1
|
Duarte MR, de Moraes Heredia AS, Arantes VC, de Barros Reis MA, Rodrigues PRM, Gorgulho BM, Fregadolli CH, Latorraca MQ. The interaction of the FTO gene and age interferes with macronutrient and vitamin intake in women with morbid obesity. Exp Gerontol 2024; 193:112463. [PMID: 38789015 DOI: 10.1016/j.exger.2024.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Fat mass and obesity-related (FTO) gene single nucleotide polymorphisms (SNPs) interferes with food preferences that impact macronutrient intake. Few studies have investigated the relationship of this polymorphisms with the intake of micronutrients. Moreover, studies have shown multiple micronutrient deficiencies in patients with obesity. This work evaluated the effect of the FTO rs9939609 gene polymorphism on dietary nutritional quality and food intake of macronutrients and vitamins in of women with obesity candidates for metabolic surgery. The study included 106 women (24 to 60 years old) with BMIs of 36.1 to 64.8 kg/m2. A food frequency questionnaire validated for the local population was applied to obtain information about food intake. The Index of Nutritional Quality (INQ) was used to assess the adequacy of macronutrient and vitamin intake. Energy, protein and lipid intakes were higher in carriers of the A allele compared to TT in the younger age groups but were similar in the class of subjects aged ≥45 years. The INQ for protein was higher in carriers of the A allele than in carriers of the TT allele. The INQs for protein, carbohydrate, vitamins B2, B3 and B6 decreased, whereas the INQ for vitamin C increased with advancing age. The INQ for vitamin A was lower in AA than in TT, regardless of age, whereas vitamin E was higher in younger AA than in older AA. The INQ for vitamin B9 was higher in younger women than in older women. In conclusion, the FTO gene contributed to the intake of more energy, protein and lipids and interfered with the intake of vitamins B9, A and E. With the exception of vitamin A, the effect of the genotype was attenuated with ageing.
Collapse
Affiliation(s)
- Miriam Ribeiro Duarte
- Master in Nutrition, Food and Metabolism, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Aline Souza de Moraes Heredia
- Master in Nutrition, Food and Metabolism, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Vanessa Cristina Arantes
- Department of Food Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | | | | | - Bartira Mendes Gorgulho
- Department of Food Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Carlos Henrique Fregadolli
- Master in Nutrition, Food and Metabolism, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Márcia Queiroz Latorraca
- Department of Food Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
2
|
Li G, Hu Y, Zhang W, Wang J, Sun L, Yu J, Manza P, Volkow ND, Ji G, Wang GJ, Zhang Y. FTO variant is associated with changes in BMI, ghrelin, and brain function following bariatric surgery. JCI Insight 2024; 9:e175967. [PMID: 39088267 PMCID: PMC11385082 DOI: 10.1172/jci.insight.175967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDA polymorphism in the fat mass and obesity-associated gene (FTO) is linked to enhanced neural sensitivity to food cues and attenuated ghrelin suppression. Risk allele carriers regain more weight than noncarriers after bariatric surgery. It remains unclear how FTO variation affects brain function and ghrelin following surgery.METHODSResting-state functional magnetic resonance imaging and cue-reactivity functional magnetic resonance imaging with high-/low-caloric food cues were performed before surgery and at 1, 6, and 12 months after surgery to examine brain function in 16 carriers with 1 copy of the rs9939609 A allele (AT) and 26 noncarriers (TT). Behavioral assessments up to 5 years after surgery were also conducted.RESULTSThe AT group relative to the TT group had smaller BMI loss at 12-60 months after surgery and lower resting-state activity in posterior cingulate cortex following laparoscopic sleeve gastrectomy (group-by-time interaction effects). Meanwhile, the AT group relative to the TT group showed greater food cue responses in dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and insula (group effects). There were negative associations of weight loss with ghrelin and greater activation in DLPFC, DMPFC and insula in the AT but not the TT group.CONCLUSIONThese findings indicate that FTO variation is associated with the evolution of ghrelin signaling and brain function after bariatric surgery, which might hinder weight loss.TRIAL REGISTRATIONChinese Clinical Trial Registry Center, ChiCTR-OOB-15006346.FUNDINGThis work was supported by the National Natural Science Foundation of China (grant nos. 82172023, 82202252, 82302292); National Key R&D Program of China (no. 2022YFC3500603); Natural Science Basic Research Program of Shaanxi (grant nos. 2022JC-44, 2022JQ-622, 2023-JC-QN-0922, 2023-ZDLSF-07); Fundamental Research Funds for the Central Universities (grant nos. ZYTS23188, XJSJ23190, XJS221201, QTZX23093); and the Intramural Research Program of the National Institute on Alcoholism and Alcohol Abuse (grant no. Y1AA3009).
Collapse
Affiliation(s)
- Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi’an, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi’an, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi’an, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi’an, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Juan Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi’an, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Thapaliya G, Kundu P, Jansen E, Naymik MA, Lee R, Bruchhage MMK, D’Sa V, Huentelman MJ, Lewis CR, Müller HG, Deoni SCL, Carnell S. FTO variation and early frontostriatal brain development in children. Obesity (Silver Spring) 2024; 32:156-165. [PMID: 37817330 PMCID: PMC10840826 DOI: 10.1002/oby.23926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Common obesity-associated genetic variants at the fat mass and obesity-associated (FTO) locus have been associated with appetitive behaviors and altered structure and function of frontostriatal brain regions. The authors aimed to investigate the influence of FTO variation on frontostriatal appetite circuits in early life. METHODS Data were drawn from RESONANCE, a longitudinal study of early brain development. Growth trajectories of nucleus accumbens and frontal lobe volumes, as well as total gray matter and white matter volume, by risk allele (AA) carrier status on FTO single-nucleotide polymorphism rs9939609 were examined in 228 children (102 female, 126 male) using magnetic resonance imaging assessments obtained from infancy through middle childhood. The authors fit functional concurrent regression models with brain volume outcomes over age as functional responses, and FTO genotype, sex, BMI z score, and maternal education were included as predictors. RESULTS Bootstrap pointwise 95% CI for regression coefficient functions in the functional concurrent regression models showed that the AA group versus the group with no risk allele (TT) had greater nucleus accumbens volume (adjusted for total brain volume) in the interval of 750 to 2250 days (2-6 years). CONCLUSIONS These findings suggest that common genetic risk for obesity is associated with differences in early development of brain reward circuitry and argue for investigating dynamic relationships among genotype, brain, behavior, and weight throughout development.
