1
|
Saffer C, Timme S, Ortiz SC, Bertuzzi M, Figge MT. Spatiotemporal modeling quantifies cellular contributions to uptake of Aspergillus fumigatus in the human lung. Commun Biol 2024; 7:1615. [PMID: 39632928 PMCID: PMC11618450 DOI: 10.1038/s42003-024-07302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The human lung is confronted daily with thousands of microbial invaders reaching the lower respiratory tract. An efficient response by the resident type 1 and type 2 alveolar epithelial cells (AECs) and alveolar macrophages (AMs) cells during the early hours of innate immunity is a prerequisite to maintain a non-inflammatory state, but foremost to rapidly remove harmful substances. One such human-pathogenic invader is the opportunistic fungus Aspergillus fumigatus. If the spherical conidia are not cleared in time, they swell reaching approximately twice of their initial size and germinate to develop hyphae around six hours post-infection. This process of morphological change is crucial as it enables the pathogen to invade the alveolar epithelium and to reach the bloodstream, but also makes it conspicuous for the immune system. During this process, conidia are first in contact with AECs then with migrating AMs, both attempting to internalize and clear the fungus. However, the relative contribution of AMs and AECs to uptake of A. fumigatus remains an open question, especially the capabilities of the barely investigated type 1 AECs. In this study, we present a bottom-up modeling approach to incorporate experimental data on the dynamic increase of the conidial diameter and A. fumigatus uptake by AECs and AMs in a hybrid agent-based model (hABM) for the to-scale simulation of virtual infection scenarios in the human alveolus. By screening a wide range of parameters, we found that type 1 AECs, which cover approximately 95% of the alveolar surface, are likely to have a greater impact on uptake than type 2 AECs. Moreover, the majority of infection scenarios across the regime of tested parameters were cleared through uptake by AMs, whereas the contribution to conidial uptake by AECs was observed to be limited, indicating that their crucial support might mostly consist in mediating chemokine secretion for AM recruitment. Regardless, as the first host cell being confronted with A. fumigatus conidia, our results evidence the large potential impact of type 1 AECs antimicrobial activities, underlining the requirement of increasing experimental efforts on this alveolar constituent.
Collapse
Affiliation(s)
- Christoph Saffer
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Sandra Timme
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Sébastien C Ortiz
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, UK
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Xu L, Li J, Wu W, Wu X, Ren J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024; 15:2439509. [PMID: 39668724 DOI: 10.1080/21505594.2024.2439509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae exhibits strong pathogenicity and can cause severe invasive infections but is historically recognized as antibiotic-susceptible. In recent years, the escalating global prevalence of antibiotic-resistant hypervirulent K. pneumoniae has raised substantial concerns and created an urgent demand for effective treatment options. Capsular polysaccharide (CPS) is one of the main virulence determinants contributing to the hypervirulent phenotype. The structure of CPS varies widely among strains, and both the structure and composition of CPS can influence the virulence of K. pneumoniae. CPS possesses various immune evasion mechanisms that promote the survival of K. pneumoniae, as well as its colonization and dissemination. Given the proven viability of therapies that target the capsule, improving our understanding of the CPS structure is critical to effectively directing treatment strategies. In this review, the structure and typing of CPS are addressed as well as genes related to synthesis and regulation, relationships with virulence, and pathogenic mechanisms. We aim to provide a reference for research on the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Li Xu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Narciso AR, Dookie R, Nannapaneni P, Normark S, Henriques-Normark B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat Rev Microbiol 2024:10.1038/s41579-024-01116-z. [PMID: 39506137 DOI: 10.1038/s41579-024-01116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Infections caused by Streptococcus pneumoniae (also known as pneumococci) pose a threat to human health. Pneumococcal infections are the most common cause of milder respiratory tract infections, such as otitis and sinusitis, and of more severe diseases, including pneumonia (with or without septicaemia) and meningitis. The introduction of pneumococcal conjugate vaccines in the childhood vaccination programme in many countries has led to a notable decrease of severe invasive pneumococcal disease in vaccinated children. However, infections caused by non-vaccine types have concurrently increased, causing invasive pneumococcal disease in unvaccinated populations (such as older adults), which has hampered the effect of these vaccines. Moreover, emerging antibiotic resistance is threatening effective therapy. Thus, new approaches are needed for the treatment and prevention of pneumococcal infections, and recent advances in the field may pave the way for new strategies. Recently, several important findings have been gained regarding pneumococcal epidemiology, genomics and the effect of the introduction of pneumococcal conjugate vaccines and of the COVID-19 pandemic. Moreover, elucidative pathogenesis studies have shown that the interactions between pneumococcal virulence factors and host receptors may be exploited for new therapies, and new vaccine candidates have been suggested. In this Review, we summarize some recent findings from clinical disease to basic pathogenesis studies that may be of importance for future control strategies.
Collapse
Affiliation(s)
- Ana Rita Narciso
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Dookie
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
5
|
Aziz UBA, Saoud A, Bermudez M, Mieth M, Atef A, Rudolf T, Arkona C, Trenkner T, Böttcher C, Ludwig K, Hoelzemer A, Hocke AC, Wolber G, Rademann J. Targeted small molecule inhibitors blocking the cytolytic effects of pneumolysin and homologous toxins. Nat Commun 2024; 15:3537. [PMID: 38670939 PMCID: PMC11053136 DOI: 10.1038/s41467-024-47741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.
Collapse
Affiliation(s)
- Umer Bin Abdul Aziz
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ali Saoud
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Maren Mieth
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amira Atef
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assuit University, Assiut, 71526, Egypt
| | - Thomas Rudolf
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Arkona
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Timo Trenkner
- Leibniz Institute of Virology, Hamburg, 20251, Germany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy (FZEM), Freie Universität Berlin, Fabeckstraße 36A, 14195, Berlin, Germany
| | - Kai Ludwig
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy (FZEM), Freie Universität Berlin, Fabeckstraße 36A, 14195, Berlin, Germany
| | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, 20251, Germany
- First Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Majumder S, Li P, Das S, Nafiz TN, Kumar S, Bai G, Dellario H, Sui H, Guan Z, Curtiss R, Furuya Y, Sun W. A bacterial vesicle-based pneumococcal vaccine against influenza-mediated secondary Streptococcus pneumoniae pulmonary infection. Mucosal Immunol 2024; 17:169-181. [PMID: 38215909 PMCID: PMC11033695 DOI: 10.1016/j.mucimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
7
|
Lee MH, Kim HL, Seo H, Jung S, Kim BJ. A secreted form of chorismate mutase (Rv1885c) in Mycobacterium bovis BCG contributes to pathogenesis by inhibiting mitochondria-mediated apoptotic cell death of macrophages. J Biomed Sci 2023; 30:95. [PMID: 38110948 PMCID: PMC10729386 DOI: 10.1186/s12929-023-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), and its pathogenicity is associated with its ability to evade the host defense system. The secretory form of the chorismate mutase of M. tuberculosis (TBCM, encoded by Rv1885c) is assumed to play a key role in the pathogenesis of TB; however, the mechanism remains unknown. METHODS A tbcm deletion mutant (B∆tbcm) was generated by targeted gene knockout in BCG to investigate the pathogenic role of TBCM in mice or macrophages. We compared the pathogenesis of B∆tbcm and wild-type BCG in vivo by measuring the bacterial clearance rate and the degree of apoptosis. Promotion of the intrinsic apoptotic pathway was evaluated in infected bone marrow-derived macrophages (BMDMs) by measuring apoptotic cell death, loss of mitochondrial membrane potential and translocation of pore-forming proteins. Immunocytochemistry, western blotting and real-time PCR were also performed to assess the related protein expression levels after infection. Furthermore, these findings were validated by complementation of tbcm in BCG. RESULTS Deletion of the tbcm gene in BCG leads to reduced pathogenesis in a mouse model, compared to wild type BCG, by promoting apoptotic cell death and bacterial clearance. Based on these findings, we found that intrinsic apoptosis and mitochondrial impairment were promoted in B∆tbcm-infected BMDMs. B∆tbcm down-regulates the expression of Bcl-2, which leads to mitochondrial outer membrane permeabilization (MOMP), culminating in cytochrome c release from mitochondria. Consistent with this, transcriptome profiling also indicated that B∆tbcm infection is more closely related to altered mitochondrial-related gene expression than wild-type BCG infection, suggesting an inhibitory role of TBCM in mitochondrial dysfunction. Moreover, genetic complementation of B∆tbcm (C∆tbcm) restored its capacity to inhibit mitochondria-mediated apoptotic cell death. CONCLUSIONS Our findings demonstrate the contribution of TBCM to bacterial survival, inhibiting intrinsic apoptotic cell death of macrophages as a virulence factor of M. tuberculosis complex (MTBC) strains, which could be a potential target for the development of TB therapy.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hye Lin Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Republic of Korea
| | - Sangkwon Jung
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Republic of Korea.
