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - J R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
37
|
Perugini J, Bordoni L, Venema W, Acciarini S, Cinti S, Gabbianelli R, Giordano A. Zic1 mRNA is transiently upregulated in subcutaneous fat of acutely cold-exposed mice. J Cell Physiol 2018; 234:2031-2036. [PMID: 30343504 DOI: 10.1002/jcp.27301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
In the mammalian adipose organ cold exposure not only activates typical brown adipose tissue, but also induces browning, that is the formation of thermogenic multilocular adipocytes in white, or predominantly white, adipose depots such as subcutaneous fat. Unlike typical brown adipocytes, newly formed thermogenic adipocytes have been reported not to express the gene zinc finger of the cerebellum 1 (Zic1). Here, a time course approach enabled us to document a significant increase in Zic1 messenger RNA in inguinal subcutaneous fat from acutely (24 hr) cold-exposed mice, which was paralleled by an increase in multilocular and paucilocular uncoupling protein 1-positive adipocytes and in parenchymal noradrenergic innervation. This transient, depot-specific molecular signature was associated not to Zic1 promoter demethylation, but to chromatin remodeling through an H3K9me3 histone modification. These findings challenge the notion that Zic1 is exclusively expressed by typical brown adipocytes and suggest its involvement in brown adipocyte precursor differentiation and/or white-to-brown adipocyte transdifferentiation.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Marche, Italy
| | - Laura Bordoni
- School of Pharmacy, Department of Biochemistry and Molecular Biology, University of Camerino, Camerino, Macerata, Italy
| | - Wiebe Venema
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Marche, Italy
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Marche, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Marche, Italy
| | - Rosita Gabbianelli
- School of Pharmacy, Department of Biochemistry and Molecular Biology, University of Camerino, Camerino, Macerata, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Marche, Italy
| |
Collapse
|
38
|
Igarashi Y, Nawaz A, Kado T, Bilal M, Kuwano T, Yamamoto S, Sasahara M, Jiuxiang X, Inujima A, Koizumi K, Imura J, Shibahara N, Usui I, Fujisaka S, Tobe K. Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Sci Rep 2018; 8:14567. [PMID: 30275453 PMCID: PMC6167387 DOI: 10.1038/s41598-018-32803-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
Beige adipocytes are an inducible form of thermogenic adipocytes that become interspersed within white adipose tissue (WAT) depots in response to cold exposure. Previous studies have shown that type 2 cytokines and M2 macrophages induce cold-induced browning in inguinal WAT (ingWAT) by producing catecholamines. Exactly how the conditional and partial depletion of CD206+ M2-like macrophages regulates the cold-induced browning of ingWAT, however, remains unknown. We examined the role of CD206+ M2-like macrophages in the cold-induced browning of WAT using genetically engineered CD206DTR mice, in which CD206+ M2-like macrophages were conditionally depleted. The partial depletion of CD206+ M2-like enhanced UCP1 expression in ingWAT, as shown by immunostaining, and also upregulated the expression of Ucp1 and other browning-related marker genes in ingWAT after cold exposure. A flow cytometry analysis showed that the partial depletion of CD206+ M2-like macrophages caused an increase in the number of beige progenitors in ingWAT in response to cold. Thus, we concluded that CD206+ M2-like macrophages inhibit the proliferation of beige progenitors and that the partial depletion of CD206+ M2-like macrophages releases this inhibition, thereby enhancing browning and insulin sensitivity.
Collapse
Affiliation(s)
- Yoshiko Igarashi
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan.
- Department of Metabolism and Nutrition, University of Toyama, Toyama, 930-0194, Japan.
