1
|
Hending D. Cryptic species conservation: a review. Biol Rev Camb Philos Soc 2024. [PMID: 39234845 DOI: 10.1111/brv.13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Cryptic species are groups of two or more taxa that were previously classified as single nominal species. Being almost morphologically indistinguishable, cryptic species have historically been hard to detect. Only through modern morphometric, genetic, and molecular analyses has the hidden biodiversity of cryptic species complexes been revealed. Cryptic diversity is now widely acknowledged, but unlike more recognisable, charismatic species, scientists face additional challenges when studying cryptic taxa and protecting their wild populations. Demographical and ecological data are vital to facilitate and inform successful conservation actions, particularly at the individual species level, yet this information is lacking for many cryptic species due to their recent taxonomic description and lack of research attention. The first part of this article summarises cryptic speciation and diversity, and explores the numerous barriers and considerations that conservation biologists must navigate to detect, study and manage cryptic species populations effectively. The second part of the article seeks to address how we can overcome the challenges associated with efficiently and non-invasively detecting cryptic species in-situ, and filling vital knowledge gaps that are currently inhibiting applied conservation. The final section discusses future directions, and suggests that large-scale, holistic, and collaborative approaches that build upon successful existing applications will be vital for cryptic species conservation. This article also acknowledges that sufficient data to implement effective species-specific conservation will be difficult to attain for many cryptic animals, and protected area networks will be vital for their conservation in the short term.
Collapse
Affiliation(s)
- Daniel Hending
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
2
|
Thomas DC, Ardi WH, Chong YH, Thomas P, Hughes M. Conservation status assessments of species-rich tropical taxa in the face of data availability limitations: insights from Sulawesi Begonia. Sci Rep 2024; 14:14007. [PMID: 38890332 PMCID: PMC11189526 DOI: 10.1038/s41598-024-64319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Species conservation assessments using the criteria outlined by the International Union for the Conservation of Nature Red List can be compromised by limited data availability. Species-rich tropical plant taxa with numerous microendemics are particularly problematic. This study focusses on the Begonia flora of the Indonesian island of Sulawesi, comprised of 65 herbaceous species mainly found in rainforest habitats. Sixty-two species are Sulawesi endemics, including 20 species restricted to limestone karst landscapes. Forty-eight species are represented by fewer than 10 herbarium collections. Here, we outline and discuss an approach that, despite these data limitations, allows meaningful conservation assessments by integrating analyses of occurrences, data primarily based on remote sensing approaches, including forest landscape integrity, forest cover loss, and land cover, and extent of suitable habitat estimation. The results indicate that most Sulawesi Begonia species are narrow endemics whose rainforest habitats have substantially deteriorated in the last two decades: 27 species are assessed as Critically Endangered, 24 as Endangered, six as Vulnerable, five as Least Concern, and three species are Data Deficient. Conservation action, including extension of the protected area network in Sulawesi with emphasis on areas of old-growth forest and limestone karst landscapes, and strengthening of ex-situ living collections, is recommended.
Collapse
Affiliation(s)
- Daniel C Thomas
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Wisnu H Ardi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency, BRIN, Jakarta, Indonesia
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Yu Hong Chong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Mark Hughes
- Royal Botanic Garden, Edinburgh, Scotland, UK
| |
Collapse
|
3
|
Biondo MV, Burki RP, Aguayo F, Calado R. An Updated Review of the Marine Ornamental Fish Trade in the European Union. Animals (Basel) 2024; 14:1761. [PMID: 38929380 PMCID: PMC11201242 DOI: 10.3390/ani14121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Wild-caught fish from coral reefs, one of the most threatened ecosystems on the planet, continue to supply the marine aquarium trade. Despite customs and veterinary checks during imports, comprehensive data on this global industry remain scarce. This study provides consolidated data on the largest import market by value, the European Union (EU): a 24-million-euro annual trade value, detailing the main exporting and importing countries, as well as the species and families of the 26 million specimens imported between 2014 and 2021. A watchlist alert system based on the number of specimens traded, import trends, and vulnerability index according to FishBase and the IUCN Red List conservation status is presented, providing key information on which species should require closer scrutiny by authorities. While the European TRAde Control and Expert System (TRACES) electronically monitors the movement of live animals to respond quickly to biosecurity risks, one-third of marine ornamental fish imported lack species-level information. With minor adjustments, TRACES holds the potential to significantly enhance data granularity and the monitoring of wildlife trade, with marine ornamental fish being an interesting case study to validate this approach.
Collapse
Affiliation(s)
| | | | - Francisco Aguayo
- Faculty of Higher Studies Cuautitlán, National Autonomous University of Mexico, Mexico City 54714, Mexico
| | - Ricardo Calado
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Wang Z, Chen T, Yang L, Chapman CA, Fan P. Effects of protected area coverage and research on conservation status of primates globally. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14311. [PMID: 38853694 DOI: 10.1111/cobi.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Conducting conservation research and establishing protected areas (PAs) based on research results are critical to biodiversity conservation. However, the effect of research and PAs on conservation of threatened species has rarely been evaluated simultaneously. We collected data on PAs from 2000 for 2021 and determined the number of publications on global primates (published from 1950 to 2021) to assess the effect of PAs, research, and biological and socioeconomic factors on the current International Union for Conservation of Nature endangered status and change in status. We used the MCMCglmm package to conduct a phylogenetic comparative analysis to control the phylogenetic relationship of primate species. The status of 24.6% (82 of 333) of species assessed at least twice declined. Only the black lion tamarin (Leontopithecus chrysopygus) had an improved status. Species with status declines mostly occurred on the south coast of West Africa and in Madagascar. PAs covered 22.1% of each species' range. Forest loss in PAs (5.5%) was significantly lower than forest loss within 5 km outside PAs (13.8%), suggesting PAs effectively mitigated forest loss. Both the median number of total publications and conservation publications on critically endangered species were higher than those of other categories. Models showed that PA coverage and number of publications or conservation-focused publications were not related to current status or change in status over time. A decline in status was not related to creation of PAs or increase of research since the last assessment. Our results suggest that current PAs and research are not reversing the extinction crisis of global primates. Doing more conservation-oriented research, strengthening management of current PAs, and expanding PAs will be needed to protect primates globally.
Collapse
Affiliation(s)
- Zhining Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Colin A Chapman
- Woodrow Wilson International Center for Scholars, Washington, District of Columbia, USA
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- School of Life Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Chen C, Granados A, Brodie JF, Kays R, Davies TJ, Liu R, Fisher JT, Ahumada J, McShea W, Sheil D, Mohd-Azlan J, Agwanda B, Andrianarisoa MH, Appleton RD, Bitariho R, Espinosa S, Grigione MM, Helgen KM, Hubbard A, Hurtado CM, Jansen PA, Jiang X, Jones A, Kalies EL, Kiebou-Opepa C, Li X, Lima MGM, Meyer E, Miller AB, Murphy T, Piana R, Quan RC, Rota CT, Rovero F, Santos F, Schuttler S, Uduman A, van Bommel JK, Young H, Burton AC. Combining camera trap surveys and IUCN range maps to improve knowledge of species distributions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14221. [PMID: 37937455 DOI: 10.1111/cobi.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species' geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium- to large-bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller-bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground-based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alys Granados
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Felidae Conservation Fund, Mill Valley, California, USA
| | - Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| | - Roland Kays
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - T Jonathan Davies
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Runzhe Liu
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biology Department, Lund University, Lund, Sweden
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Jorge Ahumada
- Moore Center for Science, Conservation International, Arlington, Virginia, USA
| | - William McShea
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, Virginia, USA
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Akershus, Norway
- Center for International Forestry Research, Bogor, Indonesia
| | - Jayasilan Mohd-Azlan
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | | | | - Robyn D Appleton
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Spectacled Bear Conservation Society Peru, Lambayeque, Peru
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Santiago Espinosa
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Andy Hubbard
- National Park Service, Sonoran Desert Network, Tucson, Arizona, USA
| | - Cindy M Hurtado
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Xuelong Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Alex Jones
- Campus Natural Reserves, University of California, Santa Cruz, Santa Cruz, California, USA
| | | | | | - Xueyou Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Erik Meyer
- Sequoia & Kings Canyon National Parks, Three Rivers, California, USA
| | - Anna B Miller
- Department of Environment and Society, Institute of Outdoor Recreation and Tourism, Utah State University, Logan, Utah, USA
| | - Thomas Murphy
- Department of Anthropology, Edmonds College, Lynwood, Washington, USA
| | - Renzo Piana
- Spectacled Bear Conservation Society Peru, Lambayeque, Peru
| | - Rui-Chang Quan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Christopher T Rota
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Trento, Italy
- MUSE - Museo delle Scienze, Trento, Italy
| | | | | | - Aisha Uduman
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanna Klees van Bommel
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Young
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - A Cole Burton
- Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Miki M, Obara RD, Nishimura K, Shishido T, Ikenaka Y, Oka R, Sato K, Nakayama SMM, Kimura T, Kobayashi A, Aoshima K, Saito K, Hiono T, Isoda N, Sakoda Y. FOUR-WEEK ORAL ADMINISTRATION OF BALOXAVIR MARBOXIL AS AN ANTI-INFLUENZA VIRUS DRUG SHOWS NO TOXICITY IN CHICKENS. J Zoo Wildl Med 2024; 55:313-321. [PMID: 38875188 DOI: 10.1638/2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/16/2024] Open
Abstract
High pathogenicity avian influenza is an acute zoonotic disease with high mortality in birds caused by a high pathogenicity avian influenza virus (HPAIV). Recently, HPAIV has rapidly spread worldwide and has killed many wild birds, including endangered species. Baloxavir marboxil (BXM), an anti-influenza agent used for humans, was reported to reduce mortality and virus secretion from HPAIV-infected chickens (Gallus domesticus, order Galliformes) at a dosage of ≥2.5 mg/kg when administered simultaneously with viral challenge. Application of this treatment to endangered birds requires further information on potential avian-specific toxicity caused by repeated exposure to BXM over the long term. To obtain information of potential avian-specific toxicity, a 4-wk oral repeated-dose study of BXM was conducted in chickens (n = 6 or 7 per group), which are commonly used as laboratory avian species. The study was conducted in reference to the human pharmaceutical guidelines for nonclinical repeated-dose drug toxicity studies to evaluate systemic toxicity and exposure. No adverse changes were observed in any organs examined, and dose proportional increases in systemic exposure to active pharmaceutical ingredients were noted from 12.5 to 62.5 mg/kg per day. BXM showed no toxicity to chickens at doses of up to 62.5 mg/kg per day, at which systemic exposure was approximately 71 times higher than systemic exposure at 2.5 mg/kg, the reported efficacious dosage amount, in HPAIV-infected chickens. These results also suggest that BXM could be considered safe for treating HPAIV-infected endangered birds due to its high safety margin compared with the efficacy dose. The data in this study could contribute to the preservation of endangered birds by using BXM as a means of protecting biodiversity.
