1
|
Fontana BD, Reichmann F, Tilley CA, Lavlou P, Shkumatava A, Alnassar N, Hillman C, Karlsson KÆ, Norton WHJ, Parker MO. adgrl3.1-deficient zebrafish show noradrenaline-mediated externalizing behaviors, and altered expression of externalizing disorder-candidate genes, suggesting functional targets for treatment. Transl Psychiatry 2023; 13:304. [PMID: 37783687 PMCID: PMC10545713 DOI: 10.1038/s41398-023-02601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Collapse
Affiliation(s)
- Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ceinwen A Tilley
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Perrine Lavlou
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karl Ægir Karlsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
- 3Z, Reykjavik, Iceland
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Biology, Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
2
|
Kuś J, Saramowicz K, Czerniawska M, Wiese W, Siwecka N, Rozpędek-Kamińska W, Kucharska-Lusina A, Strzelecki D, Majsterek I. Molecular Mechanisms Underlying NMDARs Dysfunction and Their Role in ADHD Pathogenesis. Int J Mol Sci 2023; 24:12983. [PMID: 37629164 PMCID: PMC10454781 DOI: 10.3390/ijms241612983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, although the aetiology of ADHD is not yet understood. One proposed theory for developing ADHD is N-methyl-D-aspartate receptors (NMDARs) dysfunction. NMDARs are involved in regulating synaptic plasticity and memory function in the brain. Abnormal expression or polymorphism of some genes associated with ADHD results in NMDAR dysfunction. Correspondingly, NMDAR malfunction in animal models results in ADHD-like symptoms, such as impulsivity and hyperactivity. Currently, there are no drugs for ADHD that specifically target NMDARs. However, NMDAR-stabilizing drugs have shown promise in improving ADHD symptoms with fewer side effects than the currently most widely used psychostimulant in ADHD treatment, methylphenidate. In this review, we outline the molecular and genetic basis of NMDAR malfunction and how it affects the course of ADHD. We also present new therapeutic options related to treating ADHD by targeting NMDAR.
Collapse
Affiliation(s)
- Justyna Kuś
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Maria Czerniawska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| |
Collapse
|
3
|
Adhesion G protein-coupled receptors-Structure and functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:1-25. [PMID: 36707149 DOI: 10.1016/bs.pmbts.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are an ancient class of receptors that represent some of the largest transmembrane-integrated proteins in humans. First recognized as surface markers on immune cells, it took more than a decade to appreciate their 7-transmembrane structure, which is reminiscent of GPCRs. Roughly 30 years went by before the first functional proof of an interaction with a G protein was published. Besides classic features of GPCRs (extracellular N terminus, 7-transmembrane region, intracellular C terminus), aGPCRs display a distinct N-terminal structure, which harbors the highly conserved GPCR autoproteolysis-inducing (GAIN) domain with the GPCR proteolysis site (GPS) in addition to several functional domains. Several human diseases have been associated with variants of aGPCRs and subsequent animal models have been established to investigate these phenotypes. Much progress has been made in recent years to decipher the structure and functions of these receptors. This chapter gives an overview of our current understanding with respect to the molecular structural patterns governing aGPCR activation and the contribution of these giant molecules to the development of pathologies.
Collapse
|
4
|
Carbajal MS, Bounmy AJC, Harrison OB, Nolen HG, Regan SL, Williams MT, Vorhees CV, Sable HJK. Impulsive choice in two different rat models of ADHD-Spontaneously hypertensive and Lphn3 knockout rats. Front Neurosci 2023; 17:1094218. [PMID: 36777639 PMCID: PMC9909198 DOI: 10.3389/fnins.2023.1094218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Impulsivity is a symptom of attention-deficit/hyperactivity disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. "Positive control" measures were also collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD. Methods For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.
Collapse
Affiliation(s)
- Monica S. Carbajal
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Asiah J. C. Bounmy
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Olivia B. Harrison
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, TN, United States,*Correspondence: Helen J. K. Sable,
| |
Collapse
|
5
|
Vascular and Neuronal Network Formation Regulated by Growth Factors and Guidance Cues. Life (Basel) 2023; 13:life13020283. [PMID: 36836641 PMCID: PMC9965086 DOI: 10.3390/life13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Blood vessels and nerves are distributed throughout the body and show a high degree of anatomical parallelism and functional crosstalk. These networks transport oxygen, nutrients, and information to maintain homeostasis. Thus, disruption of network formation can cause diseases. Nervous system development requires the navigation of the axons of neurons to their correct destination. Blood vessel formation occurs via vasculogenesis and angiogenesis. Vasculogenesis is the process of de novo blood vessel formation, and angiogenesis is the process whereby endothelial cells sprout from pre-existing vessels. Both developmental processes require guidance molecules to establish precise branching patterns of these systems in the vertebrate body. These network formations are regulated by growth factors, such as vascular endothelial growth factor; and guidance cues, such as ephrin, netrin, semaphorin, and slit. Neuronal and vascular structures extend lamellipodia and filopodia, which sense guidance cues that are mediated by the Rho family and actin cytosol rearrangement, to migrate to the goal during development. Furthermore, endothelial cells regulate neuronal development and vice versa. In this review, we describe the guidance molecules that regulate neuronal and vascular network formation.
Collapse
|
6
|
Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, Soave M, Spiess K, Trajković K, Kosloff M, Prömel S. A guide to adhesion GPCR research. FEBS J 2022; 289:7610-7630. [PMID: 34729908 DOI: 10.1111/febs.16258] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.
Collapse
Affiliation(s)
- Ines Liebscher
- Division of Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | | | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IBMC - Instituto Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Hannes Schihada
- C3 Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, UK
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katarina Trajković
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, The University of Haifa, Israel
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP. Sci Rep 2022; 12:15922. [PMID: 36151371 PMCID: PMC9508192 DOI: 10.1038/s41598-022-20343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most common childhood neurodevelopmental disorder. Single nucleotide polymorphisms (SNPs) in the Adhesion G Protein-Coupled Receptor L3 (ADGRL3) gene are associated with increased susceptibility to developing ADHD worldwide. However, the effect of ADGRL3 non-synonymous SNPs (nsSNPs) on the ADGRL3 protein function is vastly unknown. Using several bioinformatics tools to evaluate the impact of mutations, we found that nsSNPs rs35106420, rs61747658, and rs734644, previously reported to be associated and in linkage with ADHD in disparate populations from the world over, are predicted as pathogenic variants. Docking analysis of rs35106420, harbored in the ADGLR3-hormone receptor domain (HRM, a common extracellular domain of the secretin-like GPCRs family), showed that HRM interacts with the Glucose-dependent insulinotropic polypeptide (GIP), part of the incretin hormones family. GIP has been linked to the pathogenesis of diabetes mellitus, and our analyses suggest a potential link to ADHD. Overall, the comprehensive application of bioinformatics tools showed that functional mutations in the ADGLR3 gene disrupt the standard and wild ADGRL3 structure, most likely affecting its metabolic regulation. Further in vitro experiments are granted to evaluate these in silico predictions of the ADGRL3-GIP interaction and dissect the complexity underlying the development of ADHD.
Collapse
|
10
|
Maurer MH, Kohler A, Hudemann M, Jüngling J, Biskup S, Menzel M. Case Report of a Juvenile Patient with Autism Spectrum Disorder with a Novel Combination of Copy Number Variants in ADGRL3 (LPHN3) and Two Pseudogenes. Appl Clin Genet 2022; 15:125-131. [PMID: 36082049 PMCID: PMC9447451 DOI: 10.2147/tacg.s361239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
We report the finding of two copy number variants (CNVs) in a 12-year-old boy presenting both with autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Clinical features included aggressive behavior, mood instability, suicidal statements, repetitive and restrictive behavior, sensitivity to noise, learning problems and dyslexia, though no intellectual disability was present. Using array-based comparative genomic hybridization (array-CGH), we identified two CNVs, both triplex duplications of 324 kb on 3p26.3, and 284 kb on 4q13.1, respectively. One of the CNVs is located on chromosome 4q13.1 in the region of the gene encoding for adhesion G protein-coupled receptor L3 (ADGRL3, former name: latrophilin-3, LPHN3), the other on chromosome 3p26.3 in the region of the two pseudogenes AC090043.1 and RPL23AP39. The patient described in the present study showed increased symptoms under methylphenidate treatment but responded positively to 3 mg per day of the atypical neuroleptic drug aripiprazole. To our knowledge, this is the first report of a CNV in the ADGRL3 gene and its first association with ASD in humans.
Collapse
Affiliation(s)
- Martin H Maurer
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
- Correspondence: Martin H Maurer, Mariaberg Hospital for Child and Adolescent Psychiatry, Burghaldenstraße 12, Gammertingen, 72501, Germany, Tel +49 7124 9237200, Fax +49 7124 923555, Email
| | - Anja Kohler
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| | - Melanie Hudemann
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics, CeGaT GmbH, Tübingen, Germany
| | - Martin Menzel
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| |
Collapse
|
11
|
Wang J, Xi SY, Zhao Q, Xia YF, Yang QY, Cai HP, Wang F, Zhao YY, Hu HJ, Yu ZH, Chen FR, Xu PF, Xu RZ, Wang J, Zhang J, Ke C, Zhang XH, Lin FH, Guo CC, Lv YC, Li C, Xie HT, Cui Q, Wu HM, Liu YH, Li Z, Su HK, Zeng J, Han F, Li ZJ, Sai K, Chen ZP. Driver mutations in ADGRL3 are involved in the evolution of ependymoma. J Transl Med 2022; 102:702-710. [PMID: 35013530 DOI: 10.1038/s41374-021-00721-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Although there have been recent advances in the molecular pathology of ependymomas, little is known about the underlying molecular evolution during its development. Here, we assessed the clinical, pathological and molecular evolutionary process of ependymoma recurrence in a 9-year-old patient who had seven recurrences of supratentorial ependymoma and died from intracranial multiregional recurrences at the age of 19 years old. Whole-genome sequencing (WGS) of 7 tumor samples (1 primary and 6 subsequent recurrent tumors) was performed to elucidate the mutation landscape and identify potential driver mutations for tumor evolution. The genetic profiles of the seven tumor specimens showed significant heterogeneity and suggested a highly branched evolutionary pattern. The mutational signatures and chromothripsis changed with treatments. Strikingly, adhesion G protein-coupled receptor L3 (ADGRL3, also known as Latrophilins 3, LPNH3) was found to be consistently mutated during the entire disease process. However, Sanger sequencing of other 78 ependymoma patients who underwent surgery at our institution showed no genetic alteration of ADGRL3, as found in the present case. The mRNA levels of ADGRL3 were significantly lower in ependymomas (n = 36), as compared with normal brain tissue (n = 3). Grade III ependymomas had the lowest ADGRL3 expression. Moreover, ependymomas with lower mRNA level of ADGRL3 had shorter overall survival. Our findings, therefore, demonstrate a rare evolutionary process of ependymoma involving ADGRL3.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| | - Shao-Yan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Qi Zhao
- Department of Bioinformatics, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yun-Fei Xia
- Department of Radiotherapy, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Qun-Ying Yang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Hai-Ping Cai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fang Wang
- Department of Molecular Diagnosis, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yi-Ying Zhao
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Huan-Jing Hu
- Department of Bioinformatics, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Zhi-Hui Yu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fu-Rong Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Peng-Fei Xu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Ri-Zhen Xu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jian Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Ji Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Chao Ke
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Xiang-Heng Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fu-Hua Lin
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yan-Chun Lv
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Cong Li
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.,Department of Neurosurgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Hai-Tao Xie
- Department of Neurosurgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Qian Cui
- Department of Pathology, Guangdong provincial people's hospital, Guangzhou, Guangdong, PR China
| | - Hong-Mei Wu
- Department of Pathology, Guangdong provincial people's hospital, Guangzhou, Guangdong, PR China
| | - Yan-Hui Liu
- Department of Pathology, Guangdong provincial people's hospital, Guangzhou, Guangdong, PR China
| | - Zhi Li
- Department of Pathology, Guangdong provincial people's hospital, Guangzhou, Guangdong, PR China
| | - Hong-Kai Su
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jing Zeng
- Department of Pathology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fu Han
- Department of Neurosurgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhao-Jie Li
- Department of Neurosurgery, Guangdong provincial people's hospital, Guangzhou, Guangdong, PR China
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
12
|
Carpena MX, Sánchez-Luquez KY, Martins-Silva T, Santos TM, Farias CP, Leventhal DGP, Berruti B, Zeni CP, Schmitz M, Chazan R, Hutz MH, Salatino-Oliveira A, Genro JP, Rohde LA, Tovo-Rodrigues L. Stress-related genetic components in attention-deficit/hyperactivity disorder (ADHD): Effects of the SERPINA6 and SERPINA1 genetic markers in a family-based brazilian sample. J Psychiatr Res 2022; 149:1-9. [PMID: 35217314 DOI: 10.1016/j.jpsychires.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
SERPINA6 and SERPINA1 were recently identified as the main genes associated with plasma cortisol concentration in humans. Although dysregulation in the Hypothalamus-Pituitary-Adrenal (HPA) axis has been observed in Attention Deficit/Hyperactivity Disorder (ADHD), the molecular mechanisms underlying this relationship are still unclear. Evaluation of the SERPINA6/SERPINA1 gene cluster in ADHD may provide relevant information to uncover them. We tested the association between the SERPINA6/SERPINA1 locus, including 95 single nucleotide polymorphisms (SNPs), and ADHD, using data from a Brazilian clinical sample of 259 ADHD probands and their parents. The single SNP association was tested using binary logistic regression, and we performed Classification and Regression Tree (CART) analysis to evaluate genotype combinations' effects on ADHD susceptibility. We assessed SNPs' regulatory effects through the Genotype-Tissue Expression (GTEx) v8 tool, and performed a complementary look-up analysis in the largest ADHD GWAS to date. There was a suggestive association between ADHD and eight variants located in the SERPINA6 region and one in the intergenic region between SERPINA6 and SERPINA1 after correction for multiple tests (p < 0.032). CART analysis showed that the combined effects of genotype GG in rs2144833 and CC in rs10129500 were associated with ADHD (OR = 1.78; CI95% = 1.24-2.55). The GTEx assigned the SNPs as eQTLs for genes in different tissues, including SERPINA6, and the look-up analysis revealed two SNPs associated with ADHD. These results suggest a shared genetic component between cortisol levels and ADHD. HPA dysregulation/altered stress response in ADHD might be mediated by upregulation of corticosteroid binding globulin (CBG, encoded by SERPINA6) expression.
Collapse
Affiliation(s)
- Marina Xavier Carpena
- Post-graduate Program in Epidemiology, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil; Developmental Disorders Program, CCBS, Center of Biological Science and Health, Mackenzie Presbyterian University, Consolação Street, 896 - Building 28, 1st Floor - Consolação, São Paulo, SP, 01302-907, Brazil
| | - Karen Yumaira Sánchez-Luquez
- Post-graduate Program in Epidemiology, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil
| | - Thais Martins-Silva
- Post-graduate Program in Epidemiology, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil; Human Development and Violence Research Centre (DOVE), Mal. Deodoro Street, 1160 - 3rd Floor, Pelotas, 96020-220, Brazil
| | - Thiago M Santos
- International Center for Equity in Health, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil
| | - Cid Pinheiro Farias
- Post-graduate Program in Epidemiology, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil
| | - Daniel Gray Paschoal Leventhal
- International Center for Equity in Health, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil
| | - Barbara Berruti
- Post-graduate Program in Epidemiology, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil
| | - Cristian Patrick Zeni
- McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Road, Suite 2100, Houston, TX, 77054, USA
| | - Marcelo Schmitz
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande Do Sul, Ramiro Barcelos Street, 400N - Room 2201(a), 2nd Floor - Santana, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Rodrigo Chazan
- Federal University of Rio Grande Do Sul, Post-graduate Program in Psychiatry and Behavioral Sciences, Ramiro Barcelos Street, 2400 - 2nd Floor - Floresta, Porto Alegre, Rio Grande do Sul, 90035-007, Brazil
| | - Mara H Hutz
- Post-graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Vale Campus, 9500 Bento Gonçalves Ave. - Building 43312M, Porto Alegre, RS, Brazil
| | - Angélica Salatino-Oliveira
- Post-graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Vale Campus, 9500 Bento Gonçalves Ave. - Building 43312M, Porto Alegre, RS, Brazil
| | - Julia P Genro
- Post-graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite Street, 245 - Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande Do Sul, Ramiro Barcelos Street, 400N - Room 2201(a), 2nd Floor - Santana, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, 785 Dr. Ovídio Pires de Campos Street, 1(st)floor, Room 6, South Wing - Cerqueira Cesar, São Paulo, SP, 05403-010, Brazil
| | - Luciana Tovo-Rodrigues
- Post-graduate Program in Epidemiology, Federal University of Pelotas, Mal. Deodoro Street 1160, 3rd Floor, Pelotas, RS, Brazil.
| |
Collapse
|
13
|
Sable HJK, Lester DB, Potter JL, Nolen HG, Cruthird DM, Estes LM, Johnson AD, Regan SL, Williams MT, Vorhees CV. An assessment of executive function in two different rat models of attention-deficit hyperactivity disorder: Spontaneously hypertensive versus Lphn3 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12767. [PMID: 34427038 PMCID: PMC10114166 DOI: 10.1111/gbb.12767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.
Collapse
Affiliation(s)
- Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Deranda B. Lester
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Joshua L. Potter
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | | | - Lauren M. Estes
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Alyssa D. Johnson
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Acosta-López JE, Suárez I, Pineda DA, Cervantes-Henríquez ML, Martínez-Banfi ML, Lozano-Gutiérrez SG, Ahmad M, Pineda-Alhucema W, Noguera-Machacón LM, Hoz MDL, Mejía-Segura E, Jiménez-Figueroa G, Sánchez-Rojas M, Mastronardi CA, Arcos-Burgos M, Vélez JI, Puentes-Rozo PJ. Impulsive and Omission Errors: Potential Temporal Processing Endophenotypes in ADHD. Brain Sci 2021; 11:1218. [PMID: 34573239 PMCID: PMC8467181 DOI: 10.3390/brainsci11091218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
Temporal processing (TP) is associated with functions such as perception, verbal skills, temporal perspective, and future planning, and is intercorrelated with working memory, attention, and inhibitory control, which are highly impaired in individuals with attention deficit hyperactivity disorder (ADHD). Here we evaluate TP measures as potential endophenotypes in Caribbean families ascertained from probands affected by ADHD. A total of 232 individuals were recruited and clinically evaluated using an extensive battery of neuropsychological tasks and reaction time (RT)-based task paradigms. Further, the heritability (genetic variance underpinning phenotype) was estimated as a measure of the genetics apportionment. A predictive framework for ADHD diagnosis was derived using these tasks. We found that individuals with ADHD differed from controls in neuropsychological tasks assessing mental control, visual-verbal memory, verbal fluency, verbal, and semantic fluency. In addition, TP measures such as RT, errors, and variability were also affected in individuals with ADHD. Moreover, we determined that only omission and commission errors had significant heritability. In conclusion, we have disentangled omission and commission errors as possible TP endophenotypes in ADHD, which can be suitable to assess the neurobiological and genetic basis of ADHD. A predictive model using these endophenotypes led to remarkable sensitivity, specificity, precision and classification rate for ADHD diagnosis, and may be a useful tool for patients' diagnosis, follow-up, and longitudinal assessment in the clinical setting.
Collapse
Affiliation(s)
- Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Isabel Suárez
- Universidad del Norte, Barranquilla 081007, Colombia;
| | - David A. Pineda
- Neuropsychology and Conduct Research Group, University of San Buenaventura, Medellín 050010, Colombia;
| | - Martha L. Cervantes-Henríquez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
- Universidad del Norte, Barranquilla 081007, Colombia;
| | - Martha L. Martínez-Banfi
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Semiramis G. Lozano-Gutiérrez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Mostapha Ahmad
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Wilmar Pineda-Alhucema
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Luz M. Noguera-Machacón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Moisés De La Hoz
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Elsy Mejía-Segura
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Giomar Jiménez-Figueroa
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | | | - Pedro J. Puentes-Rozo
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 081007, Colombia
| |
Collapse
|
15
|
Cervantes-Henriquez ML, Acosta-López JE, Ahmad M, Sánchez-Rojas M, Jiménez-Figueroa G, Pineda-Alhucema W, Martinez-Banfi ML, Noguera-Machacón LM, Mejía-Segura E, De La Hoz M, Arcos-Holzinger M, Pineda DA, Puentes-Rozo PJ, Arcos-Burgos M, Vélez JI. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci 2021; 11:854. [PMID: 34206913 PMCID: PMC8301925 DOI: 10.3390/brainsci11070854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurobehavioral disorder that affects children worldwide, with detrimental long-term consequences in affected individuals. ADHD-affected patients display visual-motor and visuospatial abilities and skills that depart from those exhibited by non-affected individuals and struggle with perceptual organization, which might partially explain impulsive responses. Endophenotypes (quantifiable or dimensional constructs that are closely related to the root cause of the disease) might provide a more powerful and objective framework for dissecting the underlying neurobiology of ADHD than that of categories offered by the syndromic classification. In here, we explore the potential presence of the linkage and association of single-nucleotide polymorphisms (SNPs), harbored in genes implicated in the etiology of ADHD (ADGRL3, DRD4, and FGF1), with cognitive endophenotypes related to working memory and perceptual organization in 113 nuclear families. These families were ascertained from a geographical area of the Caribbean coast, in the north of Colombia, where the community is characterized by its ethnic diversity and differential gene pool. We found a significant association and linkage of markers ADGRL3-rs1565902, DRD4-rs916457 and FGF1-rs2282794 to neuropsychological tasks outlining working memory and perceptual organization such as performance in the digits forward and backward, arithmetic, similarities, the completion of figures and the assembly of objects. Our results provide strong support to understand ADHD as a combination of working memory and perceptual organization deficits and highlight the importance of the genetic background shaping the neurobiology, clinical complexity, and physiopathology of ADHD. Further, this study supplements new information regarding an ethnically diverse community with a vast African American contribution, where ADHD studies are scarce.
Collapse
Affiliation(s)
- Martha L. Cervantes-Henriquez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
- Universidad del Norte, Barranquilla 081007, Colombia
| | - Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mostapha Ahmad
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Giomar Jiménez-Figueroa
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Wilmar Pineda-Alhucema
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Martha L. Martinez-Banfi
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Luz M. Noguera-Machacón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Elsy Mejía-Segura
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Moisés De La Hoz
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mauricio Arcos-Holzinger
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | - David A. Pineda
- Grupo de Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 081001, Colombia;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | | |
Collapse
|
16
|
Bruxel EM, Moreira-Maia CR, Akutagava-Martins GC, Quinn TP, Klein M, Franke B, Ribasés M, Rovira P, Sánchez-Mora C, Kappel DB, Mota NR, Grevet EH, Bau CHD, Arcos-Burgos M, Rohde LA, Hutz MH. Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Mol Psychiatry 2021; 26:2277-2285. [PMID: 32051549 DOI: 10.1038/s41380-020-0673-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
The gene encoding adhesion G protein-coupled receptor L3 (ADGRL3, also referred to as latrophilin 3 or LPHN3) has been associated with ADHD susceptibility in independent ADHD samples. We conducted a systematic review and a comprehensive meta-analysis to summarize the associations between the most studied ADGRL3 polymorphisms (rs6551665, rs1947274, rs1947275, and rs2345039) and both childhood and adulthood ADHD. Eight association studies (seven published and one unpublished) fulfilled criteria for inclusion in our meta-analysis. We also incorporated GWAS data for ADGRL3. In order to avoid overlapping samples, we started with summary statistics from GWAS samples and then added data from gene association studies. The results of our meta-analysis suggest an effect of ADGRL3 variants on ADHD susceptibility in children (n = 8724/14,644 cases/controls and 1893 families): rs6551665 A allele (Z score = -2.701; p = 0.0069); rs1947274 A allele (Z score = -2.033; p = 0.0421); rs1947275 T allele (Z score = 2.339; p = 0.0978); and rs2345039 C allele (Z score = 3.806; p = 0.0026). Heterogeneity was found in analyses for three SNPs (rs6551665, rs1947274, and rs2345039). In adults, results were not significant (n = 6532 cases/15,874 controls): rs6551665 A allele (Z score = 2.005; p = 0.0450); rs1947274 A allele (Z score = 2.179; p = 0.0293); rs1947275 T allele (Z score = -0.822; p = 0.4109); and rs2345039 C allele (Z score = -1.544; p = 0.1226). Heterogeneity was found just for rs6551665. In addition, funnel plots did not suggest publication biases. Consistent with ADGRL3's role in early neurodevelopment, our findings suggest that the gene is predominantly associated with childhood ADHD.
Collapse
Affiliation(s)
- E M Bruxel
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C R Moreira-Maia
- ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - G C Akutagava-Martins
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,College of Medicine, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, VIC, Australia
| | - M Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - P Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - C Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D B Kappel
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - N R Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E H Grevet
- ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Instituto de Investigaciones Medicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - L A Rohde
- ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - M H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil. .,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
17
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Camp A, Pastrano A, Gomez V, Stephenson K, Delatte W, Perez B, Syas H, Guiseppi-Elie A. Understanding ADHD: Toward an Innovative Therapeutic Intervention. Bioengineering (Basel) 2021; 8:56. [PMID: 34062853 PMCID: PMC8147268 DOI: 10.3390/bioengineering8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a pervasive condition affecting persons across all age groups, although it is primarily diagnosed in children. This neurological condition affects behavior, learning, and social adjustment and requires specific symptomatic criteria to be fulfilled for diagnosis. ADHD may be treated with a combination of psychological or psychiatric therapeutic interventions, but it often goes unattended. People with ADHD face societal bias challenges that impact how they manage the disorder and how they view themselves. This paper summarizes the present state of understanding of this disorder, with particular attention to early diagnosis and innovative therapeutic intervention. Contemporary understanding of the mind-brain duality allows for innovative therapeutic interventions based on neurological stimulation. This paper introduces the concept of neurostimulation as a therapeutic intervention for ADHD and poses the question of the relationship between patient adherence to self-administered therapy and the aesthetic design features of the neurostimulation device. By fabricating devices that go beyond safety and efficacy to embrace the aesthetic preferences of the patient, it is proposed that there will be improvements in patient adherence to a device intended to address ADHD.
Collapse
Affiliation(s)
- Allyson Camp
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Amanda Pastrano
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Valeria Gomez
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Kathleen Stephenson
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - William Delatte
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Brianna Perez
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Hunter Syas
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- Department of Electrical and Computer Engineering, College of Engineering, Anderson University, Anderson, SC 29621, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
| |
Collapse
|
19
|
Adhesion G protein-coupled receptor L3 gene variants: Statistically significant association observed in the male Indo-caucasoid Attention deficit hyperactivity disorder probands. Mol Biol Rep 2021; 48:3213-3222. [PMID: 33914279 DOI: 10.1007/s11033-021-06365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Primary symptoms of Attention Deficit Hyperactivity Disorder (ADHD) are age inappropriate inattention, hyperactivity and impulsivity. Caucasoid individuals showed increased susceptibility to ADHD and disruptive behaviour in presence of Adhesion G-protein-coupled receptor L3 (ADGRL3) gene variants. We investigated ADGRL3 rs1868790, rs6551665, rs2345039 in Indo-Caucasoid families with ADHD probands (N = 249) and controls (N = 350). Behavioural traits, executive function, and IQ of probands were measured through Conner's Parent Rating Scale-Revised, Parental Account of Children's Symptoms, Barkley Deficit in Executive Functioning-Child & Adolescent Scale, and Wechsler Intelligence Scale for Children-III respectively. After obtaining informed written consent, peripheral blood was collected for genomic DNA isolation and target sites were analyzed by PCR based methods or TaqMan assay. Case-control analysis showed higher frequency of rs2345039 'C' allele, 'CC' genotype and A-A-C haplotype in the ADHD probands, principally due to higher occurrence of the 'C' allele and A-A-C haplotype in the male probands (P < 0.05). Mother of the probands also showed higher occurrence of the 'C' allele and "CC" genotype (P < 0.01). Executive function was better in presence of rs2345039 "GG" (P = 0.04) while IQ score was higher in presence of rs6551665 "AA" (P = 0.06). Linkage disequilibrium between rs6551665 and rs2345039 was stronger in the ADHD cases, chiefly in the male probands. Multifactor dimensionality reduction analysis showed strong interaction between rs6551665 and rs2345039 in the male probands while in the female probands rs1868790 and rs6551665 revealed non-linear interaction. Based on these observations, we infer that ADGRL3 may have a role in the aetiology of ADHD in this population warranting further in depth investigation.
Collapse
|
20
|
Moreno-Alcázar A, Ramos-Quiroga JA, Ribases M, Sánchez-Mora C, Palomar G, Bosch R, Salavert J, Fortea L, Monté-Rubio GC, Canales-Rodríguez EJ, Milham MP, Castellanos FX, Casas M, Pomarol-Clotet E, Radua J. Brain structural and functional substrates of ADGRL3 (latrophilin 3) haplotype in attention-deficit/hyperactivity disorder. Sci Rep 2021; 11:2373. [PMID: 33504901 PMCID: PMC7840726 DOI: 10.1038/s41598-021-81915-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that the gene encoding the adhesion G protein-coupled receptor L3 (ADGRL3; formerly latrophilin 3, LPHN3) is associated with Attention-Deficit/Hyperactivity Disorder (ADHD). Conversely, no studies have investigated the anatomical or functional brain substrates of ADGRL3 risk variants. We examined here whether individuals with different ADGRL3 haplotypes, including both patients with ADHD and healthy controls, showed differences in brain anatomy and function. We recruited and genotyped adult patients with combined type ADHD and healthy controls to achieve a sample balanced for age, sex, premorbid IQ, and three ADGRL3 haplotype groups (risk, protective, and others). The final sample (n = 128) underwent structural and functional brain imaging (voxel-based morphometry and n-back working memory fMRI). We analyzed the brain structural and functional effects of ADHD, haplotypes, and their interaction, covarying for age, sex, and medication. Individuals (patients or controls) with the protective haplotype showed strong, widespread hypo-activation in the frontal cortex extending to inferior temporal and fusiform gyri. Individuals (patients or controls) with the risk haplotype also showed hypo-activation, more focused in the right temporal cortex. Patients showed parietal hyper-activation. Disorder-haplotype interactions, as well as structural findings, were not statistically significant. To sum up, both protective and risk ADGRL3 haplotypes are associated with substantial brain hypo-activation during working memory tasks, stressing this gene's relevance in cognitive brain function. Conversely, we did not find brain effects of the interactions between adult ADHD and ADGRL3 haplotypes.
Collapse
Affiliation(s)
- Ana Moreno-Alcázar
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Centre Forum Research Unit, Institute of Neuropsychiatry and Addictions (INAD), Hospital del Mar, Barcelona, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep A Ramos-Quiroga
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Ribases
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Gloria Palomar
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa Bosch
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Salavert
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Sant Rafael Hospital, Barcelona, Spain
| | - Lydia Fortea
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/. Rosselló, 149, 08036, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Gemma C Monté-Rubio
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Erick J Canales-Rodríguez
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - F Xavier Castellanos
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Miquel Casas
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Joaquim Radua
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/. Rosselló, 149, 08036, Barcelona, Spain.
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
21
|
Kotepui KU, Kotepui M, Piwkham D, Songsri A, Charoenkijkajorn L, Kongnok T, Chanil Y. Tissue Expression Of LPHN3 in Breast Cancer: An Immunohistochemistry Method. Asian Pac J Cancer Prev 2020; 21:3339-3343. [PMID: 33247693 PMCID: PMC8033104 DOI: 10.31557/apjcp.2020.21.11.3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Breast cancer is one of the most important public health problems among women worldwide. It is a major cause of morbidity especially among women in developing countries including Thailand. The purpose of this study was to study the expression of LPHN3 protein in normal breast tissue compared to breast cancer tissue. METHODS We had studied the expression of LPHN3 in 65 breast tissues using an immunohistochemistry method. The association between LPHN3 expression and breast cancer metastasis to nearby axillary lymph nodes was also examined. RESULTS Among the 65 breast cancer and normal breast tissues examined, LPHN3 expression with an immunohistochemistry index (IHC index) greater than 4 was more frequently found in breast cancer tissues than in normal breast tissues (P-value = 0.001, OR (95% CI) = 7.04 (2.16-23)). Moreover, a high expression of LPHN3 (IHC index > 4) was more frequently found in breast cancer tissues with negative axillary lymph nodes than in those with positive ones (P-value = 0.038, OR (95% CI) = 0.25 (0.07-0.96)). LPHN3 protein might be a new metastasis suppressor gene in breast cancer and a marker for breast cancer metastasis prevention. CONCLUSIONS The present study indicated that a decrease of LPHN3 protein expression in breast cancer tissue might be a marker indicating the aggressiveness of breast cancer. These results also suggested that a decrease of LPHN3 expression could be functionally involved in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Kwuntida Uthaisar Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Duangjai Piwkham
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Apiram Songsri
- Department of Pathology, Hatyai Hospital, Songkhla 90110, Thailand.
| | | | - Tidamas Kongnok
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Yupaporn Chanil
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| |
Collapse
|
22
|
Özaslan A, Güney E, Ergün MA, Okur İ, Yapar D. CDH13 and LPHN3 Gene Polymorphisms in Attention-Deficit/Hyperactivity Disorder: Their Relation to Clinical Characteristics. J Mol Neurosci 2020; 71:394-408. [PMID: 32691279 DOI: 10.1007/s12031-020-01662-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Genetic factors play a major role in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). In this study, we aimed to investigate the relationship between the CDH13 (rs6565113, rs11150556) and LPHN3 (rs6551665, rs6858066, rs1947274, rs2345039) gene polymorphisms and ADHD. We also sought to examine possible relationships between these polymorphisms and the clinical course and treatment response in ADHD. A total of 120 patients (79% boys), aged 6 to 18 years, newly diagnosed (medication-naïve) with ADHD according to the DSM-5 and a group of 126 controls (74% girls) were enrolled in the study. We examined the association between the aforementioned polymorphisms and ADHD. Univariate and multivariate logistic regression analysis were used to evaluate factors influencing the treatment response of ADHD. A significant difference was found between ADHD and control groups in terms of genotype distribution of the LPHN3 rs6551665 and rs1947274 polymorphisms. The results also showed that having the GG genotype of rs6551665 and CC genotype of rs1947274 of the LPHN3 gene was associated with risk for ADHD, and this relationship was more prominent in male participants. In the multivariate logistic regression model established with variables shown to have a significant relationship with treatment response, the presence of the GG genotype of the LPHN3 rs6551665 polymorphism and high severity of ADHD assessed by CGI-S were associated with poor response to treatment. This study is the first study to investigate the relationship between ADHD and these polymorphisms among Turkish adolescents. Our results imply that the LPHN3 rs6551665 and rs1947274 polymorphisms have a significant effect on ADHD in a Turkish population, and support previous observations that the presence of the GG genotype of the LPHN3 rs6551665 polymorphism may be associated with poor response to treatment in ADHD.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Child and Adolescent Psychiatry Department, Yıldırım Beyazıt Univesity Yenimahalle Training and Research Hospital, 2026. Street, Number: 4, Yenimahalle, Ankara, Turkey.
| | - Esra Güney
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Mehmet Ali Ergün
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - İlyas Okur
- Department of Child Health and Diseases, Gazi University Medical Faculty, Ankara, Turkey
| | - Dilek Yapar
- Public Health Department, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
23
|
Henriquez-Henriquez M, Acosta MT, Martinez AF, Vélez JI, Lopera F, Pineda D, Palacio JD, Quiroga T, Worgall TS, Deckelbaum RJ, Mastronardi C, Molina BSG, Arcos-Burgos M, Muenke M. Mutations in sphingolipid metabolism genes are associated with ADHD. Transl Psychiatry 2020; 10:231. [PMID: 32661301 PMCID: PMC7359313 DOI: 10.1038/s41398-020-00881-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder in children, with genetic factors accounting for 75-80% of the phenotypic variance. Recent studies have suggested that ADHD patients might present with atypical central myelination that can persist into adulthood. Given the essential role of sphingolipids in myelin formation and maintenance, we explored genetic variation in sphingolipid metabolism genes for association with ADHD risk. Whole-exome genotyping was performed in three independent cohorts from disparate regions of the world, for a total of 1520 genotyped subjects. Cohort 1 (MTA (Multimodal Treatment study of children with ADHD) sample, 371 subjects) was analyzed as the discovery cohort, while cohorts 2 (Paisa sample, 298 subjects) and 3 (US sample, 851 subjects) were used for replication. A set of 58 genes was manually curated based on their roles in sphingolipid metabolism. A targeted exploration for association between ADHD and 137 markers encoding for common and rare potentially functional allelic variants in this set of genes was performed in the screening cohort. Single- and multi-locus additive, dominant and recessive linear mixed-effect models were used. During discovery, we found statistically significant associations between ADHD and variants in eight genes (GALC, CERS6, SMPD1, SMPDL3B, CERS2, FADS3, ELOVL5, and CERK). Successful local replication for associations with variants in GALC, SMPD1, and CERS6 was demonstrated in both replication cohorts. Variants rs35785620, rs143078230, rs398607, and rs1805078, associated with ADHD in the discovery or replication cohorts, correspond to missense mutations with predicted deleterious effects. Expression quantitative trait loci analysis revealed an association between rs398607 and increased GALC expression in the cerebellum.
Collapse
Affiliation(s)
- Marcela Henriquez-Henriquez
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- ELSA Clinical Laboratories (IntegraMedica, part of Bupa), Santiago de Chile, Chile
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Francisco Lopera
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - David Pineda
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Teresa Quiroga
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard J Deckelbaum
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claudio Mastronardi
- Neuroscience Group (NeurUROS), Institute of Translational Medicine, School of Medicine and Health Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry, Psychology, and Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Me´dicas, Facultad de Medicina, Universidad de Antioquia, Medelli´n, Colombia.
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Regan SL, Cryan MT, Williams MT, Vorhees CV, Ross AE. Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chem Neurosci 2020; 11:1171-1177. [PMID: 32203648 DOI: 10.1021/acschemneuro.0c00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Latrophilin-3 (LPHN3) is an adhesion G protein coupled receptor involved in regulating neuroplasticity. Variants of LPHN3 are associated with increased risk of attention-deficit hyperactivity disorder. Data from mouse, zebrafish, Drosophila, and rat show that disruption of LPHN3 results in hyperactivity, and in the Sprague-Dawley Lphn3 knockout rat, exhibit deficits in learning and memory and changes in dopamine (DA) markers in the neostriatum. To determine the effects of Lphn3 deletion on DA neurotransmission, we compared the concentration, duration, and frequency of DA transients in KO and wild-type rats using fast-scan cyclic voltammetry in brain slices. Lphn3 KO rats showed higher release of DA, and the duration and interevent time were markedly decreased compared with wild-type rats. The data demonstrate that LPHN3 plays a heretofore unrecognized role in DA signaling and may represent a new target for small molecule regulation of DA neurotransmission with translational implications.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Michael T. Cryan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Ashley E. Ross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| |
Collapse
|
25
|
Elsayed NA, Yamamoto KM, Froehlich TE. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020; 34:389-414. [PMID: 32133580 PMCID: PMC8083895 DOI: 10.1007/s40263-020-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009-2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene-gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Nada A Elsayed
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaila M Yamamoto
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Tanya E Froehlich
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Attention deficit hyperactivity disorder (ADHD) shows high heritability in formal genetic studies. In our review article, we provide an overview on common and rare genetic risk variants for ADHD and their link to clinical practice. RECENT FINDINGS The formal heritability of ADHD is about 80% and therefore higher than most other psychiatric diseases. However, recent studies estimate the proportion of heritability based on singlenucleotide variants (SNPs) at 22%. It is a matter of debate which genetic mechanisms explain this huge difference. While frequent variants in first mega-analyses of genome-wideassociation study data containing several thousand patients give the first genome-wide results, explaining only little variance, the methodologically more difficult analyses of rare variants are still in their infancy. Some rare genetic syndromes show higher prevalence for ADHD indicating a potential role for a small number of patients. In contrast, polygenic risk scores (PRS) could potentially be applied to every patient. We give an overview how PRS explain different behavioral phenotypes in ADHD and how they could be used for diagnosis and therapy prediction. Knowledge about a patient's genetic makeup is not yet mandatory for ADHD therapy or diagnosis. PRS however have been introduced successfully in other areas of clinical medicine, and their application in psychiatry will begin within the next years. In order to ensure competent advice for patients, knowledge of the current state of research is useful forpsychiatrists.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| |
Collapse
|
27
|
Dunn HA, Orlandi C, Martemyanov KA. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacol Rev 2019; 71:503-519. [PMID: 31515243 DOI: 10.1124/pr.119.018044] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | | |
Collapse
|
28
|
Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019; 8:cells8080907. [PMID: 31426340 PMCID: PMC6721689 DOI: 10.3390/cells8080907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 × 10−4), rs2282794-FGF1 (A allele; p = 1.33 × 10−2), rs2122642-ADGRL3 (C allele, p = 3.5 × 10−2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
Collapse
|
29
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
30
|
Huang X, Zhang Q, Gu X, Hou Y, Wang M, Chen X, Wu J. LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: a two-stage case-control association study and gene-environment interactions. Eur Child Adolesc Psychiatry 2019; 28:861-873. [PMID: 30406846 DOI: 10.1007/s00787-018-1251-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Polymorphisms in latrophilin 3 (LPHN3) were recently reported to be associated with attention-deficit/hyperactivity disorder (ADHD), and subsequently other researchers tried to replicate the findings in different populations. This study was aimed to confirm the role of the LPHN3 in ADHD and explore the potential interactions with environmental risk factors in Chinese Han population. We examined the association of LPHN3 with ADHD in a population of 473 ADHD children and 585 controls. As a supplement of ADHD diagnosis, Conners Parent Symptom Questionnaire (PSQ) was used to evaluate ADHD symptoms. Blood lead levels (BLLs) were measured by atomic absorption spectrophotometry and other potential environmental risk factors were determined via a questionnaire filled out by the parents. Finally, after validation in an independent sample (284 cases and 390 controls), we observed significant associations between LPHN3 variants rs1868790 and ADHD risk in combined stage within codominant model [TA/AA: OR (95% CI) = 1.636 (1.325-2.021)], dominant model [OR (95% CI) = 1.573 (1.288-1.922)], and additive model [OR (95% CI) = 1.535 (1.266-1.862)]. Furthermore, rs1868790 significantly interacted with BLLs and maternal stress to modify ADHD susceptibility (P < 0.05), and rs1868790 was found to be related with ADHD symptoms (P < 0.05). Expression quantitative trait loci analysis further indicated that rs1868790 took part in the regulation of LPHN3 gene expression. As the first study to comprehensively explore the role of LPHN3 in ADHD in Chinese children, our research suggests that LPHN3 gene has a significant effect on the ADHD in a Chinese population.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuwei Hou
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China. .,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
31
|
Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 2019; 29:63-78. [DOI: 10.1097/ypg.0000000000000220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
PharmGKB summary: methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2019; 29:136-154. [PMID: 30950912 DOI: 10.1097/fpc.0000000000000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Chronic methylphenidate preferentially alters catecholamine protein targets in the parietal cortex and ventral striatum. Neurochem Int 2019; 124:193-199. [DOI: 10.1016/j.neuint.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
|
34
|
The role of pre-, peri-, and postnatal risk factors in bipolar disorder and adult ADHD. J Neural Transm (Vienna) 2019; 126:1117-1126. [DOI: 10.1007/s00702-019-01983-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
|
35
|
Arcos-Burgos M, Vélez JI, Martinez AF, Ribasés M, Ramos-Quiroga JA, Sánchez-Mora C, Richarte V, Roncero C, Cormand B, Fernández-Castillo N, Casas M, Lopera F, Pineda DA, Palacio JD, Acosta-López JE, Cervantes-Henriquez ML, Sánchez-Rojas MG, Puentes-Rozo PJ, Molina BSG, Boden MT, Wallis D, Lidbury B, Newman S, Easteal S, Swanson J, Patel H, Volkow N, Acosta MT, Castellanos FX, de Leon J, Mastronardi CA, Muenke M. ADGRL3 (LPHN3) variants predict substance use disorder. Transl Psychiatry 2019; 9:42. [PMID: 30696812 PMCID: PMC6351584 DOI: 10.1038/s41398-019-0396-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/02/2022] Open
Abstract
Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.
Collapse
Affiliation(s)
- Mauricio Arcos-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia.
- Instituto de Investigaciones Médicas (IIM), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Jorge I Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Universidad del Norte, Barranquilla, Colombia
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Josep A Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Roncero
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Departament of Psychiatry, Hospital Universitari Vall d'Hebron-Public Health Agency, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Noelia Fernández-Castillo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Lopera
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - David A Pineda
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Johan E Acosta-López
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Martha L Cervantes-Henriquez
- Universidad del Norte, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Manuel G Sánchez-Rojas
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pedro J Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology, University of Pittsburg, Pittsburg, PA, USA
| | - Margaret T Boden
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Brett Lidbury
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Saul Newman
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Simon Easteal
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - James Swanson
- Department of Psychiatry, Florida International University, Miami, FL, USA
- Child Development Center, University of California at Irvine, Irvine, CA, USA
| | - Hardip Patel
- Genome Discovery Unit, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Nora Volkow
- Office of the Director, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Claudio A Mastronardi
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia
- Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
CLOCK Polymorphisms in Attention-Deficit/Hyperactivity Disorder (ADHD): Further Evidence Linking Sleep and Circadian Disturbances and ADHD. Genes (Basel) 2019; 10:genes10020088. [PMID: 30696097 PMCID: PMC6410065 DOI: 10.3390/genes10020088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Circadian and sleep disorders, short sleep duration, and evening chronotype are often present in attention-deficit/hyperactivity disorder (ADHD). CLOCK, considered the master gene in the circadian rhythm, has been explored by few studies. Understanding the relationship between ADHD and CLOCK may provide additional information to understand the correlation between ADHD and sleep problems. In this study, we aimed to explore the association between ADHD and CLOCK, using several genetic markers to comprehensively cover the gene extension. A total of 259 ADHD children and their parents from a Brazilian clinical sample were genotyped for eight single nucleotide polymorphisms (SNPs) in the CLOCK locus. We tested the individual markers and the haplotype effects using binary logistic regression. Binary logistic and linear regressions considering ADHD symptoms among ADHD cases were conducted as secondary analysis. As main result, the analysis showed a risk effect of the G-A-T-G-G-C-G-A (rs534654, rs1801260, rs6855837, rs34897046, rs11931061, rs3817444, rs4864548, rs726967) haplotype on ADHD. A suggestive association between ADHD and rs534654 was observed. The results suggest that the genetic susceptibility to circadian rhythm attributed to the CLOCK gene may play an important role on ADHD.
Collapse
|
37
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
38
|
Hsu JW, Tsai SJ, Chen MH, Huang KL. Treatment-resistant attention-deficit hyperactivity disorder: Clinical significance, concept, and management. TAIWANESE JOURNAL OF PSYCHIATRY 2019. [DOI: 10.4103/tpsy.tpsy_14_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
|
40
|
Grimm O, Kittel-Schneider S, Reif A. Recent developments in the genetics of attention-deficit hyperactivity disorder. Psychiatry Clin Neurosci 2018; 72:654-672. [PMID: 29722101 DOI: 10.1111/pcn.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental psychiatric disorder that affects children and adults. ADHD is one of the psychiatric disorders with the strongest genetic basis according to familial, twin, and single nucleotide polymorphisms (SNP)-based epidemiological studies. In this review, we provide an update of recent insights into the genetic basis of ADHD. We discuss recent progress from genome-wide association studies (GWAS) looking at common variants as well as rare copy number variations. New analysis of gene groups, so-called functional ontologies, provide some insight into the gene networks afflicted, pointing to the role of neurodevelopmentally expressed gene networks. Bioinformatic methods, such as functional enrichment analysis and protein-protein network analysis, are used to highlight biological processes of likely relevance to the etiology of ADHD. Additionally, copy number variations seem to map on important pathways implicated in synaptic signaling and neurodevelopment. While some candidate gene associations of, for example, neurotransmitter receptors and signaling, have been replicated, they do not seem to explain significant variance in recent GWAS. We discuss insights from recent case-control SNP-GWAS that have presented the first whole-genome significant SNP in ADHD.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
41
|
RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer. EBioMedicine 2018; 32:234-244. [PMID: 29861410 PMCID: PMC6021271 DOI: 10.1016/j.ebiom.2018.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in males in the Western world. Although prostate-specific antigen (PSA) has been widely used as a biomarker for PCa diagnosis, its results can be controversial. Therefore, new biomarkers are needed to enhance the clinical management of PCa. From publicly available microarray data, differentially expressed genes (DEGs) were identified by meta-analysis with RankProd. Genetic algorithm optimized artificial neural network (GA-ANN) was introduced to establish a diagnostic prediction model and to filter candidate genes. The diagnostic and prognostic capability of the prediction model and candidate genes were investigated in both GEO and TCGA datasets. Candidate genes were further validated by qPCR, Western Blot and Tissue microarray. By RankProd meta-analyses, 2306 significantly up- and 1311 down-regulated probes were found in 133 cases and 30 controls microarray data. The overall accuracy rate of the PCa diagnostic prediction model, consisting of a 15-gene signature, reached up to 100% in both the training and test dataset. The prediction model also showed good results for the diagnosis (AUC = 0.953) and prognosis (AUC of 5 years overall survival time = 0.808) of PCa in the TCGA database. The expression levels of three genes, FABP5, C1QTNF3 and LPHN3, were validated by qPCR. C1QTNF3 high expression was further validated in PCa tissue by Western Blot and Tissue microarray. In the GEO datasets, C1QTNF3 was a good predictor for the diagnosis of PCa (GSE6956: AUC = 0.791; GSE8218: AUC = 0.868; GSE26910: AUC = 0.972). In the TCGA database, C1QTNF3 was significantly associated with PCa patient recurrence free survival (P < .001, AUC = 0.57). In this study, we have developed a diagnostic and prognostic prediction model for PCa. C1QTNF3 was revealed as a promising biomarker for PCa. This approach can be applied to other high-throughput data from different platforms for the discovery of oncogenes or biomarkers in different kinds of diseases.
Collapse
|
42
|
Südhof TC. Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell 2017; 171:745-769. [PMID: 29100073 DOI: 10.1016/j.cell.2017.10.024] [Citation(s) in RCA: 509] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Synapses are specialized junctions between neurons in brain that transmit and compute information, thereby connecting neurons into millions of overlapping and interdigitated neural circuits. Here, we posit that the establishment, properties, and dynamics of synapses are governed by a molecular logic that is controlled by diverse trans-synaptic signaling molecules. Neurexins, expressed in thousands of alternatively spliced isoforms, are central components of this dynamic code. Presynaptic neurexins regulate synapse properties via differential binding to multifarious postsynaptic ligands, such as neuroligins, cerebellin/GluD complexes, and latrophilins, thereby shaping the input/output relations of their resident neural circuits. Mutations in genes encoding neurexins and their ligands are associated with diverse neuropsychiatric disorders, especially schizophrenia, autism, and Tourette syndrome. Thus, neurexins nucleate an overall trans-synaptic signaling network that controls synapse properties, which thereby determines the precise responses of synapses to spike patterns in a neuron and circuit and which is vulnerable to impairments in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, CA 94305-5453, USA.
| |
Collapse
|
43
|
Further replication of the synergistic interaction between LPHN3 and the NTAD gene cluster on ADHD and its clinical course throughout adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28624582 DOI: 10.1016/j.pnpbp.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common and highly heritable neuropsychiatric disorder. Despite the high heritability, the unraveling of specific genetic factors related to ADHD is hampered by its considerable genetic complexity. Recent evidence suggests that gene-gene interactions can explain part of this complexity. We examined the impact of strongly supported interaction effects between the LPHN3 gene and the NTAD gene cluster (NCAM1-TTC12-ANKK1-DRD2) in a 7-year follow-up of a clinical sample of adults with ADHD, addressing associations with susceptibility, symptomatology and stability of diagnosis. The sample comprises 548 adults with ADHD and 643 controls. Entropy-based analysis indicated a potential interaction between the LPHN3-rs6551665 and TTC12-rs2303380 SNPs influencing ADHD symptom counts. Further analyses revealed significant interaction effects on ADHD total symptoms (p=0.002), and with hyperactivity/impulsivity symptom counts (p=0.005). In the group composed by predominantly hyperactive/impulsive and combined presentation, the presence of LPHN3-rs6551665 G allele was related to increased ADHD risk only in individuals carrying the TTC12-rs2303380 AA genotype (p=0.026). Also, the same allelic constellation is involved in maintenance of ADHD in a predominantly hyperactive/impulsive or combined presentation after a 7-year follow-up (p=0.008). These observations reinforce and replicate previous evidence suggesting that an interaction effect between the LPHN3 gene and the NTAD cluster may have a role in the genetic substrate associated to ADHD also in adults. Moreover, it is possible that the interactions between LPHN3 and NTAD are specific factors contributing to the development of an ADHD phenotype with increased hyperactivity/impulsivity that is maintained throughout adulthood.
Collapse
|
44
|
Gomez-Sanchez CI, Carballo JJ, Riveiro-Alvarez R, Soto-Insuga V, Rodrigo M, Mahillo-Fernandez I, Abad-Santos F, Dal-Ré R, Ayuso C. Pharmacogenetics of methylphenidate in childhood attention-deficit/hyperactivity disorder: long-term effects. Sci Rep 2017; 7:10391. [PMID: 28871191 PMCID: PMC5583388 DOI: 10.1038/s41598-017-10912-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/16/2017] [Indexed: 01/08/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in which a significant proportion of patients do not respond to treatment. The objective of this study was to examine the role of genetic risk variants in the response to treatment with methylphenidate (MPH). The effectiveness of MPH was evaluated based on variations in the CGI-S and CGAS scales over a 12-month treatment period using linear mixed effects models. A total of 208 ADHD patients and 34 polymorphisms were included in the analysis. For both scales, the response was associated with time, extended-release MPH/both formulations, and previous MPH treatment. For the CGI-S scale, response was associated with SLC6A3 rs2550948, DRD4 promoter duplication, SNAP25 rs3746544, and ADGRL3 rs1868790. Interactions between the response over time and SLC6A3 and DRD2 were found in the CGI-S and CGAS scales, respectively. The proportion of the variance explained by the models was 18% for the CGI-S and 22% for the CGAS. In this long-term study, the effects of SLC6A3, DRD4, SNAP25, and ADGRL3 on response to treatment reflect those observed in previous studies. In addition, 2 previously unreported interactions with response to treatment over a 12-month period were found (SLC6A3 and DRD2).
Collapse
Affiliation(s)
- Clara I Gomez-Sanchez
- Department of Genetics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER). C/ Monforte de Lemos 3-5, Pabellón 11, Madrid, 28029, Spain
| | - Juan J Carballo
- Department of Psychiatry, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER). C/ Monforte de Lemos 3-5, Pabellón 11, Madrid, 28029, Spain
| | - Victor Soto-Insuga
- Department of Pediatrics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Maria Rodrigo
- Department of Pediatrics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Ignacio Mahillo-Fernandez
- Epidemiology Unit, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, IIS- La Princesa University Hospital (IIS-IP). C/ de Diego Leon, 62, Madrid, 28006, Spain
| | - Rafael Dal-Ré
- Clinical Research, BUC (Biosciences UAM + CSIC) Program, International Campus of Excellence, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain.
- Centre for Biomedical Research on Rare Diseases (CIBERER). C/ Monforte de Lemos 3-5, Pabellón 11, Madrid, 28029, Spain.
| |
Collapse
|
45
|
Abstract
Human genetic studies have been the driving force in bringing to light the underlying biology of psychiatric conditions. As these studies fill in the gaps in our knowledge of the mechanisms at play, we will be better equipped to design therapies in rational and targeted ways, or repurpose existing therapies in previously unanticipated ways. This review is intended for those unfamiliar with psychiatric genetics as a field and provides a primer on different modes of genetic variation, the technologies currently used to probe them, and concepts that provide context for interpreting the gene-phenotype relationship. Like other subfields in human genetics, psychiatric genetics is moving from microarray technology to sequencing-based approaches as barriers of cost and expertise are removed, and the ramifications of this transition are discussed here. A summary is then given of recent genetic discoveries in a number of neuropsychiatric conditions, with particular emphasis on neurodevelopmental conditions. The general impact of genetics on drug development has been to underscore the extensive etiological heterogeneity in seemingly cohesive diagnostic categories. Consequently, the path forward is not in therapies hoping to reach large swaths of patients sharing a clinically defined diagnosis, but rather in targeting patients belonging to specific "biotypes" defined through a combination of objective, quantifiable data, including genotype.
Collapse
Affiliation(s)
- Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA.
- Department of Communication Sciences and Disorders, University of Iowa College of Liberal Arts and Sciences, Iowa City, IA, USA.
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.
- Genetics Cluster Initiative, University of Iowa, Iowa City, IA, USA.
- The DeLTA Center, University of Iowa, Iowa City, IA, USA.
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
46
|
Martinez AF, Abe Y, Hong S, Molyneux K, Yarnell D, Löhr H, Driever W, Acosta MT, Arcos-Burgos M, Muenke M. An Ultraconserved Brain-Specific Enhancer Within ADGRL3 (LPHN3) Underpins Attention-Deficit/Hyperactivity Disorder Susceptibility. Biol Psychiatry 2016; 80:943-954. [PMID: 27692237 PMCID: PMC5108697 DOI: 10.1016/j.biopsych.2016.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic factors predispose individuals to attention-deficit/hyperactivity disorder (ADHD). Previous studies have reported linkage and association to ADHD of gene variants within ADGRL3. In this study, we functionally analyzed noncoding variants in this gene as likely pathological contributors. METHODS In silico, in vitro, and in vivo approaches were used to identify and characterize evolutionary conserved elements within the ADGRL3 linkage region (~207 Kb). Family-based genetic analyses of 838 individuals (372 affected and 466 unaffected patients) identified ADHD-associated single nucleotide polymorphisms harbored in some of these conserved elements. Luciferase assays and zebrafish green fluorescent protein transgenesis tested conserved elements for transcriptional enhancer activity. Electromobility shift assays were used to verify transcription factor-binding disruption by ADHD risk alleles. RESULTS An ultraconserved element was discovered (evolutionary conserved region 47) that functions as a transcriptional enhancer. A three-variant ADHD risk haplotype in evolutionary conserved region 47, formed by rs17226398, rs56038622, and rs2271338, reduced enhancer activity by 40% in neuroblastoma and astrocytoma cells (pBonferroni < .0001). This enhancer also drove green fluorescent protein expression in the zebrafish brain in a tissue-specific manner, sharing aspects of endogenous ADGRL3 expression. The rs2271338 risk allele disrupts binding of YY1 transcription factor, an important factor in the development and function of the central nervous system. Expression quantitative trait loci analysis of postmortem human brain tissues revealed an association between rs2271338 and reduced ADGRL3 expression in the thalamus. CONCLUSIONS These results uncover the first functional evidence of common noncoding variants with potential implications for the pathology of ADHD.
Collapse
|
47
|
Genome-wide linkage and association analysis of cardiometabolic phenotypes in Hispanic Americans. J Hum Genet 2016; 62:175-184. [PMID: 27535031 PMCID: PMC5266668 DOI: 10.1038/jhg.2016.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
Abstract
Linkage studies of complex genetic diseases have been largely replaced by genome-wide association studies, due in part to limited success in complex trait discovery. However, recent interest in rare and low-frequency variants motivates re-examination of family-based methods. In this study, we investigated the performance of two-point linkage analysis for over 1.6 million single-nucleotide polymorphisms (SNPs) combined with single variant association analysis to identify high impact variants, which are both strongly linked and associated with cardiometabolic traits in up to 1414 Hispanics from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of all 50 phenotypes yielded 83 557 000 LOD (logarithm of the odds) scores, with 9214 LOD scores ⩾3.0, 845 ⩾4.0 and 89 ⩾5.0, with a maximal LOD score of 6.49 (rs12956744 in the LAMA1 gene for tumor necrosis factor-α (TNFα) receptor 2). Twenty-seven variants were associated with P<0.005 as well as having an LOD score >4, including variants in the NFIB gene under a linkage peak with TNFα receptor 2 levels on chromosome 9. Linkage regions of interest included a broad peak (31 Mb) on chromosome 1q with acute insulin response (max LOD=5.37). This region was previously documented with type 2 diabetes in family-based studies, providing support for the validity of these results. Overall, we have demonstrated the utility of two-point linkage and association in comprehensive genome-wide array-based SNP genotypes.
Collapse
|
48
|
Acosta MT, Swanson J, Stehli A, Molina BSG, Martinez AF, Arcos-Burgos M, Muenke M. ADGRL3 (LPHN3) variants are associated with a refined phenotype of ADHD in the MTA study. Mol Genet Genomic Med 2016; 4:540-7. [PMID: 27652281 PMCID: PMC5023939 DOI: 10.1002/mgg3.230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background ADHD is the most common neuropsychiatric condition affecting individuals of all ages. Long‐term outcomes of affected individuals and association with severe comorbidities as SUD or conduct disorders are the main concern. Genetic associations have been extensively described. Multiple studies show that intronic variants harbored in the ADGRL3 (LPHN3) gene are associated with ADHD, especially associated with poor outcomes. Methods In this study, we evaluated this association in the Multimodal Treatment Study of children with ADHD (MTA), initiated as a 14‐month randomized clinical trial of 579 children diagnosed with DSM‐IV ADHD‐Combined Type (ADHD‐C), that transitioned to a 16‐year prospective observational follow‐up, and 289 classmates added at the 2‐year assessment to serve as a local normative comparison group (LNCG). Diagnostic evaluations at entry were based on the Diagnostic Interview Schedule for Children‐Parent (DISC‐P), which was repeated at several points over the years. For an add‐on genetic study, blood samples were collected from 232 in the MTA group and 139 in the LNCG. Results For the 205 MTA participants, 14.6% retained the DISC‐P diagnosis of ADHD‐C in adolescence. For 127 LNCG participants, 88.2% remained undiagnosed by the DISC‐P. We genotyped 15 polymorphic SNP markers harbored in the ADGRL3 gene, and compared allele frequencies for the 30 cases with continued diagnosis of ADHD‐C in adolescence to the other participants. Replication of the association of rs2345039 ADGRL3 variant was observed (P value = 0.004, FDR corrected = 0.03; Odds ratio = 2.25, upper CI 1.28–3.97). Conclusion The detection of susceptibility conferred by ADGRL3 variants in the extreme phenotype of continued diagnosis of ADHD‐C from childhood to adolescence provides additional support that the association of ADGRL3 and ADHD is not spurious. Exploring genetic effects in longitudinal cohorts, in which refined, age‐dependent phenotypes are documented, is crucial to understand the natural history of ADHD.
Collapse
Affiliation(s)
- Maria T Acosta
- Medical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland; Department of Pediatric and NeurologyGeorge Washington UniversityChildren's National Medical CenterWashingtonDistrict of Columbia
| | - James Swanson
- Department of PsychiatryFlorida International UniversityMiamiFlorida; Department of PediatricsUniversity of California at IrvineIrvineCalifornia
| | - Annamarie Stehli
- Department of Pediatrics University of California at Irvine Irvine California
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology University of Pittsburgh Pittsburgh Pennsylvania
| | | | - Ariel F Martinez
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine Genome Biology Department John Curtin School of Medical Research ANU College of Medicine, Biology and Environment The Australian National University Canberra ACT Australia
| | - Maximilian Muenke
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| |
Collapse
|
49
|
Pagerols M, Richarte V, Sánchez-Mora C, Garcia-Martínez I, Corrales M, Corominas M, Cormand B, Casas M, Ribasés M, Ramos-Quiroga JA. Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. THE PHARMACOGENOMICS JOURNAL 2016; 17:98-104. [DOI: 10.1038/tpj.2015.89] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 01/06/2023]
|
50
|
Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity. Neural Plast 2016; 2016:8301737. [PMID: 26881134 PMCID: PMC4736325 DOI: 10.1155/2016/8301737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.
Collapse
|