- JSPS International Research Fellow, Department of Metabolism and Nutrition, University of Toyama, Toyama, 930-0194, Japan.
| | - Tomonobu Kado
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Muhammad Bilal
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Takahide Kuwano
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Seiji Yamamoto
- Department of Pathology, University of Toyama, Toyama, 930-0194, Japan
| | - Masakiyo Sasahara
- Department of Pathology, University of Toyama, Toyama, 930-0194, Japan
| | - Xu Jiuxiang
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Akiko Inujima
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, University of Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Isao Usui
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
39
|
Knuth CM, Peppler WT, Townsend LK, Miotto PM, Gudiksen A, Wright DC. Prior exercise training improves cold tolerance independent of indices associated with non-shivering thermogenesis. J Physiol 2018; 596:4375-4391. [PMID: 30109697 DOI: 10.1113/jp276228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Mammals defend against cold-induced reductions in body temperature through both shivering and non-shivering thermogenesis. The activation of non-shivering thermogenesis is primarily driven by uncoupling protein-1 in brown adipose tissue and to a lesser degree by the browning of white adipose tissue. Endurance exercise has also been shown to increase markers of white adipose tissue browning. This study aimed to determine whether prior exercise training would alter the response to a cold challenge and if this would be associated with differences in indices of non-shivering thermogenesis. It is shown that exercise training protects against cold-induced weight loss by increasing food intake. Exercise-trained mice were better able to maintain their core temperature, independent of differences in markers of non-shivering thermogenesis. ABSTRACT Shivering is one of the first defences against cold, and as skeletal muscle fatigues there is an increased reliance on non-shivering thermogenesis. Brown and beige adipose tissues are the primary thermogenic tissues regulating this process. Exercise has also been shown to increase the thermogenic capacity of subcutaneous white adipose tissue. Whether exercise has an effect on the adaptations to cold stress within adipose tissue and skeletal muscle remains to be shown. Male C57BL/6 mice were either subjected to voluntary wheel running or remained sedentary for 12 days. Exercise led to decreased body weight and increased glucose tolerance. Mice were then divided into groups kept at 25°C room temperature or a cold challenge of 4°C for 48 h. Exercised mice were protected against cold-induced reductions in weight and in parallel with increased food intake. Providing exercised mice with the same amount of food as sedentary mice eliminated the protection against cold-induced weight loss. Cold exposure led to greater reductions in rectal temperature in sedentary compared to exercised mice. This protective effect was not explained by differences in the browning of white adipose tissue or brown adipose tissue mass. Similarly, the ability of the β3 -adrenergic agonist CL 316,243 to increase energy expenditure was attenuated in previously exercised mice, suggesting that the activation of uncoupling protein-1 in brown and/or beige adipocytes is not the source of protective effects. We speculate that the protection against cold-induced reductions in rectal temperature could potentially be linked to exercise-induced alterations in skeletal muscle.
Collapse
Affiliation(s)
- Carly M Knuth
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
40
|
Libby AE, Bales ES, Monks J, Orlicky DJ, McManaman JL. Perilipin-2 deletion promotes carbohydrate-mediated browning of white adipose tissue at ambient temperature. J Lipid Res 2018; 59:1482-1500. [PMID: 29866659 DOI: 10.1194/jlr.m086249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Mice lacking perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by Western or high-fat diets. In the current study, we found that, compared with WT mice on Western diet, Plin2-null adipose tissue was more insulin sensitive and inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate-responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression. To define Plin2 and sugar effects on adipose browning, WT and Plin2-null mice were placed on chow diets containing 20% sucrose in their drinking water for 6 weeks. Compared with WT mice, iWAT of Plin2-null mice exhibited pronounced browning and striking increases in the expression of thermogenic and insulin-responsive genes on this diet. Significantly, Plin2-null iWAT browning was associated with reduced sucrose intake and elevated serum fibroblast growth factor (FGF)21 levels, which correlated with greatly enhanced hepatic FGF21 production. These data identify Plin2 actions as novel mediators of sugar-induced adipose browning through indirect effects of hepatic FGF21 expression, and suggest that adipose browning mechanisms may contribute to Plin2-null resistance to obesity.