Collapse
Affiliation(s)
- Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Poorbita Kundu
- Department of Statistics, University of California, Davis, Davis, CA, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | | - Richard Lee
- Department of Psychiatry, and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Muriel Marisa Katharina Bruchhage
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Rhode Island Hospital, Providence, RI, USA
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Psychology, Social Sciences, University of Stavanger, Norway
| | - Viren D’Sa
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | | | - Candace R Lewis
- Neurogenomics Division, TGen, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, United States
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, Davis, CA, USA
| | - Sean C. L. Deoni
- Maternal, Newborn and Child Health Discovery & Tools, Bill & Melinda Gates Foundation, Seattle, WA
| | | | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
4
|
Carnell S, Thapaliya G, Jansen E, Chen L. Biobehavioral susceptibility for obesity in childhood: Behavioral, genetic and neuroimaging studies of appetite. Physiol Behav 2023; 271:114313. [PMID: 37544571 PMCID: PMC10591980 DOI: 10.1016/j.physbeh.2023.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Modern food environments are conducive to overeating and weight gain, but not everyone develops obesity. One reason for this may be that individuals differ in appetitive characteristics, or traits, that manifest early in life and go on to influence their behavioral susceptibility to gain and maintain excess weight. Classic studies showing that eating behavior in children can be measured by behavioral paradigms such as tests of caloric compensation and eating in the absence of hunger inspired the development and validation of psychometric instruments to assess appetitive characteristics in children and infants. A large body of evidence now suggests that food approach traits increase obesity risk, while food avoidant traits, such as satiety responsiveness, decrease obesity risk. Twin studies and genetic association studies have demonstrated that appetitive characteristics are heritable, consistent with a biological etiology. However, family environment factors are also influential, with mounting evidence suggesting that genetic and environmental risk factors interact and correlate with consequences for child eating behavior and weight. Further, neuroimaging studies are revealing that individual differences in responses to visual food cues, as well as to small tastes and larger amounts of food, across a number of brain regions involved in reward/motivation, cognitive control and other functions, may contribute to individual variation in appetitive behavior. Growing evidence also suggests that variation on psychometric measures of appetite is associated with regional differences in brain structure, and differential patterns of resting state functional connectivity. Large prospective studies beginning in infancy promise to enrich our understanding of neural and other biological underpinnings of appetite and obesity development in early life, and how the interplay between genetic and environmental factors affects appetitive systems. The biobehavioral susceptibility model of obesity development and maintenance outlined in this narrative review has implications for prevention and treatment of obesity in childhood.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Liuyi Chen
- Division of Psychiatric Neuroimaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
5
|
Edwin Thanarajah S, Hanssen R, Melzer C, Tittgemeyer M. Increased meso-striatal connectivity mediates trait impulsivity in FTO variant carriers. Front Endocrinol (Lausanne) 2023; 14:1130203. [PMID: 37223038 PMCID: PMC10200952 DOI: 10.3389/fendo.2023.1130203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 05/25/2023] Open
Abstract
Objective While variations in the first intron of the fat mass and obesity-associated gene (FTO, rs9939609 T/A variant) have long been identified as a major contributor to polygenic obesity, the mechanisms underlying weight gain in risk allele carriers still remain elusive. On a behavioral level, FTO variants have been robustly linked to trait impulsivity. The regulation of dopaminergic signaling in the meso-striatal neurocircuitry by these FTO variants might represent one mechanism for this behavioral alteration. Notably, recent evidence indicates that variants of FTO also modulate several genes involved in cell proliferation and neuronal development. Hence, FTO polymorphisms might establish a predisposition to heightened trait impulsivity during neurodevelopment by altering structural meso-striatal connectivity. We here explored whether the greater impulsivity of FTO variant carriers was mediated by structural differences in the connectivity between the dopaminergic midbrain and the ventral striatum. Methods Eighty-seven healthy normal-weight volunteers participated in the study; 42 FTO risk allele carriers (rs9939609 T/A variant, FTO + group: AT, AA) and 39 non-carriers (FTO - group: TT) were matched for age, sex and body mass index (BMI). Trait impulsivity was assessed via the Barratt Impulsiveness Scale (BIS-11) and structural connectivity between the ventral tegmental area/substantia nigra (VTA/SN) and the nucleus accumbens (NAc) was measured via diffusion weighted MRI and probabilistic tractography. Results We found that FTO risk allele carriers compared to non-carriers, demonstrated greater motor impulsivity (p = 0.04) and increased structural connectivity between VTA/SN and the NAc (p< 0.05). Increased connectivity partially mediated the effect of FTO genetic status on motor impulsivity. Conclusion We report altered structural connectivity as one mechanism by which FTO variants contribute to increased impulsivity, indicating that FTO variants may exert their effect on obesity-promoting behavioral traits at least partially through neuroplastic alterations in humans.
Collapse
Affiliation(s)
- Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
6
|
Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
|
7
|
Cruise TM, Kotlo K, Malovic E, Pandey SC. Advances in DNA, histone, and RNA methylation mechanisms in the pathophysiology of alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10871. [PMID: 38389820 PMCID: PMC10880780 DOI: 10.3389/adar.2023.10871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2024]
Abstract
Alcohol use disorder (AUD) has a complex, multifactorial etiology involving dysregulation across several brain regions and peripheral organs. Acute and chronic alcohol consumption cause epigenetic modifications in these systems, which underlie changes in gene expression and subsequently, the emergence of pathophysiological phenotypes associated with AUD. One such epigenetic mechanism is methylation, which can occur on DNA, histones, and RNA. Methylation relies on one carbon metabolism to generate methyl groups, which can then be transferred to acceptor substrates. While DNA methylation of particular genes generally represses transcription, methylation of histones and RNA can have bidirectional effects on gene expression. This review summarizes one carbon metabolism and the mechanisms behind methylation of DNA, histones, and RNA. We discuss the field's findings regarding alcohol's global and gene-specific effects on methylation in the brain and liver and the resulting phenotypes characteristic of AUD.
Collapse
Affiliation(s)
- Tara M. Cruise
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Kumar Kotlo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Emir Malovic
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Lee H, Kwon J, Lee JE, Park BY, Park H. Disrupted stepwise functional brain organization in overweight individuals. Commun Biol 2022; 5:11. [PMID: 35013513 PMCID: PMC8748821 DOI: 10.1038/s42003-021-02957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Functional hierarchy establishes core axes of the brain, and overweight individuals show alterations in the networks anchored on these axes, particularly in those involved in sensory and cognitive control systems. However, quantitative assessments of hierarchical brain organization in overweight individuals are lacking. Capitalizing stepwise functional connectivity analysis, we assess altered functional connectivity in overweight individuals relative to healthy weight controls along the brain hierarchy. Seeding from the brain regions associated with obesity phenotypes, we conduct stepwise connectivity analysis at different step distances and compare functional degrees between the groups. We find strong functional connectivity in the somatomotor and prefrontal cortices in both groups, and both converge to transmodal systems, including frontoparietal and default-mode networks, as the number of steps increased. Conversely, compared with the healthy weight group, overweight individuals show a marked decrease in functional degree in somatosensory and attention networks across the steps, whereas visual and limbic networks show an increasing trend. Associating functional degree with eating behaviors, we observe negative associations between functional degrees in sensory networks and hunger and disinhibition-related behaviors. Our findings suggest that overweight individuals show disrupted functional network organization along the hierarchical axis of the brain and these results provide insights for behavioral associations.
Collapse
Affiliation(s)
- Hyebin Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Junmo Kwon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Jong-Eun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.