| |
Collapse
|
8
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
9
|
Han S, Moon S, Chung YW, Ryu JH. NADPH Oxidase 4-mediated Alveolar Macrophage Recruitment to Lung Attenuates Neutrophilic Inflammation in Staphylococcus aureus Infection. Immune Netw 2023; 23:e42. [PMID: 37970233 PMCID: PMC10643333 DOI: 10.4110/in.2023.23.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023] Open
Abstract
When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wild-type (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.
Collapse
Affiliation(s)
- Seunghan Han
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
10
|
Alqarihi A, Kontoyiannis DP, Ibrahim AS. Mucormycosis in 2023: an update on pathogenesis and management. Front Cell Infect Microbiol 2023; 13:1254919. [PMID: 37808914 PMCID: PMC10552646 DOI: 10.3389/fcimb.2023.1254919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mucormycosis (MCR) is an emerging and frequently lethal fungal infection caused by the Mucorales family, with Rhizopus, Mucor, and Lichtheimia, accounting for > 90% of all cases. MCR is seen in patients with severe immunosuppression such as those with hematologic malignancy or transplantation, Diabetes Mellitus (DM) and diabetic ketoacidosis (DKA) and immunocompetent patients with severe wounds. The recent SARS COV2 epidemy in India has resulted in a tremendous increase in MCR cases, typically seen in the setting of uncontrolled DM and corticosteroid use. In addition to the diversity of affected hosts, MCR has pleiotropic clinical presentations, with rhino-orbital/rhino-cerebral, sino-pulmonary and necrotizing cutaneous forms being the predominant manifestations. Major insights in MCR pathogenesis have brought into focus the host receptors (GRP78) and signaling pathways (EGFR activation cascade) as well as the adhesins used by Mucorales for invasion. Furthermore, studies have expanded on the importance of iron availability and the complex regulation of iron homeostasis, as well as the pivotal role of mycotoxins as key factors for tissue invasion. The molecular toolbox to study Mucorales pathogenesis remains underdeveloped, but promise is brought by RNAi and CRISPR/Cas9 approaches. Important recent advancements have been made in early, culture-independent molecular diagnosis of MCR. However, development of new potent antifungals against Mucorales remains an unmet need. Therapy of MCR is multidisciplinary and requires a high index of suspicion for initiation of early Mucorales-active antifungals. Reversal of underlying immunosuppression, if feasible, rapid DKA correction and in selected patients, surgical debulking are crucial for improved outcomes.
Collapse
Affiliation(s)
- Abdullah Alqarihi
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
11
|
Li S, Wang H, Shao Q. The central role of neutrophil extracellular traps (NETs) and by-products in COVID-19 related pulmonary thrombosis. Immun Inflamm Dis 2023; 11:e949. [PMID: 37647446 PMCID: PMC10461423 DOI: 10.1002/iid3.949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Extracellular trap networks (neutrophil extracellular traps [NETs]) of polymorphonuclear neutrophils are mesh-like substances that prevent the spread of pathogens. They primarily consist of DNA skeletons, histones, granule components, and cytoplasmic proteins. NETs formation requires a certain environment and there are different pathways for NETs production. However, it is still not clear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes NETs. NETs exert antiinflammatory effects through immune response, while they can also lead to certain adverse outcomes, such as the development of immunothrombosis. Coronavirus disease 2019 (COVID-19) is an inflammatory reaction affecting various organs caused by SARS-CoV-2, especially the lungs. NETs production and disease severity are linked with unique neutrophil clusters by single-cell RNA sequencing. NETs might exert an anti-inflammatory role in the initial stage of lung tissue inflammation. Nevertheless, numerous studies and cases have shown that they can also result in pulmonary thrombosis. There is mounting evidence that NETs are tightly related with COVID-19 pulmonary thrombosis, and many studies on the mechanisms are involved. The role and mechanism of NETs in the development of pulmonary thrombosis will be the main topics of this manuscript. Additionally, we address the potential targeting of NETs in COVID-19 patients.
Collapse
Affiliation(s)
- Shi Li
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
| | - Hui Wang
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
| | - Qixiang Shao
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
- Department of Medical Microbiology and Immunology, Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory MedicineJiangsu College of NursingHuai'anJiangsuChina
| |
Collapse
|
12
|
Wang X, Bi C, Xin X, Zhang M, Fu H, Lan L, Wang M, Yan Z. Pyroptosis, apoptosis, and autophagy are involved in infection induced by two clinical Klebsiella pneumoniae isolates with different virulence. Front Cell Infect Microbiol 2023; 13:1165609. [PMID: 37223846 PMCID: PMC10200925 DOI: 10.3389/fcimb.2023.1165609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Klebsiella pneumoniae can cause widespread infections and is an important factor of hospital- and community-acquired pneumonia. The emergence of hypervirulent K. pneumoniae poses a serious clinical therapeutic challenge and is associated with a high mortality. The goal of this work was to investigate the influence of K. pneumoniae infection on host cells, particularly pyroptosis, apoptosis, and autophagy in the context of host-pathogen interactions to better understand the pathogenic mechanism of K. pneumoniae. Two clinical K. pneumoniae isolates, one classical K. pneumoniae isolate and one hypervirulent K. pneumoniae isolate, were used to infect RAW264.7 cells to establish an in vitro infection model. We first examined the phagocytosis of macrophages infected with K. pneumoniae. Lactate dehydrogenase (LDH) release test, and calcein-AM/PI double staining was conducted to determine the viability of macrophages. The inflammatory response was evaluated by measuring the pro-inflammatory cytokines and reactive oxygen species (ROS) production. The occurrence of pyroptosis, apoptosis, and autophagy was assessed by detecting the mRNA and protein levels of the corresponding biochemical markers. In addition, mouse pneumonia models were constructed by intratracheal instillation of K. pneumoniae for in vivo validation experiments. As for results, hypervirulent K. pneumoniae was much more resistant to macrophage-mediated phagocytosis but caused more severe cellular damage and lung tissues damage compared with classical K. pneumoniae. Moreover, we found increased expression of NLRP3, ASC, caspase-1, and GSDMD associated with pyroptosis in macrophages and lung tissues, and the levels were much higher following hypervirulent K. pneumoniae challenge. Both strains induced apoptosis in vitro and in vivo; the higher apoptosis proportion was observed in infection caused by hypervirulent K. pneumoniae. Furthermore, classical K. pneumoniae strongly triggered autophagy, while hypervirulent K. pneumoniae weakly activated this process. These findings provide novel insights into the pathogenesis of K. pneumoniae and may form the foundation for the future design of treatments for K. pneumoniae infection.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Medical Faculty, Qingdao University, Qingdao, China
| | - Chunxia Bi
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoni Xin
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Mengmeng Zhang
- Department of Clinical Laboratory, Shandong Provincial Second People’s Hospital, Jinan, China
| | - Hengxia Fu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, China
| | - Lei Lan
- Department of Blood Transfusion, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Mengyuan Wang
- Department of Clinical Laboratory, Jinan Children’s Hospital, Jinan, China
| | - Zhiyong Yan
- College of Basic Medicine, Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Pillai A, Nayak A, Tiwari D, Pillai PK, Pandita A, Sakharkar S, Balasubramanian H, Kabra N. COVID-19 Disease in Under-5 Children: Current Status and Strategies for Prevention including Vaccination. Vaccines (Basel) 2023; 11:693. [PMID: 36992278 PMCID: PMC10058749 DOI: 10.3390/vaccines11030693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Since the coronavirus disease (COVID-19) pandemic hit the globe in early 2020, we have steadily gained insight into its pathogenesis; thereby improving surveillance and preventive measures. In contrast to other respiratory viruses, neonates and young children infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have a milder clinical presentation, with only a small proportion needing hospitalization and intensive care support. With the emergence of novel variants and improved testing services, there has been a higher incidence of COVID-19 disease reported among children and neonates. Despite this, the proportion of young children with severe disease has not increased. Key mechanisms that protect young children from severe COVID-19 disease include the placental barrier, differential expression of angiotensin-converting enzyme 2 (ACE-2) receptors, immature immune response, and passive transfer of antibodies via placenta and human milk. Implementing mass vaccination programs has been a major milestone in reducing the global disease burden. However, considering the lower risk of severe COVID-19 illness in young children and the limited evidence about long-term vaccine safety, the risk-benefit balance in children under five years of age is more complex. In this review, we do not support or undermine vaccination of young children but outline current evidence and guidelines, and highlight controversies, knowledge gaps, and ethical issues related to COVID-19 vaccination in young children. Regulatory bodies should consider the individual and community benefits of vaccinating younger children in their local epidemiological setting while planning regional immunization policies.