Collapse
Affiliation(s)
- Andrew E Libby
- Integrated Physiology Graduate Program, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045.,Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Elise S Bales
- Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Jenifer Monks
- Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - David J Orlicky
- Department of Pathology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - James L McManaman
- Integrated Physiology Graduate Program, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045 .,Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
41
|
Reduced adiposity by compensatory WAT browning upon iBAT removal in mice. Biochem Biophys Res Commun 2018; 501:807-813. [DOI: 10.1016/j.bbrc.2018.05.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
|
42
|
Schmidt V, Kirschner KM. Alternative pre-mRNA splicing. Acta Physiol (Oxf) 2018; 222:e13053. [PMID: 29443453 DOI: 10.1111/apha.13053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- V. Schmidt
- Charité - Universitätsmedizin Berlin; Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Vegetative Physiology; Berlin Germany
| | - K. M. Kirschner
- Charité - Universitätsmedizin Berlin; Freie Universität Berlin; Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Vegetative Physiology; Berlin Germany
| |
Collapse
|
43
|
Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner. Int J Mol Sci 2018; 19:ijms19030895. [PMID: 29562620 PMCID: PMC5877756 DOI: 10.3390/ijms19030895] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.
Collapse
|
44
|
Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, Shuai L, Li J, Li J. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue. Front Physiol 2018. [PMID: 29515462 PMCID: PMC5826329 DOI: 10.3389/fphys.2018.00122] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic "brown-like" cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively, whereas chronic AMPK activation by A-769662 promoted WAT browning in inguinal WAT and protected against HFD-induced obesity and related metabolic dysfunction. These findings reveal a vital role for adipocyte AMPK in regulating the browning process in inguinal WAT and in maintaining energy homeostasis, which suggests that the targeted activation of adipocyte AMPK may be a promising strategy for anti-obesity therapy.
Collapse
Affiliation(s)
- Lingyan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lina Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bohan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haowen Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Yanan Duan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lin Shuai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
Vizin RCL, Motzko-Soares ACP, Armentano GM, Ishikawa DT, Cruz-Neto AP, Carrettiero DC, Almeida MC. Short-term menthol treatment promotes persistent thermogenesis without induction of compensatory food consumption in Wistar rats: implications for obesity control. J Appl Physiol (1985) 2017; 124:672-683. [PMID: 29357504 DOI: 10.1152/japplphysiol.00770.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we aimed to evaluate the influence of daily repeated menthol treatments on body mass and thermoregulatory effectors in Wistar rats, considering that menthol is a transient receptor potential melastatin 8 channel agonist that mimics cold sensation and activates thermoregulatory cold-defense mechanisms in mammals, promoting hyperthermia and increasing energy expenditure, and has been suggested as an anti-obesity drug. Male Wistar rats were topically treated with 5% menthol for 3 or 9 consecutive days while body mass, food intake, abdominal temperature, metabolism, cutaneous vasoconstriction, and thermal preference were measured. Menthol promoted hyperthermia on all days of treatment, due to an increase in metabolism and cutaneous vasoconstriction, without affecting food intake, resulting in less mass gain in menthol-hyperthermic animals. As the treatment progressed, the menthol-induced increases in metabolism and hyperthermia were attenuated but not abolished. Moreover, cutaneous vasoconstriction was potentiated, and an increase in the warmth-seeking behavior was induced. Taken together, the results suggest that, although changes occur in thermoeffector recruitment during the course of short-term treatment, menthol is a promising drug to prevent body mass gain. NEW & NOTEWORTHY Menthol produces a persistent increase in energy expenditure, with limited compensatory thermoregulatory adaptations and, most unexpectedly, without affecting food intake. Thus short-term treatment with menthol results in less mass gain in treated animals compared with controls. Our results suggest that menthol is a promising drug for the prevention of obesity.