- Department of Data Science, Inha University, Incheon, Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
9
|
Abd Ali AH, Shkurat TP, Amelina MA. Investigation of the rs9939609 polymorphism of the FTO gene in obese children and adolescents living. THE 9TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST 2021) 2022. [DOI: 10.1063/5.0113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Novais PFS, Crisp AH, Leandro-Merhi VA, Cintra RMG, Rasera I, Oliveira MRMD. Genetic polymorphisms are not associated with energy intake one year after Roux-Y gastric bypass (RYGB) in women. J Hum Nutr Diet 2021; 35:739-747. [PMID: 34935211 DOI: 10.1111/jhn.12984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND This study aimed to investigate the influence of food intake on body weight loss and the association of gene polymorphisms, 1 year after Roux-en-Y gastric bypass (RYGB) surgery. METHODS In total, ninety-five obese women (age ranged 20-50 years) in a Brazilian cohort underwent RYGB surgery and completed the study. Anthropometric measurements and food intake were assessed before and 1 year after surgery. Twelve gene polymorphisms (GHRL rs26802; GHSR rs572169; LEP rs7799039; LEPR rs1137101; 5-HT2C rs3813929; UCP2 rs659366; UCP2 rs660339; UCP3 rs1800849; SH2B1 rs7498665; TAS1R2 rs35874116; TAS1R2 rs9701796; and FTO rs9939609) were determined using a real-time PCR reaction and a TaqMan assay. The subjects were divided into quartiles regarding to percentage of excess weight loss (%EWL). The effect of genetic variants on energy and macronutrient intake was evaluated by simple logistic regression, followed by multiple logistic regression. RESULTS It was found that subjects in the first and second quartile showed a higher initial body mass index (BMI). Energy and macronutrient intake before and 1 year after RYGB surgery did not differ between the %EWL quartiles. None of gene polymorphisms investigated showed an association with the estimated energy intake 1 year after surgery. CONCLUSION In conclusion, the estimate energy and food intake did not predict a greater body weight loss 1 year after RYGB surgery. In addition, the 12 gene polymorphism investigated did not affect the energy intake among female patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | | | - Irineu Rasera
- Clínica Bariátrica de Piracicaba, Piracicaba, SP, Brazil
| | | |
Collapse
|
11
|
Ali AHA, Pavlovna ST, Vladimirovna KG, Abbas AH. The association between the genes LPL Ser447Ter, CMA1-1903A > G, FTO rs9939609 and obesity in the Rostov region from Russia. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating weight and speed at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2021; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Effective measurement and adaption of eating behaviours (e.g., eating speed) may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove a less intensive and more economical approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but little evidence that individuals with medium- or high-fat diets ate faster. Conclusions: We demonstrated the potential for assessing eating weight and speed in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
13
|
Mehrdad M, Eftekhari MH, Jafari F, Nikbakht HA, Gholamalizadeh M. Associations between FTO rs9939609 polymorphism, serum vitamin D, mental health, and eating behaviors in overweight adults. Nutr Neurosci 2021; 25:1889-1897. [PMID: 33939949 DOI: 10.1080/1028415x.2021.1913316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Despite the significant role of the Fat Mass and Obesity-Associated (FTO) gene in obesity, the underlying mechanisms are not fully elucidated. Besides, vitamin D deficiency and obesity are mostly seen together, and it can be hypothesized that this nutrient may have an impact in the role of FTO genotype in adiposity.Objective: Thus, this study aimed to investigate the association of FTO rs9939609 gene polymorphism with eating behaviors, eating disorders, and general mental health in overweight adults, considering their vitamin D intake as a mediate confounding factor.Methods: This cross-sectional study was carried out on 197 overweight adults in Shiraz, Iran. Genotyping was performed through amplification refractory mutation system polymerase chain reaction (ARMS PCR). Mental health, vitamin D intake, eating behaviors and disorders were assessed by the validated questionnaires.Results: The risk allele of the FTO rs9939609 polymorphism (A) was significantly associated with a higher risk of eating behavior and mental health disorders (all P < 0.05). After considering vitamin D intake, the AA genotype carriers had significantly higher risks for poorer eating behavior (P = 0.002), mental health (P = 0.007), and general mental health (P = 0.039) compared with the TT carriers if they had insufficient vitamin D intake.Conclusion: In conclusion, these results indicated that the A-allele of the FTO rs9939609 polymorphism may be associated with poorer eating behaviors, mental health, and higher risk of eating disorders. It was also identified that the effect of FTO rs9939609 A risk allele on eating behavior and mental health may be limited to people with insufficient vitamin D intake.
Collapse
Affiliation(s)
- Mahsa Mehrdad
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jafari
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Clinical Nutrition, School of Nutrition & Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein-Ali Nikbakht
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating weight and speed at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2021; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 11/08/2023] Open
Abstract
Background: Effective measurement and adaption of eating behaviours, such as eating speed, may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove an effective approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but no strong evidence that individuals with medium- or high-fat diets ate at a faster rate. Conclusions: We demonstrated the potential for assessing eating weight and speed in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
15
|
Bach P, Grosshans M, Koopmann A, Kienle P, Vassilev G, Otto M, Bumb JM, Kiefer F. Reliability of neural food cue-reactivity in participants with obesity undergoing bariatric surgery: a 26-week longitudinal fMRI study. Eur Arch Psychiatry Clin Neurosci 2021; 271:951-962. [PMID: 33331960 PMCID: PMC8236041 DOI: 10.1007/s00406-020-01218-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Obesity is highly prevalent worldwide and results in a high disease burden. The efforts to monitor and predict treatment outcome in participants with obesity using functional magnetic resonance imaging (fMRI) depends on the reliability of the investigated task-fMRI brain activation. To date, no study has investigated whole-brain reliability of neural food cue-reactivity. To close this gap, we analyzed the longitudinal reliability of an established food cue-reactivity task. Longitudinal reliability of neural food-cue-induced brain activation and subjective food craving ratings over three fMRI sessions (T0: 2 weeks before surgery, T1: 8 weeks and T2: 24 weeks after surgery) were investigated in N = 11 participants with obesity. We computed an array of established reliability estimates, including the intraclass correlation (ICC), the Dice and Jaccard coefficients and similarity of brain activation maps. The data indicated good reliability (ICC > 0.6) of subjective food craving ratings over 26 weeks and excellent reliability (ICC > 0.75) of brain activation signals for the contrast of interest (food > neutral) in the caudate, putamen, thalamus, middle cingulum, inferior, middle and superior occipital gyri, and middle and superior temporal gyri and cunei. Using similarity estimates, it was possible to re-identify individuals based on their neural activation maps (73%) with a fading degree of accuracy, when comparing fMRI sessions further apart. The results show excellent reliability of task-fMRI neural brain activation in several brain regions. Current data suggest that fMRI-based measures might indeed be suitable to monitor and predict treatment outcome in participants with obesity undergoing bariatric surgery.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5/68159, Mannheim, Germany. .,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany.
| | - Martin Grosshans
- grid.413757.30000 0004 0477 2235Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5/68159 Mannheim, Germany
| | - Anne Koopmann
- grid.413757.30000 0004 0477 2235Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5/68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Peter Kienle
- Department of Surgery, Theresienkrankenhaus, Mannheim, Germany
| | - Georgi Vassilev
- grid.411778.c0000 0001 2162 1728Department of Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirko Otto
- grid.411778.c0000 0001 2162 1728Department of Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - J. Malte Bumb
- grid.413757.30000 0004 0477 2235Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5/68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Falk Kiefer
- grid.413757.30000 0004 0477 2235Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5/68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Stice E, Yokum S, Voelker P. Relation of FTO to BOLD response to receipt and anticipated receipt of food and monetary reward, food images, and weight gain in healthy weight adolescents. Soc Cogn Affect Neurosci 2020; 15:1135-1144. [PMID: 31680145 PMCID: PMC7657457 DOI: 10.1093/scan/nsz081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Although the fat mass and obesity-associated gene (FTO) correlates with elevated body mass, it is unclear how it contributes to overeating. We tested if individuals with the A allele show greater reward region responsivity to receipt and anticipated receipt of food and money and palatable food images. We also tested if these individuals show greater future weight gain. Initially healthy weight adolescents (Study 1, N = 162; Study 2, N = 135) completed different functional magnetic resonance imaging paradigms and had their body mass measured annually over 3 years. Adolescents with the AA or AT genotypes showed less precuneus and superior parietal lobe response and greater cuneus and prefrontal cortex response to milkshake receipt and less putamen response to anticipated milkshake receipt than those with the TT genotype in separate analyses of each sample. Groups did not differ in response to palatable food images, and receipt and anticipated receipt of money, or in weight gain over 3-year follow-up. Results suggest that initially healthy weight adolescents with vs without the FTO A allele show differential responsivity to receipt and anticipated receipt of food but do not differ in neural response to palatable food images and monetary reward and do not show greater future weight gain.