Collapse
Affiliation(s)
- Mariko Miki
- Shionogi & Co, Ltd, Toyonaka 561-0825, Japan,
| | | | | | | | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Ryoko Oka
- Shionogi & Co, Ltd, Toyonaka 561-0825, Japan
| | - Kenji Sato
- Shionogi & Co, Ltd, Toyonaka 561-0825, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
| | - Keisuke Saito
- Institute for Raptor Biomedicine Japan, Kushiro 084-0922, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo 001-0020, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo 001-0020, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research and Development, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
7
|
Mancini G, Santini L, Cazalis V, Akçakaya HR, Lucas PM, Brooks TM, Foden W, Di Marco M. A standard approach for including climate change responses in IUCN Red List assessments. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14227. [PMID: 38111977 DOI: 10.1111/cobi.14227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 12/20/2023]
Abstract
The International Union for Conservation of Nature (IUCN) Red List is a central tool for extinction risk monitoring and influences global biodiversity policy and action. But, to be effective, it is crucial that it consistently accounts for each driver of extinction. Climate change is rapidly becoming a key extinction driver, but consideration of climate change information remains challenging for the IUCN. Several methods can be used to predict species' future decline, but they often fail to provide estimates of the symptoms of endangerment used by IUCN. We devised a standardized method to measure climate change impact in terms of change in habitat quality to inform criterion A3 on future population reduction. Using terrestrial nonvolant tetrapods as a case study, we measured this impact as the difference between the current and the future species climatic niche, defined based on current and future bioclimatic variables under alternative model algorithms, dispersal scenarios, emission scenarios, and climate models. Our models identified 171 species (13% out of those analyzed) for which their current red-list category could worsen under criterion A3 if they cannot disperse beyond their current range in the future. Categories for 14 species (1.5%) could worsen if maximum dispersal is possible. Although ours is a simulation exercise and not a formal red-list assessment, our results suggest that considering climate change impacts may reduce misclassification and strengthen consistency and comprehensiveness of IUCN Red List assessments.
Collapse
Affiliation(s)
- Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, New York, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Thomas M Brooks
- IUCN Species Survival Commission (SSC), Gland, Switzerland
- World Agroforestry Center (ICRAF), University of The Philippines Los Baños, Los Baños, Philippines
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Wendy Foden
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- Global Change Biology Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Vaissi S, Taheri-Khas Z, Heshmatzad P, Bagaturov MF, Janzen P, Naranjo RE, Swegen A, Strand J, McGinnity D, Dunce I. Ecological Civilisation and Amphibian Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:1455. [PMID: 38791672 PMCID: PMC11117272 DOI: 10.3390/ani14101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Intergenerational justice entitles the maximum retention of Earth's biodiversity. The 2022 United Nations COP 15, "Ecological Civilisation: Building a Shared Future for All Life on Earth", is committed to protecting 30% of Earth's terrestrial environments and, through COP 28, to mitigate the effects of the climate catastrophe on the biosphere. We focused this review on three core themes: the need and potential of reproduction biotechnologies, biobanks, and conservation breeding programs (RBCs) to satisfy sustainability goals; the technical state and current application of RBCs; and how to achieve the future potentials of RBCs in a rapidly evolving environmental and cultural landscape. RBCs include the hormonal stimulation of reproduction, the collection and storage of sperm and oocytes, and artificial fertilisation. Emerging technologies promise the perpetuation of species solely from biobanked biomaterials stored for perpetuity. Despite significant global declines and extinctions of amphibians, and predictions of a disastrous future for most biodiversity, practical support for amphibian RBCs remains limited mainly to a few limited projects in wealthy Western countries. We discuss the potential of amphibian RBCs to perpetuate amphibian diversity and prevent extinctions within multipolar geopolitical, cultural, and economic frameworks. We argue that a democratic, globally inclusive organisation is needed to focus RBCs on regions with the highest amphibian diversity. Prioritisation should include regional and international collaborations, community engagement, and support for RBC facilities ranging from zoos and other institutions to those of private carers. We tabulate a standard terminology for field programs associated with RBCs for publication and media consistency.
Collapse
Affiliation(s)
| | - Qinghua Luo
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Q.L.); (P.W.)
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Pei Wang
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Q.L.); (P.W.)
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Nabil Mansour
- Fujairah Research Centre (FRC), Al-Hilal Tower 3003, Fujairah P.O. Box 666, United Arab Emirates;
| | - Svetlana A. Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Edith N. Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Natalia V. Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Victor K. Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Ludmila I. Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, India;
- Evolving Phylo Lab, Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Kermanshah 57146, Iran; (S.V.); (Z.T.-K.)
| | - Zeynab Taheri-Khas
- Department of Biology, Faculty of Science, Razi University, Kermanshah 57146, Iran; (S.V.); (Z.T.-K.)
| | - Pouria Heshmatzad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran;
| | - Mikhail F. Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Russia;
| | - Peter Janzen
- Verband Deutscher Zoodirectoren/Justus-von-Liebig-Schule, 47166 Duisburg, Germany;
| | - Renato E. Naranjo
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Giovanni, Farina 566 y Baltra, San Rafael, Quito 171102, Ecuador;
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, Australia;
| | - Julie Strand
- Department of Animal and Veterinary Science, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark;
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA;
| | | |
Collapse
|
9
|
Nicholson E, Andrade A, Brooks TM, Driver A, Ferrer-Paris JR, Grantham H, Gudka M, Keith DA, Kontula T, Lindgaard A, Londono-Murcia MC, Murray N, Raunio A, Rowland JA, Sievers M, Skowno AL, Stevenson SL, Valderrabano M, Vernon CM, Zager I, Obura D. Roles of the Red List of Ecosystems in the Kunming-Montreal Global Biodiversity Framework. Nat Ecol Evol 2024; 8:614-621. [PMID: 38332025 DOI: 10.1038/s41559-023-02320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024]
Abstract
The Kunming-Montreal Global Biodiversity Framework (GBF) of the UN Convention on Biological Diversity set the agenda for global aspirations and action to reverse biodiversity loss. The GBF includes an explicit goal for maintaining and restoring biodiversity, encompassing ecosystems, species and genetic diversity (goal A), targets for ecosystem protection and restoration and headline indicators to track progress and guide action1. One of the headline indicators is the Red List of Ecosystems2, the global standard for ecosystem risk assessment. The Red List of Ecosystems provides a systematic framework for collating, analysing and synthesizing data on ecosystems, including their distribution, integrity and risk of collapse3. Here, we examine how it can contribute to implementing the GBF, as well as monitoring progress. We find that the Red List of Ecosystems provides common theory and practical data, while fostering collaboration, cross-sector cooperation and knowledge sharing, with important roles in 16 of the 23 targets. In particular, ecosystem maps, descriptions and risk categories are key to spatial planning for halting loss, restoration and protection (targets 1, 2 and 3). The Red List of Ecosystems is therefore well-placed to aid Parties to the GBF as they assess, plan and act to achieve the targets and goals. We outline future work to further strengthen this potential and improve biodiversity outcomes, including expanding spatial coverage of Red List of Ecosystems assessments and partnerships between practitioners, policy-makers and scientists.
Collapse
Affiliation(s)
- Emily Nicholson
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia.
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
- IUCN Commission on Ecosystem Management, Gland, Switzerland.
| | - Angela Andrade
- IUCN Commission on Ecosystem Management, Gland, Switzerland
- Conservation International Colombia, Bogota, Colombia
| | - Thomas M Brooks
- IUCN, Gland, Switzerland
- World Agroforestry Center (ICRAF), University of the Philippines, Los Baños, Laguna, Philippines
- Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - José R Ferrer-Paris
- IUCN Commission on Ecosystem Management, Gland, Switzerland
- Centre for Ecosystem Science, University of New South Wales, Sydney, New South Wales, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, New South Wales, Australia
| | - Hedley Grantham
- Centre for Ecosystem Science, University of New South Wales, Sydney, New South Wales, Australia
- Bush Heritage, Melbourne, Victoria, Australia
| | - Mishal Gudka
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- CORDIO East Africa, Mombasa, Kenya
| | - David A Keith
- IUCN Commission on Ecosystem Management, Gland, Switzerland
- Centre for Ecosystem Science, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Arild Lindgaard
- Norwegian Biodiversity Information Centre (Artsdatabanken), Trondheim, Norway
| | | | - Nicholas Murray
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Anne Raunio
- Finnish Environment Institute, Helsinki, Finland
| | - Jessica A Rowland
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- IUCN Commission on Ecosystem Management, Gland, Switzerland
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Andrew L Skowno
- South African National Biodiversity Institute, Cape Town, South Africa
- Department of Biological Science, University of Cape Town, Cape Town, South Africa
| | - Simone L Stevenson
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Clare M Vernon
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Irene Zager
- IUCN Commission on Ecosystem Management, Gland, Switzerland
- Provita, Caracas, Venezuela
| | | |
Collapse
|
10
|
Kumschick S, Bertolino S, Blackburn TM, Brundu G, Costello KE, de Groot M, Evans T, Gallardo B, Genovesi P, Govender T, Jeschke JM, Lapin K, Measey J, Novoa A, Nunes AL, Probert AF, Pyšek P, Preda C, Rabitsch W, Roy HE, Smith KG, Tricarico E, Vilà M, Vimercati G, Bacher S. Using the IUCN Environmental Impact Classification for Alien Taxa to inform decision-making. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14214. [PMID: 38051018 DOI: 10.1111/cobi.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 12/07/2023]
Abstract
The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species' impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming-Montreal Global Biodiversity Framework (GBF) Target 6.
Collapse
Affiliation(s)
- Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - Giuseppe Brundu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - Katie E Costello
- Biodiversity Assessment and Knowledge Team, Science and Data Centre, International Union for Conservation of Nature (IUCN), Cambridge, UK
| | | | - Thomas Evans
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- ISPRA, Rome, Italy
- IUCN SSC Invasive Species Specialist Group, Roma, Italy
| | - Tanushri Govender
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Jonathan M Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Katharina Lapin
- Austrian Research Centre for Forests, Natural Hazards and Landscape (BFW), Vienna, Austria
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, Institute for Biodiversity, Yunnan University, Kunming, China
| | - Ana Novoa
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Ana L Nunes
- Biodiversity Assessment and Knowledge Team, Science and Data Centre, International Union for Conservation of Nature (IUCN), Cambridge, UK
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Petr Pyšek
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Cristina Preda
- Department of Natural Sciences, Ovidius University of Constanta, Constanta, Romania
| | | | - Helen E Roy
- UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Kevin G Smith
- Biodiversity Assessment and Knowledge Team, Science and Data Centre, International Union for Conservation of Nature (IUCN), Cambridge, UK
| | - Elena Tricarico
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Montserrat Vilà
- Doñana Biological Station (EBD-CSIC) and Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | | | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Bachman SP, Brown MJM, Leão TCC, Nic Lughadha E, Walker BE. Extinction risk predictions for the world's flowering plants to support their conservation. THE NEW PHYTOLOGIST 2024; 242:797-808. [PMID: 38437880 DOI: 10.1111/nph.19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
More than 70% of all vascular plants lack conservation status assessments. We aimed to address this shortfall in knowledge of species extinction risk by using the World Checklist of Vascular Plants to generate the first comprehensive set of predictions for a large clade: angiosperms (flowering plants, c. 330 000 species). We used Bayesian Additive Regression Trees (BART) to predict the extinction risk of all angiosperms using predictors relating to range size, human footprint, climate, and evolutionary history and applied a novel approach to estimate uncertainty of individual species-level predictions. From our model predictions, we estimate 45.1% of angiosperm species are potentially threatened with a lower bound of 44.5% and upper bound of 45.7%. Our species-level predictions, with associated uncertainty estimates, do not replace full global, or regional Red List assessments, but can be used to prioritise predicted threatened species for full Red List assessment and fast-track predicted non-threatened species for Least Concern assessments. Our predictions and uncertainty estimates can also guide fieldwork, inform systematic conservation planning and support global plant conservation efforts and targets.