Collapse
Affiliation(s)
- Anish Pillai
- Surya Hospitals, Mangal Ashirwad Building, Swami Vivekananda Road, Santacruz West, Mumbai 400054, Maharashtra, India
- British Columbia Children’s Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Anuja Nayak
- Bai Jerabai Wadia Hospital for Children, Acharya Donde Marg, Parel East, Parel, Mumbai 400012, Maharashtra, India
| | - Deepika Tiwari
- Surya Hospitals, Mangal Ashirwad Building, Swami Vivekananda Road, Santacruz West, Mumbai 400054, Maharashtra, India
| | - Pratichi Kadam Pillai
- Surya Hospitals, Mangal Ashirwad Building, Swami Vivekananda Road, Santacruz West, Mumbai 400054, Maharashtra, India
| | - Aakash Pandita
- Medanta Super Specialty Hospital, Sector-A, Pocket-1, Amar Shaheed Path, Golf City, Lucknow 226030, Uttar Pradesh, India
| | - Sachin Sakharkar
- Surya Hospitals, Mangal Ashirwad Building, Swami Vivekananda Road, Santacruz West, Mumbai 400054, Maharashtra, India
| | | | - Nandkishor Kabra
- Surya Hospitals, Mangal Ashirwad Building, Swami Vivekananda Road, Santacruz West, Mumbai 400054, Maharashtra, India
| |
Collapse
|
14
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Cho SJ, Pronko A, Yang J, Pagan K, Stout-Delgado H. Role of Cholesterol 25-Hydroxylase (Ch25h) in Mediating Innate Immune Responses to Streptococcus pneumoniae Infection. Cells 2023; 12:570. [PMID: 36831236 PMCID: PMC9953875 DOI: 10.3390/cells12040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Alveolar macrophages (AM) are long-lived tissue-resident innate immune cells of the airways. AM are key effectors of recognition, initiation, and resolution of the host defense against microbes and play an essential role in mediating host responses to Streptococcus pneumoniae infection. Lipid metabolism in AM can significantly impact cellular function and biology. Dysregulated metabolism contributes to an accumulation of lipids, unfolded protein response induction, and inflammatory cytokine production. Our study was designed to investigate the impact of Ch25h on mediating innate immune responses by macrophages during S. pneumoniae infection. Using wild-type and Ch25-/- mice, we examined the role of cholesterol metabolism on inflammatory cytokine production and bacterial clearance. Our results demonstrate that Ch25h plays an important role in the initiation and intensity of cytokine and chemokine production in the lung during S. pneumoniae infection. In the absence of Ch25h, there was enhanced phagocytosis and bacterial clearance. Taken together, our findings demonstrate the important role of Ch25h in modulating host responsiveness to S. pneumoniae infection.
Collapse
|
17
|
Sundarasivarao PYK, Walker JM, Rodriguez A, Spur BW, Yin K. Resolvin D2 induces anti-microbial mechanisms in a model of infectious peritonitis and secondary lung infection. Front Immunol 2022; 13:1011944. [PMID: 36532055 PMCID: PMC9754689 DOI: 10.3389/fimmu.2022.1011944] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
In severe bacterial infections, there is a pro-inflammatory response to promote bacterial clearance but this response can cause tissue injury. Later, the immune system becomes dysregulated and the host is unable to clear a secondary or a pre-existing infection. Specialized Pro-resolving Mediators (SPMs) such as resolvin D2 (RvD2) have been shown to be beneficial for inflammation/infection resolution in animal models of sepsis but in vivo mechanisms by which RvD2 may promote bacterial clearance and/or attenuate deleterious effects of a secondary infection have not been fully established. In this study, we used the 2-hit model of cecal ligation and puncture (CLP) induced infectious peritonitis and secondary lung infection with Pseudomonas aeruginosa to find possible antimicrobial and immunomodulatory mechanisms of RvD2. We show that RvD2 given as late as 48h after CLP surgery reduced blood bacterial load without altering plasma cytokines compared to mice given saline vehicle. RvD2 increased splenic neutrophil accumulation as well as average reactive oxygen species (ROS) production. There was also an increase in an immature leukocyte population the myeloid derived suppressor cells (MDSCs) in the spleen of RvD2 treated mice. RvD2 reduced lung lavage bacterial load 24h after P. aeruginosa administration and significantly decreased lung lavage levels of IL-23, a cytokine essential in the Th-17 inflammatory response. In addition, we show that RvD2 increased the number of non-inflammatory alveolar macrophages after P. aeruginosa administration compared to saline treated mice. The study uncovered an antimicrobial mechanism of RvD2 where RvD2 increases mature neutrophil and MDSC accumulation into the spleen to promote blood bacterial clearance. The study showed that in this 2-hit model, RvD2 promotes lung bacterial clearance, increased non-inflammatory alveolar macrophage number and inhibits an adaptive immune pathway providing evidence of its resolution mechanism in secondary pulmonary infection.