Collapse
Affiliation(s)
- Eric Stice
- Stanford University, Stanford, CA 94305, USA
| | - Sonja Yokum
- Oregon Research Institute, Eugene, OR, 97403, USA
| | | |
Collapse
|
17
|
Higher BMI, but not obesity-related genetic polymorphisms, correlates with lower structural connectivity of the reward network in a population-based study. Int J Obes (Lond) 2020; 45:491-501. [PMID: 33100325 PMCID: PMC7906899 DOI: 10.1038/s41366-020-00702-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity is of complex origin, involving genetic and neurobehavioral factors. Genetic polymorphisms may increase the risk for developing obesity by modulating dopamine-dependent behaviors, such as reward processing. Yet, few studies have investigated the association of obesity, related genetic variants, and structural connectivity of the dopaminergic reward network. METHODS We analyzed 347 participants (age range: 20-59 years, BMI range: 17-38 kg/m2) of the LIFE-Adult Study. Genotyping for the single nucleotid polymorphisms rs1558902 (FTO) and rs1800497 (near dopamine D2 receptor) was performed on a microarray. Structural connectivity of the reward network was derived from diffusion-weighted magnetic resonance imaging at 3 T using deterministic tractography of Freesurfer-derived regions of interest. Using graph metrics, we extracted summary measures of clustering coefficient and connectivity strength between frontal and striatal brain regions. We used linear models to test the association of BMI, risk alleles of both variants, and reward network connectivity. RESULTS Higher BMI was significantly associated with lower connectivity strength for number of streamlines (β = -0.0025, 95%-C.I.: [-0.004, -0.0008], p = 0.0042), and, to lesser degree, fractional anisotropy (β = -0.0009, 95%-C.I. [-0.0016, -0.00008], p = 0.031), but not clustering coefficient. Strongest associations were found for left putamen, right accumbens, and right lateral orbitofrontal cortex. As expected, the polymorphism rs1558902 in FTO was associated with higher BMI (F = 6.9, p < 0.001). None of the genetic variants was associated with reward network structural connectivity. CONCLUSIONS Here, we provide evidence that higher BMI correlates with lower reward network structural connectivity. This result is in line with previous findings of obesity-related decline in white matter microstructure. We did not observe an association of variants in FTO or near DRD2 receptor with reward network structural connectivity in this population-based cohort with a wide range of BMI and age. Future research should further investigate the link between genetics, obesity and fronto-striatal structural connectivity.
Collapse
|
18
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating behaviour at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2020; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Effective measurement and adaption of eating behaviours, such as eating speed, may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove an effective approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but no strong evidence that individuals with medium- or high-fat diets ate at a faster rate. Conclusions: We demonstrated the potential for assessing eating behaviour in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
19
|
Lugo‐Candelas C, Pang Y, Lee S, Cha J, Hong S, Ranzenhofer L, Korn R, Davis H, McInerny H, Schebendach J, Chung WK, Leibel RL, Walsh BT, Posner J, Rosenbaum M, Mayer L. Differences in brain structure and function in children with the FTO obesity-risk allele. Obes Sci Pract 2020; 6:409-424. [PMID: 32874676 PMCID: PMC7448161 DOI: 10.1002/osp4.417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Noncoding alleles of the fat mass and obesity-associated (FTO) gene have been associated with obesity risk, yet the underlying mechanisms remain unknown. Risk allele carriers show alterations in brain structure and function, but previous studies have not disassociated the effects of genotype from those of body mass index (BMI). METHODS Differences in brain structure and function were examined in children without obesity grouped by their number of copies (0,1,2) of the FTO obesity-risk single-nucleotide polymorphism (SNP) rs1421085. One hundred five 5- to 10-year-olds (5th-95th percentile body fat) were eligible to participate. Usable scans were obtained from 93 participants (15 CC [homozygous risk], 31 CT [heterozygous] and 47 TT [homozygous low risk]). RESULTS Homozygous C allele carriers (CCs) showed greater grey matter volume in the cerebellum and temporal fusiform gyrus. CCs also demonstrated increased bilateral cerebellar white matter fibre density and increased resting-state functional connectivity between the bilateral cerebellum and regions in the frontotemporal cortices. CONCLUSIONS This is the first study to examine brain structure and function related to FTO alleles in young children not yet manifesting obesity. This study lends support to the notion that the cerebellum may be involved in FTO-related risk for obesity, yet replication and further longitudinal study are required.
Collapse
Affiliation(s)
- Claudia Lugo‐Candelas
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Seonjoo Lee
- New York State Psychiatric InstituteNew YorkNew YorkUSA
- Department of Biostatistics, Mailman School of Public HealthColumbia University Irving Medical CenterNew YorkNY
| | - Jiook Cha
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Susie Hong
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Lisa Ranzenhofer
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Rachel Korn
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Haley Davis
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Hailey McInerny
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Janet Schebendach
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Wendy K. Chung
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of MedicineColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Rudolph L. Leibel
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Naomi Berrie Diabetes CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - B. Timothy Walsh
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Jonathan Posner
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | | | - Laurel Mayer
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| |
Collapse
|
20
|
Association between impulsivity traits and body mass index at the observational and genetic epidemiology level. Sci Rep 2019; 9:17583. [PMID: 31772290 PMCID: PMC6879509 DOI: 10.1038/s41598-019-53922-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
We investigated the association between impulsivity related traits and BMI at the observational and genetic epidemiology level in a cross-sectional population of healthy young American-European adults. We studied 998 students and university staff of European ancestry recruited from Chicago (Illinois) and Athens (Georgia). We measured 14 impulsivity variables using three broad categories: impulsive choice, action and personality. Weight and height of participants were measured by research assistants. The single-nucleotide polymorphism (SNP) rs3751812 in the fat mass and obesity-associated (FTO) gene was genotyped using the Illumina PsychArray BeadChip platform. Within the three broad domains of impulsivity, 4 parameters (delay discounting of rewards area under the curve and average of k indexes, Conner's continuous performance test, and negative urgency) were associated with BMI. The FTO rs3751812 minor allele T was associated with higher BMI. Of the 14 impulsivity variables, rs3751812 T was associated with more premeditation and perseverance, before and after adjusting for BMI. The association between FTO rs3751812 and BMI adjusted for premeditation remained significant, but disappeared after adjusting for perseverance and for both perseverance and premeditation traits. Our observational and genetic data indicate a complex pattern of association between impulsive behaviors and BMI in healthy young American-European adults.
Collapse
|
21
|
Olivo G, Zhukovsky C, Salonen-Ros H, Larsson EM, Brooks S, Schiöth HB. Functional connectivity underlying hedonic response to food in female adolescents with atypical AN: the role of somatosensory and salience networks. Transl Psychiatry 2019; 9:276. [PMID: 31699967 PMCID: PMC6838122 DOI: 10.1038/s41398-019-0617-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Atypical anorexia nervosa (AN) usually occurs during adolescence. Patients are often in the normal-weight range at diagnosis; however, they often present with signs of medical complications and severe restraint over eating, body dissatisfaction, and low self-esteem. We investigated functional circuitry underlying the hedonic response in 28 female adolescent patients diagnosed with atypical AN and 33 healthy controls. Participants were shown images of food with high (HC) or low (LC) caloric content in alternating blocks during functional MRI. The HC > LC contrast was calculated. Based on the previous literature on full-threshold AN, we hypothesized that patients would exhibit increased connectivity in areas involved in sensory processing and bottom-up responses, coupled to increased connectivity from areas related to top-down inhibitory control, compared with controls. Patients showed increased connectivity in pathways related to multimodal somatosensory processing and memory retrieval. The connectivity was on the other hand decreased in patients in salience and attentional networks, and in a wide cerebello-occipital network. Our study was the first investigation of food-related neural response in atypical AN. Our findings support higher somatosensory processing in patients in response to HC food images compared with controls, however HC food was less efficient than LC food in engaging patients' bottom-up salient responses, and was not associated with connectivity increases in inhibitory control regions. These findings suggest that the psychopathological mechanisms underlying food restriction in atypical AN differ from full-threshold AN. Elucidating the mechanisms underlying the development and maintenance of eating behavior in atypical AN might help designing specific treatment strategies.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Christina Zhukovsky
- 0000 0004 1936 9457grid.8993.bDepartment of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helena Salonen-Ros
- 0000 0004 1936 9457grid.8993.bDepartment of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- 0000 0004 1936 9457grid.8993.bDepartment of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Samantha Brooks
- 0000 0004 1936 9457grid.8993.bDepartment of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden ,0000 0004 1937 1151grid.7836.aDepartment of Human Biology, University of Cape Town, Cape Town, South Africa ,School of Natural Sciences and Psychology, Research Centre for Brain & Behaviour, Byrom Street, Liverpool, UK
| | - Helgi B. Schiöth
- 0000 0004 1936 9457grid.8993.bDepartment of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden ,0000 0001 2288 8774grid.448878.fInstitute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
22
|
Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z, Deng Y. The role of mRNA m 6A methylation in the nervous system. Cell Biosci 2019; 9:66. [PMID: 31452869 PMCID: PMC6701067 DOI: 10.1186/s13578-019-0330-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Epitranscriptomics, also known as “RNA epigenetics”, is a chemical modification for RNA regulation. Ribonucleic acid (RNA) methylation is considered to be a major discovery following the deoxyribonucleic acid (DNA) and histone methylation. Messenger RNA (mRNA) methylation modification accounts for more than 60% of all RNA modifications and N6-methyladenosine (m6A) is known as one of the most common type of eukaryotic mRNA methylation modifications in current. The m6A modification is a dynamic reversible modification, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing, and can play important biological roles in vivo. This article introduces the mRNA m6A methylation modification enzymes and binding proteins, and reviews the research progress and related mechanisms of the role of mRNA m6A methylation in the nervous system from the aspects of neural stem cells, learning and memory, brain development, axon growth and glioblastoma.
Collapse
Affiliation(s)
- Jiashuo Li
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Xinxin Yang
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Zhipeng Qi
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yanqi Sang
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yanan Liu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Wei Liu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Zhaofa Xu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yu Deng
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| |
Collapse
|
23
|
Ma SS, Worhunsky PD, Xu JS, Yip SW, Zhou N, Zhang JT, Liu L, Wang LJ, Liu B, Yao YW, Zhang S, Fang XY. Alterations in functional networks during cue-reactivity in Internet gaming disorder. J Behav Addict 2019; 8:277-287. [PMID: 31146550 PMCID: PMC7044545 DOI: 10.1556/2006.8.2019.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cue-induced brain reactivity has been suggested to be a fundamental and important mechanism explaining the development, maintenance, and relapse of addiction, including Internet gaming disorder (IGD). Altered activity in addiction-related brain regions has been found during cue-reactivity in IGD using functional magnetic resonance imaging (fMRI), but less is known regarding the alterations of coordinated whole brain activity patterns in IGD. METHODS To investigate the activity of temporally coherent, large-scale functional brain networks (FNs) during cue-reactivity in IGD, independent component analysis was applied to fMRI data from 29 male subjects with IGD and 23 matched healthy controls (HC) performing a cue-reactivity task involving Internet gaming stimuli (i.e., game cues) and general Internet surfing-related stimuli (i.e., control cues). RESULTS Four FNs were identified that were related to the response to game cues relative to control cues and that showed altered engagement/disengagement in IGD compared with HC. These FNs included temporo-occipital and temporo-insula networks associated with sensory processing, a frontoparietal network involved in memory and executive functioning, and a dorsal-limbic network implicated in reward and motivation processing. Within IGD, game versus control engagement of the temporo-occipital and frontoparietal networks were positively correlated with IGD severity. Similarly, disengagement of temporo-insula network was negatively correlated with higher game-craving. DISCUSSION These findings are consistent with altered cue-reactivity brain regions reported in substance-related addictions, providing evidence that IGD may represent a type of addiction. The identification of the networks might shed light on the mechanisms of the cue-induced craving and addictive Internet gaming behaviors.
Collapse
Affiliation(s)
- Shan-Shan Ma
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China,State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Patrick D. Worhunsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-song Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah W. Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nan Zhou
- Faculty of Education, Beijing Normal University, Beijing, China
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Beijing Key Lab of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China,Corresponding authors: Jin-Tao Zhang; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai street, Haidian District, Beijing 100875, China; Phone/Fax: +86 10 58800728; E-mail: ; Xiao-Yi Fang; Institute of Developmental Psychology, Beijing Normal University, No. 19, Xinjiekouwai street, Haidian District, Beijing 100875, China; Phone/Fax: +86 10 58808232; E-mail:
| | - Lu Liu
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Ling-Jiao Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ben Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuan-Wei Yao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Xiao-Yi Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China,Corresponding authors: Jin-Tao Zhang; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai street, Haidian District, Beijing 100875, China; Phone/Fax: +86 10 58800728; E-mail: ; Xiao-Yi Fang; Institute of Developmental Psychology, Beijing Normal University, No. 19, Xinjiekouwai street, Haidian District, Beijing 100875, China; Phone/Fax: +86 10 58808232; E-mail:
| |
Collapse
|
24
|
Hermann P, Gál V, Kóbor I, Kirwan CB, Kovács P, Kitka T, Lengyel Z, Bálint E, Varga B, Csekő C, Vidnyánszky Z. Efficacy of weight loss intervention can be predicted based on early alterations of fMRI food cue reactivity in the striatum. NEUROIMAGE-CLINICAL 2019; 23:101803. [PMID: 30991304 PMCID: PMC6463125 DOI: 10.1016/j.nicl.2019.101803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022]
Abstract
Increased fMRI food cue reactivity in obesity, i.e. higher responses to high- vs. low-calorie food images, is a promising marker of the dysregulated brain reward system underlying enhanced susceptibility to obesogenic environmental cues. Recently, it has also been shown that weight loss interventions might affect fMRI food cue reactivity and that there is a close association between the alteration of cue reactivity and the outcome of the intervention. Here we tested whether fMRI food cue reactivity could be used as a marker of diet-induced early changes of neural processing in the striatum that are predictive of the outcome of the weight loss intervention. To this end we investigated the relationship between food cue reactivity in the striatum measured one month after the onset of the weight loss program and weight changes obtained at the end of the six-month intervention. We observed a significant correlation between BMI change measured after six months and early alterations of fMRI food cue reactivity in the striatum, including the bilateral putamen, right pallidum, and left caudate. Our findings provide evidence for diet-induced early alterations of fMRI food cue reactivity in the striatum that can predict the outcome of the weight loss intervention.
Collapse
Affiliation(s)
- Petra Hermann
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary.
| | - Viktor Gál
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - István Kóbor
- MR Research Center, Semmelweis University, Budapest H-1085, Hungary
| | - C Brock Kirwan
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Péter Kovács
- Obesity Research Group, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Tamás Kitka
- Obesity Research Group, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Zsuzsanna Lengyel
- Obesity Research Group, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Eszter Bálint
- Department of General Pharmacology, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Balázs Varga
- Department of General Pharmacology, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Csongor Csekő
- Department of General Pharmacology, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary.
| |
Collapse
|
25
|
Smeets PAM, Dagher A, Hare TA, Kullmann S, van der Laan LN, Poldrack RA, Preissl H, Small D, Stice E, Veldhuizen MG. Good practice in food-related neuroimaging. Am J Clin Nutr 2019; 109:491-503. [PMID: 30834431 PMCID: PMC7945961 DOI: 10.1093/ajcn/nqy344] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/22/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The use of neuroimaging tools, especially functional magnetic resonance imaging, in nutritional research has increased substantially over the past 2 decades. Neuroimaging is a research tool with great potential impact on the field of nutrition, but to achieve that potential, appropriate use of techniques and interpretation of neuroimaging results is necessary. In this article, we present guidelines for good methodological practice in functional magnetic resonance imaging studies and flag specific limitations in the hope of helping researchers to make the most of neuroimaging tools and avoid potential pitfalls. We highlight specific considerations for food-related studies, such as how to adjust statistically for common confounders, like, for example, hunger state, menstrual phase, and BMI, as well as how to optimally match different types of food stimuli. Finally, we summarize current research needs and future directions, such as the use of prospective designs and more realistic paradigms for studying eating behavior.