Collapse
|
12
|
Henry EG, Santini L, Butchart SHM, González-Suárez M, Lucas PM, Benítez-López A, Mancini G, Jung M, Cardoso P, Zizka A, Meyer C, Akçakaya HR, Berryman AJ, Cazalis V, Di Marco M. Modelling the probability of meeting IUCN Red List criteria to support reassessments. GLOBAL CHANGE BIOLOGY 2024; 30:e17119. [PMID: 38273572 DOI: 10.1111/gcb.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Comparative extinction risk analysis-which predicts species extinction risk from correlation with traits or geographical characteristics-has gained research attention as a promising tool to support extinction risk assessment in the IUCN Red List of Threatened Species. However, its uptake has been very limited so far, possibly because existing models only predict a species' Red List category, without indicating which Red List criteria may be triggered. This prevents such approaches to be integrated into Red List assessments. We overcome this implementation gap by developing models that predict the probability of species meeting individual Red List criteria. Using data on the world's birds, we evaluated the predictive performance of our criterion-specific models and compared it with the typical criterion-blind modelling approach. We compiled data on biological traits (e.g. range size, clutch size) and external drivers (e.g. change in canopy cover) often associated with extinction risk. For each specific criterion, we modelled the relationship between extinction risk predictors and species' Red List category under that criterion using ordinal regression models. We found criterion-specific models were better at identifying threatened species compared to a criterion-blind model (higher sensitivity), but less good at identifying not threatened species (lower specificity). As expected, different covariates were important for predicting extinction risk under different criteria. Change in annual temperature was important for criteria related to population trends, while high forest dependency was important for criteria related to restricted area of occupancy or small population size. Our criteria-specific method can support Red List assessors by producing outputs that identify species likely to meet specific criteria, and which are the most important predictors. These species can then be prioritised for re-evaluation. We expect this new approach to increase the uptake of extinction risk models in Red List assessments, bridging a long-standing research-implementation gap.
Collapse
Affiliation(s)
- Etienne G Henry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- École Normale Supérieure, Paris, France
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Stuart H M Butchart
- BirdLife International, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Benítez-López
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Martin Jung
- Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Pedro Cardoso
- Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Sciences, CHANGE - Institute for Global Change and Sustainability, University of Lisbon, Lisbon, Portugal
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | | | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
13
|
Qi WH, Liu T, Zheng CL, Zhao Q, Zhou N, Zhao GJ. Identification of Potential miRNA-mRNA Regulatory Network Associated with Growth and Development of Hair Follicles in Forest Musk Deer. Animals (Basel) 2023; 13:3869. [PMID: 38136906 PMCID: PMC10740511 DOI: 10.3390/ani13243869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sRNA libraries and mRNA libraries of HFs of FMD were constructed and sequenced using an Illumina HiSeq 2500, and the expression profiles of miRNAs and genes in the HFs of FMD were obtained at the anagen and catagen stages. In total, 565 differentially expressed unigenes (DEGs) were identified, 90 of which were upregulated and 475 of which were downregulated. In the BP category of GO enrichment, the DEGs were enriched in the processes related to HF development and differentiation, including the hair cycle regulation and processes, HF development, skin epidermis development, regulation of HF development, skin development, the Wnt signaling pathway, and the BMP signaling pathway. Through KEGG analysis it was found that DEGs were significantly enriched in pathways associated with HF development and growth. A total of 186 differentially expressed miRNAs (DEmiRNAs) were screened (p < 0.05) in the HFs of FMD at the anagen stage vs. the catagen stage, 33 of which were upregulated and 153 of which were downregulated. Through DEmiRNA-mRNA association analysis, we found DEmiRNAs and target genes that mainly play regulatory roles in HF development and growth. The enrichment analysis of DEmiRNA target genes revealed similarities with the enrichment results of DEGs associated with HF development. Notably, both sets of genes were enriched in key pathways such as the Notch signaling pathway, melanogenesis, the cAMP signaling pathway, and cGMP-PKG. To validate our findings, we selected 11 DEGs and 11 DEmiRNAs for experimental verification using RT-qPCR. The results of the experimental validation were consistent with the RNA-Seq results.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Ting Liu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Cheng-Li Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611830, China;
| | - Qi Zhao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Nong Zhou
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Gui-Jun Zhao
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| |
Collapse
|
14
|
Lawrence P, Heung M, Nave J, Henkel C, Escudero-Pérez B. The natural virome and pandemic potential: Disease X. Curr Opin Virol 2023; 63:101377. [PMID: 37995425 DOI: 10.1016/j.coviro.2023.101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Over the last decade, the emergence of several zoonotic viruses has demonstrated that previously unknown or neglected pathogens have the potential to cause epidemics and therefore to pose a threat to global public health. Even more concerning are the estimated 1.7 million still-undiscovered viruses present in the natural environment or 'global virome', with many of these as-yet uncharacterized viruses predicted to be pathogenic for humans. Thus, in order to mitigate disease emergence and prevent future pandemics, it is crucial to identify the global extent of viral threats to which humans may become exposed. This requires cataloguing the viruses that exist in the environment within their various and diverse host species, and also understanding the viral, host, and environmental factors that dictate the circumstances that result in viral spillover into humans. We also address here which strategies can be implemented as countermeasure initiatives to reduce the risk of emergence of new diseases.
Collapse
Affiliation(s)
- Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA1598), Lyon, France
| | - Michelle Heung
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Nave
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Henkel
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany.
| |
Collapse
|
15
|
Cazalis V, Santini L, Lucas PM, González-Suárez M, Hoffmann M, Benítez-López A, Pacifici M, Schipper AM, Böhm M, Zizka A, Clausnitzer V, Meyer C, Jung M, Butchart SHM, Cardoso P, Mancini G, Akçakaya HR, Young BE, Patoine G, Di Marco M. Prioritizing the reassessment of data-deficient species on the IUCN Red List. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14139. [PMID: 37394972 DOI: 10.1111/cobi.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Despite being central to the implementation of conservation policies, the usefulness of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species is hampered by the 14% of species classified as data-deficient (DD) because information to evaluate these species' extinction risk was lacking when they were last assessed or because assessors did not appropriately account for uncertainty. Robust methods are needed to identify which DD species are more likely to be reclassified in one of the data-sufficient IUCN Red List categories. We devised a reproducible method to help red-list assessors prioritize reassessment of DD species and tested it with 6887 DD species of mammals, reptiles, amphibians, fishes, and Odonata (dragonflies and damselflies). For each DD species in these groups, we calculated its probability of being classified in a data-sufficient category if reassessed today from covariates measuring available knowledge (e.g., number of occurrence records or published articles available), knowledge proxies (e.g., remoteness of the range), and species characteristics (e.g., nocturnality); calculated change in such probability since last assessment from the increase in available knowledge (e.g., new occurrence records); and determined whether the species might qualify as threatened based on recent rate of habitat loss determined from global land-cover maps. We identified 1907 species with a probability of being reassessed in a data-sufficient category of >0.5; 624 species for which this probability increased by >0.25 since last assessment; and 77 species that could be reassessed as near threatened or threatened based on habitat loss. Combining these 3 elements, our results provided a list of species likely to be data-sufficient such that the comprehensiveness and representativeness of the IUCN Red List can be improved.
Collapse
Affiliation(s)
- Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Ana Benítez-López
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Department of Zoology, Faculty of Science, University of Granada, Granada, Spain
| | - Michela Pacifici
- Global Mammal Assessment Programme, Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| | - Monika Böhm
- Global Center for Species Survival, Indianapolis Zoological Society, Indianapolis, Indiana, USA
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, Halle, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Jung
- Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Stuart H M Butchart
- BirdLife International, David Attenborough Building, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | | | - Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
16
|
Braulik GT, Taylor BL, Minton G, Notarbartolo di Sciara G, Collins T, Rojas-Bracho L, Crespo EA, Ponnampalam LS, Double MC, Reeves RR. Red-list status and extinction risk of the world's whales, dolphins, and porpoises. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14090. [PMID: 37246556 DOI: 10.1111/cobi.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 05/30/2023]
Abstract
To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2-3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.
Collapse
Affiliation(s)
- Gill T Braulik
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, UK
- IUCN Species Survival Commission, Cetacean Specialist Group
- IUCN Marine Mammal Protected Areas Task Force
| | | | - Gianna Minton
- IUCN Species Survival Commission, Cetacean Specialist Group
- IUCN Marine Mammal Protected Areas Task Force
- Megaptera Marine Conservation, The Hague, The Netherlands
| | - Giuseppe Notarbartolo di Sciara
- IUCN Species Survival Commission, Cetacean Specialist Group
- IUCN Marine Mammal Protected Areas Task Force
- Tethys Research Institute, Milano, Italy
| | - Tim Collins
- IUCN Species Survival Commission, Cetacean Specialist Group
- IUCN Marine Mammal Protected Areas Task Force
- Global Conservation, Wildlife Conservation Society, Bronx, New York, USA
| | - Lorenzo Rojas-Bracho
- IUCN Species Survival Commission, Cetacean Specialist Group
- IUCN Marine Mammal Protected Areas Task Force
- Ocean Wise, Vancouver, British Columbia, Canada
| | - Enrique A Crespo
- IUCN Species Survival Commission, Cetacean Specialist Group
- Laboratorio de Mamíferos Marinos, (CESIMAR, CONICET), Puerto Madryn, Argentina
| | - Louisa S Ponnampalam
- IUCN Species Survival Commission, Cetacean Specialist Group
- The MareCet Research Organization, Subang Jaya, Selangor, Malaysia
| | - Michael C Double
- IUCN Species Survival Commission, Cetacean Specialist Group
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Randall R Reeves
- IUCN Species Survival Commission, Cetacean Specialist Group
- Committee of Scientific Advisers, Marine Mammal Commission, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Finn C, Grattarola F, Pincheira-Donoso D. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biol Rev Camb Philos Soc 2023; 98:1732-1748. [PMID: 37189305 DOI: 10.1111/brv.12974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
The global-scale decline of animal biodiversity ('defaunation') represents one of the most alarming consequences of human impacts on the planet. The quantification of this extinction crisis has traditionally relied on the use of IUCN Red List conservation categories assigned to each assessed species. This approach reveals that a quarter of the world's animal species are currently threatened with extinction, and ~1% have been declared extinct. However, extinctions are preceded by progressive population declines through time that leave demographic 'footprints' that can alert us about the trajectories of species towards extinction. Therefore, an exclusive focus on IUCN conservation categories, without consideration of dynamic population trends, may underestimate the true extent of the processes of ongoing extinctions across nature. In fact, emerging evidence (e.g. the Living Planet Report), reveals a widespread tendency for sustained demographic declines (an average 69% decline in population abundances) of species globally. Yet, animal species are not only declining. Many species worldwide exhibit stable populations, while others are even thriving. Here, using population trend data for >71,000 animal species spanning all five groups of vertebrates (mammals, birds, reptiles, amphibians and fishes) and insects, we provide a comprehensive global-scale assessment of the diversity of population trends across species undergoing not only declines, but also population stability and increases. We show a widespread global erosion of species, with 48% undergoing declines, while 49% and 3% of species currently remain stable or are increasing, respectively. Geographically, we reveal an intriguing pattern similar to that of threatened species, whereby declines tend to concentrate around tropical regions, whereas stability and increases show a tendency to expand towards temperate climates. Importantly, we find that for species currently classed by the IUCN Red List as 'non-threatened', 33% are declining. Critically, in contrast with previous mass extinction events, our assessment shows that the Anthropocene extinction crisis is undergoing a rapid biodiversity imbalance, with levels of declines (a symptom of extinction) greatly exceeding levels of increases (a symptom of ecological expansion and potentially of evolution) for all groups. Our study contributes a further signal indicating that global biodiversity is entering a mass extinction, with ecosystem heterogeneity and functioning, biodiversity persistence, and human well-being under increasing threat.
Collapse
Affiliation(s)
- Catherine Finn
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Florencia Grattarola
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
18
|
López-Tobar R, Herrera-Feijoo RJ, Mateo RG, García-Robredo F, Torres B. Botanical Collection Patterns and Conservation Categories of the Most Traded Timber Species from the Ecuadorian Amazon: The Role of Protected Areas. PLANTS (BASEL, SWITZERLAND) 2023; 12:3327. [PMID: 37765489 PMCID: PMC10536464 DOI: 10.3390/plants12183327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The Ecuadorian Amazon is home to a rich biodiversity of woody plant species. Nonetheless, their conservation remains difficult, as some areas remain poorly explored and lack georeferenced records. Therefore, the current study aims predominantly to analyze the collection patterns of timber species in the Amazon lowlands of Ecuador and to evaluate the conservation coverage of these species in protected areas. Furthermore, we try to determine the conservation category of the species according to the criteria of the IUCN Red List. We identified that one third of the timber species in the study area was concentrated in three provinces due to historical botanical expeditions. However, a worrying 22.0% of the species had less than five records of presence, and 29.9% had less than ten records, indicating a possible underestimation of their presence. In addition, almost half of the species evaluated were unprotected, exposing them to deforestation risks and threats. To improve knowledge and conservation of forest biodiversity in the Ecuadorian Amazon, it is recommended to perform new botanical samplings in little-explored areas and digitize data in national herbaria. It is critical to implement automated assessments of the conservation status of species with insufficient data. In addition, it is suggested to use species distribution models to identify optimal areas for forest restoration initiatives. Effective communication of results and collaboration between scientists, governments, and local communities are key to the protection and sustainable management of forest biodiversity in the Amazon region.
Collapse
Affiliation(s)
- Rolando López-Tobar
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador;
- Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Unidad de Posgrado, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador
| | - Robinson J. Herrera-Feijoo
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador;
- Unidad de Posgrado, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador
- Escuela de Doctorado, Centro de Estudios de Posgrado, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, nº 2, 28049 Madrid, Spain
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Rubén G. Mateo
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando García-Robredo
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, C/José Antonio Novais 10, 28040 Madrid, Spain;
| | - Bolier Torres
- Facultad de Ciencia de la Vida, Universidad Estatal Amazónica (UEA), Puyo 160101, Ecuador;
- Ochroma Consulting and Services, Puerto Napo, Tena 150150, Ecuador
| |
Collapse
|
19
|
Peng S, Shrestha N, Luo Y, Li Y, Cai H, Qin H, Ma K, Wang Z. Incorporating global change reveals extinction risk beyond the current Red List. Curr Biol 2023; 33:3669-3678.e4. [PMID: 37591250 DOI: 10.1016/j.cub.2023.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
Global changes over the past few decades have caused species distribution shifts and triggered population declines and local extinctions of many species. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Red List) is regarded as the most comprehensive tool for assessing species extinction risk and has been used at regional, national, and global scales. However, most Red Lists rely on the past and current status of species populations and distributions but do not adequately reflect the risks induced by future global changes. Using distribution maps of >4,000 endemic woody species in China, combined with ensembled species distribution models, we assessed the species threat levels under future climate and land-cover changes using the projected changes in species' suitable habitats and compared our updated Red List with China's existing Red List. We discover an increased number of threatened species in the updated Red List and increased threat levels of >50% of the existing threatened species compared with the existing one. Over 50% of the newly identified threatened species are not adequately covered by protected areas. The Yunnan-Guizhou Plateau, rather than the Hengduan Mountains, is the distribution center of threatened species on the updated Red Lists, as opposed to the threatened species on the existing Red List. Our findings suggest that using Red Lists without considering the impacts of future global changes will underestimate the extinction risks and lead to a biased estimate of conservation priorities, potentially limiting the ability to meet the Kunming-Montreal global conservation targets.
Collapse
Affiliation(s)
- Shijia Peng
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Nawal Shrestha
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yuan Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hongyu Cai
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haining Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Moens M, Biesmeijer JC, Klumpers SGT, Marshall L. Are threatened species special? An assessment of Dutch bees in relation to land use and climate. Ecol Evol 2023; 13:e10326. [PMID: 37502308 PMCID: PMC10369158 DOI: 10.1002/ece3.10326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Red Lists are widely used as an indicator of the status and trends of biodiversity and are often used in directing conservation efforts. However, it is unclear whether species with a Least Concern status share a common relationship to environmental correlates compared to species that are on the Red List. To assess this, we focus here on the contribution and correlates of land use, climate, and soil to the occurrence of wild bees in the Netherlands. We used observation data and species distribution models to explain the relation between wild bees and the environment. Non-threatened bees had a relatively higher variable importance of the land use variables to their models, as opposed to the climate variables for the threatened bees. The threatened bees had a smaller extent of occurrence and occupied areas with more extreme climatic conditions. Bees with a Least Concern status showed more positive responses to urban green spaces and Red List species showed a different response to climatic variables, such as temperature and precipitation. Even though Red List bees were found in areas with a higher cover of natural areas, they showed a more selective response to natural land use types. Pastures and crops were the main contributing land use variables and showed almost exclusively a negative correlation with the distribution of all wild bees. This knowledge supports the implementation of appropriate, species-specific conservation measures, including the preservation of natural areas, and the improvement of land use practices in agricultural and urban areas, which may help mitigate the negative impacts of future global change on species' distributions.
Collapse
Affiliation(s)
- Merijn Moens
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Jacobus C. Biesmeijer
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | | | - Leon Marshall
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Agroecology Lab, Interfaculty School of BioengineeringUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
21
|
Van Huynh A. Effect of IUCN Red List category on public attention to mammals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14050. [PMID: 36661058 DOI: 10.1111/cobi.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 05/30/2023]
Abstract
Cultural data is a powerful tool to analyze public awareness of key societal issues, including the conservation of nature. I used two publicly available repositories of cultural data, Google Trends and Google Ngram, to quantify the effect of the International Union for the Conservation of Nature (IUCN) Red List conservation status on public attention toward 4539 mammal species. With Google Trends, I calculated whether Google searches for their common and scientific names have been increasing or decreasing over time. I also ran an anomaly detection analysis to investigate whether a change in red-list status directly results in an increase in Google searches. Additionally, I quantified the mentions of species' common and scientific names in English texts with Google Ngram. Overall, Google searches for most mammal species remained at similar levels or increased since 2008. The severity of species' IUCN Red List status was a significant predictor of increasing Google searches, although the effect size was relatively small. Red-list status seemed strongly confounded with mammal body size. Species that moved to a higher-risk category spiked significantly in Google searches directly after the new designation. The mention of species' common names in the Google Ngram's English 2019 corpus significantly increased as the red-list category increased. These results provide valuable insight into the importance of the IUCN Red List for increasing public awareness and the usefulness of publicly available cultural data on examining the effectiveness of specific conservation efforts and thus evaluating targets for support and funding.
Collapse
Affiliation(s)
- Alex Van Huynh
- Department of Biology, Desales University, Center Valley, Pennsylvania, USA
| |
Collapse
|
22
|
Duffus NE, Echeverri A, Dempewolf L, Noriega JA, Furumo PR, Morimoto J. The Present and Future of Insect Biodiversity Conservation in the Neotropics: Policy Gaps and Recommendations. NEOTROPICAL ENTOMOLOGY 2023; 52:407-421. [PMID: 36918492 PMCID: PMC10181979 DOI: 10.1007/s13744-023-01031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/13/2023] [Indexed: 05/13/2023]
Abstract
Emerging evidence suggests that insect populations may be declining at local and global scales, threatening the sustainability of the ecosystem services that insects provide. Insect declines are of particular concern in the Neotropics, which holds several of the world's hotspots of insect endemism and diversity. Conservation policies are one way to prevent and mitigate insect declines, yet these policies are usually biased toward vertebrate species. Here, we outline some key policy instruments for biodiversity conservation in the Neotropics and discuss their potential contribution and shortcomings for insect biodiversity conservation. These include species-specific action policies, protected areas and Indigenous and Community Conserved Areas (ICCAs), sectoral policies, biodiversity offsetting, market-based mechanisms, and the international policy instruments that underpin these efforts. We highlight that although these policies can potentially benefit insect biodiversity indirectly, there are avenues in which we could better incorporate the specific needs of insects into policy to mitigate the declines mentioned above. We propose several areas of improvement. Firstly, evaluating the extinction risk of more Neotropical insects to better target at-risk species with species-specific policies and conserve their habitats within area-based interventions. Secondly, alternative pest control methods and enhanced monitoring of insects in a range of land-based production sectors. Thirdly, incorporating measurable and achievable insect conservation targets into international policies and conventions. Finally, we emphasise the important roles of community engagement and enhanced public awareness in achieving these improvements to insect conservation policies.
Collapse
Affiliation(s)
| | - Alejandra Echeverri
- Centre for Conservation Biology, Dept of Biology, Stanford Univ, CA, Stanford, USA
- The Natural Capital Project, Stanford Univ, CA, Stanford, USA
| | - Lena Dempewolf
- Ministry of Planning and Development, Government of the Republic of Trinidad and Tobago, Caribbean, Trinidad and Tobago
| | - Jorge Ari Noriega
- Grupo Agua, Salud y Ambiente, Facultad de Ingeniería, Universidad El Bosque, Bogotá, Colombia
| | - Paul R Furumo
- Stanford Doerr School of Sustainability, Stanford Univ, Stanford, USA
| | - Juliano Morimoto
- School of Biological Sciences, Univ of Aberdeen, Aberdeen, Scotland
- Programa de Pós-Graduação Em Ecologia E Conservação, Univ Federal Do Paraná, Curitiba, Brazil
- Institute of Mathematics, Univ of Aberdeen, King's College, Aberdeen, Scotland
| |
Collapse
|
23
|
Dehghani R, Monzavi SM, Mehrpour O, Shirazi FM, Hassanian-Moghaddam H, Keyler DE, Wüster W, Westerström A, Warrell DA. Medically important snakes and snakebite envenoming in Iran. Toxicon 2023; 230:107149. [PMID: 37187227 DOI: 10.1016/j.toxicon.2023.107149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Snakebite is a common health condition in Iran with a diverse snake fauna, especially in tropical southern and mountainous western areas of the country with plethora of snake species. The list of medically important snakes, circumstances and effects of their bite, and necessary medical care require critical appraisal and should be updated regularly. This study aims to review and map the distributions of medically important snake species of Iran, re-evaluate their taxonomy, review their venomics, describe the clinical effects of envenoming, and discuss medical management and treatment, including the use of antivenom. Nearly 350 published articles and 26 textbooks with information on venomous and mildly venomous snake species and snakebites of Iran, were reviewed, many in Persian (Farsi) language, making them relatively inaccessible to an international readership. This has resulted in a revised updated list of Iran's medically important snake species, with taxonomic revisions of some, compilation of their morphological features, remapping of their geographical distributions, and description of species-specific clinical effects of envenoming. Moreover, the antivenom manufactured in Iran is discussed, together with treatment protocols that have been developed for the hospital management of envenomed patients.
Collapse
Affiliation(s)
- Ruhollah Dehghani
- Department of Environmental Health, Kashan University of Medical Sciences, Kashan, Iran; Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mostafa Monzavi
- Medical Toxicology Center, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel E Keyler
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, UK
| | | | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Visser F, Drouilly M, Moodley Y, Michaux JR, Somers MJ. Mismatch between conservation needs and actual representation of lions from West and Central Africa in in situ and ex situ conservation. Conserv Lett 2023. [DOI: 10.1111/conl.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
25
|
Biggs C, Long B, Rodríguez JP. Priorities for a coordinated effort on behalf of lost species: a commentary on Martin
et al
. (2023). Anim Conserv 2023. [DOI: 10.1111/acv.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | - J. P. Rodríguez
- IUCN Species Survival Commission, Venezuelan Institute for Scientific Investigation (IVIC) and Provita Caracas Venezuela
| |
Collapse
|
26
|
Wang W, Wang H, Sun D, Liu G. Freshwater species diversity loss embodied in interprovincial hydroelectricity transmission with ecological network analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39883-39893. [PMID: 36600160 DOI: 10.1007/s11356-022-25057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023]
Abstract
A major strategy for addressing the imbalance in source-network-load distribution is interprovincial electricity transmission; however, this process also causes various environmental effects. Previous studies have mainly examined thermal power transmission, and few insights have been gained into the challenges hydroelectricity transmission poses for biodiversity conservation. Here, we innovatively incorporated the freshwater species diversity footprint into a hydropower environmental impact assessment, calculating the interprovincial transfer of freshwater species diversity embodied in hydroelectricity transmission. We proposed an evaluation model of an interprovincial hydroelectricity transmission network using freshwater species diversity as the ecological element and creatively identified significant nodes and paths of the network. Up to 28% of the transfer of freshwater species diversity was related to the demand for hydroelectricity consumption in Shanghai. 64% of the relationships in the hydroelectricity transmission network were implemented at the expense of ecological losses on one side. Shanghai and Sichuan provinces and some transmission lines related to them were significant nodes and paths for improving the overall status of the network. This research can help policymakers comprehend the challenges to freshwater species presented by interprovincial hydroelectricity transmission and serve as a reference for ecological compensation for hydropower development.
Collapse
Affiliation(s)
- Weiqian Wang
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210000, Jiangsu, China
- Institute of Management Science, Business School of Hohai University, Nanjing, 210000, Jiangsu, China
| | - Huimin Wang
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210000, Jiangsu, China.
- Institute of Management Science, Business School of Hohai University, Nanjing, 210000, Jiangsu, China.
- College of Management and Economics, Tianjin University, Tianjin, 300072, China.
| | - Dianchen Sun
- State Key Laboratory of Hydrology Water Resource and Hydraulic Engineering, Hohai University, Nanjing, 210000, Jiangsu, China
- Institute of Management Science, Business School of Hohai University, Nanjing, 210000, Jiangsu, China
| | - Gang Liu
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
27
|
Inocencio E. Buot, Jr., Marne G. Origenes, Ren Divien R. Obeña, Elaine Loreen C. Villanueva, Marjorie D. delos Angeles. Some threatened woody plant species recorded from forests over limestone of the Philippines. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.8119.14.11.22058-22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study was conducted to determine threatened woody plants in forests over limestone in Samar Natural Park (SINP), Guiuan Marine Resource Protected Landscapes and Seascapes (GMRPLS), and other areas in the Philippines, in order to design a strategic framework for sustainable conservation of threatened species. Combined fieldwork using standard vegetation techniques and comparative literature review were done. Results revealed a total of 196 woody plant species belonging to 48 families, with 60 (DAO 2017-11) and 182 (IUCN) threatened woody plant species in the forests over limestone. The top 10 important species noted include three Critically Endangered: Diospyros longiciliata Merr., Cynometra cebuensis Seidenschwarz, F., and Shorea astylosa Foxw; three Endangered: Cinnamomum cebuense Kosterm., Tectona philippinensis Benth. & Hook.f. and Vitex parviflora Juss.; and four Vulnerable species: Agathis philippinensis Warb., Aquilaria cumingiana (Decne) Ridley, Dipterocarpus gracilis Blume, and Shorea polysperma (Blanco) Merr. A framework for sustainable conservation has been designed to prevent the loss of these threatened botanical treasures.
Collapse
|
28
|
Pimiento C, Antonelli A. Integrating deep-time palaeontology in conservation prioritisation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.959364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Halting biodiversity loss under growing anthropogenic pressure is arguably the greatest environmental challenge we face. Given that not all species are equally threatened and that resources are always limited, establishing robust prioritisation schemes is critical for implementing effective conservation actions. To this end, the International Union for Conservation of Nature (IUCN) Red List of Threatened Species has become a widely used source of information on species’ extinction risk. Various metrics have been proposed that combine IUCN status with different aspects of biodiversity to identify conservation priorities. However, current strategies do not take full advantage of palaeontological data, with conservation palaeobiology often focussing on the near-time fossil record (the last 2 million years). Here, we make a case for the value of the deep-time (over 2 million years ago), as it can offer tangible parallels with today’s biodiversity crisis and inform on the intrinsic traits that make species prone to extinction. As such, palaeontological data holds great predictive power, which could be harnessed to flag species likely to be threatened but that are currently too poorly known to be identified as such. Finally, we identify key IUCN-based prioritisation metrics and outline opportunities for integrating palaeontological data to validate their implementation. Although the human signal of the current extinction crisis makes direct comparisons with the geological past challenging, the deep-time fossil record has more to offer to conservation than is currently recognised.
Collapse
|
29
|
Lévesque A, Gagné L, Dupras J. Expressing citizen preferences on endangered wildlife for building socially appealing species recovery policies: A stated preference experiment in Quebec, Canada. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Cogoni D, Grace MK, Long B, Orsenigo S, Fenu G. The IUCN Green Status of Species: A Call for Mediterranean Botanists to Contribute to This New Ambitious Effort. PLANTS (BASEL, SWITZERLAND) 2022; 11:2592. [PMID: 36235458 PMCID: PMC9572627 DOI: 10.3390/plants11192592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In the Mediterranean Basin, a critical focal point for the conservation of plant diversity, there has been a large increase in practical conservation actions for many plant species to prevent extinction and to improve their conservation status; quantifying the effectiveness of these initiatives in reversing species declines is urgently important. In 2021, the International Union for Conservation of Nature (IUCN) launched a new tool that allows the impact of conservation actions on plant species to be assessed. The Green Status of Species is a new set of metrics under the Red List of Threatened Species that assigns species to recovery categories, complementary to the classic extinction risk categories. Crucially, the Green Status of Species provides methods to evaluate the impact of past conservation, and the potential for future conservation impact, on species status and recovery in a standardized way. Considering the efforts made so far for the conservation of Mediterranean threatened plants, using the Green Status of Species would be highly useful to direct future conservation policies. We, therefore, encourage botanists and practitioners working on threatened plants in the Mediterranean area to use this new assessment tool to inform conservation and recovery programs.
Collapse
Affiliation(s)
- Donatella Cogoni
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Molly K. Grace
- Wadham College, University of Oxford, Oxford OX1 3SZ, UK
| | - Barney Long
- Re: Wild, P.O. Box 129, Austin, TX 78767, USA
| | - Simone Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| |
Collapse
|
31
|
The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems. Nat Ecol Evol 2022; 6:1710-1722. [PMID: 36163257 DOI: 10.1038/s41559-022-01858-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/24/2022] [Indexed: 02/07/2023]
Abstract
Protecting nature's contributions to people requires accelerating extinction risk assessment and better integrating evolutionary, functional and used diversity with conservation planning. Here, we report machine learning extinction risk predictions for 1,381 palm species (Arecaceae), a plant family of high socio-economic and ecological importance. We integrate these predictions with published assessments for 508 species (covering 75% of all palm species) and we identify top-priority regions for palm conservation on the basis of their proportion of threatened evolutionarily distinct, functionally distinct and used species. Finally, we explore palm use resilience to identify non-threatened species that could potentially serve as substitutes for threatened used species by providing similar products. We estimate that over a thousand palms (56%) are probably threatened, including 185 species with documented uses. Some regions (New Guinea, Vanuatu and Vietnam) emerge as top ten priorities for conservation only after incorporating machine learning extinction risk predictions. Potential substitutes are identified for 91% of the threatened used species and regional use resilience increases with total palm richness. However, 16 threatened used species lack potential substitutes and 30 regions lack substitutes for at least one of their threatened used palm species. Overall, we show that hundreds of species of this keystone family face extinction, some of them probably irreplaceable, at least locally. This highlights the need for urgent actions to avoid major repercussions on palm-associated ecosystem processes and human livelihoods in the coming decades.
Collapse
|
32
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
33
|
Green J, Schmidt-Burbach J, Elwin A. Commercial trade of wild animals: examining the use of the IUCN Red List and CITES Appendices as the basis for corporate trade policies. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.902074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wildlife exploitation is considered a predominant factor driving global biodiversity loss and zoonotic disease transmission, in addition to a range of concerns for animal welfare and ecosystem health. One of the ways in which wild animals are exploited is for commercial trade as exotic pets, fashion products, luxury foods, traditional medicine, entertainment, ornaments and more. While the trade in some wildlife species is restricted or prohibited under various domestic and international laws, many species are not bound by legal protection and are traded in largely unmonitored numbers with the potential for severe consequences. Companies, particularly large e-commerce platforms, are increasingly adopting policies to restrict the legal trade in wild animals. Due to the absence of clear guidelines for corporate services of wildlife trade, these policies commonly adopt pre-determined species lists, such as the International Union for the Conservation of Nature’s (IUCN) Red List of Threatened Species or the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendices, as the basis for ‘negative lists’ to guide which species to restrict trade in. However, these databases were not intended for this application and there has been no assessment of their use for this purpose. Here, we summarise and compare the scale and scope of species listed on the IUCN Red List and the CITES Appendices, to discuss how much additional protection these lists provide wild animals if used as policy instruments to guide corporate wildlife trade restrictions beyond the relevant legal bounds. Based on our results, we discuss why that using one list or another would likely omit taxa of conservation concern from protection, and using both lists in conjunction would still not comprehensively reflect all species vulnerable to extinction as a result of exploitation. Further, neither list can mitigate the animal welfare and public health concerns inherently associated with all commercial wildlife trade. We recommend that companies looking to develop policies relating to commercial wildlife trade consider going beyond the scope of predetermined species lists to help mitigate the harmful effects of commercial wildlife exploitation via trade for all wild animals.
Collapse
|
34
|
CAN-SAR: A database of Canadian species at risk information. Sci Data 2022; 9:289. [PMID: 35680916 PMCID: PMC9184579 DOI: 10.1038/s41597-022-01381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Threatened species lists describe the conservation status of species and are key tools used to inform decisions for biodiversity conservation. These lists are rich in information obtained during status assessment and recovery planning processes, ranging from biological attributes to actions that support recovery. Data compiled from species lists allow for analyses, including assessing trends in threats, prioritizing actions, and identifying barriers to achieving recovery objectives. For legally protected species at risk of extinction in Canada, such analyses are challenging owing to a lack of comprehensive and accessible data reflecting information compiled from listing and recovery documents. To encourage ongoing synthesis and minimise duplication of efforts, we initiated CAN-SAR: a database of Canadian Species at Risk information. This transparent, open-access, and searchable database contains information transcribed from listing documents, including listing date, and derived variables. Derived variables required interpretation for which we developed standardised criteria to record information, including classification of recovery actions. The CAN-SAR database is updateable, and will contribute towards improved recovery planning to safeguard species of conservation concern. Measurement(s) | threatened species • threat classes • recovery actions | Technology Type(s) | document review | Sample Characteristic - Organism | multiple | Sample Characteristic - Location | Canada |
Collapse
|
35
|
Caetano GHDO, Chapple DG, Grenyer R, Raz T, Rosenblatt J, Tingley R, Böhm M, Meiri S, Roll U. Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny. PLoS Biol 2022; 20:e3001544. [PMID: 35617356 PMCID: PMC9135251 DOI: 10.1371/journal.pbio.3001544] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning–based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles—the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.
Collapse
Affiliation(s)
- Gabriel Henrique de Oliveira Caetano
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - David G. Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Grenyer
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Tal Raz
- School of Zoology and Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | | | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Monika Böhm
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- Global Center for Species Survival, Indianapolis Zoological Society, Indianapolis, Indiana, United States of America
| | - Shai Meiri
- School of Zoology and Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- * E-mail:
| |
Collapse
|
36
|
Wright PGR, Croose E, Macpherson JL. A global review of the conservation threats and status of mustelids. Mamm Rev 2022. [DOI: 10.1111/mam.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick G. R. Wright
- Vincent Wildlife Trust Eastnor LedburyHR8 1EPUK
- University of Sussex Falmer BrightonBN1 9QGUK
| | | | | |
Collapse
|
37
|
Climate change threatens native potential agroforestry plant species in Brazil. Sci Rep 2022; 12:2267. [PMID: 35145191 PMCID: PMC8831634 DOI: 10.1038/s41598-022-06234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Climate change is one of the main drivers of species extinction in the twentyfirst-century. Here, we (1) quantify potential changes in species' bioclimatic area of habitat (BAH) of 135 native potential agroforestry species from the Brazilian flora, using two different climate change scenarios (SSP2-4.5 and SSP5-8.5) and dispersal scenarios, where species have no ability to disperse and reach new areas (non-dispersal) and where species can migrate within the estimated BAH (full dispersal) for 2041–2060 and 2061–2080. We then (2) assess the preliminary conservation status of each species based on IUCN criteria. Current and future potential habitats for species were predicted using MaxEnt, a machine-learning algorithm used to estimate species' probability distribution. Future climate is predicted to trigger a mean decline in BAH between 38.5–56.3% under the non-dispersal scenario and between 22.3–41.9% under the full dispersal scenario for 135 native potential agroforestry species. Additionally, we found that only 4.3% of the studied species could be threatened under the IUCN Red List criteria B1 and B2. However, when considering the predicted quantitative habitat loss due to climate change (A3c criterion) the percentages increased between 68.8–84.4% under the non-dispersal scenario and between 40.7–64.4% under the full dispersal scenario. To lessen such threats, we argue that encouraging the use of these species in rural and peri-urban agroecosystems are promising, complementary strategies for their long-term conservation.
Collapse
|
38
|
Galea B, Humle T. Identifying and mitigating the impacts on primates of transportation and service corridors. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13836. [PMID: 34490657 DOI: 10.1111/cobi.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Most primate populations are declining; 60% of species face extinction. The expansion of transportation and service corridors (T&S) (i.e., roads and railways and utility and service lines) poses a significant yet underappreciated threat. With the development of T&S corridors predicted to increase across primates' ranges, it is necessary to understand the current extent of its impacts on primates, the available options to mitigate these effectively, and recognize research and knowledge gaps. By employing a systematic search approach to identify literature that described the relationship between primates and T&S corridors, we extracted information from 327 studies published between 1980 and 2020. Our results revealed that 218 species and subspecies across 62 genera are affected, significantly more than the 92 listed by the IUCN Red List of Threatened Species. The majority of studies took place in Asia (45%), followed by mainland Africa (31%), the Neotropics (22%), and Madagascar (2%). Brazil, Indonesia, Equatorial Guinea, Vietnam, and Madagascar contained the greatest number of affected primate species. Asia featured the highest number of species affected by roads, electrical transmission lines, and pipelines and the only studies addressing the impact of rail and aerial tramways on primates. The impact of seismic lines only emerged in the literature from Africa and the Neotropics. Impacts are diverse and multifaceted, for example, animal-vehicle collisions, electrocutions, habitat loss and fragmentation, impeded movement and genetic exchange, behavioral changes, exposure to pollution, and mortality associated with hunting. Although several mitigation measures were recommended, only 41% of studies focused on their implementation, whereas only 29% evaluated their effectiveness. Finally, there was a clear bias in the species and regions benefiting from research on this topic. We recommend that government and conservation bodies recognize T&S corridors as a serious and mounting threat to primates and that further research in this area is encouraged.
Collapse
Affiliation(s)
- Benjamin Galea
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Tatyana Humle
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| |
Collapse
|
39
|
Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS. Green plant genomes: What we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci U S A 2022; 119:e2115640118. [PMID: 35042803 PMCID: PMC8795535 DOI: 10.1073/pnas.2115640118] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.
Collapse
Affiliation(s)
- W John Kress
- National Museum of Natural History, Smithsonian Institution, Department of Botany, Washington, DC 20013-7012;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Arnold Arboretum, Harvard University, Boston, MA 02130
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Paul J Kersey
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269-3214
| | - James H Leebens-Mack
- Department of Plant Biology, 2101 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, TX 76107-3400
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
40
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol Evol 2022; 37:359-370. [DOI: 10.1016/j.tree.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
|
42
|
Zizka A, Andermann T, Silvestro D. IUCNN
– Deep learning approaches to approximate species' extinction risk. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alexander Zizka
- German Center for Integrative Biodiversity Research Halle‐Jena‐Leipzig (iDiv)University of Leipzig Leipzig Germany
- Department of Biology Philipps‐University Marburg Marburg Germany
| | - Tobias Andermann
- Department of Biological and Environmental Sciences University of Gothenburg Göteborg Sweden
- Gothenburg Global Biodiversity Centre Göteborg Sweden
| | - Daniele Silvestro
- Department of Biology University of Fribourg Fribourg Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
| |
Collapse
|
43
|
Grace MK, Akçakaya HR, Bennett EL, Brooks TM, Heath A, Hedges S, Hilton-Taylor C, Hoffmann M, Hochkirch A, Jenkins R, Keith DA, Long B, Mallon DP, Meijaard E, Milner-Gulland EJ, Rodriguez JP, Stephenson PJ, Stuart SN, Young RP, Acebes P, Alfaro-Shigueto J, Alvarez-Clare S, Andriantsimanarilafy RR, Arbetman M, Azat C, Bacchetta G, Badola R, Barcelos LMD, Barreiros JP, Basak S, Berger DJ, Bhattacharyya S, Bino G, Borges PAV, Boughton RK, Brockmann HJ, Buckley HL, Burfield IJ, Burton J, Camacho-Badani T, Cano-Alonso LS, Carmichael RH, Carrero C, Carroll JP, Catsadorakis G, Chapple DG, Chapron G, Chowdhury GW, Claassens L, Cogoni D, Constantine R, Craig CA, Cunningham AA, Dahal N, Daltry JC, Das GC, Dasgupta N, Davey A, Davies K, Develey P, Elangovan V, Fairclough D, Febbraro MD, Fenu G, Fernandes FM, Fernandez EP, Finucci B, Földesi R, Foley CM, Ford M, Forstner MRJ, García N, Garcia-Sandoval R, Gardner PC, Garibay-Orijel R, Gatan-Balbas M, Gauto I, Ghazi MGU, Godfrey SS, Gollock M, González BA, Grant TD, Gray T, Gregory AJ, van Grunsven RHA, Gryzenhout M, Guernsey NC, Gupta G, Hagen C, Hagen CA, Hall MB, Hallerman E, Hare K, Hart T, Hartdegen R, Harvey-Brown Y, Hatfield R, Hawke T, Hermes C, Hitchmough R, Hoffmann PM, Howarth C, Hudson MA, Hussain SA, Huveneers C, Jacques H, Jorgensen D, Katdare S, Katsis LKD, Kaul R, Kaunda-Arara B, Keith-Diagne L, Kraus DT, de Lima TM, Lindeman K, Linsky J, Louis E, Loy A, Lughadha EN, Mangel JC, Marinari PE, Martin GM, Martinelli G, McGowan PJK, McInnes A, Teles Barbosa Mendes E, Millard MJ, Mirande C, Money D, Monks JM, Morales CL, Mumu NN, Negrao R, Nguyen AH, Niloy MNH, Norbury GL, Nordmeyer C, Norris D, O'Brien M, Oda GA, Orsenigo S, Outerbridge ME, Pasachnik S, Pérez-Jiménez JC, Pike C, Pilkington F, Plumb G, Portela RDCQ, Prohaska A, Quintana MG, Rakotondrasoa EF, Ranglack DH, Rankou H, Rawat AP, Reardon JT, Rheingantz ML, Richter SC, Rivers MC, Rogers LR, da Rosa P, Rose P, Royer E, Ryan C, de Mitcheson YJS, Salmon L, Salvador CH, Samways MJ, Sanjuan T, Souza Dos Santos A, Sasaki H, Schutz E, Scott HA, Scott RM, Serena F, Sharma SP, Shuey JA, Silva CJP, Simaika JP, Smith DR, Spaet JLY, Sultana S, Talukdar BK, Tatayah V, Thomas P, Tringali A, Trinh-Dinh H, Tuboi C, Usmani AA, Vasco-Palacios AM, Vié JC, Virens J, Walker A, Wallace B, Waller LJ, Wang H, Wearn OR, van Weerd M, Weigmann S, Willcox D, Woinarski J, Yong JWH, Young S. Testing a global standard for quantifying species recovery and assessing conservation impact. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1833-1849. [PMID: 34289517 DOI: 10.1111/cobi.13756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 06/13/2023]
Abstract
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.
Collapse
Affiliation(s)
- Molly K Grace
- Department of Zoology, University of Oxford, Oxford, UK
- IUCN Species Survival Commission, Caracas, Venezuela
| | - H Resit Akçakaya
- IUCN Species Survival Commission, Caracas, Venezuela
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | | | - Thomas M Brooks
- International Union for Conservation of Nature (IUCN), Gland, Switzerland
- World Agroforestry Center (ICRAF), University of the Philippines, Los Baños, Philippines
- Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Simon Hedges
- Wildlife Conservation Society, Bronx, New York, USA
- IUCN SSC Asian Elephant Specialist Group, Noida, India
- IUCN SSC Asian Wild Cattle Specialist Group, Chester, UK
| | | | - Michael Hoffmann
- IUCN Species Survival Commission, Caracas, Venezuela
- Conservation Programmes, Zoological Society of London, London, UK
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Trier, Germany
| | | | - David A Keith
- IUCN Species Survival Commission, Caracas, Venezuela
- Centre for Ecosystem Sciences, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- NSW Office of Environment and Heritage, Hurstville, New South Wales, Australia
| | | | - David P Mallon
- Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, UK
- IUCN SSC Antelope Specialist Group, Manchester, UK
| | - Erik Meijaard
- IUCN SSC Wild Pig Specialist Group and Centre of Excellence for Environmental Decisions, University of Queensland, Brisbane, Queensland, Australia
| | | | - Jon Paul Rodriguez
- IUCN Species Survival Commission, Caracas, Venezuela
- Instituto Venezolano de Investigaciones Científicas, and Provita, Caracas, Venezuela
| | - P J Stephenson
- IUCN SSC Species Monitoring Specialist Group, Gingins, Switzerland
- Laboratory for Conservation Biology, Department of Ecology & Evolution, UNIL - University of Lausanne, Lausanne, Switzerland
| | - Simon N Stuart
- IUCN Species Survival Commission, Caracas, Venezuela
- Synchronicity Earth, London, UK
| | | | - Pablo Acebes
- Centro de Investigación en Biodiversidad y Cambio Global, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Marina Arbetman
- Grupo Ecología de la Polinización, INIBIOMA, Universidad Nacional del Comahue, CONICET, Bariloche, Argentina
| | - Claudio Azat
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Gianluigi Bacchetta
- Centre for Conservation of Biodiversity, University of Cagliari, Cagliari, Italy
| | | | - Luís M D Barcelos
- Azorean Biodiversity Group, Centre for Ecology, Evolution, and Environmental Changes, Faculty of Agricultural and Environmental Sciences, University of the Azores, Angra do Heroísmo, Portugal
| | - Joao Pedro Barreiros
- Universidade dos Açores, Faculdade de Ciências Agrárias e do Ambiente, Rua Capitão João d'Ávila, Angra do Heroísmo, Portugal
| | | | - Danielle J Berger
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sabuj Bhattacharyya
- Centre for Ecological Sciences, Indian Institute of Sciences, Bangalore, India
| | - Gilad Bino
- University of New South Wales, Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - Paulo A V Borges
- Departamento de Ciências e Engenharia do Ambiente Universidade dos Açores, Azores, Portugal
| | - Raoul K Boughton
- Range Cattle Research and Education Center, University of Florida, Gainesville, Florida, USA
| | - H Jane Brockmann
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | | | - James Burton
- IUCN SSC Asian Wild Cattle Specialist Group, Cedar House, Chester, UK
| | | | | | | | | | - John P Carroll
- University of Nebraska, School of Natural Resources, Lincoln, Nebraska, USA
| | | | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Guillaume Chapron
- Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | | | | | - Donatella Cogoni
- Dipartimento di Scienze della Vita e dell'Ambiente, Centro Conservazione Biodiversità, Università degli Studi di Cagliari, Cagliari, Italy
| | - Rochelle Constantine
- School of Biological Sciences & Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Christie Anne Craig
- Endangered Wildlife Trust, Office 8 & 9, Centre for Biodiversity Conservation, Cape Town, South Africa
| | | | - Nishma Dahal
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | | | | | | | | | | | | | | | - David Fairclough
- Department of Primary Industries and Regional Development, Department of Fisheries, Hillarys, Western Australia, Australia
| | | | - Giuseppe Fenu
- Dipartimento di Scienze della Vita e dell'Ambiente, Centro Conservazione Biodiversità, Università degli Studi di Cagliari, Cagliari, Italy
| | | | | | - Brittany Finucci
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Rita Földesi
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Catherine M Foley
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawai'i, USA
| | - Matthew Ford
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | | | - Ricardo Garcia-Sandoval
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Mexico
| | - Penny C Gardner
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Malaysia
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autonoma de Mexico, Tercer Circuito s/n, Ciudad Universitaria, Ciudad de México, México
| | | | - Irene Gauto
- Asociación Etnobotánica Paraguaya, Lambaré, Paraguay
| | | | | | | | - Benito A González
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Tandora D Grant
- San Diego Zoo Institute for Conservation Research, San Diego, California, USA
| | | | - Andrew J Gregory
- Bowling Green State University, School of Earth Environment and Society, Bowling Green, Ohio, USA
| | | | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Noelle C Guernsey
- World Wildlife Fund Inc., Northern Great Plains Program, Bozeman, Montana, USA
| | - Garima Gupta
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| | | | - Christian A Hagen
- Department of Fisheries & Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - Madison B Hall
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Eric Hallerman
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kelly Hare
- Urban Wildlife Trust, Wellington/Hamilton, New Zealand
| | - Tom Hart
- Department of Zoology, Oxford University, Oxford, UK
| | | | | | - Richard Hatfield
- The Xerces Society for Invertebrate Conservation, Portland, Oregon, USA
| | - Tahneal Hawke
- University of New South Wales, Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | | | - Rod Hitchmough
- Department of Conservation-Te Papa Atawhai, Wellington, New Zealand
| | | | | | | | | | - Charlie Huveneers
- Southern Shark Ecology Group, Flinders University, Adelaide, South Australia, Australia
| | | | - Dennis Jorgensen
- World Wildlife Fund Inc., Northern Great Plains Program, Bozeman, Montana, USA
| | | | - Lydia K D Katsis
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon, UK
| | | | - Boaz Kaunda-Arara
- Department of Fisheries and Aquatic Sciences, University of Eldoret, Eldoret, Kenya
| | | | - Daniel T Kraus
- University of Waterloo, School of Environment, Resources and Sustainability, Waterloo, Ontario, Canada
| | | | - Ken Lindeman
- Florida Institute of Technology, Program in Sustainability Studies, Melbourne, Florida, USA
| | - Jean Linsky
- Botanic Gardens Conservation International, Richmond, UK
| | - Edward Louis
- Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
| | - Anna Loy
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | | | - Jeffrey C Mangel
- Carrera de Biologia Marina, Universidad Cientifica del Sur, Lima, Peru
| | - Paul E Marinari
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Gabriel M Martin
- Centro de Investigación Esquel de Montaña y Estepa Patagónica, CONICET, Buenos Aires, Argentina
| | - Gustavo Martinelli
- National Center for Flora Conservation (CNCFlora), Rio de Janeiro, Brazil
| | - Philip J K McGowan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| | - Alistair McInnes
- Seabird Conservation Programme, BirdLife South Africa, Foreshore, South Africa
| | | | | | | | - Daniel Money
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Carolina Laura Morales
- Grupo Ecología de la Polinización, INIBIOMA, Universidad Nacional del Comahue, CONICET, Bariloche, Argentina
| | | | | | - Anh Ha Nguyen
- Fauna & Flora International - Vietnam Programme, Hanoi, Vietnam
| | | | | | | | - Darren Norris
- School of Environmental Sciences, Federal University of Amapá, Macapá, Brazil
| | - Mark O'Brien
- BirdLife International Pacific Regional Office, Suva, Fiji
| | - Gabriela Akemi Oda
- Federal Rural University of Rio de Janeiro - UFRRJ, Department of Environmental Sciences, Forestry Institute, Seropédica, Rio de Janeiro, Brazil
| | - Simone Orsenigo
- Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia; Dipartimento di Scienze della Vita e dell'Ambiente, Centro Conservazione Biodiversità, Università degli Studi di Cagliari, Cagliari, Italy
| | | | | | | | | | | | - Glenn Plumb
- US National Park Service, Livingston, Montana, USA
| | | | - Ana Prohaska
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Manuel G Quintana
- Division of Invertebrates, Argentine Museum of Natural Sciences, Buenos Aires, Argentina
| | | | | | - Hassan Rankou
- IUCN SSC Orchid Specialist Group, Royal Botanic Gardens, Richmond, Surrey, UK
| | | | - James Thomas Reardon
- Department of Conservation, New Zealand, Fiordland District Office, Te Anau, New Zealand
| | - Marcelo Lopes Rheingantz
- Universidade Federal do Rio de Janeiro, Laboratório de Ecologia e Conservação de Populações, Centro de Ciências da Saúde - Instituto de Biologia, Rio de Janeiro, RJ, Brazil
| | - Stephen C Richter
- Division of Natural Areas and Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Malin C Rivers
- Botanic Gardens Conservation International, Richmond, UK
| | | | - Patrícia da Rosa
- National Center for Flora Conservation (CNCFlora), Rio de Janeiro, Brazil
| | | | | | - Catherine Ryan
- Auckland University of Technology, School of Science, Auckland City, New Zealand
| | | | - Lily Salmon
- Nottingham Trent University, Brackenhurst Campus, Southwell, Nottinghamshire, UK
| | | | - Michael J Samways
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Amanda Souza Dos Santos
- Universidade Federal do Rio de Janeiro, Health Science Centre, Biology Institute, Plant Ecology Laboratory, Rio de Janeiro, Brazil
| | | | - Emmanuel Schutz
- D'ABOVILLE Foundation and Demo Farm Inc, Makati, Philippines
| | | | | | - Fabrizio Serena
- Institute for Biological Resources and Marine Biotechnology, National Research Council-(CNR -IRBIM), Mazara del Vallo, Italy
| | | | - John A Shuey
- The Nature Conservancy, Indianapolis, Indiana, USA
| | - Carlos Julio Polo Silva
- Facultad de Ciencias Naturales e Ingeniería, Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia
| | - John P Simaika
- Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, Delft, The Netherlands
| | - David R Smith
- U.S. Geological Survey, Kearneysville, West Virginia, USA
| | - Julia L Y Spaet
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | - Aída M Vasco-Palacios
- Grupo de Microbiología Ambiental - BioMicro, Escuela de Microbiología, Universidad de Antioquia, UdeA, Medellín, Colombia
- Fundación Biodiversa Colombia, FBC, Bogotá, Colombia
| | | | - Jo Virens
- University of Otago, Dunedin, New Zealand
| | - Alan Walker
- Centre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK
| | | | - Lauren J Waller
- Southern African Foundation for the Conservation of Coastal Birds, Cape Town, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Belville, South Africa
| | | | - Oliver R Wearn
- Fauna & Flora International - Vietnam Programme, Hanoi, Vietnam
| | - Merlijn van Weerd
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Simon Weigmann
- Elasmo-Lab, Elasmobranch Research Laboratory, Hamburg, Germany
- Center of Natural History, University of Hamburg, Hamburg, Germany
| | - Daniel Willcox
- Save Vietnam's Wildlife, Cuc Phuong National Park, Ninh Bình Province, Vietnam
| | - John Woinarski
- Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Jean W H Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stuart Young
- IUCN SSC Asian Wild Cattle Specialist Group, Cedar House, Chester, UK
| |
Collapse
|
44
|
Andrade RS, Freitas L. Impact of an IUCN national Red List of threatened flora on scientific attention. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Red Lists are thought to attract attention to the conservation of threatened species. Determining the impact of these lists on the attention of scientists is a matter of consequence for biodiversity conservation. We evaluated trends in mentions of Brazilian angiosperm plants in the biodiversity conservation literature and tested the effect of the Red List of Brazilian Flora (RLBF) publication on these mentions. We collected mentions in the literature available in Google Scholar from the years 1990-2020, for 2449 Brazilian angiosperm species assessed in different IUCN categories. We used a Bayesian structural time-series method to test the effect of the RLBF publication on the number of mentions for the set of species in the IUCN categories, angiosperm families, and plants of commercial interest. The results showed a gap in mentions for many threatened and Data Deficient species in the scientific literature. We also found that the mentions were biased toward species of commercial interest and were unrelated to their threat status. Publication of the RLBF positively affected the number of mentions for IUCN threat categories and for more than half of the angiosperm families. These results were obtained after a few species of commercial interest were excluded from each treated group. This study suggests that the Red List assessments are essential to determine priorities for resource allocation to scientific activities. However, this effect was not sufficient to reduce the bias in scientific attention. Our findings support the need to stimulate more effective programs to fund research on threatened plant species.
Collapse
Affiliation(s)
- RS Andrade
- Jardim Botânico do Rio de Janeiro, CEP 20460-030, Rio de Janeiro, Brazil
| | - L Freitas
- Jardim Botânico do Rio de Janeiro, CEP 20460-030, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Strier KB, Melo FR, Mendes SL, Valença-Montenegro MM, Rylands AB, Mittermeier RA, Jerusalinsky L. Science, Policy, and Conservation Management for a Critically Endangered Primate in the Atlantic Forest of Brazil. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.734183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-standing concerns about the status of the world's endangered primates have stimulated significant international efforts, such as the primate action plans published by the Primate Specialist Group of the International Union for Conservation of Nature's Species Survival Commission. However, national-level action plans that bring together diverse scientific experts, non-governmental organizations, and governmental agencies to focus on improving the status of endangered species are generally rare. Here, we highlight one such plan published a decade ago, the Brazilian National Action Plan for the Conservation of Muriquis, which promoted the integration of scientific findings about the behavioral ecology, demography, and genetics of northern muriquis with conservation measures supported by the Brazilian government. This plan provided a holistic framework for the development of an effective national strategy that has contributed to significant advances in research and management applied to the conservation of this Critically Endangered species. We hope that this model for muriquis will stimulate conservationists around the world to pursue integrative national-level sponsorship of action plans on behalf of other endangered species.