Collapse
Affiliation(s)
| | | | | | | | - Kingsley Yin
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| |
Collapse
|
18
|
Phagosomal Acidification Is Required to Kill Streptococcus pneumoniae in a Zebrafish Model. Cell Microbiol 2022. [DOI: 10.1155/2022/9429516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen causing invasive disease, including community-acquired bacteraemia, and remains a leading cause of global mortality. Understanding the role of phagocytes in killing bacteria is still limited, especially in vivo. In this study, we established a zebrafish model to study the interaction between intravenously administered pneumococci and professional phagocytes such as macrophages and neutrophils, to unravel bacterial killing mechanisms employed by these immune cells. Our model confirmed the key role of polysaccharide capsule in promoting pneumococcal virulence through inhibition of phagocytosis. Conversely, we show pneumococci lacking a capsule are rapidly internalised by macrophages. Low doses of encapsulated S. pneumoniae cause near 100% mortality within 48 hours postinfection (hpi), while 50 times higher doses of unencapsulated pneumococci are easily cleared. Time course analysis of in vivo bacterial numbers reveals that while encapsulated pneumococcus proliferates to levels exceeding 105 CFU at the time of host death, unencapsulated bacteria are unable to grow and are cleared within 20 hpi. Using genetically induced macrophage depletion, we confirmed an essential role for macrophages in bacterial clearance. Additionally, we show that upon phagocytosis by macrophages, phagosomes undergo rapid acidification. Genetic and chemical inhibition of vacuolar ATPase (v-ATPase) prevents intracellular bacterial killing and induces host death indicating a key role of phagosomal acidification in immunity to invading pneumococci. We also show that our model can be used to study the efficacy of antimicrobials against pneumococci in vivo. Collectively, our data confirm that larval zebrafish can be used to dissect killing mechanisms during pneumococcal infection in vivo and highlight key roles for phagosomal acidification in macrophages for pathogen clearance.
Collapse
|
19
|
Serezani AP, Pascoalino BD, Bazzano J, Vowell KN, Tanjore H, Taylor CJ, Calvi CL, Mccall SA, Bacchetta MD, Shaver CM, Ware LB, Salisbury ML, Banovich NE, Kendall PL, Kropski JA, Blackwell TS. Multi-Platform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:50-60. [PMID: 35468042 PMCID: PMC9273229 DOI: 10.1165/rcmb.2021-0418oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immune cells have been implicated in Idiopathic Pulmonary Fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune/inflammatory cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and utilized existing single-cell RNA-sequencing (scRNA-seq) data to investigate transcriptional profiles of immune cells over-represented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DC. In contrast, monocyte-like cells and interstitial macrophages were reduced in IPF. Transcriptomic profiling identified an enrichment for interferon-γ (IFN-γ) response pathways in AMØs and DCs from IPF, as well as antigen processing in DCs and phagocytosis in AMØs. Among T cells, we identified three subset of memory T cells that were increased in IPF, including CD4+ and CD8+ resident memory T cells (TRM), and CD8+ effector memory (TEMRA) cells. The response to IFN-γ pathway was enriched in CD4 TRM and CD8 TRM cells in IPF, along with T cell activation and immune response-regulating signaling pathways. Increased AMØs, DCs, and memory T cells were present in IPF lungs compared to control subjects. In IPF, these cells possess an activation profile indicating increased IFN-γ signaling and up-regulation of adaptive immunity in the lungs. Together, these studies highlight critical features of the immunopathogenesis of IPF.
Collapse
Affiliation(s)
- Ana Pm Serezani
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States;
| | | | - Julia Bazzano
- Vanderbilt University Medical Center, 12328, Nashville, Tennessee, United States
| | - Katherine N Vowell
- Vanderbilt University Medical Center, 12328, Nashville, Tennessee, United States
| | - Harikrishna Tanjore
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Chase J Taylor
- Vanderbilt University Medical Center, 12328, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Nashville, Tennessee, United States
| | - Carla L Calvi
- Vanderbilt University Medical Center, 12328, Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Nashville, Tennessee, United States
| | - Scott A Mccall
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Matthew D Bacchetta
- Vanderbilt University Medical Center, 12328, Thoracic and Cardiac Surgery and Biomedical Engineering, Nashville, Tennessee, United States
| | - Ciara M Shaver
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Vanderbilt University, 5718, Department of Internal Medicine, Division of Allergy, Pulmonary, and Critical Care, and Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States
| | - Margaret L Salisbury
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Nicholas E Banovich
- Translational Genomics Research Institute, 10897, Phoenix, Arizona, United States
| | - Peggy L Kendall
- Washington University in St Louis, 7548, Internal Medicine, St Louis, Missouri, United States
| | - Jonathan A Kropski
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| | - Timothy S Blackwell
- Vanderbilt University Medical Center, 12328, Medicine, Nashville, Tennessee, United States
| |
Collapse
|
20
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
21
|
Papanicolaou A, Wang H, McQualter J, Aloe C, Selemidis S, Satzke C, Vlahos R, Bozinovski S. House Dust Mite Aeroallergen Suppresses Leukocyte Phagocytosis and Netosis Initiated by Pneumococcal Lung Infection. Front Pharmacol 2022; 13:835848. [PMID: 35273509 PMCID: PMC8902390 DOI: 10.3389/fphar.2022.835848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Asthmatics are highly susceptible to developing lower respiratory tract infections caused by Streptococcus pneumoniae (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. In vivo, prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.
Collapse
Affiliation(s)
| | - Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
22
|
Bain CC, MacDonald AS. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol 2022; 15:223-234. [PMID: 35017701 PMCID: PMC8749355 DOI: 10.1038/s41385-021-00480-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023]
Abstract
The last decade has been somewhat of a renaissance period for the field of macrophage biology. This renewed interest, combined with the advent of new technologies and development of novel model systems to assess different facets of macrophage biology, has led to major advances in our understanding of the diverse roles macrophages play in health, inflammation, infection and repair, and the dominance of tissue environments in influencing all of these areas. Here, we discuss recent developments in our understanding of lung macrophage heterogeneity, ontogeny, metabolism and function in the context of health and disease, and highlight core conceptual advances and key unanswered questions that we believe should be focus of work in the coming years.
Collapse
Affiliation(s)
- Calum C Bain
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh Bioquarter, Edinburgh, EH16 4TJ, UK.
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
23
|
Lam TYW, Nguyen N, Peh HY, Shanmugasundaram M, Chandna R, Tee JH, Ong CB, Hossain MZ, Venugopal S, Zhang T, Xu S, Qiu T, Kong WT, Chakarov S, Srivastava S, Liao W, Kim JS, Teh M, Ginhoux F, Fred Wong WS, Ge R. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2019161119. [PMID: 35046017 PMCID: PMC8794848 DOI: 10.1073/pnas.2019161119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ritu Chandna
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tianyi Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tao Qiu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore 119228
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore 138602, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
24
|
Machado MG, Patente TA, Rouillé Y, Heumel S, Melo EM, Deruyter L, Pourcet B, Sencio V, Teixeira MM, Trottein F. Acetate Improves the Killing of Streptococcus pneumoniae by Alveolar Macrophages via NLRP3 Inflammasome and Glycolysis-HIF-1α Axis. Front Immunol 2022; 13:773261. [PMID: 35126390 PMCID: PMC8810543 DOI: 10.3389/fimmu.2022.773261] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1β production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1β production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1β production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Severine Heumel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Eliza Mathias Melo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucie Deruyter
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Benoit Pourcet
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1011, Lille, France
- Univ. Lille, U1011 – European Genomic Institute for Diabetes EGID, Lille, France
| | - Valentin Sencio
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 9017, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- *Correspondence: François Trottein,
| |
Collapse
|
25
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
26
|
Harris LK, Crannage AJ. Corticosteroids in Community-Acquired Pneumonia: A Review of Current Literature. J Pharm Technol 2021; 37:152-160. [PMID: 34752553 DOI: 10.1177/8755122521995587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To review the evidence and recommendations for the use of adjunctive corticosteroid therapy in community-acquired pneumonia (CAP). Data Sources: A literature search was conducted using PubMed (1993 to November 2020) using the search terms corticosteroids AND community-acquired pneumonia. Study Selection and Data Extraction: Pertinent randomized controlled trials, systematic reviews, and meta-analyses assessing the efficacy and safety of adjunctive corticosteroids in patients with pneumonia were evaluated for inclusion. Data Synthesis: Studies suggest that corticosteroids reduce time to clinical stability and length of hospital stay, but data regarding other important clinical outcomes, such as mortality, are limited. The greatest margin of benefit appears to be in patients with severe CAP. Evidence consistently demonstrates hyperglycemia as the most common adverse effect of corticosteroid therapy in CAP. Safety concerns regarding the potential impact of corticosteroids on the rate of CAP-related rehospitalizations require further investigation. Relevance to Patient Care and Clinical Practice: This review summarizes literature evaluating the efficacy and safety of adjunctive corticosteroids in patients with CAP. It also includes a discussion on current guideline recommendations, patient selection, corticosteroid regimens, adverse effect considerations, limitations, and future directions in this area of research. Conclusions: Studies reviewed suggest that corticosteroids are relatively beneficial and safe in patients with CAP, with the greatest benefit in severe CAP. Currently, the routine use of corticosteroids is not recommended by clinical practice guidelines with the exception of CAP and refractory septic shock. Further research is needed to better define the ideal role of corticosteroids in CAP.
