1
|
Du M, Xu C, Wang A, Lv P, Xu Z, Zhang X. Different drought recovery strategy between Larix spp. and Quercus mongolica in temperate forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173521. [PMID: 38802012 DOI: 10.1016/j.scitotenv.2024.173521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Forests are experiencing increasingly severe drought stress worldwide. Although most studies have quantified how tree growth was affected by extreme droughts, how trees recover from different drought intensities are still poorly understood for different species. We used a network of tree-ring data comprising 731 Quercus mongolica trees across 29 sites, 312 Larix olgensis Henry trees from 13 sites, and 818 Larix principis-rupprechtii trees from 34 sites, covering most of their distribution range in northern China, to compare the influences of drought intensity on post-drought recovery. The results showed that summer droughts had strong negative influences on tree growth. Post-drought growth varied with drought intensity for the three species. Larix species exhibited strong legacy effects after severe droughts, which is related to the lack of compensatory growth. In contrast, the compensatory growth of Q. mongolica reduced drought legacy effect. However, the compensatory growth of Q. mongolica gradually weaken with increasing drought intensity and disappeared during severe drought. Our findings indicated that influence of drought on Q. mongolica growth mainly shown in drought years, but Larix species suffered from long-term drought legacy effects, implying Q. mongolica rapidly recovered from droughts but Larix species need several years to recover from droughts, thus the two genera have different recovery strategy.
Collapse
Affiliation(s)
- Mingchao Du
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Chen Xu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, 071001 Baoding, China
| | - Ao Wang
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Pengcheng Lv
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Zhongqi Xu
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Xianliang Zhang
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China; Long-term Silviculture base in Saihanba, Chengde, Hebei 068456, China; Urban Forest Health Technology Innovation Center, 071001 Baoding, China.
| |
Collapse
|
2
|
Sánchez Vilas J, Hernández-Alonso H, Rozas V, Retuerto R. Differential growth rate, water use efficiency and climate sensitivity between males and females of Ilex aquifolium in north-western Spain. ANNALS OF BOTANY 2024:mcae126. [PMID: 39110105 DOI: 10.1093/aob/mcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Dioecious plant species, i.e., those in which male and female functions are housed in different individuals, are particularly vulnerable to global environmental changes. For long-lived plant species, such as trees, long-term studies are imperative to understand how growth patterns and their sensitivity to climate variability differentially affect the sexes. METHODS Here, we explore long-term intersexual differences in wood traits, namely radial growth rates, water use efficiency quantified as stable carbon isotope abundance of wood cellulose, and their climate sensitivity in Ilex aquifolium trees growing in a natural population in NW Spain. KEY RESULTS We found that sex differences in secondary growth rates were variable over time, with males outperforming females in both radial growth rates and water use efficiency in recent decades. Summer water stress significantly reduced the growth of female trees in the following growing season, while the growth of male trees was primarily favoured by cloudy and rainy conditions the previous fall and winter combined with low cloud cover and warm conditions in summer. Sex-dependent lagged correlations between radial growth and water availability were found, with a strong association between tree growth and cumulative water availability in females at 30 months and in males at 10 months. CONCLUSIONS Overall, our results point to greater vulnerability of female tress to increasing drought, which could lead to sex-ratio biases threatening population viability in the future.