Collapse
Affiliation(s)
- Robson Cristiano Lillo Vizin
- Graduate Program on Neuroscience and Cognition, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil
| | - Anna Carolina P Motzko-Soares
- Graduate Program on Neuroscience and Cognition, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil
| | - Giovana Marchini Armentano
- Natural and Humanities Science Center, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil
| | - Débora T Ishikawa
- Graduate Program on Neuroscience and Cognition, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil
| | - Ariovaldo P Cruz-Neto
- Department of Zoology, Biosciences Institute, São Paulo State University, Rio Claro, São Paulo , Brazil
| | - Daniel Carneiro Carrettiero
- Graduate Program on Neuroscience and Cognition, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil.,Natural and Humanities Science Center, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil
| | - Maria Camila Almeida
- Graduate Program on Neuroscience and Cognition, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil.,Natural and Humanities Science Center, Universidade Federal do ABC , São Bernardo do Campo, São Paulo , Brazil
| |
Collapse
|
46
|
Grunewald ZI, Winn NC, Gastecki ML, Woodford ML, Ball JR, Hansen SA, Sacks HS, Vieira-Potter VJ, Padilla J. Removal of interscapular brown adipose tissue increases aortic stiffness despite normal systemic glucose metabolism in mice. Am J Physiol Regul Integr Comp Physiol 2017; 314:R584-R597. [PMID: 29351429 DOI: 10.1152/ajpregu.00332.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brown adipose tissue (BAT) is considered protective against obesity and related cardiometabolic dysfunction. Indeed, activation of BAT improves glucose homeostasis and attenuates cardiovascular disease development. However, whether a reduction in BAT mass perturbs metabolic function and increases risk for cardiovascular disease remains largely unknown. To address this question, C57BL/6J male mice underwent a sham procedure or surgical bilateral excision of interscapular BAT (iBATx) and were fed a normal chow or a Western diet for 18 wk, creating four groups ( n = 10/group). Mice were housed at 25°C. As expected, the Western diet increased final body weight and adiposity; however, contrary to our hypothesis, iBATx did not potentiate adiposity independent of diet. Furthermore, iBATx did not affect indexes of glycemic control (HbA1c, fasting glucose and insulin, and glucose area under the curve during a glucose tolerance test) and produced minimal-to-no effects on lipid homeostasis. The absence of metabolic disturbances with iBATx was not attributed to regrowth of iBAT or a "browning" or proliferative compensatory response of other BAT depots. Notably, iBATx caused an increase in aortic stiffness in normal chow-fed mice only, which was associated with an increase in aortic uncoupling protein-1. Collectively, we demonstrated that, at 25°C (i.e., limited thermal stress conditions), a substantial reduction in BAT mass via iBATx does not disrupt systemic glucose metabolism, challenging the current dogma that preservation of BAT is obligatory for optimal metabolic function. However, iBATx caused aortic stiffening in lean mice, hence supporting the existence of an interplay between iBAT and aortic stiffness, independent of alterations in glucose homeostasis.
Collapse
Affiliation(s)
- Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Michelle L Gastecki
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Missouri , Columbia, Missouri
| | - Harold S Sacks
- Endocrine and Diabetes Division, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, California
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Child Health, University of Missouri , Columbia, Missouri
| |
Collapse
|
47
|
Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:161-196. [PMID: 28585199 DOI: 10.1007/978-3-319-48382-5_7] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concert action of the three type of adipocytes/tissues has been reported to ensure an optimal metabolic status in rodents. However, when one or multiple of these adipose depots become dysfunctional as a consequence of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity counteracts obesity and its associated lipotoxic metabolic effects. The development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition and expandability capacity as well as molecular and metabolic signatures in both physiological and pathophysiological conditions.
Collapse
|
48
|
Castro É, Silva TEO, Festuccia WT. Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0042/hmbci-2017-0042.xml. [PMID: 28862985 DOI: 10.1515/hmbci-2017-0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
Beige (or brite, "brown in white") adipocytes are uncoupling protein 1 (UCP1)-positive cells residing in white adipose depots that, depending on the conditions, behave either as classic white adipocytes, storing energy as lipids, or as brown adipocytes, dissipating energy from oxidative metabolism as heat through non-shivering thermogenesis. Because of their thermogenic potential and, therefore, possible usage to treat metabolic diseases such as obesity and type 2 diabetes, beige cells have attracted the attention of many scientists worldwide aiming to develop strategies to safely recruit and activate their thermogenic activity. Indeed, in recent years, a large variety of conditions, molecules (including nutrients) and signaling pathways were reported to promote the recruitment of beige adipocytes. Despite of those advances, the true contribution of beige adipocyte thermogenesis to whole-body energy expenditure is still not completely defined. Herein, we discuss some important aspects that should be considered when studying beige adipocyte biology and the contribution to energy balance and whole-body metabolism.
Collapse
|
49
|
Chung N, Park J, Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J Exerc Nutrition Biochem 2017; 21:39-47. [PMID: 28715885 PMCID: PMC5545200 DOI: 10.20463/jenb.2017.0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
[Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively). NRF1 protein levels did not show a significant effect in any experimental treatments. Tfam protein levels showed a significant effect in the exercise group (p=0.012), but effects of neither cold exposure nor the interaction were significant (p = 0.085 and p=0.374, respectively). [Conclusion] Exercise and cold exposure promoted increased expression of mitochondrial biogenesis- related genes in soleus muscle. Only cold exposure had a significant effect on PGC-1α protein expression and only exercise had a significant effect on Tfam protein expression. In inguinal adipose tissue, there was interaction between exercise and cold exposure in expression of mitochondrial biogenesis-related genes.
Collapse
Affiliation(s)
- Nana Chung
- Physical Activity & Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, Republic of Korea
| | - Kiwon Lim
- Physical Activity & Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
50
|
You L, Zhou Y, Cui X, Wang X, Sun Y, Gao Y, Wang X, Wen J, Xie K, Tang R, Ji C, Guo X. GM13133 is a negative regulator in mouse white adipocytes differentiation and drives the characteristics of brown adipocytes. J Cell Physiol 2017; 233:313-324. [PMID: 28247947 DOI: 10.1002/jcp.25878] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022]
Abstract
Obesity is tightly associated with the disturbance of white adipose tissue storing excess energy. Thermogenic adipocytes (brown and beige) exert a critical role of oxidizing nutrients at the high rates through non-shivering thermogenesis. The recruitment of brown characteristics in white adipocytes, termed browning, has been considered as a promising strategy for treating obesity and associated metabolic complications. Recently, long noncoding RNAs play a crucial role in regulating tissue development and participating in disease pathogenesis, yet their effects on the conversion of white into brown-like adipocytes and thermogenic function were not totally understood. Here, we identified a mouse brown adipose specific expressed lncRNA, termed GM13133. Moreover, a considerable amount of GM13133 is expressed in adipocytes and actively modulated by cold, β3 -adrenergic agonist and cAMP stimuli, implying a potential role in the conversion from white to brown adipocytes. Overexpression of GM13133 did not affect the proliferation of mouse white pre-adipocytes, but inhibited white adipocyte differentiation by decreasing lipid accumulation. The forced expression of GM13133 also significantly drove the conversion of white into brown-like adipocytes with the enhanced mitochondrial biogenesis and the induced expression of brown adipocytes specific markers. A global mRNA analysis further indicated the possible regulatory role of cAMP signaling pathway in GM13133 mediated white-to-brown adipocytes conversion. Our results identified a lncRNA-mediated modulation in primary mouse white adipocyte differentiation and indicate the functional significance of GM13133 in promoting browning of white adipocytes and maintenance of thermogenesis, further providing a potential strategy to treating obesity.
Collapse
Affiliation(s)
- LiangHui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - YaHui Zhou
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - XianWei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - XingYun Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - YaZhou Sun
- Department of Pediatrics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yao Gao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - RanRan Tang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - ChenBo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - XiRong Guo
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|