Collapse
|
27
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Raghav A, Ali SG, Jeong GB, Gautam KA, Banday S, Mateen QN, Tripathi P, Giri R, Agarwal S, Singh M, Khan HM. Newer Horizon of Mesenchymal Stem Cell-Based Therapy in the Management of SARS-CoV-2-Associated Mucormycosis: A Safe Hope for Future Medicine. Front Microbiol 2021; 12:738983. [PMID: 34707590 PMCID: PMC8543035 DOI: 10.3389/fmicb.2021.738983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2-infected patients are reported to show immunocompromised behavior that gives rise to a wide variety of complications due to impaired innate immune response, cytokine storm, and thrombo-inflammation. Prolonged use of steroids, diabetes mellitus, and diabetic ketoacidosis (DKA) are some of the factors responsible for the growth of Mucorales in such immunocompromised patients and, thus, can lead to a life-threatening condition referred to as mucormycosis. Therefore, an early diagnosis and cell-based management cosis is the need of the hour to help affected patients overcome this severe condition. In addition, extended exposure to antifungal drugs/therapeutics is found to initiate hormonal and neurological complications. More recently, mesenchymal stem cells (MSCs) have been used to exhibit immunomodulatory function and proven to be beneficial in a clinical cell-based regenerative approach. The immunomodulation ability of MSCs in mucormycosis patient boosts the immunity by the release of chemotactic proteins. MSC-based therapy in mucormycosis along with the combination of short-term antifungal drugs can be utilized as a prospective approach for mucormycosis treatment with promising outcomes. However, preclinical and in mucormyIn mucormycosis, the hyphae of clinical trials are needed to establish the precise mechanism of MSCs in mucormycosis treatment.
Collapse
Affiliation(s)
- Alok Raghav
- Multidiscplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | - Syed Ghazanfar Ali
- Viral Research Diagnostic Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Getbeol-ro Yeonsu-gu, Incheon, Korea
| | - Kirti Amresh Gautam
- Multidiscplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Qazi Noorul Mateen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Richa Giri
- Department of Medicine, GSVM Medical College, Kanpur, India
| | | | - Manish Singh
- Department of Neurosciences, GSVM Medical College, Kanpur, India
| | - Haris M Khan
- Viral Research Diagnostic Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
29
|
Hong C, Lu H, Jin R, Huang X, Chen M, Dai X, Gong F, Dong H, Wang H, Gao XM. Cytokine Cocktail Promotes Alveolar Macrophage Reconstitution and Functional Maturation in a Murine Model of Haploidentical Bone Marrow Transplantation. Front Immunol 2021; 12:719727. [PMID: 34621268 PMCID: PMC8490745 DOI: 10.3389/fimmu.2021.719727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Infectious pneumonia is one of the most common complications after bone marrow transplantation (BMT), which is considered to be associated with poor reconstitution and functional maturation of alveolar macrophages (AMs) post-transplantation. Here, we present evidence showing that lack of IL-13-secreting group 2 innate lymphoid cells (ILC2s) in the lungs may underlay poor AM reconstitution in a mouse model of haploidentical BMT (haplo-BMT). Recombinant murine IL-13 was able to potentiate monocyte-derived AM differentiation in vitro. When intranasally administered, a cocktail of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-13, and CCL2 not only promoted donor monocyte-derived AM reconstitution in haplo-BMT-recipient mice but also enhanced the innate immunity of the recipient animals against pulmonary bacterial infection. These results provide a useful clue for a clinical strategy to prevent pulmonary bacterial infection at the early stage of recipients post-BMT.
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongyun Lu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaohong Huang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ming Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongliang Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongmin Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Li QR, Tan SR, Yang L, He W, Chen L, Shen FX, Wang Z, Wang HF. Mechanism of chlorogenic acid in alveolar macrophage polarization in Klebsiella pneumoniae-induced pneumonia. J Leukoc Biol 2021; 112:9-21. [PMID: 34585429 DOI: 10.1002/jlb.3hi0721-368r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chlorogenic acid (CA) has been discovered to regulate macrophage polarization in pneumonia. This study aims to analyze the functional mechanism of CA in alveolar macrophage (AM) polarization and provide a theoretical basis for treatment of Klebsiella pneumoniae (Kp)-induced pneumonia. Mice were infected with Kp, and treated with CA and silent information regulator 1 (SIRT1) inhibitor (Selisistat). Mouse survival rate was recorded and bacterial burden was detected. AM polarization and pathologic change of lung tissues were evaluated. Expressions of SIRT1 and HMGB1 and cytokine levels were detected. MH-S cells were infected with Kp to establish the pneumonia cell model, followed by transfection of si-SIRT1 and HMGB1 overexpression vector. The HMGB1 expression in the nucleus and cytoplasm was detected. HMGB1 subcellular localization and HMGB1 acetylation level were detected. Kp led to high death rates, SIRT down-regulation and increases in inflammatory factor level and bacterial burden, and promoted M1 polarization. CA treatment improved mouse survival rate and promoted M2 polarization and SIRT1 expression. SIRT1 decreased HMGB1 acetylation level to inhibit nuclear to the cytoplasm translocation. Silencing SIRT1 or HMGB1 overexpression reversed the effect of CA on Kp-induced pneumonia. Overall, CA activated SIRT1 to inhibit HMGB1 acetylation level and nuclear translocation, thereby promoting M2 polarization in AMs and alleviating Kp-induced pneumonia.
Collapse
Affiliation(s)
- Qing Rong Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi Rui Tan
- School of Agriculture, Chenggong Campus, Yunnan University, Kunming, China
| | - Lu Yang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei He
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Chen
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fen Xiu Shen
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhuo Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hai Feng Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
31
|
Herta T, Bhattacharyya A, Rosolowski M, Conrad C, Gurtner C, Gruber AD, Ahnert P, Gutbier B, Frey D, Suttorp N, Hippenstiel S, Zahlten J. Krueppel-Like Factor 4 Expression in Phagocytes Regulates Early Inflammatory Response and Disease Severity in Pneumococcal Pneumonia. Front Immunol 2021; 12:726135. [PMID: 34589087 PMCID: PMC8473698 DOI: 10.3389/fimmu.2021.726135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor Krueppel-like factor (KLF) 4 fosters the pro-inflammatory immune response in macrophages and polymorphonuclear neutrophils (PMNs) when stimulated with Streptococcus pneumoniae, the main causative pathogen of community-acquired pneumonia (CAP). Here, we investigated the impact of KLF4 expression in myeloid cells such as macrophages and PMNs on inflammatory response and disease severity in a pneumococcal pneumonia mouse model and in patients admitted to hospital with CAP. We found that mice with a myeloid-specific knockout of KLF4 mount an insufficient early immune response with reduced levels of pro-inflammatory cytokines and increased levels of the anti-inflammatory cytokine interleukin (IL) 10 in bronchoalveolar lavage fluid and plasma and an impaired bacterial clearance from the lungs 24 hours after infection with S. pneumoniae. This results in higher rates of bacteremia, increased lung tissue damage, more severe symptoms of infection and reduced survival. Higher KLF4 gene expression levels in the peripheral blood of patients with CAP at hospital admission correlate with a favourable clinical presentation (lower sequential organ failure assessment (SOFA) score), lower serum levels of IL-10 at admission, shorter hospital stay and lower mortality or requirement of intensive care unit treatment within 28 days after admission. Thus, KLF4 in myeloid cells such as macrophages and PMNs is an important regulator of the early pro-inflammatory immune response and, therefore, a potentially interesting target for therapeutic interventions in pneumococcal pneumonia.
Collapse
Affiliation(s)
- Toni Herta
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Aritra Bhattacharyya
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Corinne Gurtner
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Doris Frey
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Hall SC, Smith DR, Dyavar SR, Wyatt TA, Samuelson DR, Bailey KL, Knoell DL. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1357-1370. [PMID: 34380651 PMCID: PMC10575710 DOI: 10.4049/jimmunol.2001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.
Collapse
Affiliation(s)
- Sannette C Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Derrick R Samuelson
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
| | - Kristina L Bailey
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE;
| |
Collapse
|
33
|
Salva S, Kolling Y, Ivir M, Gutiérrez F, Alvarez S. The Role of Immunobiotics and Postbiotics in the Recovery of Immune Cell Populations From Respiratory Mucosa of Malnourished Hosts: Effect on the Resistance Against Respiratory Infections. Front Nutr 2021; 8:704868. [PMID: 34458307 PMCID: PMC8387655 DOI: 10.3389/fnut.2021.704868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is associated with a state of secondary immunodeficiency, which is characterized by a worsening of the immune response against infectious agents. Despite important advances in vaccines and antibiotic therapies, the respiratory infections are among the leading causes of increased morbidity and mortality, especially in immunosuppressed hosts. In this review, we examine the interactions between immunobiotics-postbiotics and the immune cell populations of the respiratory mucosa. In addition, we discuss how this cross talk affects the maintenance of a normal generation of immune cells, that is crucial for the establishment of protective innate and adaptive immune responses. Particular attention will be given to the alterations in the development of phagocytic cells, T and B lymphocytes in bone marrow, spleen and thymus in immunosuppression state by protein deprivation. Furthermore, we describe our research that demonstrated that the effectiveness of immunobiotics nasal administration in accelerating the recovery of the respiratory immune response in malnourished hosts. Finally, we propose the peptidoglycan from the immunobiotic Lactobacillus rhamnosus CRL1505 as the key cellular component for the effects on mucosal immunity, which are unique and cannot be extrapolated to other L. rhamnosus or probiotic strains. In this way, we provide the scientific bases for its application as a mucosal adjuvant in health plans, mainly aimed to improve the immune response of immunocompromised hosts. The search for safe vaccine adjuvants that increase their effectiveness at the mucosal level is a problem of great scientific relevance today.
Collapse
Affiliation(s)
- Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Yanina Kolling
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Maximiliano Ivir
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucuman, Argentina.,Clinical Biochemistry I, Institute of Applied Biochemistry, National University of Tucuman, San Miguel de Tucuman, Argentina
| |
Collapse
|
34
|
Wang M, Gauthier AG, Kennedy TP, Wang H, Velagapudi UK, Talele TT, Lin M, Wu J, Daley L, Yang X, Patel V, Mun SS, Ashby CR, Mantell LL. 2-O, 3-O desulfated heparin (ODSH) increases bacterial clearance and attenuates lung injury in cystic fibrosis by restoring HMGB1-compromised macrophage function. Mol Med 2021; 27:79. [PMID: 34271850 PMCID: PMC8283750 DOI: 10.1186/s10020-021-00334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Thomas P Kennedy
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Xiaojing Yang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Sung Soo Mun
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA.
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA.
| |
Collapse
|
35
|
Barbieri N, Salva S, Herrera M, Villena J, Alvarez S. Nasal Priming with Lactobacillus rhamnosus CRL1505 Stimulates Mononuclear Phagocytes of Immunocompromised Malnourished Mice: Improvement of Respiratory Immune Response. Probiotics Antimicrob Proteins 2021; 12:494-504. [PMID: 31030404 DOI: 10.1007/s12602-019-09551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of Lactobacillus rhamnosus CRL1505 (Lr) on macrophages (Ma) and dendritic cells (DC) in the orchestration of anti-pneumococcal immunity was studied using malnutrition and pneumococcal infection mouse models. Monocytes (Mo), Ma, and DC in two groups of malnourished mice fed with balanced diet (BCD) were studied through flow cytometry; one group was nasally administered with Lr (BCD+Lr group), and the other group was not (BCD group). Well-nourished (WNC) and malnourished (MNC) mice were used as controls.Malnutrition affected the number of respiratory and splenic mononuclear phagocytes. The BCD+Lr treatment, unlike BCD, was able to increase and normalize lung Mo and Ma. The BCD+Lr mice were also able to upregulate the expression of the activation marker MHC II in lung DC and to improve this population showing a more significant effect on CD11b+ DC subpopulation. At post-infection, lung Mo values were higher in BCD+Lr mice than in BCD mice and similar to those obtained in WNC group. Although both repletion treatments showed similar values of lung Ma post-infection, the Ma activation state in BCD+Lr mice was higher than that in BCD mice. Furthermore, BCD+Lr treatment was able to normalize the number and activation of splenic Ma and DC after the challenge.Lr administration stimulates respiratory and systemic mononuclear phagocytes. Stimulation of Ma and DC populations would increase the microbicide activity and improve the adaptive immunity through its antigen-presenting capacity. Thus, Lr contributes to improved outcomes of pneumococcal infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Natalia Barbieri
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito (UNdeC), CONICET, 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - Susana Salva
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Matías Herrera
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, T4001MVB, San Miguel deTucumán, Tucumán, Argentina
| | - Julio Villena
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Susana Alvarez
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina. .,Instituto de Bioquímica Aplicada, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Balcarce 747, 4000, San Miguel deTucumán, Tucumán, Argentina.
| |
Collapse
|
36
|
Effects of CNS Injury-Induced Immunosuppression on Pulmonary Immunity. Life (Basel) 2021; 11:life11060576. [PMID: 34207063 PMCID: PMC8235795 DOI: 10.3390/life11060576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Patients suffering from stroke, traumatic brain injury, or other forms of central nervous system (CNS) injury have an increased risk of nosocomial infections due to CNS injury-induced immunosuppression (CIDS). Immediately after CNS-injury, the response in the brain is pro-inflammatory; however, subsequently, local and systemic immunity is suppressed due to the compensatory release of immunomodulatory neurotransmitters. CIDS makes patients susceptible to contracting infections, among which pneumonia is very common and often lethal. Ventilator-acquired pneumonia has a mortality of 20–50% and poses a significant risk to vulnerable patients such as stroke survivors. The mechanisms involved in CIDS are not well understood. In this review, we consolidate the evidence for cellular processes underlying the pathogenesis of CIDS, the emerging treatments, and speculate further on the immune elements at play.
Collapse
|
37
|
Jasper AE, Sapey E, Thickett DR, Scott A. Understanding potential mechanisms of harm: the drivers of electronic cigarette-induced changes in alveolar macrophages, neutrophils, and lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321:L336-L348. [PMID: 34009037 DOI: 10.1152/ajplung.00081.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electronic (e-) cigarettes are growing in popularity despite uncertainties regarding their long-term health implications. The link between cigarette smoking and initiation of chronic lung disease took decades to unpick so in vitro studies mimicking e-cigarette exposure aim to detect early indicators of harm. In response to e-cigarette exposure, alveolar macrophages adopt a proinflammatory phenotype of increased secretion of proinflammatory cytokines, reduction in phagocytosis, and efferocytosis and reactive oxygen species generation. These effects are largely driven by free radical exposure, changes in PI3K/Akt signaling pathways, nicotine-induced reduction in phagocytosis receptors, and impaired lipid homeostasis leading to a foam-like lipid-laden phenotype. Neutrophils exhibit disrupted chemotaxis and transmigration to chemokines, reduced phagocytosis and bacterial killing, and an increase in protease secretion without corresponding antiproteases in response to e-cigarette exposure. This is driven by an altered ability to respond and to polarize toward chemoattractants, an activation of the p38 MAPK signaling pathway and inability to assemble NADPH oxidase. E-cigarettes induce lung epithelial cells to display decreased ciliary beat frequency and ion channel conductance as well as changes in chemokine secretion and surface protein expression. Changes in gene expression, mitochondrial function, and signaling pathways have been demonstrated in lung epithelial cells to explain these changes. Many functional outputs of alveolar macrophages, neutrophils, and lung epithelial cells have not been fully explored in the context of e-cigarette exposure and the underlying driving mechanisms are poorly understood. This review discusses current evidence surrounding the effects of e-cigarettes on alveolar macrophages, neutrophils, and lung epithelial cells with particular focus on the cellular mechanisms of change.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R Thickett
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
39
|
Hetzel M, Ackermann M, Lachmann N. Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease. Int J Mol Sci 2021; 22:3308. [PMID: 33804918 PMCID: PMC8036607 DOI: 10.3390/ijms22073308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
40
|
Abstract
Klebsiella pneumoniae are Gram-negative facultative anaerobes that are found within host-associated commensal microbiomes, but they can also cause a wide range of infections that are often difficult to treat. These infections are caused by different pathotypes of K. pneumoniae, called either classical or hypervirulent strains. Klebsiella pneumoniae are Gram-negative facultative anaerobes that are found within host-associated commensal microbiomes, but they can also cause a wide range of infections that are often difficult to treat. These infections are caused by different pathotypes of K. pneumoniae, called either classical or hypervirulent strains. These two groups are genetically distinct, inhabit nonoverlapping geographies, and cause different types of harmful infections in humans. These distinct bacterial groups have also been found to interact differently with the host immune system. Initial innate immune defenses against K. pneumoniae infection include complement, macrophages, neutrophils, and monocytes; these defenses are primary strategies employed by the host to clear infections. K. pneumoniae pathogenesis depends upon the interactions between the microbe and each of these host defenses, and it is becoming increasingly apparent that bacterial genetic diversity impacts the outcomes of these interactions. Here, we highlight recent advances in our understanding of K. pneumoniae pathogenesis, with a focus on how bacterial evolution and diversity impact K. pneumoniae interactions with mammalian innate immune host defenses. We also discuss outstanding questions regarding how K. pneumoniae can frustrate normal immune responses, capitalize upon states of immunocompromise, and cause infections with high mortality.
Collapse
|
41
|
Arginine Decarboxylase Is Essential for Pneumococcal Stress Responses. Pathogens 2021; 10:pathogens10030286. [PMID: 33801541 PMCID: PMC7998104 DOI: 10.3390/pathogens10030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.
Collapse
|
42
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
43
|
Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021; 10:272. [PMID: 33578849 PMCID: PMC7916604 DOI: 10.3390/antiox10020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Here, we review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress (OS) and inflammation. Furthermore, we analyze the potential role of antioxidant and anti-inflammatory therapies to prevent severe complications. OS has a potential key role in the COVID-19 pathogenesis by triggering the NOD-like receptor family pyrin domain containing 3 inflammasome and nuclear factor-kB (NF-kB). While exposure to many pro-oxidants usually induces nuclear factor erythroid 2 p45-related factor2 (NRF2) activation and upregulation of antioxidant related elements expression, respiratory viral infections often inhibit NRF2 and/or activate NF-kB pathways, resulting in inflammation and oxidative injury. Hence, the use of radical scavengers like N-acetylcysteine and vitamin C, as well as of steroids and inflammasome inhibitors, has been proposed. The NRF2 pathway has been shown to be suppressed in severe SARS-CoV-2 patients. Pharmacological NRF2 inducers have been reported to inhibit SARS-CoV-2 replication, the inflammatory response, and transmembrane protease serine 2 activation, which for the entry of SARS-CoV-2 into the host cells through the angiotensin converting enzyme 2 receptor. Thus, NRF2 activation may represent a potential path out of the woods in COVID-19 pandemic.
Collapse
Affiliation(s)
- Anna M. Fratta Pasini
- Section of General Medicine and Atherothrombotic and Degenerative Diseases, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (L.C.); (C.M.)
| | | | | | | |
Collapse
|
44
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
45
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho A, Maes M, Walder K, Berk M. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci 2021; 264:118617. [PMID: 33096114 PMCID: PMC7574725 DOI: 10.1016/j.lfs.2020.118617] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND COVID-19-associated acute respiratory distress syndrome (ARDS) is associated with significant morbidity and high levels of mortality. This paper describes the processes involved in the pathophysiology of COVID-19 from the initial infection and subsequent destruction of type II alveolar epithelial cells by SARS-CoV-2 and culminating in the development of ARDS. MAIN BODY The activation of alveolar cells and alveolar macrophages leads to the release of large quantities of proinflammatory cytokines and chemokines and their translocation into the pulmonary vasculature. The presence of these inflammatory mediators in the vascular compartment leads to the activation of vascular endothelial cells platelets and neutrophils and the subsequent formation of platelet neutrophil complexes. These complexes in concert with activated endothelial cells interact to create a state of immunothrombosis. The consequence of immunothrombosis include hypercoagulation, accelerating inflammation, fibrin deposition, migration of neutrophil extracellular traps (NETs) producing neutrophils into the alveolar apace, activation of the NLRP3 inflammazome, increased alveolar macrophage destruction and massive tissue damage by pyroptosis and necroptosis Therapeutic combinations aimed at ameliorating immunothrombosis and preventing the development of severe COVID-19 are discussed in detail.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Andre Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
46
|
Che KF, Tengvall S, Lindén A. Interleukin-26 in host defense and inflammatory disorders of the airways. Cytokine Growth Factor Rev 2020; 57:1-10. [PMID: 33293237 DOI: 10.1016/j.cytogfr.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
The dimeric cytokine interleukin (IL)-26 belongs to the IL-10 family. Whereas it was originally perceived as a T-helper (Th)17 cytokine, subsequent studies have shown that IL-26 is produced by several populations of leukocytes and structural cells. This cytokine binds to a heterodimeric receptor complex including IL-10R2 and -20R1 (IL-26R) and signals through STAT 1 and 3 to induce the release of chemokines and growth factors. Remarkably, IL-26 directly kills bacteria and inhibits viral replication. The most recent studies on human airways confirm multiple cellular sources in this critical interphase of host defense and demonstrate that stimulation of toll-like receptors (TLR) trigger the release of IL-26. Once released, it exerts a dualistic effect on cytokine production and up-regulates gene expression of IL-26R. It also potentiates chemotaxis and inhibits chemokinesis for neutrophils, thereby facilitating the accumulation of innate effector cells at the site of bacterial stimulation. The high levels of IL-26 in human airways are altered in inflammatory airway disorders such as asthma and chronic obstructive pulmonary disease. Thus, IL-26 emerges as an important mediator, providing direct and indirect actions on microbes, actions that are essential for host defense and inflammation and bears potential as a biomarker of disease.