Collapse
Affiliation(s)
- Julia Sánchez Vilas
- Departamento de Bioloxía Funcional (Área de Ecoloxía), Facultade de Bioloxía, Universidade de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain
- School of Biosciences, Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - Héctor Hernández-Alonso
- EiFAB, iuFOR, Universidad de Valladolid, Campus Duques de Soria, 42004 Soria, Spain
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Vicente Rozas
- EiFAB, iuFOR, Universidad de Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| | - Rubén Retuerto
- Departamento de Bioloxía Funcional (Área de Ecoloxía), Facultade de Bioloxía, Universidade de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Niemczyk M, Wrzesiński P, Szyp-Borowska I, Krajewski S, Żytkowiak R, Jagodziński AM. Coping with extremes: Responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174912. [PMID: 39038682 DOI: 10.1016/j.scitotenv.2024.174912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Climate change, particularly droughts and heat waves, significantly impacts global photosynthesis and forest ecosystem sustainability. To understand how trees respond to and recover from hydrological stress, we investigated the combined effects of soil moisture and atmospheric vapour pressure deficit (VPD) on seedlings of the two major European broadleaved tree species Fagus sylvatica (FS) and Quercus robur (QR). The experiment was conducted under natural forest gap conditions, while soil water availability was strictly manipulated. We monitored gas exchange (net photosynthesis, stomatal conductance and transpiration rates), nonstructural carbohydrates (NSC) concentration in roots and stomatal morphometry (size and density) during a drought period and recovery. Our comparative empirical study allowed us to distinguish and quantify the effects of soil drought and VPD on stomatal behavior, going beyond theoretical models. We found that QR conserved water more conservatively than FS by reducing transpiration and regulating stomatal conductance under drought. FS maintained higher stomatal conductance and transpiration at elevated VPD until soil moisture became critically low. QR showed higher intrinsic water use efficiency than FS. Stomata density and size also likely played a role in photosynthetic rate and speed of recovery, especially since QR with its seasonal adjustments in stomatal traits (smaller, more numerous stomata in summer leaves) responded and recovered faster compared to FS. Our focal species showed different responses in NSC content under drought stress and recovery, suggesting possible different evolutionary pathways in coping with stress. QR mobilized soluble sugars, while FS relied on starch mobilization to resist drought. Although our focal species often co-occur in mixed forests, our study showed that they have evolved different physiological, morphological and biochemical strategies to cope with drought stress. This suggests that ongoing climate change may alter their competitive ability and adaptive potential in favor of one of the species studied.
Collapse
Affiliation(s)
- Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland.
| | - Piotr Wrzesiński
- Dendrolab IBL, Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Iwona Szyp-Borowska
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Szymon Krajewski
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
4
|
Italiano SSP, Camarero JJ, Borghetti M, Colangelo M, Rita A, Ripullone F. Drought legacies in mixed Mediterranean forests: Analysing the effects of structural overshoot, functional traits and site factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172166. [PMID: 38575023 DOI: 10.1016/j.scitotenv.2024.172166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.
Collapse
Affiliation(s)
- Santain S P Italiano
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Michele Colangelo
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Angelo Rita
- Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, IT-80055 Portici, Napoli, Italy.
| | - Francesco Ripullone
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
5
|
Lecomte X, Bugalho MN, Catry FX, Fernandes PM, Cera A, Caldeira MC. Ungulates mitigate the effects of drought and shrub encroachment on the fire hazard of Mediterranean oak woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2971. [PMID: 38581136 DOI: 10.1002/eap.2971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/16/2023] [Accepted: 01/31/2024] [Indexed: 04/08/2024]
Abstract
Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.
Collapse
Affiliation(s)
- Xavier Lecomte
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Miguel N Bugalho
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Filipe X Catry
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Paulo M Fernandes
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- ForestWISE-Collaborative Laboratory for Integrated Forest and Fire Management, Vila Real, Portugal
| | - Andreu Cera
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
Bose AK, Doležal J, Scherrer D, Altman J, Ziche D, Martínez-Sancho E, Bigler C, Bolte A, Colangelo M, Dorado-Liñán I, Drobyshev I, Etzold S, Fonti P, Gessler A, Kolář T, Koňasová E, Korznikov KA, Lebourgeois F, Lucas-Borja ME, Menzel A, Neuwirth B, Nicolas M, Omelko AM, Pederson N, Petritan AM, Rigling A, Rybníček M, Scharnweber T, Schröder J, Silla F, Sochová I, Sohar K, Ukhvatkina ON, Vozmishcheva AS, Zweifel R, Camarero JJ. Revealing legacy effects of extreme droughts on tree growth of oaks across the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172049. [PMID: 38552974 DOI: 10.1016/j.scitotenv.2024.172049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Jiri Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 21, Prague 6, Czech Republic