Collapse
|
46
|
Abraham RK, Herr MW, Sterkhova VV, Otterholt R, Siler CD, Sanguila MB, Brown RM. Revisiting Linnaean and Wallacean Shortfalls in Mindanao Fanged Frogs: The Limnonectes magnus Complex Consists of Only Two Species. HERPETOLOGICAL MONOGRAPHS 2021. [DOI: 10.1655/herpmonographs-d-20-00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robin Kurian Abraham
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, KS 66045, USA
| | - Mark William Herr
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, KS 66045, USA
| | - Viktoria V. Sterkhova
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, KS 66045, USA
| | - Rayanna Otterholt
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, KS 66045, USA
| | - Cameron D. Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, USA
| | - Marites Bonachita Sanguila
- Biodiversity Informatics and Research Center, Father Saturnino Urios University, San Francisco Street, Butuan City, 8600 Agusan del Norte, Philippines
| | - Rafe M. Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Boulevard, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
47
|
Branco P, Segurado P, Costa MJ, Teixeira A, Santos JM, Ferreira MT, Duarte G. Knowledge Gaps in the Definition of Threats for the Red List Assessment of European Freshwater-Dependent Fish Species. BIOLOGY 2021; 10:biology10070680. [PMID: 34356535 PMCID: PMC8301433 DOI: 10.3390/biology10070680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This study aims to understand if the threats to freshwater-dependent species identified by The International Union for Conservation of Nature Red List of Threatened Species are correctly supported by valid literature. The results show that 99% of threats are not supported by validated published scientific knowledge. This may lead to ineffective conservation and management plans. Funding to study and fill baseline knowledge gaps about threats should be a priority. Abstract Freshwater ecosystems are disproportionally important for biodiversity conservation, as they support more than 9% of known animal species while representing less than 1% of the Earth’s surface. However, the vast majority of the threats (99%, or 826 out of 837) identified by the International Union for Conservation of Nature Red List of Threatened Species known to affect the 434 known freshwater-dependent fish and lampreys of Europe are not supported by validated published scientific knowledge. This general lack of information about freshwater-dependent fish and lamprey species may have deleterious effects on species conservation, and additional funding is required to fill baseline knowledge gaps.
Collapse
|
48
|
Ortega-Andrade HM, Rodes Blanco M, Cisneros-Heredia DF, Guerra Arévalo N, López de Vargas-Machuca KG, Sánchez-Nivicela JC, Armijos-Ojeda D, Cáceres Andrade JF, Reyes-Puig C, Quezada Riera AB, Székely P, Rojas Soto OR, Székely D, Guayasamin JM, Siavichay Pesántez FR, Amador L, Betancourt R, Ramírez-Jaramillo SM, Timbe-Borja B, Gómez Laporta M, Webster Bernal JF, Oyagata Cachimuel LA, Chávez Jácome D, Posse V, Valle-Piñuela C, Padilla Jiménez D, Reyes-Puig JP, Terán-Valdez A, Coloma LA, Pérez Lara MB, Carvajal-Endara S, Urgilés M, Yánez Muñoz MH. Red List assessment of amphibian species of Ecuador: A multidimensional approach for their conservation. PLoS One 2021; 16:e0251027. [PMID: 33956885 PMCID: PMC8101765 DOI: 10.1371/journal.pone.0251027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Ecuador is one of the most biodiverse countries in the world, but faces severe pressures and threats to its natural ecosystems. Numerous species have declined and require to be objectively evaluated and quantified, as a step towards the development of conservation strategies. Herein, we present an updated National Red List Assessment for amphibian species of Ecuador, with one of the most detailed and complete coverages for any Ecuadorian taxonomic group to date. Based on standardized methodologies that integrate taxonomic work, spatial analyses, and ecological niche modeling, we assessed the extinction risk and identified the main threats for all Ecuadorian native amphibians (635 species), using the IUCN Red List Categories and Criteria. Our evaluation reveals that 57% (363 species) are categorized as Threatened, 12% (78 species) as Near Threatened, 4% (26 species) as Data Deficient, and 27% (168 species) as Least Concern. Our assessment almost doubles the number of threatened species in comparison with previous evaluations. In addition to habitat loss, the expansion of the agricultural/cattle raising frontier and other anthropogenic threats (roads, human settlements, and mining/oil activities) amplify the incidence of other pressures as relevant predictors of ecological integrity. Potential synergic effects with climate change and emergent diseases (apparently responsible for the sudden declines), had particular importance amongst the threats sustained by Ecuadorian amphibians. Most threatened species are distributed in montane forests and paramo habitats of the Andes, with nearly 10% of them occurring outside the National System of Protected Areas of the Ecuadorian government. Based on our results, we recommend the following actions: (i) An increase of the National System of Protected Areas to include threatened species. (ii) Supporting the ex/in-situ conservation programs to protect species considered like Critically Endangered and Endangered. (iii) Focalizing research efforts towards the description of new species, as well as species currently categorized as Data Deficient (DD) that may turn out to be threatened. The implementation of the described actions is challenging, but urgent, given the current conservation crisis faced by amphibians.
Collapse
Affiliation(s)
- H. Mauricio Ortega-Andrade
- Grupo de Biogeografía y Ecología Espacial, Universidad Regional Amazónica Ikiam, Tena, Ecuador
- Instituto Nacional de Biodiversidad, Casilla, Quito, Ecuador
- * E-mail:
| | - Marina Rodes Blanco
- Grupo de Biogeografía y Ecología Espacial, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Diego F. Cisneros-Heredia
- Instituto Nacional de Biodiversidad, Casilla, Quito, Ecuador
- Instituto de Diversidad Biológica Tropical iBIOTROP, Museo de Zoología & Laboratorio de Zoología Terrestre, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Nereida Guerra Arévalo
- Grupo de Biogeografía y Ecología Espacial, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | | - Juan C. Sánchez-Nivicela
- Instituto Nacional de Biodiversidad, Casilla, Quito, Ecuador
- Instituto de Diversidad Biológica Tropical iBIOTROP, Museo de Zoología & Laboratorio de Zoología Terrestre, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Grupo de Investigación Evolución y Ecología de Fauna Neotropical, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Diego Armijos-Ojeda
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | - Carolina Reyes-Puig
- Instituto Nacional de Biodiversidad, Casilla, Quito, Ecuador
- Instituto de Diversidad Biológica Tropical iBIOTROP, Museo de Zoología & Laboratorio de Zoología Terrestre, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Paul Székely
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | - Diana Székely
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Juan M. Guayasamin
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera USFQ, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Luis Amador
- Instituto de Ciencias Ambientales y Evolutivas, Doctorado en Ciencias m. Ecología y Evolución, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | | | | | | - Daniel Chávez Jácome
- Instituto de Ciencias Ambientales y Evolutivas, Doctorado en Ciencias m. Ecología y Evolución, Universidad Austral de Chile, Valdivia, Chile
| | - Valentina Posse
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | - Juan Pablo Reyes-Puig
- Instituto Nacional de Biodiversidad, Casilla, Quito, Ecuador
- Fundación Ecominga/Fundación Oscar Efrén Reyes, Baños, Ecuador
| | - Andrea Terán-Valdez
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Quito, Ecuador
| | - Luis A. Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Quito, Ecuador
| | | | - Sofía Carvajal-Endara
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Quito, Ecuador
| | - Miguel Urgilés
- Instituto Nacional de Biodiversidad, Casilla, Quito, Ecuador
| | | |
Collapse
|
49
|
Abstract
It is important to understand the dynamics of population size to accurately assess threats and implement conservation activities when required. However, inaccurate estimates are harming both the threat estimation process, and the resulting conservation actions. Here, we address the extinction threats to Scincella huanrenensis, a species described in the People’s Republic of China, but also occurring on the Korean peninsula. Estimating the threats to the species is not an easy task due to its unknown population status in the Democratic People’s Republic of Korea. Here we analysed the literature to acquire the known presence point for the species, along with datapoints originating from opportunistic field surveys, and employed habitat suitability models to estimate the range of the species. We then followed the categories and criteria of the IUCN Red List of Threatened Species to assess the extinction risk of the species. We found the species not to be fitting the threatened category at the global scale based on the range size, the only category for which enough data was available. We recommend the status of the species on the IUCN Red List of Threatened Species to be updated as it is now listed as critically endangered (CR), a listing fitting a national assessment for the People’s Republic (PR) of China. While this species is possibly less threatened than currently listed, this is not a genuine improvement, and specific conservation aspects should not be neglected due to its specialisation to medium to high elevation habitat.
Collapse
|
50
|
Alvarez-Blanco P, Cerdá X, Hefetz A, Boulay R, Bertó-Moran A, Díaz-Paniagua C, Lenoir A, Billen J, Liedtke HC, Chauhan KR, Bhagavathy G, Angulo E. Effects of the Argentine ant venom on terrestrial amphibians. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:216-226. [PMID: 32812277 DOI: 10.1111/cobi.13604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Invasive species have major impacts on biodiversity and are one of the primary causes of amphibian decline and extinction. Unlike other top ant invaders that negatively affect larger fauna via chemical defensive compounds, the Argentine ant (Linepithema humile) does not have a functional sting. Nonetheless, it deploys defensive compounds against competitors and adversaries. We estimated levels of ant aggression toward 3 native terrestrial amphibians by challenging juveniles in field ant trails and in lab ant foraging arenas. We measured the composition and quantities of toxin in L. humile by analyzing pygidial glands and whole-body contents. We examined the mechanisms of toxicity in juvenile amphibians by quantifying the toxin in amphibian tissues, searching for histological damages, and calculating toxic doses for each amphibian species. To determine the potential scope of the threat to amphibians, we used global databases to estimate the number, ranges, and conservation status of terrestrial amphibian species with ranges that overlap those of L. humile. Juvenile amphibians co-occurring spatially and temporally with L. humile die when they encounter L. humile on an ant trail. In the lab, when a juvenile amphibian came in contact with L. humile the ants reacted quickly to spray pygidial-gland venom onto the juveniles. Iridomyrmecin was the toxic compound in the spray. Following absorption, it accumulated in brain, kidney, and liver tissue. Toxic dose for amphibian was species dependent. Worldwide, an estimated 817 terrestrial amphibian species overlap in range with L. humile, and 6.2% of them are classified as threatened. Our findings highlight the high potential of L. humile venom to negatively affect amphibian juveniles and provide a basis for exploring the largely overlooked impacts this ant has in its wide invasive range.
Collapse
Affiliation(s)
| | - Xim Cerdá
- Estación Biológica de Doñana CSIC, Avda. Americo Vespucio 26, Sevilla, 41092, Spain
| | - Abraham Hefetz
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, IL-69978, Israel
| | - Raphaël Boulay
- Institut de Recherches sur la Biologie de l'Insecte, Université François Rabelais, CNRS UMR 7261, Parc de Grandmont, Tours, 37200, France
| | | | - Carmen Díaz-Paniagua
- Estación Biológica de Doñana CSIC, Avda. Americo Vespucio 26, Sevilla, 41092, Spain
| | - Alain Lenoir
- Institut de Recherches sur la Biologie de l'Insecte, Université François Rabelais, CNRS UMR 7261, Parc de Grandmont, Tours, 37200, France
| | - Johan Billen
- Laboratory of Socioecology and Social Evolution, Department of Biology, Naamsestraat 59, box 2466, Leuven, 3000, Belgium
| | - H Christoph Liedtke
- Estación Biológica de Doñana CSIC, Avda. Americo Vespucio 26, Sevilla, 41092, Spain
| | - Kamlesh R Chauhan
- Agricultural Research Service, U.S. Department of Agriculture, BLDG 007, BARC-West, 10300 Baltimore Blvd., Beltsville, MD, 20705, U.S.A
| | - Ganga Bhagavathy
- Agricultural Research Service, U.S. Department of Agriculture, BLDG 007, BARC-West, 10300 Baltimore Blvd., Beltsville, MD, 20705, U.S.A
| | - Elena Angulo
- Estación Biológica de Doñana CSIC, Avda. Americo Vespucio 26, Sevilla, 41092, Spain
| |
Collapse
|