Collapse
Affiliation(s)
- Paul A M Smeets
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, NL,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands,Address correspondence to PAMS (e-mail: )
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Laura N van der Laan
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Dana Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
26
|
Spychala A, Rüther U. FTO affects hippocampal function by regulation of BDNF processing. PLoS One 2019; 14:e0211937. [PMID: 30730976 PMCID: PMC6366932 DOI: 10.1371/journal.pone.0211937] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022] Open
Abstract
Initially, the function of the fat mass and obesity associated (Fto) gene seemed to be primarily the regulation of the body weight. Here we show that loss of Fto results in a hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis. In consequence, Fto-/- mice display an anxiety-like behavior and impairments in working memory. Furthermore, differentiation of neurons is affected in the hippocampus. As a cause of these impairments we identified a processing defect of the neurotrophin BDNF which is most likely the result of a reduced expression of MMP-9. Therefore, we propose FTO as a possible new target to develop novel approaches for the treatment of diseases associated with hippocampal disorders. In parallel, we also would like to make the point that any anti-obesity therapy via blocking FTO function can have negative effects on the proper function of the hippocampus.
Collapse
Affiliation(s)
- André Spychala
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ulrich Rüther
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
27
|
Zhang Q, Xia X, Fang S, Yuan X. Relationship Between Fat Mass and Obesity-Associated (FTO) Gene Polymorphisms with Obesity and Metabolic Syndrome in Ethnic Mongolians. Med Sci Monit 2018; 24:8232-8238. [PMID: 30442880 PMCID: PMC6251077 DOI: 10.12659/msm.910928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The distribution of fat mass and obesity-associated gene (FTO) genes rs9939609 and rs1421085 in obese and normal ethnic Mongolians was analyzed to investigate the association of FTO gene polymorphisms with obesity and metabolic syndrome in ethnic Mongolians. Material/Methods The genotypes of FTO genes rs9939609 and rs1421085 in 500 subjects were detected by allele-specific PCR (AS-PCR). General characteristics and clinical biochemical indicators were compared between the obesity group and the control group. The correlation between different genotypes and obesity metabolic index was also analyzed. Results Body mass, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), SBP, DBP, FPG, triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) were higher, while HDL-C was lower in the obesity group compared with controls. The frequencies of TT genotype and T allele in the obesity group were higher than those in the control group. The frequencies of these 3 genotypes and allele frequencies of Rs1421085 were comparable between the 2 groups (P>0.05). The risk of obesity in Mongolian individuals carrying rs9939609 AT genotype was 1.312 times higher and the risk in those carrying AA genotype was 1.896 times higher than in individuals with TT genotype. The body weight, BMI, WC, HC, and WHR in individuals with rs9939609 AA and AT genotypes were significantly higher than in those with TT genotype. Conclusions The AT/AA genotype and allele A of rs9939609 are associated with an increased risk of obesity.
Collapse
Affiliation(s)
- Qiang Zhang
- Physical Examination Center of The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Xiayun Xia
- Physical Examination Center of The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Shixin Fang
- Physical Examination Center of The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Xiangzhen Yuan
- Physical Examination Center of The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
28
|
Melhorn SJ, Askren MK, Chung WK, Kratz M, Bosch TA, Tyagi V, Webb MF, De Leon MRB, Grabowski TJ, Leibel RL, Schur EA. FTO genotype impacts food intake and corticolimbic activation. Am J Clin Nutr 2018; 107:145-154. [PMID: 29529147 PMCID: PMC6454473 DOI: 10.1093/ajcn/nqx029] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background Variants in the first intron of the fat mass and obesity-associated (FTO) gene increase obesity risk. People with "high-risk" FTO genotypes exhibit preference for high-fat foods, reduced satiety responsiveness, and greater food intake consistent with impaired satiety. Objective We sought central nervous system mechanisms that might underlie impaired satiety perception in people with a higher risk of obesity based on their FTO genotype. Design We performed a cross-sectional study in a sample that was enriched for obesity and included 20 higher-risk participants with the AA (risk) genotype at the rs9939609 locus of FTO and 94 lower-risk participants with either the AT or TT genotype. We compared subjective appetite, appetite-regulating hormones, caloric intake at a buffet meal, and brain response to visual food cues in an extended satiety network using functional MRI scans acquired before and after a standardized meal. Results Higher-risk participants reported less subjective fullness (χ2 = 7.48, P < 0.01), rated calorie-dense food as more appealing (χ2 = 3.92, P < 0.05), and consumed ∼350 more kilocalories than lower-risk participants (β = 348 kcal, P = 0.03), even after adjusting for fat or lean mass. Premeal, the higher-risk group had greater activation by "fattening" food images (compared with objects) in the medial orbital frontal cortex (β = 11.6; 95% CI: 1.5, 21.7; P < 0.05). Postmeal, the higher-risk subjects had greater activation by fattening (compared with nonfattening) food cues in the ventral tegmental area/substantia nigra (β = 12.8; 95% CI: 2.7, 23.0; P < 0.05), amygdala (β = 10.6; 95% CI: 0.7, 20.5; P < 0.05), and ventral striatum (β = 6.9; 95% CI: 0.2, 13.7; P < 0.05). Moreover, postmeal activation by fattening food cues within the preselected extended satiety network was positively associated with energy intake at the buffet meal (R2 = 0.29, P = 0.04) and this relation was particularly strong in the dorsal striatum (R2 = 0.28, P = 0.01), amygdala (R2 = 0.28, P = 0.03), and ventral tegmental area/substantia nigra (R2 = 0.27, P = 0.01). Conclusion The findings are consistent with a model in which allelic variants in FTO raise obesity risk through impaired central nervous system satiety processing, thereby increasing food intake. This study is registered at clinicaltrials.gov as NCT02483663.
Collapse
Affiliation(s)
- Susan J Melhorn
- Departments of Medicine and Radiology, University of Washington, Seattle, WA
| | - Mary K Askren
- Departments of Radiology, University of Washington, Seattle, WA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY,Departments of Medicine, Columbia University Medical Center, New York, NY
| | - Mario Kratz
- Department of Epidemiology, University of Washington & Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tyler A Bosch
- College of Education and Human Development, University of Minnesota, Minneapolis, MN
| | - Vidhi Tyagi
- Departments of Medicine and Radiology, University of Washington, Seattle, WA
| | - Mary F Webb
- Departments of Medicine and Radiology, University of Washington, Seattle, WA
| | | | | | - Rudolph L Leibel
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY
| | - Ellen A Schur
- Departments of Medicine and Radiology, University of Washington, Seattle, WA,Address correspondence to EAS (e-mail: )
| |
Collapse
|
29
|
Lancaster TM, Ihssen I, Brindley LM, Linden DE. Preliminary evidence for genetic overlap between body mass index and striatal reward response. Transl Psychiatry 2018; 8:19. [PMID: 29317597 PMCID: PMC5802522 DOI: 10.1038/s41398-017-0068-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
The reward-processing network is implicated in the aetiology of obesity. Several lines of evidence suggest obesity-linked genetic risk loci (such as DRD2 and FTO) may influence individual variation in body mass index (BMI) through neuropsychological processes reflected in alterations in activation of the striatum during reward processing. However, no study has tested the broader hypotheses that (a) the relationship between BMI and reward-related brain activation (measured through the blood oxygenation-dependent (BOLD) signal) may be observed in a large population study and (b) the overall genetic architecture of these phenotypes overlap, an assumption critical for the progression of imaging genetic studies in obesity research. Using data from the Human Connectome Project (N = 1055 healthy, young individuals: average BMI = 26.4), we first establish a phenotypic relationship between BMI and ventral striatal (VS) BOLD during the processing of rewarding (monetary) stimuli (β = 0.44, P = 0.013), accounting for potential confounds. BMI and VS BOLD were both significantly influenced by additive genetic factors (H2r = 0.57; 0.12, respectively). Further decomposition of this variance suggested that the relationship was driven by shared genetic (ρ g = 0.47, P = 0.011), but not environmental (ρ E = -0.07, P = 0.29) factors. To validate the assumption of genetic pleiotropy between BMI and VS BOLD, we further show that polygenic risk for higher BMI is also associated with increased VS BOLD response to appetitive stimuli (calorically high food images), in an independent sample (N = 81; P FWE-ROI < 0.005). Together, these observations suggest that the genetic factors link risk to obesity to alterations within key nodes of the brain's reward circuity. These observations provide a basis for future work exploring the mechanistic role of genetic loci that confer risk for obesity using the imaging genetics approach.
Collapse
Affiliation(s)
- T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK.
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK.
| | - I Ihssen
- Department of Psychology, Queen's Campus, Durham University, Durham, UK
| | - L M Brindley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK
| | - D E Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Functional magnetic resonance imaging (fMRI) using visual food cues provides insight into brain regulation of appetite in humans. This review sought evidence for genetic determinants of these responses. RECENT FINDINGS Echoing behavioral studies of food cue responsiveness, twin study approaches detect significant inherited influences on brain response to food cues. Both polygenic (whole genome) factors and polymorphisms in single genes appear to impact appetite regulation, particularly in brain regions related to satiety perception. Furthermore, genetic confounding might underlie findings linking obesity to stereotypical response patterns on fMRI, i.e., associations with obesity may actually reflect underlying inherited susceptibilities rather than acquired levels of adiposity. Insights from twin studies show that genes powerfully influence brain regulation of appetite, emphasizing the role of inherited susceptibility factors in obesity risk. Future research to delineate mechanisms of inherited obesity risk could lead to novel or more targeted interventional approaches.
Collapse
|
31
|
Food-Related Impulsivity in Obesity and Binge Eating Disorder-A Systematic Update of the Evidence. Nutrients 2017; 9:nu9111170. [PMID: 29077027 PMCID: PMC5707642 DOI: 10.3390/nu9111170] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
The specific eating pattern of Binge Eating Disorder (BED) patients has provoked the assumption that BED might represent a phenotype within the obesity spectrum that is characterized by increased impulsivity. Following the guidelines of the PRISMA statement (preferred reporting items for systematic reviews and meta-analyses), we here provide a systematic update on the evidence on food-related impulsivity in obese individuals, with and without BED, as well as normal-weight individuals. We separately analyzed potential group differences in the impulsivity components of reward sensitivity and rash-spontaneous behavior. Our search resulted in twenty experimental studies with high methodological quality. The synthesis of the latest evidence consolidates conclusions drawn in our initial systematic review that BED represents a distinct phenotype within the obesity spectrum that is characterized by increased impulsivity. Rash-spontaneous behavior in general, and specifically towards food, is increased in BED, while food-specific reward sensitivity is also increased in obese individuals without BED, but potentially to a lesser degree. A major next step for research entails the investigation of sub-domains and temporal components of inhibitory control in BED and obesity. Based on the evidence of impaired inhibitory control in BED, affected patients might profit from interventions that address impulsive behavior.
Collapse
|
32
|
Ibrahim EC, Guillemot V, Comte M, Tenenhaus A, Zendjidjian XY, Cancel A, Belzeaux R, Sauvanaud F, Blin O, Frouin V, Fakra E. Modeling a linkage between blood transcriptional expression and activity in brain regions to infer the phenotype of schizophrenia patients. NPJ SCHIZOPHRENIA 2017; 3:25. [PMID: 28883405 PMCID: PMC5589880 DOI: 10.1038/s41537-017-0027-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022]
Abstract
Hundreds of genetic loci participate to schizophrenia liability. It is also known that impaired cerebral connectivity is directly related to the cognitive and affective disturbances in schizophrenia. How genetic susceptibility and brain neural networks interact to specify a pathological phenotype in schizophrenia remains elusive. Imaging genetics, highlighting brain variations, has proven effective to establish links between vulnerability loci and associated clinical traits. As previous imaging genetics works in schizophrenia have essentially focused on structural DNA variants, these findings could be blurred by epigenetic mechanisms taking place during gene expression. We explored the meaningful links between genetic data from peripheral blood tissues on one hand, and regional brain reactivity to emotion task assayed by blood oxygen level-dependent functional magnetic resonance imaging on the other hand, in schizophrenia patients and matched healthy volunteers. We applied Sparse Generalized Canonical Correlation Analysis to identify joint signals between two blocks of variables: (i) the transcriptional expression of 33 candidate genes, and (ii) the blood oxygen level-dependent activity in 16 region of interest. Results suggested that peripheral transcriptional expression is related to brain imaging variations through a sequential pathway, ending with the schizophrenia phenotype. Generalization of such an approach to larger data sets should thus help in outlining the pathways involved in psychiatric illnesses such as schizophrenia. IMAGING SEARCHING FOR LINKS TO AID DIAGNOSIS: Researchers explore links between the expression of genes associated with schizophrenia in blood cells and variations in brain activity during emotion processing. El Chérif Ibrahim and Eric Fakra at Aix-Marseille Université, France, and colleagues have developed a method to relate the expression levels of 33 schizophrenia susceptibility genes in blood cells and functional magnetic resonance imaging (fMRI) data obtained as individuals carry out a task that triggers emotional responses. Although they found no significant differences in the expression of genes between the 26 patients with schizophrenia and 26 healthy controls they examined, variations in activity in the superior temporal gyrus were strongly linked to schizophrenia-associated gene expression and presence of disease. Similar analyses of larger data sets will shed further light on the relationship between peripheral molecular changes and disease-related behaviors and ultimately, aid the diagnosis of neuropsychiatric disease.
Collapse
Affiliation(s)
- El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, CRN2M, Marseille, France.
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France.
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
| | - Vincent Guillemot
- INSERM, U 1127, Paris, France
- CNRS, 7225, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France
- ICM, Département des maladies du système nerveux and Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Magali Comte
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506), CentraleSupélec-CNRS Université Paris-Sud, Gif-sur-Yvette, France
- Bioinformatics/Biostatistics Platform IHU-A-ICM, Brain and Spine Institute, Paris, France
| | - Xavier Yves Zendjidjian
- Pôle Psychiatrie centre, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Aida Cancel
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Service Hospitalo-Universitaire de Psychiatrie Secteur Saint-Etienne, Hôpital Nord, Saint-Etienne, France
| | - Raoul Belzeaux
- Aix-Marseille Univ, CNRS, CRN2M, Marseille, France
- Fondation FondaMental, Fondation de Recherche et de Soins en Santé Mentale, Créteil, France
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Florence Sauvanaud
- Service Hospitalo-Universitaire de Psychiatrie Secteur Saint-Etienne, Hôpital Nord, Saint-Etienne, France
| | - Olivier Blin
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- CIC-UPCET et Pharmacologie Clinique, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | | | - Eric Fakra
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
- Service Hospitalo-Universitaire de Psychiatrie Secteur Saint-Etienne, Hôpital Nord, Saint-Etienne, France.
| |
Collapse
|
33
|
Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017; 24:65. [PMID: 28859657 PMCID: PMC5580219 DOI: 10.1186/s12929-017-0372-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.
Collapse
Affiliation(s)
- Yuling Zhou
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Craig S McLachlan
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
34
|
Li L, Zang L, Zhang F, Chen J, Shen H, Shu L, Liang F, Feng C, Chen D, Tao H, Xu T, Li Z, Kang Y, Wu H, Tang L, Zhang P, Jin P, Shu Q, Li X. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 2017; 26:2398-2411. [PMID: 28398475 PMCID: PMC6192412 DOI: 10.1093/hmg/ddx128] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Fat mass and obesity-associated gene (FTO) is a member of the Fe (II)- and oxoglutarate-dependent AlkB dioxygenase family and is linked to both obesity and intellectual disability. The role of FTO in neurodevelopment and neurogenesis, however, remains largely unknown. Here we show that FTO is expressed in adult neural stem cells and neurons and displays dynamic expression during postnatal neurodevelopment. The loss of FTO leads to decreased brain size and body weight. We find that FTO deficiency could reduce the proliferation and neuronal differentiation of adult neural stem cells in vivo, which leads to impaired learning and memory. Given the role of FTO as a demethylase of N6-methyladenosine (m6A), we went on to perform genome-wide m6A profiling and observed dynamic m6A modification during postnatal neurodevelopment. The loss of FTO led to the altered expression of several key components of the brain derived neurotrophic factor pathway that were marked by m6A. These results together suggest FTO plays important roles in neurogenesis, as well as in learning and memory.
Collapse
Affiliation(s)
- Liping Li
- Institute of Genetics, College of Life Sciences, Zhejiang University,
Hangzhou 310058, China
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Liqun Zang
- Institute of Genetics, College of Life Sciences, Zhejiang University,
Hangzhou 310058, China
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Junchen Chen
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Hui Shen
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Liqi Shu
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
- School of Medicine and Health Sciences, George Washington University,
Washington, DC 20037, USA
| | - Feng Liang
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Chunyue Feng
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Deng Chen
- State Key Laboratory of Medical Molecular Biology, Department of
Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of
Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005,
China
| | - Huikang Tao
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Lichun Tang
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing
102206, China
| | - Pumin Zhang
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing
102206, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Qiang Shu
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Xuekun Li
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review examines recent advances in the use of functional neuroimaging to study human obesity, a field that is rapidly expanding and continues to be of paramount importance for a better understanding of the pathogenesis of this condition. With rising levels of obesity worldwide and limited therapeutic options, there is a great need for the development of new solutions that can benefit patients. RECENT FINDINGS Studies that utilize functional neuroimaging are beginning to shed light on the nature of behavioral and neurocognitive dysfunctions previously identified in individuals with obesity. Significant progress has occurred in the study of reward-related processes, cognition-reward interactions, mechanisms of weight loss, genetic influences and the case of obesity in children and adolescents. Research findings confirm that obesity and its related overeating behaviors are strongly associated with the brain, both at a regional level and a large-scale network level. SUMMARY Functional neuroimaging studies bring unprecedented levels of detail to examine the brain basis of obesity and show promise for the development of future brain-based biomarkers and interventions in this condition.
Collapse
Affiliation(s)
- Laura Patriarca
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The review examines recent advances in the use of functional neuroimaging to study human obesity, a field that is rapidly expanding and continues to be of paramount importance for a better understanding of the pathogenesis of this condition. With rising levels of obesity worldwide and limited therapeutic options, there is a great need for the development of new solutions that can benefit patients. RECENT FINDINGS Studies that utilize functional neuroimaging are beginning to shed light on the nature of behavioral and neurocognitive dysfunctions previously identified in individuals with obesity. Significant progress has occurred in the study of reward-related processes, cognition-reward interactions, mechanisms of weight loss, genetic influences, and the case of obesity in children and adolescents. Research findings confirm that obesity and its related overeating behaviors are strongly associated with the brain, both at a regional level and a large-scale network level. SUMMARY Functional neuroimaging studies bring unprecedented levels of detail to examine the brain basis of obesity, and show promise for the development of future brain-based biomarkers and interventions in this condition.
Collapse
Affiliation(s)
- Laura Patriarca
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, USA
| | | | | |
Collapse
|
37
|
Castellini G, Franzago M, Bagnoli S, Lelli L, Balsamo M, Mancini M, Nacmias B, Ricca V, Sorbi S, Antonucci I, Stuppia L, Stanghellini G. Fat mass and obesity-associated gene (FTO) is associated to eating disorders susceptibility and moderates the expression of psychopathological traits. PLoS One 2017; 12:e0173560. [PMID: 28282466 PMCID: PMC5345831 DOI: 10.1371/journal.pone.0173560] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/23/2017] [Indexed: 01/30/2023] Open
Abstract
Eating Disorders (EDs) show a multifactorial etiopathogenesis including environmental, psychological and biological factors. In the present study, we propose a model of interactions between genetic vulnerability-represented by Fat Mass and Obesity-Associated (FTO) gene-and stable psychopathological traits, such as bodily disorders and emotion dysregulation for EDs patients. The distribution of a polymorphism of the FTO (rs9939609 T>A) was evaluated in a series of 250 EDs patients and in a group of 119 healthy control subjects. Clinical data were collected through a face-to-face interview and several self-reported questionnaires were applied, including the Emotional Eating Scale and the IDentity and EAting disorders (IDEA) questionnaire for bodily disorders and self-identity. The A-allele was associated with an increased vulnerability to EDs (AA+AT genotypes frequency 72.8% in EDs vs. 52.9% in controls). The presence of the A-allele was associated with binge eating behavior, higher emotional eating and higher IDEA scores. Finally, the FTO rs9939609 SNP was found to influence the relationship between these variables, as an association between disorder of corporeality and emotional eating was found only in A-allele carriers. A-allele seems to represent a potential additive risk factor for EDs persons, with bodily disorders to develop emotional eating and binge eating behaviors.
Collapse
Affiliation(s)
- Giovanni Castellini
- Department of Neuroscience, Psychology, Drug Research and Child Health. University of Florence, Florence, Italy
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical and Biomedical Sciences. University of Florence, Florence, Italy
| | - Marica Franzago
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Chieti, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health. University of Florence, Florence, Italy
| | - Lorenzo Lelli
- Department of Neuroscience, Psychology, Drug Research and Child Health. University of Florence, Florence, Italy
| | - Michela Balsamo
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Chieti, Italy
| | - Milena Mancini
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Chieti, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health. University of Florence, Florence, Italy
| | - Valdo Ricca
- Department of Neuroscience, Psychology, Drug Research and Child Health. University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health. University of Florence, Florence, Italy
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Chieti, Italy
| | - Giovanni Stanghellini
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio University” Chieti-Pescara, Chieti, Italy
- D. Portales’ University, Santiago, Chile
| |
Collapse
|
38
|
A DNA methylation site within the KLF13 gene is associated with orexigenic processes based on neural responses and ghrelin levels. Int J Obes (Lond) 2017; 41:990-994. [PMID: 28194012 DOI: 10.1038/ijo.2017.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/30/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
We investigated five methylation markers recently linked to body mass index, for their role in the neuropathology of obesity. In neuroimaging experiments, our analysis involving 23 participants showed that methylation levels for the cg07814318 site, which lies within the KLF13 gene, correlated with brain activity in the claustrum, putamen, cingulate gyrus and frontal gyri, some of which have been previously associated to food signaling, obesity or reward. Methylation levels at cg07814318 also positively correlated with ghrelin levels. Moreover, expression of KLF13 was augmented in the brains of obese and starved mice. Our results suggest the cg07814318 site could be involved in orexigenic processes, and also implicate KLF13 in obesity. Our findings are the first to associate methylation levels in blood with brain activity in obesity-related regions, and further support previous findings between ghrelin, brain activity and genetic differences.
Collapse
|
39
|
Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues. Proc Natl Acad Sci U S A 2016; 114:160-165. [PMID: 27994159 DOI: 10.1073/pnas.1605548113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Obesity is a major public health concern that involves an interaction between genetic susceptibility and exposure to environmental cues (e.g., food marketing); however, the mechanisms that link these factors and contribute to unhealthy eating are unclear. Using a well-known obesity risk polymorphism (FTO rs9939609) in a sample of 78 children (ages 9-12 y), we observed that children at risk for obesity exhibited stronger responses to food commercials in the nucleus accumbens (NAcc) than children not at risk. Similarly, children at a higher genetic risk for obesity demonstrated larger NAcc volumes. Although a recessive model of this polymorphism best predicted body mass and adiposity, a dominant model was most predictive of NAcc size and responsivity to food cues. These findings suggest that children genetically at risk for obesity are predisposed to represent reward signals more strongly, which, in turn, may contribute to unhealthy eating behaviors later in life.
Collapse
|
40
|
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 2016; 96:1169-209. [PMID: 27489306 DOI: 10.1152/physrev.00032.2015] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|