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain; Scuola di Scienze Agrarie, Forestali, Alimentari, e Ambientali, Università della Basilicata, Potenza, Italy
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Igor Drobyshev
- Southern Swedish Research Center, Swedish University of Agricultural Sciences, Alnarp, Sweden; Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Québec, Canada
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Eva Koňasová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | | | | | - Manuel Esteban Lucas-Borja
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla La Mancha, Albacete, Spain
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F 77300, France
| | - Alexander Mikhaylovich Omelko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Neil Pederson
- Harvard Forest, 324 N.Main St, Petersham, MA 01366, USA
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry "Marin Dracea", Eroilor 128, 077190 Voluntari, Romania
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Tobias Scharnweber
- DendroGreif, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Fernando Silla
- Departamento Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, University Salamanca, 37007 Salamanca, Spain
| | - Irena Sochová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Kristina Sohar
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, Estonia
| | - Olga Nikolaevna Ukhvatkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna Stepanovna Vozmishcheva
- Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| |
Collapse
|
7
|
Peltier DMP, Carbone MS, McIntire CD, Robertson N, Thompson RA, Malone S, LeMoine J, Richardson AD, McDowell NG, Adams HD, Pockman WT, Trowbridge AM. Carbon starvation following a decade of experimental drought consumes old reserves in Pinus edulis. THE NEW PHYTOLOGIST 2023; 240:92-104. [PMID: 37430467 DOI: 10.1111/nph.19119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mariah S Carbone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Cameron D McIntire
- Northeastern Area State, Private, and Tribal Forestry, USDA Forest Service, 271 Mast Road, Durham, NH, 03824, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Shealyn Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jim LeMoine
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Chen L, Keski-Saari S, Kontunen-Soppela S, Zhu X, Zhou X, Hänninen H, Pumpanen J, Mola-Yudego B, Wu D, Berninger F. Immediate and carry-over effects of late-spring frost and growing season drought on forest gross primary productivity capacity in the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2023; 29:3924-3940. [PMID: 37165918 DOI: 10.1111/gcb.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
- Department of Geographical and Historical Studies, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Xudan Zhu
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Blas Mola-Yudego
- School of Forest Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Di Wu
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
9
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
10
|
He L, Guo J, Yang W, Jiang Q, Chen L, Tang K. Multifaceted responses of vegetation to average and extreme climate change over global drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159942. [PMID: 36343828 DOI: 10.1016/j.scitotenv.2022.159942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Average climatic events describe the occurrence of weather or climate at an average value, whereas extreme events are defined as events that exceed the upper or lower threshold value of statistical or observational average climatic events. This study investigated the impacts of both average climate change (ACC) (i.e., average precipitation, temperature, and potential evapotranspiration [PET]) and extreme climate change (ECC) (i.e., five precipitation and five temperature extremes) on dryland vegetation based on the Normalized Difference Vegetation Index (NDVI). The spatial divergences of ACC and ECC in affecting changes in NDVI over drylands were determined using the geographical detector model. In this study, the growth of vegetation in 40.29 % of global drylands was driven by average precipitation and this dominant effect also occurred in all the plant species, particularly shrubs. However, the sensitivity of grassland to average precipitation exceeded that of most of the woody vegetation. The average temperature and PET controlled 28.64 % and 31.07 % of the changes in NDVI, respectively. Precipitation extremes (except for consecutive dry days and consecutive wet days) and warm temperature extremes (WTE) had positive influences on dryland vegetation, and the effect of WTE on NDVI exceeded that of the remaining temperature extremes. Temperature extremes exerted more significant effects than precipitation extremes for changes in the grassland NDVI. In contrast, the variations in shrub NDVI were primarily dominated by precipitation extremes. We also found that the impacts of parts of average and extreme climatic factors on vegetation had changed over time. Furthermore, temperature extremes had far exceeded the average temperature in affecting vegetation growth at the spatial scale, and this action gradually intensified from 1982 to 2015. The influences of all precipitation extremes were weaker than those of the average precipitation. Those can offer scientific references for ecosystem protection in drylands.
Collapse
Affiliation(s)
- Liang He
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jianbin Guo
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Wenbin Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
| | - Qunou Jiang
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Lin Chen
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, College of Ecology and Environmental Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kexin Tang
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Bose AK, Rohner B, Bottero A, Ferretti M, Forrester DI. Did the 2018 megadrought change the partitioning of growth between tree sizes and species? A Swiss case-study. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1146-1156. [PMID: 34939277 PMCID: PMC10078792 DOI: 10.1111/plb.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
By killing or weakening trees, drought could change the partitioning of growth between tree sizes or species, thereby altering stand structure. Growth partitioning, often quantified using the growth dominance coefficient (DC) or the shape of tree size versus growth relationships (SGR), indicates the relative contribution of differently sized trees to the total stand growth. Changes in growth partitioning due to droughts are rarely examined but provide valuable information that links tree- and stand-level responses to droughts. The objective of this study was to test whether the 2018 European megadrought altered the growth partitioning among tree sizes and species. For this purpose, we first evaluated whether DC or SGR can be calculated from small sample sizes of trees typical of individual forest inventory plots. DC, and particularly SGR, were sensitive to sample size, forest type (even-aged and uneven-aged), target variable (tree diameter, basal area or stem mass) and range of tree sizes within the sample. SGR could therefore not be used for our analyses. We found no differences in DC prior to and during the 2018 drought. However, when considering only beech (Fagus sylvatica)-dominated stands, DC was lower during post-drought years than during the 2018 drought. The growth of larger trees, especially beech, was more negatively affected during post-drought years. Therefore, an extreme drought event can indeed alter the growth partitioning within forest stands. The DC indicates such changes in partitioning and, hence, which trees can be selected for commercial thinning, or released from competition, to minimize potential impacts of droughts.
Collapse
Affiliation(s)
- A. K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - B. Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - A. Bottero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
- WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center (CERC)Davos DorfSwitzerland
| | - M. Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - D. I. Forrester
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| |
Collapse
|
12
|
Fulé PZ, Sánchez Meador AJ, Moore MM, Covington WW, Kolb TE, Huffman DW, Normandin DP, Roccaforte JP. Forest restoration treatments increased growth and did not change survival of ponderosa pines in severe drought, Arizona. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2717. [PMID: 36184740 DOI: 10.1002/eap.2717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
We report on survival and growth of ponderosa pines (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) 2 decades after forest restoration treatments in the G. A. Pearson Natural Area, northern Arizona. Despite protection from harvest that conserved old trees, a dense forest susceptible to uncharacteristically severe disturbance had developed during more than a century of exclusion of the previous frequent surface-fire regime that ceased upon Euro-American settlement in approximately 1876. Trees were thinned in 1993 to emulate prefire-exclusion forest conditions, accumulated forest floor was removed, and surface fire was re-introduced at 4-years intervals (full restoration). There was also a partial restoration treatment consisting of thinning alone. Compared with untreated controls, mortality of old trees (mean age 243 years, maximum 462 years) differed by <1 tree ha-1 and old-tree survival was statistically indistinguishable between treatments (90.5% control, 92.3% full, 82.6% partial). Post-treatment growth as measured by basal area increment of both old (pre-1876) and young (post-1876) pines was significantly higher in both treatments than counterpart control trees for more than 2 decades following thinning. Drought meeting the definition of megadrought affected the region almost all the time since the onset of the experiment, including 3 years that were severely dry. Growth of all trees declined in the driest 3 years, but old and young treated trees had significantly less decline. Association of tree growth with temperature (negative correlation) and precipitation (positive correlation) was much weaker in treated trees, indicating that they may experience less growth decline from warmer, drier conditions predicted in future decades. Overall, tree responses after the first 2 decades following treatment suggest that forest restoration treatments have led to substantial, sustained improvement in the growth of old and young ponderosa pines without affecting old-tree survival, thereby improving resilience to a warming climate.
Collapse
Affiliation(s)
- Peter Z Fulé
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Andrew J Sánchez Meador
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Margaret M Moore
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - W Wallace Covington
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas E Kolb
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - David W Huffman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Donald P Normandin
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - John