1
|
Guo S, Li P, Lu J, Zhou P, Sun B, Wang J. Causal relationship between skin microbiota and Hidradenitis suppurativa: a two-sample Mendelian randomization study. Arch Dermatol Res 2025; 317:238. [PMID: 39804488 PMCID: PMC11729072 DOI: 10.1007/s00403-024-03787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Data from observational and clinical studies indicate an association between skin microbiota and hidradenitis suppurativa (HS). However, the causal relationship between skin microbiota and HS remains to be elucidated. METHODS We obtained data on skin microbiota and HS from summary statistics of genome-wide association studies and applied Mendelian randomization (MR) statistical methods to assess causality. Specifically, we employed both full MR and inverse MR methods, utilizing five statistical approaches, including inverse variance weighting, to evaluate causality. Furthermore, sensitivity analyses were conducted to validate the MR findings. RESULTS Inverse variance weighted analysis revealed that the order Burkholderiales (OR = 0.922, 95% CI 0.855-0.994, P = 0.033), the genus Enhydrobacter (OR = 0.897, 95% CI 0.815-0.986, P = 0.025), ASV037 (OR = 0.926, 95% CI 0.863-0.995, P = 0.036), and ASV016 (OR = 0.932, 95% CI 0.870-0.998, P = 0.043) exhibited a protective effect against HS. Conversely, ASV022 (OR = 1.098, 95% CI 1.027-1.175, P = 0.007) was identified as a risk factor. CONCLUSION Our analysis suggests a possible causal relationship between specific skin microbiota and HS. These findings shed light on the potential pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Siqing Guo
- Coloproctology Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peihong Li
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingen Lu
- Coloproctology Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengfei Zhou
- Coloproctology Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boyun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jiawen Wang
- Coloproctology Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Dajnoki Z, Kapitány A, Eyerich K, Eyerich S, Törőcsik D, Szegedi A. Topographical variations in the skin barrier and their role in disease pathogenesis. J Eur Acad Dermatol Venereol 2024. [PMID: 39607016 DOI: 10.1111/jdv.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
The skin barrier can be divided into at least four functional units: chemical, microbial, physical and immunological barriers. The chemical and microbial barriers have previously been shown to exhibit different characteristics in topographically distinct skin regions. There is increasing evidence that the physical and immunological barriers also show marked variability in different areas of the skin. Here, we review recent data on the topographical variations of skin barrier components, the contribution of these variations to the homeostatic function of the skin and their impact on the pathogenesis of specific immune-mediated skin diseases (such as atopic dermatitis and papulopustular rosacea). Recognition of these topographical barrier differences will improve our understanding of skin homeostasis and disease pathogenesis and provide a basis for body site-specific targeted therapies.
Collapse
Affiliation(s)
- Z Dajnoki
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - A Kapitány
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - K Eyerich
- Department of Dermatology and Venerology, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - D Törőcsik
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - A Szegedi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| |
Collapse
|
3
|
Kramer A, Dahl MB, Bengtsson MM, Boyce JM, Heckmann M, Meister M, Papke R, Pittet D, Reinhard A, Slevogt H, Wang H, Zwicker P, Urich T, Seifert U. No detrimental effect on the hand microbiome of health care staff by frequent alcohol-based antisepsis. Am J Infect Control 2024:S0196-6553(24)00846-0. [PMID: 39551096 DOI: 10.1016/j.ajic.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The importance of ethanol-based hand rubs (EBHR) to prevent health care-associated infections is undisputed. However, there is a lack of meaningful data regarding the influence of EBHRs on skin microbiome. METHODS Four nurses in a neonatal intensive care unit were included. After a leave of 14 days, samples were taken before the first hand rubbing action and at the end of shift, with continued sampling on days 1, 7 and 28. To analyze the hand microbiome, microbial cells were collected using the glove-juice technique. Pro- and eukaryotic community profiles were created using amplicon sequencing of 16S and 18S rRNA gene markers. RESULTS On average, hand antisepsis was performed 108 times per 8-hour work shift. Microbial communities were dominated by typical taxa found on human skin. In addition, a clear nurse-specific (i.e. individual) microbiome signature could be observed. For Prokaryota, daily exposure led to the end-of-the-day microbiomes being more similar to each other across nurses. In contrast, longitudinal effect of 28 day-application revealed more similarity of the Eukaryotic community. CONCLUSIONS Frequent occupational use of EBHR did not adversely affect the composition of the human hand microbiome. Thus, daily hand antisepsis retains its significance as the most important procedure for infection control.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany; Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany
| | - Mathilde Borg Dahl
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Mia M Bengtsson
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | | | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, Greifswald, Germany; DZKJ (German Centre for Child and Adolescent Health), partner site Greifswald/Rostock, Greifswald, Germany
| | - Mareike Meister
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Roald Papke
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany; Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany
| | - Didier Pittet
- Infection Control Programme and WHO Collaborating Centre on Infection Prevention and Control & Antimicrobial Resistance, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Anne Reinhard
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), Breath, Hannover, Germany; Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Haitao Wang
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany; Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany
| | - Tim Urich
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany; Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
4
|
Kaplan B, von Dannecker R, Arbiser JL. The Carcinogenesis of the Human Scalp: An Immunometabolic-Centered View. Int J Mol Sci 2024; 25:12064. [PMID: 39596133 PMCID: PMC11593518 DOI: 10.3390/ijms252212064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The human scalp is a common site of skin cancer in humans, with nonmelanoma skin cancer being exceedingly common. In this review, two dermatologists with extensive experience in cutaneous oncology will discuss unique features of the epidemiology of cancer of the scalp. Clinical observations on these common skin cancers lead to insight into the pathogenesis and potential prevention and treatment of cutaneous scalp neoplasia. Our hypothesis is that the presence of hair protects against the development of skin cancer but not by serving as a physical shield but rather by providing continuous IL-17-biased immunosurveillance. The loss of hair allows for a release from immunosurveillance, resulting in the expansion of neoplastic cells towards skin cancer. Both hair follicles and metabolic changes in stroma allow for permissiveness for tumor promotion.
Collapse
Affiliation(s)
- Baruch Kaplan
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - Jack L. Arbiser
- Metroderm/United Dermatology Partners, 875 Johnson Ferry RD, Atlanta, GA 30342, USA
| |
Collapse
|
5
|
Limbu SL, Purba TS, Harries M, Kundu R, Bhogal RK, Paus R. Dandruff lesional scalp skin exhibits epidermal T cell infiltration and a weakened hair follicle immune privilege. Int J Cosmet Sci 2024; 46:717-733. [PMID: 38488328 DOI: 10.1111/ics.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Dandruff is characterised by the presence of perivascular leukocytes and mild inflammation; however, the immune microenvironment of dandruff-affected scalp skin and the potential changes to the hair follicle's (HF) physiological immune privilege (HF IP) remain unknown. Here, we characterised the HF immune microenvironment and immune privilege status in dandruff-affected scalp skin. METHODS We assessed relevant key parameters in healthy versus dandruff-affected human scalp biopsies using quantitative immunohistomorphometry, laser capture microdissection, and RNA sequencing. RESULTS The number of epidermal CD4+ and CD8+ T cells was increased in lesional dandruff scalp skin, while the number of MHC class II+/CD1a+ Langerhans cells was decreased in the infundibulum. The number of intrafollicular and perifollicular CD4+ T cells and CD8+ T cells, perifollicular CD68+ macrophages, and tryptase+ mast cells remained unchanged. Interestingly, MHC class Ia and ß2-microglobulin protein expression were significantly increased specifically in the suprabulbar outer root sheath (ORS) compartment of dandruff-associated HFs. RNAseq analysis of laser capture micro-dissected suprabulbar ORS compartment revealed antigen presentation pathway as the top regulated canonical pathway, along with the upregulation of HF-IP genes such as HLA-C, HLA-DP, and TAP1, which are normally down-regulated in healthy HFs. Intrafollicular protein expression of known HF IP guardians (CD200 and α-MSH) and 'danger signals' (MICA and CXCL10) remained unaltered at the IP sites of dandruff lesional HFs compared to non-lesional and healthy HFs. Instead, the expression of macrophage migration inhibiting factor (MIF), another HF IP guardian, was reduced. CONCLUSION Together, this work shows that dandruff is associated with epidermal T-cell infiltration and a weakened HF IP in the suprabulbar ORS of HFs in dandruff lesional scalp.
Collapse
Affiliation(s)
- Susan L Limbu
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Talveen S Purba
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
- Department of Dermatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | - Ralf Paus
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Coral Gables, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON, Hamburg, Germany
| |
Collapse
|
6
|
Carlucci P, Spataro F, Cristallo M, Di Gioacchino M, Nettis E, Gangemi S. Immune-Molecular Link between Thyroid and Skin Autoimmune Diseases: A Narrative Review. J Clin Med 2024; 13:5594. [PMID: 39337081 PMCID: PMC11433455 DOI: 10.3390/jcm13185594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Autoimmune skin disorders, including Psoriasis, Lichen Planus, Vitiligo, Atopic Dermatitis, and Alopecia Areata, arise from a combination of genetic predisposition, external factors, and immunological dysfunction. It is well-documented that there is a strong correlation between autoimmune thyroid diseases and a range of dermatological disorders, especially urticaria. This review investigates possible links between autoimmune thyroiditis and a broader spectrum of autoimmune skin conditions, analyzing shared genetic markers, immunological mechanisms, and clinical correlations. Common pathogenic mechanisms include disrupted immune tolerance and oxidative stress, leading to chronic inflammation. Genetic factors, such as IL-23 receptor gene variants, increase the risk for Psoriasis, Alopecia Areata, and Hashimoto's thyroiditis. Additionally, CTLA-4 mutations enhance susceptibility to autoimmune thyroid and skin disorders. Shared genetic susceptibility was also reported in Lichen Planus and Vitilgo, even if different genetic loci might be involved. The breakdown of the immune system can determine a pro-inflammatory state, facilitating the development of autoimmunity and auto-antibody cross-reactions. The presence of similar antigens in skin cells and thyrocytes might explain why both tissues are affected. The significant overlap between these conditions emphasizes the necessity for a comprehensive diagnosis workup and treatment. Future research should focus on clarifying specific immunological pathways and identifying novel biomarkers.
Collapse
Affiliation(s)
- Palma Carlucci
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Federico Spataro
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Mattia Cristallo
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
7
|
Bae WY, Jung WH, Shin SL, Kim TR, Sohn M, Suk J, Jung I, Lee YI, Lee JH. Heat-treated Limosilactobacillus fermentum LM1020 with menthol, salicylic acid, and panthenol promotes hair growth and regulates hair scalp microbiome balance in androgenetic alopecia: A double-blind, randomized and placebo-controlled clinical trial. J Cosmet Dermatol 2024; 23:2943-2955. [PMID: 38807549 DOI: 10.1111/jocd.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common and chronic problem characterized by hair follicle miniaturization. AIMS In this study, heat-treated Limosilactobacillus fermentum LM1020 (HT-LM1020) was investigated in human follicle dermal papilla cell (HFDPC), scalp tissue, and clinical trials for patients with AGA. PATIENTS/METHODS Cell proliferation and the expression of cyclins and cyclin-dependent kinases (CDKs) were measured in HFDPC. The relative gene expression of 5α-reductase and growth factors were investigated in hair scalp. This double-blind, randomized, placebo-controlled clinical trial was conducted over 24 weeks. Primary efficacy was evaluated by measuring hair density, and secondary efficacy was assessed by experts and self-assessment. Changes in the microbiota of the hair scalps were analyzed using 16S metagenome amplicon sequencing. RESULTS HT-LM1020 promoted cell growth (p < 0.001) and cyclin B1 expression, and it reduced 5α-reductase and induced fibroblast growth factor 7 (FGF7), FGF10, and epithelial growth factor7 (EGF7) (p < 0.001). In the clinical trial, the experimental group demonstrated an increase in hair density from 133.70 to 148.87 n/cm2 at Week 24 (p < 0.001), while also expressing satisfaction with their hair density, reduced hair loss, and hairline. At Week 24, the total ratio of lactic acid bacteria operational taxonomic unit (OTU) in the scalp increased from 6.65% to 26.19%. At the same period, placebo-controlled group decreased Staphylococcus caprae OTU from 77.95% to 14.57% while experimental group decreased from 65.80% to 41.02%. CONCLUSIONS These present results showed that HT-LM1020 was a co-effector of ingredients for anti-hair loss contributing to cell proliferation and the expression of CDKs.
Collapse
Affiliation(s)
- Won-Young Bae
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Woo-Hyun Jung
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - So Lim Shin
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Minn Sohn
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Jangmi Suk
- Global Medical Research Center, Seoul, Republic of Korea
| | - Inhee Jung
- Global Medical Research Center, Seoul, Republic of Korea
| | - Young In Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| |
Collapse
|
8
|
Zhang J, Zhao Y, Zhang J, Zhou Y, Yi Y, Lei R, Qu Q, Hu Z, Gao Z, Li Y, Tang Q, Miao Y. Risk Factors and Hazards of Recipient-Area Perifollicular Erythema After Hair Transplantation: A Multicenter Retrospective Cohort Study. Aesthetic Plast Surg 2024; 48:2771-2777. [PMID: 38849551 DOI: 10.1007/s00266-024-04166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Recipient-area perifollicular erythema (RPE) may delay graft growth after hair transplantation. However, there is currently a lack of observational clinical studies of RPE. OBJECTIVE To study the clinical features and risk factors associated with RPE while analyzing its correlation with graft growth. METHODS We conducted a multicenter retrospective cohort study between June 2020 and January 2023. RESULTS A total of 1090 participants were included, 178 (16.33%) showed mild RPE, 56 (5.14%) showed moderate RPE, and 10 (0.92%) showed severe RPE. Patients with RPE had severe hair shaft shedding (P < 0.001) and a lower survival rate (P < 0.001) of grafts. Logistic regression analysis showed that folliculitis is a significant risk factor for mild RPE (OR 6.061, 95% CI 3.343-10.991, P < 0.001) and moderate RPE (OR 3.397, 95% CI 1.299-8.882, P = 0.013). Besides, untimely first postoperative hair washing was associated with the development of moderate RPE (OR 0.724, 95% CI 0.553-0.947, P = 0.018) and severe RPE (OR 1.553, 95% CI 1.156-2.086, P = 0.003). CONCLUSION RPE is a postoperative complication closely related to high hair shaft shedding proportion and low graft survival rate. Both postoperative folliculitis and untimely first postoperative hair washing may induce the occurrence of RPE. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jiaxian Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingjie Zhao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Zhou
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, China
| | - Yanhua Yi
- Department of Burn, Would Repair Surgery and Plastic Surgery, Department of Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyong Gao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei Li
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Qiang Tang
- Surgery Department of Burn Plastics and Wound Repair, Affiliated Hospital of Youjang Medical University for Nationalities, Baise City, 533000, Guangxi, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Na HH, Kim S, Kim JS, Lee S, Kim Y, Kim SH, Lee CH, Kim D, Yoon SH, Jeong H, Kweon D, Seo HW, Ryu CM. Facemask acne attenuation through modulation of indirect microbiome interactions. NPJ Biofilms Microbiomes 2024; 10:50. [PMID: 38902263 PMCID: PMC11190265 DOI: 10.1038/s41522-024-00512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/28/2024] [Indexed: 06/22/2024] Open
Abstract
During the COVID-19 pandemic, facemasks played a pivotal role in preventing person-person droplet transmission of viral particles. However, prolonged facemask wearing causes skin irritations colloquially referred to as 'maskne' (mask + acne), which manifests as acne and contact dermatitis and is mostly caused by pathogenic skin microbes. Previous studies revealed that the putative causal microbes were anaerobic bacteria, but the pathogenesis of facemask-associated skin conditions remains poorly defined. We therefore characterized the role of the facemask-associated skin microbiota in the development of maskne using culture-dependent and -independent methodologies. Metagenomic analysis revealed that the majority of the facemask microbiota were anaerobic bacteria that originated from the skin rather than saliva. Previous work demonstrated direct interaction between pathogenic bacteria and antagonistic strains in the microbiome. We expanded this analysis to include indirect interaction between pathogenic bacteria and other indigenous bacteria classified as either 'pathogen helper (PH)' or 'pathogen inhibitor (PIn)' strains. In vitro screening of bacteria isolated from facemasks identified both strains that antagonized and promoted pathogen growth. These data were validated using a mouse skin infection model, where we observed attenuation of symptoms following pathogen infection. Moreover, the inhibitor of pathogen helper (IPH) strain, which did not directly attenuate pathogen growth in vitro and in vivo, functioned to suppress symptom development and pathogen growth indirectly through PH inhibitory antibacterial products such as phenyl lactic acid. Taken together, our study is the first to define a mechanism by which indirect microbiota interactions under facemasks can control symptoms of maskne by suppressing a skin pathogen.
Collapse
Affiliation(s)
- Han-Hee Na
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Interdisciplinary Program in Biocosmetics, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seil Kim
- Division of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Soohyun Lee
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Yeseul Kim
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Functional Genomics Program, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Daehyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
| | - Choong-Min Ryu
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
| |
Collapse
|
10
|
Lousada MB, Edelkamp J, Lachnit T, Fehrholz M, Pastar I, Jimenez F, Erdmann H, Bosch TCG, Paus R. Spatial Distribution and Functional Impact of Human Scalp Hair Follicle Microbiota. J Invest Dermatol 2024; 144:1353-1367.e15. [PMID: 38070726 DOI: 10.1016/j.jid.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 02/26/2024]
Abstract
Human hair follicles (HFs) constitute a unique microbiota habitat that differs substantially from the skin surface. Traditional HF sampling methods fail to eliminate skin microbiota contaminants or assess the HF microbiota incompletely, and microbiota functions in human HF physiology remain ill explored. Therefore, we used laser-capture microdissection, metagenomic shotgun sequencing, and FISH to characterize the human scalp HF microbiota in defined anatomical compartments. This revealed significant compartment-, tissue lineage-, and donor age-dependent variations in microbiota composition. Greatest abundance variations between HF compartments were observed for viruses, archaea, Staphylococcus epidermidis, Cutibacterium acnes, and Malassezia restricta, with the latter 2 being the most abundant viable HF colonizers (as tested by propidium monoazide assay) and, surprisingly, most abundant in the HF mesenchyme. Transfection of organ-cultured human scalp HFs with S. epidermidis-specific lytic bacteriophages ex vivo downregulated transcription of genes known to regulate HF growth and development, metabolism, and melanogenesis, suggesting that selected microbial products may modulate HF functions. Indeed, HF treatment with butyrate, a metabolite of S. epidermidis and other HF microbiota, delayed catagen and promoted autophagy, mitochondrial activity, and gp100 and dermcidin expression ex vivo. Thus, human HF microbiota show spatial variations in abundance and modulate the physiology of their host, which invites therapeutic targeting.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory, Münster, Germany; Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | | | - Tim Lachnit
- Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | | | - Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francisco Jimenez
- Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | - Ralf Paus
- Monasterium Laboratory, Münster, Germany; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON, Hamburg, Germany.
| |
Collapse
|
11
|
Matsumoto Y, Sato E, Sugita T. Acid-treated Staphylococcus aureus induces acute silkworm hemolymph melanization. PLoS One 2024; 19:e0298502. [PMID: 38814922 PMCID: PMC11139275 DOI: 10.1371/journal.pone.0298502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
The skin microbiome maintains healthy human skin, and disruption of the microbiome balance leads to inflammatory skin diseases such as folliculitis and atopic dermatitis. Staphylococcus aureus and Cutibacterium acnes are pathogenic bacteria that simultaneously inhabit the skin and cause inflammatory diseases of the skin through the activation of innate immune responses. Silkworms are useful invertebrate animal models for evaluating innate immune responses. In silkworms, phenoloxidase generates melanin as an indicator of innate immune activation upon the recognition of bacterial or fungal components. We hypothesized that S. aureus and C. acnes interact to increase the innate immunity-activating properties of S. aureus. In the present study, we showed that acidification is involved in the activation of silkworm hemolymph melanization by S. aureus. Autoclaved-killed S. aureus (S. aureus [AC]) alone does not greatly activate silkworm hemolymph melanization. On the other hand, applying S. aureus [AC] treated with C. acnes culture supernatant increased the silkworm hemolymph melanization. Adding C. acnes culture supernatant to the medium decreased the pH. S. aureus [AC] treated with propionic acid, acetic acid, or lactic acid induced higher silkworm hemolymph melanization activity than untreated S. aureus [AC]. S. aureus [AC] treated with hydrochloric acid also induced silkworm hemolymph melanization. The silkworm hemolymph melanization activity of S. aureus [AC] treated with hydrochloric acid was inhibited by protease treatment of S. aureus [AC]. These results suggest that acid treatment of S. aureus induces innate immune activation in silkworms and that S. aureus proteins are involved in the induction of innate immunity in silkworms.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Eri Sato
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
12
|
Šutić Udović I, Hlača N, Massari LP, Brajac I, Kaštelan M, Vičić M. Deciphering the Complex Immunopathogenesis of Alopecia Areata. Int J Mol Sci 2024; 25:5652. [PMID: 38891839 PMCID: PMC11172390 DOI: 10.3390/ijms25115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Alopecia areata (AA) is an autoimmune-mediated disorder in which the proximal hair follicle (HF) attack results in non-scarring partial to total scalp or body hair loss. Despite the growing knowledge about AA, its exact cause still needs to be understood. However, immunity and genetic factors are affirmed to be critical in AA development. While the genome-wide association studies proved the innate and acquired immunity involvement, AA mouse models implicated the IFN-γ- and cytotoxic CD8+ T-cell-mediated immune response as the main drivers of disease pathogenesis. The AA hair loss is caused by T-cell-mediated inflammation in the HF area, disturbing its function and disrupting the hair growth cycle without destroying the follicle. Thus, the loss of HF immune privilege, autoimmune HF destruction mediated by cytotoxic mechanisms, and the upregulation of inflammatory pathways play a crucial role. AA is associated with concurrent systemic and autoimmune disorders such as atopic dermatitis, vitiligo, psoriasis, and thyroiditis. Likewise, the patient's quality of life (QoL) is significantly impaired by morphologic disfigurement caused by the illness. The patients experience a negative impact on psychological well-being and self-esteem and may be more likely to suffer from psychiatric comorbidities. This manuscript aims to present the latest knowledge on the pathogenesis of AA, which involves genetic, epigenetic, immunological, and environmental factors, with a particular emphasis on immunopathogenesis.
Collapse
Affiliation(s)
| | | | - Larisa Prpić Massari
- Department of Dermatovenereology, Clinical Hospital Centre Rijeka, Medical Faculty, University of Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (I.Š.U.); (N.H.); (I.B.); (M.K.); (M.V.)
| | | | | | | |
Collapse
|
13
|
Hsu CY, Yousif AM, Abullah KA, Abbas HH, Ahmad H, Eldesoky GE, Adil M, Hussein Z. Antimicrobial Peptides (AMPs): New Perspectives on Their Function in Dermatological Diseases. Int J Pept Res Ther 2024; 30:33. [DOI: 10.1007/s10989-024-10609-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 01/05/2025]
|
14
|
Bertolini M, Gherardini J, Chéret J, Alam M, Sulk M, Botchkareva NV, Biro T, Funk W, Grieshaber F, Paus R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int J Cosmet Sci 2024; 46:175-198. [PMID: 37923568 DOI: 10.1111/ics.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.
Collapse
Affiliation(s)
- Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jennifer Gherardini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Majid Alam
- Department of Dermatology and Venereology, Qatar Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mathias Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tamas Biro
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, Munich, Germany
| | | | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
15
|
Marinho PA, Jeong G, Shin SH, Kim SN, Choi H, Lee SH, Park BC, Hong YD, Kim HJ, Park WS. The development of an in vitrohuman hair follicle organoid with a complexity similar to that in vivo. Biomed Mater 2024; 19:025041. [PMID: 38324888 DOI: 10.1088/1748-605x/ad2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
In vitrohair follicle (HF) models are currently limited toex vivoHF organ cultures (HFOCs) or 2D models that are of low availability and do not reproduce the architecture or behavior of the hair, leading to poor screening systems. To resolve this issue, we developed a technology for the construction of a humanin vitrohair construct based on the assemblage of different types of cells present in the hair organ. First, we demonstrated that epithelial cells, when isolatedin vitro, have similar genetic signatures regardless of their dissection site, and their trichogenic potential is dependent on the culture conditions. Then, using cell aggregation techniques, 3D spheres of dermal papilla (DP) were constructed, and subsequently, epithelial cells were added, enabling the production and organization of keratins in hair, similar to what is seenin vivo. These reconstructed tissues resulted in the following hair compartments: K71 (inner root-sheath), K85 (matrix region), K75 (companion layer), and vimentin (DP). Furthermore, the new hair model was able to elongate similarly toex vivoHFOC, resulting in a shaft-like shape several hundred micrometers in length. As expected, when the model was exposed to hair growth enhancers, such as ginseng extract, or inhibitors, such as TGF-B-1, significant effects similar to thosein vivowere observed. Moreover, when transplanted into skin biopsies, the new constructs showed signs of integration and hair bud generation. Owing to its simplicity and scalability, this model fully enables high throughput screening of molecules, which allows understanding of the mechanism by which new actives treat hair loss, finding optimal concentrations, and determining the synergy and antagonism among different raw materials. Therefore, this model could be a starting point for applying regenerative medicine approaches to treat hair loss.
Collapse
Affiliation(s)
| | - Gyusang Jeong
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Seung Hyun Shin
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Su Na Kim
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Hyeongwon Choi
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Sung Hoon Lee
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Byung Cheol Park
- Department of Dermatology, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Yong Deog Hong
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Hyoung-June Kim
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| | - Won-Seok Park
- AMOREPACIFIC Research and Innovation Center, Yongin-si, Republic of Korea
| |
Collapse
|
16
|
Liu Z, Liu X. Gut microbiome, metabolome and alopecia areata. Front Microbiol 2023; 14:1281660. [PMID: 38033589 PMCID: PMC10684942 DOI: 10.3389/fmicb.2023.1281660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Alopecia areata (AA) is a type of dermatological disease characterized by rapid and non-scarring hair loss of the scalp or body skin that may be related to genetic, immunological and physiological factors. It is now believed that AA is associated with oxidative stress, autoimmune disease, neuropsychological factors, pathogens, immune checkpoint inhibitors and microecological imbalance under the premise of host genetic susceptibility. In recent years, studies have revealed the significant role of the gut microbiome or metabolome in many aspects of human health. Diverse studies have revealed that the gut microbiome and metabolome have an important influence on skin conditions. This review highlights the relationship between AA and the gut microbiome or metabolome to provide novel directions for the prevention, clinical diagnosis and treatment of AA.
Collapse
Affiliation(s)
- Zhiyu Liu
- School of Medicine of Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Department of Dermatology, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Rinaldi F, Trink A, Mondadori G, Giuliani G, Pinto D. The Menopausal Transition: Is the Hair Follicle "Going through Menopause"? Biomedicines 2023; 11:3041. [PMID: 38002043 PMCID: PMC10669803 DOI: 10.3390/biomedicines11113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This article explores the link between menopause and changes in the hair follicle (HF) lifecycle, focusing on hormonal and metabolic dynamics. During menopause, hormonal fluctuations and aging can impact the HF, leading to phenomena such as thinning, loss of volume, and changes in hair texture. These changes are primarily attributed to a decrease in estrogen levels. However, not all women experience significant hair changes during menopause, and the extent of transformations can vary considerably from person to person, influenced by genetic factors, stress, diet, and other elements. Furthermore, menopause mirrors the aging process, affecting metabolism and blood flow to the HFs, influencing the availability of vital nutrients. The article also discusses the key role of energy metabolism in the HF lifecycle and the effect of hormones, particularly estrogens, on metabolic efficiency. The concept of a possible "menopause" clinically independent of menopause is introduced, related to changes in HF metabolism, emphasizing the importance of individual factors such as estrogen receptor responses, genetics, and last but not least, the microbiota in determining these dynamics.
Collapse
Affiliation(s)
| | | | | | | | - Daniela Pinto
- HMAP, Human Microbiome Advanced Project, 20129 Milan, Italy; (F.R.); (A.T.); (G.M.); (G.G.)
| |
Collapse
|
18
|
Edelkamp J, Lousada MB, Pinto D, Chéret J, Calabrese FM, Jiménez F, Erdmann H, Wessel J, Phillip B, Angelis MD, Rinaldi F, Bertolini M, Paus R. Management of the human hair follicle microbiome by a synthetic odorant. J Dermatol Sci 2023; 112:99-108. [PMID: 37858476 DOI: 10.1016/j.jdermsci.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Human scalp hair follicles (HFs) engage in olfactory receptor (OR)-dependent chemosensation. Activation of olfactory receptor family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® up-regulated HF antimicrobial peptide expression of dermcidin (DCD), which had previously been thought to be produced exclusively by sweat and sebaceous glands. OBJECTIVES To understand if intrafollicular DCD production can be stimulated by a commonly used cosmetic odorant, thus altering human HF microbiome composition in a clinically beneficial manner. METHODS DCD expression was compared between fresh-frozen scalp biopsies and microdissected, full-length scalp HFs, organ-cultured in the presence/absence of the OR2AT4 agonist, Sandalore® and/or antibiotics and/or the competitive OR2AT4 antagonist, Phenirat®. Amplicon-based sequencing and microbial growth assays were performed to assess how this treatment affected the HF microbiome. RESULTS Synthetic odorant treatment upregulated epithelial DCD expression and exerted antimicrobial activity in human HFs ex vivo. Combined antibiotic and odorant treatment, during an ex vivo dysbiosis event, prevented HF tissue damage and favoured a more physiological microbiome composition. Sandalore®-conditioned medium, containing higher DCD content, favoured Staphylococcus epidermidis and Malassezia restricta over S. aureus and M. globosa, while exhibiting antimicrobial activity against Cutibacterium acnes. These effects were reversed by co-administration of Phenirat®. CONCLUSIONS We provide the first proof-of-principle that a cosmetic odorant impacts the human HF microbiome by up-regulating antimicrobial peptide production in an olfactory receptor-dependent manner. Specifically, a synthetic sandalwood-like odorant stimulates intrafollicular DCD production, likely via OR2AT4, and thereby controls microbial overgrowth. Thus, deserving further exploration as an adjuvant therapeutic principle in the management of folliculitis and dysbiosis-associated hair diseases.
Collapse
Affiliation(s)
- Janin Edelkamp
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany.
| | - Marta B Lousada
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Zoological Institute, Christian-Albrechts, University Kiel, Kiel, Germany
| | | | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Francisco Jiménez
- Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Julia Wessel
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Bodo Phillip
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
19
|
Barnes CJ, Asplund M, Clausen ML, Rasmussen L, Olesen CM, Yüksel YT, Andersen PS, Litman T, Holmstrøm K, Bay L, Fritz BG, Bjarnsholt T, Agner T, Hansen AJ. A simplified bacterial community found within the epidermis than at the epidermal surface of atopic dermatitis patients and healthy controls. BMC Microbiol 2023; 23:273. [PMID: 37773096 PMCID: PMC10540355 DOI: 10.1186/s12866-023-03012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the 'core microbiome' of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status.
Collapse
Affiliation(s)
- Christopher J Barnes
- The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen K, 1350, Denmark.
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| | - Maria Asplund
- The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen K, 1350, Denmark
| | - Maja-Lisa Clausen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Linett Rasmussen
- The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen K, 1350, Denmark
| | - Caroline Meyer Olesen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Yasemin Topal Yüksel
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Insitute, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
- Explorative Biology and Bioinformatics, LEO Pharma A/S, Ballerup, Denmark
| | | | - Lene Bay
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tove Agner
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Johannes Hansen
- The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen K, 1350, Denmark
| |
Collapse
|
20
|
Widaty S, Surachmiati L, Legiawati L, Sirait SP, Krisanti IA, Budianti WK, Miranda E, Rihatmadja R, Oktarina C. Scalp microbiome of healthy women wearing hijab compared to those not wearing hijab: a cross-sectional study. Sci Rep 2023; 13:11797. [PMID: 37479743 PMCID: PMC10361994 DOI: 10.1038/s41598-023-38903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Use of hijab can influence the scalp's condition, including its microbiome. To date there has been no study comparing scalp microbiome in women wearing hijab to that in women not wearing hijab. This was a cross-sectional study conducted from August 2019 to April 2021. Healthy women aged 18 years old or older who had not undergone menopause were recruited. Those in the hijab group should wear hijab minimum 8 h a day for at least 5 years. After wash-out period, the sample was collected from the subject's scalp. Next Generation Sequencing (NGS) was performed with primer V3-V4 region of 16S rRNA and ITS1 DNA for bacteria and fungi, respectively. Alpha diversity and beta diversity were identified, along with functional analysis. Actinobacteria and Ascomycota were the most dominant phyla on the scalp. S. capitis was more prominent in the hijab group while S. cohnii was more prominent in non-hijab group. Additionally, M. restricta was more common in hijab group while M. globosa was more common in non-hijab group. This study emphasizes the difference of scalp microbiome in women wearing hijab compared to women not wearing hijab, which indicated that women wearing hijab are more prone to seborrheic dermatitis.
Collapse
Affiliation(s)
- Sandra Widaty
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia.
| | - Lis Surachmiati
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Lili Legiawati
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Sondang Pandjaitan Sirait
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Inge Ade Krisanti
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Windy Keumala Budianti
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Eliza Miranda
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Rahadi Rihatmadja
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| | - Caroline Oktarina
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, 10430, Indonesia
| |
Collapse
|
21
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
22
|
Pitton Rissardo J, Fornari Caprara AL, Casares M, Skinner HJ, Hamid U. Antiseizure Medication-Induced Alopecia: A Literature Review. MEDICINES (BASEL, SWITZERLAND) 2023; 10:35. [PMID: 37367730 DOI: 10.3390/medicines10060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Background: Adverse effects of antiseizure medications (ASMs) remain one of the major causes of non-adherence. Cosmetic side effects (CSEs) are among the most commonly reported side effects of ASMs. In this context, alopecia is one of the CSEs that has a high intolerance rate leading to poor therapeutical compliance. Methods: We performed a literature review concerning alopecia as a secondary effect of ASMs. Results: There are 1656 individuals reported with ASM-induced alopecia. Valproate (983), lamotrigine (355), and carbamazepine (225) have been extensively reported. Other ASMs associated with alopecia were cenobamate (18), levetiracetam (14), topiramate (13), lacosamide (7), vigabatrin (6), phenobarbital (5), gabapentin (5), phenytoin (4), pregabalin (4), eslicarbazepine (3), brivaracetam (2), clobazam (2), perampanel (2), trimethadione (2), rufinamide (2), zonisamide (2), primidone (1), and tiagabine (1). There were no reports of oxcarbazepine and felbamate with drug-induced alopecia. Hair loss seen with ASMs was diffuse and non-scarring. Telogen effluvium was the most common cause of alopecia. A characteristic feature was the reversibility of alopecia after ASM dose adjustment. Conclusions: Alopecia should be considered one important adverse effect of ASMs. Patients reporting hair loss with ASM therapy should be further investigated, and specialist consultation is recommended.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | | - Maritsa Casares
- AdventHealth Orlando Neuroscience Institute, 615 E Princeton Street, Suite 540, Orlando, FL 32803, USA
| | - Holly J Skinner
- AdventHealth Epilepsy at Orlando, 615 E Princeton Street, Suite 540, Orlando, FL 32803, USA
| | - Umair Hamid
- Department of Neurology, College of Medicine, University of Illinois, Peoria, IL 61605, USA
| |
Collapse
|
23
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
24
|
Lousada MB, Edelkamp J, Lachnit T, Fehrholz M, Jimenez F, Paus R. Laser capture microdissection as a method for investigating the human hair follicle microbiome reveals region-specific differences in the bacteriome profile. BMC Res Notes 2023; 16:29. [PMID: 36879274 PMCID: PMC9987047 DOI: 10.1186/s13104-023-06302-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE Human hair follicles (HFs) are populated by a rich and diverse microbiome, traditionally evaluated by methods that inadvertently sample the skin microbiome and/or miss microbiota located in deeper HF regions. Thereby, these methods capture the human HF microbiome in a skewed and incomplete manner. This pilot study aimed to use laser-capture microdissection of human scalp HFs, coupled with 16S rRNA gene sequencing to sample the HF microbiome and overcome these methodological limitations. RESULTS HFs were laser-capture microdissected (LCM) into three anatomically distinct regions. All main known core HF bacterial colonisers, including Cutibacterium, Corynebacterium and Staphylococcus, were identified, in all three HF regions. Interestingly, region-specific variations in α-diversity and microbial abundance of the core microbiome genera and Reyranella were identified, suggestive of variations in microbiologically relevant microenvironment characteristics. This pilot study therefore shows that LCM-coupled with metagenomics is a powerful tool for analysing the microbiome of defined biological niches. Refining and complementing this method with broader metagenomic techniques will facilitate the mapping of dysbiotic events associated with HF diseases and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany. .,Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany.
| | - J Edelkamp
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany
| | - T Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - M Fehrholz
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany
| | - F Jimenez
- Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain.,Medical Pathology Group, IUIBS, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - R Paus
- Monasterium Laboratory, Skin&Hair Research, Muenster, Germany.,Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
25
|
Comparative Analysis of mRNA and miRNA Expression between Dermal Papilla Cells and Hair Matrix Cells of Hair Follicles in Yak. Cells 2022; 11:cells11243985. [PMID: 36552749 PMCID: PMC9776824 DOI: 10.3390/cells11243985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The interaction between the dermal papilla cells (DPCs) and epidermal hair matrix cells (HMCs) of hair follicles (HFs) is crucial for the growth and development of HFs, but the molecular mechanism is complex and remains unclear. MicroRNAs (miRNAs) are the key signaling molecules for cellular communication. In this study, the DPCs and HMCs of yak were isolated and cultured, and the differentially expressed mRNA and miRNA were characterized to analyze the molecular basis of the interaction between DPCs and HMCs during hair follicle (HF) development in yak. The mRNA differential expression and functional enrichment analysis revealed that there were significant differences between DPCs and HMCs, and they showed the molecular functional characteristics of dermal cells and epidermal cells, respectively. Multiple KEGG pathways related to HF development were enriched in the highly expressed genes in DPCs, while the pathways associated with microbiota and immunity were significantly enriched in the highly expressed genes in HMCs. By combining analysis with our previous 10× genomics single-cell transcriptome data, 39 marker genes of DPCs of yak were identified. A total of 123 relatively specifically expressed miRNAs were screened; among these, the miRNAs associated with HF development such as miR-143, miR-214, miR-125b, miR-31, and miR-200 were presented. In conclusion, the large changes in yak DPCs and HMCs for both mRNA and miRNA expression were revealed, and numerous specifically expressed mRNAs and miRNAs in DPCs or HMCs were identified, which may contribute to the interaction and cellular communication between DPCs and HMCs during HF development in yak.
Collapse
|
26
|
Tricarico PM, Gratton R, dos Santos-Silva CA, de Moura RR, Ura B, Sommella E, Campiglia P, Del Vecchio C, Moltrasio C, Berti I, D’Adamo AP, Elsherbini AMA, Staudenmaier L, Chersi K, Boniotto M, Krismer B, Schittek B, Crovella S. A rare loss-of-function genetic mutation suggest a role of dermcidin deficiency in hidradenitis suppurativa pathogenesis. Front Immunol 2022; 13:1060547. [PMID: 36544771 PMCID: PMC9760663 DOI: 10.3389/fimmu.2022.1060547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/11/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a multifactorial aetiology that involves a strict interplay between genetic factors, immune dysregulation and lifestyle. Familial forms represent around 40% of total HS cases and show an autosomal dominant mode of inheritance of the disease. In this study, we conducted a whole-exome sequence analysis on an Italian family of 4 members encompassing a vertical transmission of HS. Focusing on rare damaging variants, we identified a rare insertion of one nucleotide (c.225dupA:p.A76Sfs*21) in the DCD gene encoding for the antimicrobial peptide dermcidin (DCD) that was shared by the proband, his affected father and his 11-years old daughter. Since several transcriptome studies have shown a significantly decreased expression of DCD in HS skin, we hypothesised that the identified frameshift insertion was a loss-of-function mutation that might be associated with HS susceptibility in this family. We thus confirmed by mass spectrometry that DCD levels were diminished in the affected members and showed that the antimicrobial activity of a synthetic DCD peptide resulting from the frameshift mutation was impaired. In order to define the consequences related to a decrease in DCD activity, skin microbiome analyses of different body sites were performed by comparing DCD mutant and wild type samples, and results highlighted significant differences between the groins of mutated and wild type groups. Starting from genetic analysis conducted on an HS family, our findings showed, confirming previous transcriptome results, the potential role of the antimicrobial DCD peptide as an actor playing a crucial part in the etio-pathogenesis of HS and in the maintenance of the skin's physiological microbiome composition; so, we can hypothesise that DCD could be used as a novel target for personalised therapeutic approach.
Collapse
Affiliation(s)
- Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Rossella Gratton
- Department of Advanced Diagnostics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Ronald Rodrigues de Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Blendi Ura
- Maternal-Neonatal Department, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | | | | | - Cecilia Del Vecchio
- Department of Advanced Diagnostics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Irene Berti
- Pediatric Department, Institute of Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Adamo Pio D’Adamo
- Department of Advanced Diagnostics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Ahmed M. A. Elsherbini
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lena Staudenmaier
- Department of Dermatology, Division of Dermato-oncology, University of Tübingen, Tübingen, Germany
| | - Karin Chersi
- Dermatological Clinic, ASUGI - Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Michele Boniotto
- INSERM, IMRB, Translational Neuropsychiatry, University Paris Est Créteil, Créteil, France
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermato-oncology, University of Tübingen, Tübingen, Germany
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, Biological Sciences Program, College of Arts and Sciences, University of Qatar, Doha, Qatar
| |
Collapse
|
27
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
28
|
Matard B, Bourrat E, Cavalié M, Chiaverini C, Reygagne P. Folliculitis decalvans and dystrophic epidermolysis bullosa: a significant association. Br J Dermatol 2022; 187:1026-1028. [PMID: 35904062 DOI: 10.1111/bjd.21796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
This work reports 30 cases of folliculitis decalvans (FD) in patients with dystrophic epidermolysis bullosa (DEB) among a cohort of 125 DEB patients seen between 2010 and 2021 in 2 French expert centers for the management of inherited epidermolysis bullosa. Such an association between two rare diseases cannot be fortuitous and implies a physiopathological link that we discuss in this paper. This association is a new significant fact to add to the reflexion on FD causes, suggesting that skin abnormality of DEB could act as a factor of a specific skin barrier alteration which could favor FD. Scarring alopecia with tufted folliculitis and pustules on inflamed skin at the vertex of a woman with dominant dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Bruno Matard
- Sabouraud Centre for Hair Diseases, Hôpital Saint-Louis, Paris, France
| | - Emmanuelle Bourrat
- Department of Dermatology, Expert Centre for Epidermolysis Bullosa (MAGEC), Hôpital Saint-Louis, Paris, France
| | - Marine Cavalié
- CRMRP-Sud Nice, Department of Dermatology, Hôpital L'Archet, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Christine Chiaverini
- CRMRP-Sud Nice, Department of Dermatology, Hôpital L'Archet, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Pascal Reygagne
- Sabouraud Centre for Hair Diseases, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
29
|
Sánchez-Pellicer P, Navarro-Moratalla L, Núñez-Delegido E, Agüera-Santos J, Navarro-López V. How Our Microbiome Influences the Pathogenesis of Alopecia Areata. Genes (Basel) 2022; 13:genes13101860. [PMID: 36292745 PMCID: PMC9601531 DOI: 10.3390/genes13101860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
Alopecia areata is a multifactorial autoimmune-based disease with a complex pathogenesis. As in all autoimmune diseases, genetic predisposition is key. The collapse of the immune privilege of the hair follicle leading to scalp loss is a major pathogenic event in alopecia areata. The microbiota considered a bacterial ecosystem located in a specific area of the human body could somehow influence the pathogenesis of alopecia areata, as it occurs in other autoimmune diseases. Moreover, the Next Generation Sequencing of the 16S rRNA bacterial gene and the metagenomic methodology have provided an excellent characterization of the microbiota. The aim of this narrative review is to examine the published literature on the cutaneous and intestinal microbiota in alopecia areata to be able to establish a pathogenic link. In this review, we summarize the influence of the microbiota on the development of alopecia areata. We first introduce the general pathogenic mechanisms that cause alopecia areata to understand the influence that the microbiota may exert and then we summarize the studies that have been carried out on what type of gut and skin microbiota is found in patients with this disease.
Collapse
Affiliation(s)
- Pedro Sánchez-Pellicer
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Juan Agüera-Santos
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Vicente Navarro-López
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
- Infectious Diseases Unit, University Hospital of Vinalopó-Fisabio, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain
- Correspondence:
| |
Collapse
|
30
|
The First Evidence of Bacterial Foci in the Hair Part and Dermal Papilla of Scalp Hair Follicles: A Pilot Comparative Study in Alopecia Areata. Int J Mol Sci 2022; 23:ijms231911956. [PMID: 36233254 PMCID: PMC9570265 DOI: 10.3390/ijms231911956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
The role of the microbiome in hair follicle (HF) growth represents a growing field of research. Here, we studied the bacterial population in the scalp hair follicles of subjects with alopecia areata (AA). Two Healthy and two AA subjects, respectively (20−60 years old), were enrolled and studied regarding the microbial community in the subepidermal scalp compartments by means of a 4-mm biopsy punch. Samples were examined by 16S sequencing, histochemical staining (Gram’s method), and transmission electron microscopy (TEM). Bacterial foci were observed in the AA subjects’ follicles with both the two adopted complementary approaches (electron microscopy and Gram staining). Significant (p < 0.05) differences were also found in the three-layer biopsy samples (p < 0.05) regarding the bacterial population. In particular, in the deep epidermis and dermis levels, a significant (p < 0.05) lower abundance of Firmicutes and a higher abundance of Proteobacteria were found in AA samples compared to the healthy control. Firmicutes also showed a significant (p < 0.05) lower abundance in hypodermis in AA subjects. In addition, Enterobacteriaceae and the genera Streptococcus, Gemella, Porphyromonas, and Granulicatella were relatively more abundant in AA groups at the deep epidermis level. The Staphylococcus and Flavobacterium genera were significantly less abundant in AA samples than in controls in all three-layer biopsy samples (p < 0.05). In contrast, Veillonella and Neisseriaceae were relatively more abundant in the healthy control group compared to the AA sample. Therefore, higher alpha diversity was observed in all three-layer biopsy samples of AA patients compared to the control. In conclusion, our data suggest that tAA could be defined as a “hair disease associated with dysregulated microbiome-immunity axis of hair follicles”.
Collapse
|
31
|
Świerczewska Z, Lewandowski M, Surowiecka A, Barańska-Rybak W. Microbiome in Hidradenitis Suppurativa—What We Know and Where We Are Heading. Int J Mol Sci 2022; 23:ijms231911280. [PMID: 36232581 PMCID: PMC9570026 DOI: 10.3390/ijms231911280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, interest in the microbiome of cutaneous diseases has increased tremendously. Of particular interest is the gut-brain-skin axis proposed by Stokes and Pillsbury in 1930. The microbiome has been suggested in the pathogenesis of hidradenitis suppurativa, however the link between the commensals and the host is yet to be established. Across all studies, the increased abundance of Porphyromonas, Peptoniphilus, and Prevotella spp., and a loss of skin commensal species, such as Cutibacterium in HS lesions, is a consistent finding. The role of gut and blood microbiome in hidradenitis suppurativa has not been fully elucidated. According to studies, the main link with the intestine is based on the increased risk of developing Crohn’s disease and ulcerative colitis, however, further research is highly needed in this area. Lifestyle, dietary approaches, and probiotics all seem to influence the microbiome, hence being a promising modality as adjuvant therapy. The aim of this review was to present the latest reports in the field of research on skin, blood, and gut microbiome in terms of hidradenitis suppurativa.
Collapse
Affiliation(s)
- Zuzanna Świerczewska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
- Faculty of Medicine, Medical University of Gdansk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland
| | - Miłosz Lewandowski
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
- Faculty of Medicine, Medical University of Gdansk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland
| | - Agnieszka Surowiecka
- East Center of Burns Treatment and Reconstructive Surgery, District Hospital in Łęczna, ul. Krasnystawska 52, 21-010 Łęczna, Poland
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
- Correspondence:
| |
Collapse
|
32
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
33
|
Zhu Z, Zeng Q, Wang Z, Xue Y, Chen T, Hu Y, Wang Y, Wu Y, Shen Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. Skin microbiome reconstruction and lipid metabolism profile alteration reveal the treatment mechanism of Cryptotanshinone in the acne rat. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154101. [PMID: 35472695 DOI: 10.1016/j.phymed.2022.154101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acne has become one of the most prevalent skin disorders, affecting mostly young people's physical and mental health globally. Cryptotanshinone (CPT) is a potential drug for acne, but its mechanism of acne treatment has not been thoroughly studied on the microbiota. Till date, only a few studies are directed to the impact of acne therapy on skin microbiota and lipid metabolites. PURPOSE The action mechanism of CPT treatment of acne was investigated by the strategy of microbiome integration with lipidomics. METHODS The 16Sr DNA sequencing was used to detect skin microbiota composition, and absolute quantitative lipidomics was utilized to identify lipid metabolites profiles levels. Four key proteins of the glycolysis pathway were detected with the immunochemistry method. Antibacterial analysis was used to evaluate CPT treatment of acne. RESULTS CPT significantly inhibited Staphylococcus epidermidis and Staphylococcus aureus. Combination of the skin microbiome and lipidomics analysis, 29 types of differentially expressed flora (DEFs) and 782 differentially expressed lipid metabolites (DELMs) were significantly altered, especially Staphylococcus, Corynebacterium, Ralstonia, Enhydrobacter, Burkholderia, and Streptococcus. Cer was mainly regulated by Staphylococcus and Corynebacterium, whereas TG and DG were mainly regulated by Ralstonia, Enhydrobacter, Burkholderia, and Streptococcus. The glycolysis pathway was significantly regulated by Staphylococcus on CPT treatment of acne. The energy metabolism, lipid metabolism, immune system, glycan biosynthesis, and metabolism could be reversed by CPT. CONCLUSION CPT might help acne rats rebuild their skin microbiota and alter lipid metabolism signatures. Furthermore, since skin microbes and skin lipid metabolites have a close correlation and are both regulated by CPT, the findings potentially provide a research foundation for the discovery of biomarkers of skin microbiome imbalance and targeted treatment of acne development mechanisms.
Collapse
Affiliation(s)
- Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510300, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
34
|
Basmanav FB, Betz RC. Translational impact of omics studies in alopecia areata: recent advances and future perspectives. Expert Rev Clin Immunol 2022; 18:845-857. [PMID: 35770930 DOI: 10.1080/1744666x.2022.2096590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alopecia areata (AA) is a non-scarring, hair loss disorder and a common autoimmune-mediated disease with an estimated lifetime risk of about 2%. To date, the treatment of AA is mainly based on suppression or stimulation of the immune response. Genomics and transcriptomics studies generated important insights into the underlying pathophysiology, enabled discovery of molecular disease signatures, which were used in some of the recent clinical trials to monitor drug response and substantiated the consideration of new therapeutic modalities for the treatment of AA such as abatacept, dupilumab, ustekinumab and Janus Kinase (JAK) inhibitors. AREAS COVERED In this review, genomics and transcriptomics studies in AA are discussed in detail with particular emphasis on their past and prospective translational impacts. Microbiome studies are also briefly introduced. EXPERT OPINION The generation of large datasets using the new high-throughput technologies has revolutionized medical research and AA has also benefited from the wave of omics studies. However, the limitations associated with JAK inhibitors and clinical heterogeneity in AA patients underscore the necessity for continuing omics research in AA for discovery of novel therapeutic modalities and development of clinical tools for precision medicine.
Collapse
Affiliation(s)
- F Buket Basmanav
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Regina C Betz
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Rojas-Gätjens D, Valverde-Madrigal KS, Rojas-Jimenez K, Pereira R, Avey-Arroyo J, Chavarría M. Antibiotic-producing Micrococcales govern the microbiome that inhabits the fur of two- and three-toed sloths. Environ Microbiol 2022; 24:3148-3163. [PMID: 35621042 DOI: 10.1111/1462-2920.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Sloths have a dense coat on which insects, algae, and fungi coexist in a symbiotic relationship. This complex ecosystem requires different levels of control, however, most of these mechanisms remain unknown. We investigated the bacterial communities inhabiting the hair of two- (Choloepus Hoffmani) and three-toed (Bradypus variegatus) sloths and evaluated their potential for producing antibiotic molecules capable of exerting control over the hair microbiota. The analysis of 16S rRNA amplicon sequence variants (ASVs) revealed that the communities in both host species are dominated by Actinobacteriota and Firmicutes. The most abundant genera were Brevibacterium, Kocuria/Rothia, Staphylococcus, Rubrobacter, Nesterenkonia, and Janibacter. Furthermore, we isolated nine strains of Brevibacterium and Rothia capable of producing substances that inhibited the growth of common mammalian pathogens. The analysis of the biosynthetic gene clusters (BCGs) of these nine isolates suggests that the pathogen-inhibitory activity could be mediated by the presence of siderophores, terpenes, beta-lactones, Type III polyketide synthases (T3PKS), ribosomally synthesized, and post-translationally modified peptides (RiPPs), non-alpha poly-amino acids (NAPAA) like e-Polylysin, ectoine or nonribosomal peptides (NRPs). Our data suggest that Micrococcales that inhabit sloth hair could have a role in controlling microbial populations in that habitat, improving our understanding of this highly complex ecosystem. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología (LANOTEC), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
36
|
Senna MM, Peterson E, Jozic I, Chéret J, Paus R. Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID INNOVATIONS 2022; 2:100113. [PMID: 35521043 PMCID: PMC9062486 DOI: 10.1016/j.xjidi.2022.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary, lymphocytic cicatricial hair loss disorders. These model epithelial stem cell (SC) diseases are thought to result from a CD8+ T-cell‒dominated immune attack on the hair follicle (HF) SC niche (bulge) after the latter has lost its immune privilege (IP) for as yet unknown reasons. This induces both apoptosis and pathological epithelial‒mesenchymal transition in epithelial SCs, thus depletes the bulge, causes fibrosis, and ultimately abrogates the HFs' capacity to regenerate. In this paper, we synthesize recent progress in LPP and FFA pathobiology research, integrate our limited current understanding of the roles that genetic, hormonal, environmental, and other factors may play, and define major open questions. We propose that LPP and FFA share a common initial pathobiology, which then bifurcates into two distinct clinical phenotypes, with macrophages possibly playing a key role in phenotype determination. As particularly promising translational research avenues toward direly needed progress in the management of these disfiguring, deeply distressful cicatricial alopecia variants, we advocate to focus on the development of bulge IP and epithelial SC protectants such as, for example, topically effective, HF‒penetrating and immunoinhibitory preparations that contain tacrolimus, peroxisome proliferator-activated receptor-γ, and/or CB1 agonists.
Collapse
Key Words
- 5ARI, 5α-reductase inhibitor
- AA, alopecia areata
- AGA, androgenetic alopecia
- CRH, corticotropin-releasing hormone
- EMT, epithelial‒mesenchymal transition
- FFA, frontal fibrosing alopecia
- HF, hair follicle
- IP, immune privilege
- K, keratin
- KC, keratinocyte
- LPP, lichen planopilaris
- MAC, macrophage
- MHC, major histocompatibility complex
- PCA, primary cicatricial alopecia
- PCP, personal care product
- PPAR-γ, peroxisome proliferator–activated receptor-γ
- SC, stem cell
- SP, substance P
- eHFSC, epithelial hair follicle stem cell
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Maryanne Makredes Senna
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Peterson
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,CUTANEON, Hamburg, Germany
| |
Collapse
|
37
|
Singh N, Haider NB. Microbiota, Microbiome, and Retinal Diseases. Int Ophthalmol Clin 2022; 62:197-214. [PMID: 35325919 DOI: 10.1097/iio.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
39
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
40
|
Wikramanayake TC, Nicu C, Gherardini J, Mello AC, Chéret J, Paus R. Mitochondrially Localized MPZL3 Functions as a Negative Regulator of Sebaceous Gland Size and Sebocyte Proliferation. J Invest Dermatol 2022; 142:2524-2527.e7. [DOI: 10.1016/j.jid.2021.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
|
41
|
Qiang X, Li J, Zhu S, He M, Chen W, Al-Abed Y, Brenner M, Tracey KJ, Wang P, Wang H. Human Dermcidin Protects Mice Against Hepatic Ischemia-Reperfusion-Induced Local and Remote Inflammatory Injury. Front Immunol 2022; 12:821154. [PMID: 35095926 PMCID: PMC8795592 DOI: 10.3389/fimmu.2021.821154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatic ischemia and reperfusion (I/R) injury is commonly associated with surgical liver resection or transplantation, and represents a major cause of liver damage and graft failure. Currently, there are no effective therapies to prevent hepatic I/R injury other than ischemic preconditioning and some preventative strategies. Previously, we have revealed the anti-inflammatory activity of a sweat gland-derived peptide, dermcidin (DCD), in macrophage/monocyte cultures. Here, we sought to explore its therapeutic potential and protective mechanisms in a murine model of hepatic I/R. Methods Male C57BL/6 mice were subjected to hepatic ischemia by clamping the hepatic artery and portal vein for 60 min, which was then removed to initiate reperfusion. At the beginning of reperfusion, 0.2 ml saline control or solution of DCD (0.5 mg/kg BW) or DCD-C34S analog (0.25 or 0.5 mg/kg BW) containing a Cys (C)→Ser (S) substitution at residue 34 was injected via the internal jugular vein. For survival experiments, mice were subjected to additional resection to remove non-ischemic liver lobes, and animal survival was monitored for 10 days. For mechanistic studies, blood and tissue samples were collected at 24 h after the onset of reperfusion, and subjected to measurements of various markers of inflammation and tissue injury by real-time RT-PCR, immunoassays, and histological analysis. Results Recombinant DCD or DCD-C34S analog conferred a significant protection against lethal hepatic I/R when given intravenously at the beginning of reperfusion. This protection was associated with a significant reduction in hepatic injury, neutrophilic CXC chemokine (Mip-2) expression, neutrophil infiltration, and associated inflammation. Furthermore, the administration of DCD also resulted in a significant attenuation of remote lung inflammatory injury. Mechanistically, DCD interacted with epidermal growth factor receptor (EGFR), a key regulator of liver inflammation, and significantly inhibited hepatic I/R-induced phosphorylation of EGFR as well as a downstream signaling molecule, protein kinase B (AKT). The suppression of EGFR expression by transducing Egfr-specific shRNA plasmid into macrophages abrogated the DCD-mediated inhibition of nitric oxide (NO) production induced by a damage-associated molecular pattern (DAMP), cold-inducible RNA-binding protein, CIRP. Conclusions The present study suggests that human DCD and its analog may be developed as novel therapeutics to attenuate hepatic I/R-induced inflammatory injury possibly by impairing EGFR signaling.
Collapse
Affiliation(s)
- Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Mingzhu He
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Max Brenner
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- TheraSource LLC, Manhasset, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- TheraSource LLC, Manhasset, NY, United States
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
42
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
43
|
Šuler Baglama Š, Trčko K. Skin and gut microbiota dysbiosis in autoimmune and inflammatory skin diseases. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2022. [DOI: 10.15570/actaapa.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Huang RY, Lee CN, Moochhala S. Circulating Antibodies to Skin Bacteria Detected by Serological Lateral Flow Immunoassays Differentially Correlated With Bacterial Abundance. Front Microbiol 2021; 12:709562. [PMID: 34867837 PMCID: PMC8635989 DOI: 10.3389/fmicb.2021.709562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The serological lateral flow immunoassay (LFIA) was used to detect circulating antibodies to skin bacteria. Next-generation sequencing analysis of the skin microbiome revealed a high relative abundance of Cutibacterium acnes but low abundance of Staphylococcus aureus and Corynebacterium aurimucosum on human facial samples. Yet, results from both LFIA and antibody titer quantification in 96-well microplates illustrated antibody titers that were not correspondent, and instead negatively correlated, to their respective abundance with human blood containing higher concentrations of antibodies to both S. aureus and C. aurimucosum than C. acnes. Acne vulgaris develops several unique microbial and cellular features, but its correlation with circulating antibodies to bacteria in the pilosebaceous unit remains unknown. Results here revealed that antibodies to C. acnes and S. aureus were approximately 3-fold higher and 1.5-fold lower, respectively, in acne patients than in healthy subjects. Although the results can be further validated by larger sample sizes, the proof-of-concept study demonstrates a newfound discrepancy between the abundance of skin bacteria and amounts of their corresponding antibodies. And in light of acne-correlated amplified titers of specific anticommensal antibodies, we highlight that profiling these antibodies in the pilosebaceous unit by LFIAs may provide a unique signature for monitoring acne vulgaris.
Collapse
Affiliation(s)
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shabbir Moochhala
- Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
45
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
46
|
Lunjani N, Ahearn-Ford S, Dube FS, Hlela C, O'Mahony L. Mechanisms of microbe-immune system dialogue within the skin. Genes Immun 2021; 22:276-288. [PMID: 33993202 PMCID: PMC8497273 DOI: 10.1038/s41435-021-00133-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
The prevalence and severity of dermatological conditions such as atopic dermatitis have increased dramatically during recent decades. Many of the factors associated with an altered risk of developing inflammatory skin disorders have also been shown to alter the composition and diversity of non-pathogenic microbial communities that inhabit the human host. While the most densely microbial populated organ is the gut, culture and non-culture-based technologies have revealed a dynamic community of bacteria, fungi, viruses and mites that exist on healthy human skin, which change during disease. In this review, we highlight some of the recent findings on the mechanisms through which microbes interact with each other on the skin and the signalling systems that mediate communication between the immune system and skin-associated microbes. In addition, we summarize the ongoing clinical studies that are targeting the microbiome in patients with skin disorders. While significant efforts are still required to decipher the mechanisms underpinning host-microbe communication relevant to skin health, it is likely that disease-related microbial communities, or Dermatypes, will help identify personalized treatments and appropriate microbial reconstitution strategies.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Felix S Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
47
|
Suzuki T, Ito T, Gilhar A, Tokura Y, Reich K, Paus R. The hair follicle-psoriasis axis: Shared regulatory mechanisms and therapeutic targets. Exp Dermatol 2021; 31:266-279. [PMID: 34587317 DOI: 10.1111/exd.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
It has long been known that there is a special affinity of psoriasis for the scalp: Here, it occurs most frequently, lesions terminate sharply in frontal skin beyond the hair line and are difficult to treat. Yet, surprisingly, scalp psoriasis only rarely causes alopecia, even though the pilosebaceous unit clearly is affected. Here, we systematically explore the peculiar, insufficiently investigated connection between psoriasis and growing (anagen) terminal scalp hair follicles (HFs), with emphasis on shared regulatory mechanism and therapeutic targets. Interestingly, several drugs and stressors that can trigger/aggravate psoriasis can inhibit hair growth (e.g. beta-blockers, chloroquine, carbamazepine, interferon-alpha, perceived stress). Instead, several anti-psoriatic agents can stimulate hair growth (e.g. cyclosporine, glucocorticoids, dithranol, UV irradiation), while skin/HF trauma (Köbner phenomenon/depilation) favours the development of psoriatic lesions and induces anagen in "quiescent" (telogen) HFs. On this basis, we propose two interconnected working models: (a) the existence of a bidirectional "hair follicle-psoriasis axis," along which keratinocytes of anagen scalp HFs secrete signals that favour the development and maintenance of psoriatic scalp lesions and respond to signals from these lesions, and (b) that anagen induction and psoriatic lesions share molecular "switch-on" mechanisms, which invite pharmacological targeting, once identified. Therefore, we advocate a novel, cross-fertilizing and integrative approach to psoriasis and hair research that systematically characterizes the "HF-psoriasis axis," focused on identification and therapeutic targeting of selected, shared signalling pathways in the future management of both, psoriasis and hair growth disorders.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan
| | - Kristian Reich
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Monasterium Laboratory, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Center, Manchester, UK
| |
Collapse
|
48
|
Mangion SE, Holmes AM, Roberts MS. Targeted Delivery of Zinc Pyrithione to Skin Epithelia. Int J Mol Sci 2021; 22:9730. [PMID: 34575891 PMCID: PMC8465279 DOI: 10.3390/ijms22189730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.
Collapse
Affiliation(s)
- Sean E. Mangion
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Amy M. Holmes
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
- Therapeutics Research Centre, Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
49
|
Wikramanayake TC, Nicu C, Chéret J, Czyzyk TA, Paus R. Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. Bioessays 2021; 43:e2100126. [PMID: 34486148 DOI: 10.1002/bies.202100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
MPZL3 is a nuclear-encoded, mitochondrially localized, immunoglobulin-like V-type protein that functions as a key regulator of epithelial cell differentiation, lipid metabolism, ROS production, glycemic control, and energy expenditure. Recently, MPZL3 has surfaced as an important modulator of sebaceous gland function and of hair follicle cycling, an organ transformation process that is also governed by peripheral clock gene activity and PPARγ. Given the phenotype similarities and differences between Mpzl3 and Pparγ knockout mice, we propose that MPZL3 serves as a signaling hub that is regulated by core clock gene products and/or PPARγ to translate signals from these nuclear transcription factors to the mitochondria to modulate circadian and metabolic regulation. Conservation between murine and human MPZL3 suggests that human MPZL3 may have similarly complex functions in health and disease. We summarize current knowledge and discuss future directions to elucidate the full spectrum of MPZL3 functions in mammalian physiology.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carina Nicu
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Metabolic Health Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Discovery Biology-CMD, Merck & Co., Inc., South San Francisco, California, USA
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
50
|
Limbu SL, Purba TS, Harries M, Wikramanayake TC, Miteva M, Bhogal RK, O'Neill CA, Paus R. A folliculocentric perspective of dandruff pathogenesis: Could a troublesome condition be caused by changes to a natural secretory mechanism? Bioessays 2021; 43:e2100005. [PMID: 34486144 DOI: 10.1002/bies.202100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Dandruff is a common scalp condition, which frequently causes psychological distress in those affected. Dandruff is considered to be caused by an interplay of several factors. However, the pathogenesis of dandruff remains under-investigated, especially with respect to the contribution of the hair follicle. As the hair follicle exhibits unique immune-modulatory properties, including the creation of an immunoinhibitory, immune-privileged milieu, we propose a novel hypothesis taking into account the role of the hair follicle. We hypothesize that the changes and imbalance of yeast and bacterial species, along with increasing proinflammatory sebum by-products, leads to the activation of immune response and inflammation. Hair follicle keratinocytes may then detect these changes in scalp microbiota resulting in the recruitment of leukocytes to the inflammation site. These changes in the scalp skin immune-microenvironment may impact hair follicle immune privilege status, which opens new avenues into exploring the role of the hair follicle in dandruff pathogenesis. Also see the video abstract here: https://youtu.be/mEZEznCYtNs.
Collapse
Affiliation(s)
- Susan L Limbu
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Talveen S Purba
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ranjit K Bhogal
- Unilever R&D Colworth, Colworth Science Park, Sharnbrook, UK
| | - Catherine A O'Neill
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|