Collapse
Affiliation(s)
- Karlhans Fru Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-17177, Sweden.
| | - Sara Tengvall
- Närhälsan, Frölunda Vårdcentral, Gothenburg, SE-421 42, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-17177, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, SE-171 76, Sweden
| |
Collapse
|
47
|
Sitapara RA, Gauthier AG, Patel VS, Lin M, Zur M, Ashby CR, Mantell LL. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol Med 2020; 26:98. [PMID: 33126860 PMCID: PMC7596622 DOI: 10.1186/s10020-020-00224-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mechanical ventilation, in combination with supraphysiological concentrations of oxygen (i.e., hyperoxia), is routinely used to treat patients with respiratory distress, such as COVID-19. However, prolonged exposure to hyperoxia compromises the clearance of invading pathogens by impairing macrophage phagocytosis. Previously, we have shown that the exposure of mice to hyperoxia induces the release of the nuclear protein high mobility group box-1 (HMGB1) into the pulmonary airways. Furthermore, extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 (3-(2,4-dimethoxybenzylidene) anabaseine), an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could (1) inhibit hyperoxia-induced HMGB1 release into the airways; (2) enhance macrophage phagocytosis and (3) increase bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. METHOD GTS-21 (0.04, 0.4, and 4 mg/kg) or saline were administered by intraperitoneal injection to mice that were exposed to hyperoxia (≥ 99% O2) and subsequently challenged with PA. RESULTS The systemic administration of 4 mg/kg i.p. of GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1 compared to the saline control. To determine the mechanism of action of GTS-21, RAW 264.7 cells, a macrophage-like cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from RAW 264.7 cells and attenuated hyperoxia-induced NF-κB activation in macrophages and mouse lungs exposed to hyperoxia and infected with PA. CONCLUSIONS Our results indicate that GTS-21 is efficacious in improving bacterial clearance and reducing acute lung injury via enhancing macrophage function by inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.
Collapse
Affiliation(s)
- Ravikumar A Sitapara
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Vivek S Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Michelle Zur
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 8000 Utopia Parkway, Queens, NY, 11439, USA. .,The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, 11030, USA.
| |
Collapse
|
48
|
Serpa GL, Renton ND, Lee N, Crane MJ, Jamieson AM. Electronic Nicotine Delivery System Aerosol-induced Cell Death and Dysfunction in Macrophages and Lung Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:306-316. [PMID: 32469619 DOI: 10.1165/rcmb.2019-0200oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electronic nicotine delivery system (ENDS) use is outpacing our understanding of its potential harmful effects. Homeostasis of the lung is maintained through proper balance of cell death, efferocytic clearance, and phagocytosis of pathogens. To investigate whether ENDS use has the potential to alter this balance, we developed physiologically relevant ENDS exposure paradigms for lung epithelial cells and primary macrophages. In our studies, cells were exposed directly to aerosol made from carefully controlled components with and without nicotine. We found that ENDS aerosol exposure led to apoptosis, secondary necrosis, and necrosis in lung epithelial cell models. In contrast, macrophages died mostly by apoptosis and inflammatory caspase-mediated cell death when exposed to ENDS aerosol. The clearance of dead cells and pathogens by efferocytosis and phagocytosis, respectively, is an important process in maintaining a healthy lung. To investigate the impact of ENDS aerosol on macrophage function independent of general toxicity, we used an exposure time that did not induce cell death in primary macrophages. Exposure to ENDS aerosol containing nicotine inhibited nearly all phagocytic and greatly reduced the efferocytic abilities of primary macrophages. When challenged with a bacterial pathogen, there was decreased bacterial clearance. The presence of nicotine in the ENDS aerosol increased its toxicity and functional impact; however, nicotine exposure alone did not have any deleterious effects. These data demonstrate that ENDS aerosol exposure could lead to increased epithelial cell and macrophage death in the lung and impair important macrophage functions that are essential for maintenance of lung function.
Collapse
Affiliation(s)
- Gregory L Serpa
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Nicholas D Renton
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Nari Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Meredith J Crane
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Amanda M Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| |
Collapse
|
49
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho AF, Maes M, Walder K, Berk M. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci 2020; 258:118166. [PMID: 32739471 PMCID: PMC7392886 DOI: 10.1016/j.lfs.2020.118166] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 and culminating in the development of ARDS. The innate immune response to infection of type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes are associated with activation of vascular endothelial cells and thence the recruitment of highly toxic neutrophils and inflammatory activated platelets into the alveolar space. Activated vascular endothelial cells become a source of proinflammatory cytokines and reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases neutrophil recruitment, activation priming and extraversion of these immune cells into inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the development of a procoagulant and proinflammatory environment. The contribution to ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C. Bortolasci
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia,Corresponding author at: IMPACT – the Institute for Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3218, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Barwon Health, Geelong, Australia
| | - Andre F. Carvalho
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, University of Toronto, Toronto, Canada,Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
50
|
Rouadi PW, Idriss SA, Naclerio RM, Peden DB, Ansotegui IJ, Canonica GW, Gonzalez-Diaz SN, Rosario Filho NA, Ivancevich JC, Hellings PW, Murrieta-Aguttes M, Zaitoun FH, Irani C, Karam MR, Bousquet J. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J 2020; 13:100467. [PMID: 33042360 PMCID: PMC7534666 DOI: 10.1016/j.waojou.2020.100467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Air pollution causes significant morbidity and mortality in patients with inflammatory airway diseases (IAD) such as allergic rhinitis (AR), chronic rhinosinusitis (CRS), asthma, and chronic obstructive pulmonary disease (COPD). Oxidative stress in patients with IAD can induce eosinophilic inflammation in the airways, augment atopic allergic sensitization, and increase susceptibility to infection. We reviewed emerging data depicting the involvement of oxidative stress in IAD patients. We evaluated biomarkers, outcome measures and immunopathological alterations across the airway mucosal barrier following exposure, particularly when accentuated by an infectious insult.
Collapse
Key Words
- AR, Allergic rhinitis
- Air pollution
- Antioxidant
- COPD, Chronic obstructive pulmonary disease
- CRS, Chronic rhinosinusitis
- DEP, Diesel exhaust particles
- IAD, Inflammatory airway diseases
- IL, Interleukin
- ILC, Innate lymphoid cells
- Inflammatory airway disease
- NOx, Nitrogen oxides
- Oxidative stress biomarkers
- PAH, Polycyclic aromatic hydrocarbons
- PM, Particulate matter
- ROS, Reactive oxygen species
- TBS, Tobacco smoke
- TLR, Toll-like receptors
- Tobacco smoke
- Treg, Regulatory T cell
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Robert M. Naclerio
- Johns Hopkins University Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD, USA
| | - David B. Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| | | | - Sandra Nora Gonzalez-Diaz
- University Autonoma de Nuevo Leon Facultad de Medicina y Hospital Universitario U.A.N.L, Monterrey, NL, c.p. 64460, México
| | | | - Juan Carlos Ivancevich
- Faculty of Medicine, Universidad del Salvador, Buenos Aires, Argentina and Head of Allergy and Immunology at the Santa Isabel Clinic, Buenos Aires, Argentina
| | - Peter W. Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center Amsterdam, The Netherlands - Department Otorhinolaryngology, University Hospital Ghent, Belgium
| | | | - Fares H. Zaitoun
- LAUMC Rizk Hospital, Otolaryngology-Allergy Department, Beirut, Lebanon
| | - Carla Irani
- Department of Internal Medicine and Infectious Diseases, St Joseph University, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Marilyn R. Karam
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Jean Bousquet
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France
- University Versailles St-Quentin-en-Yvelines, France
- Allergy-Centre-Charité, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|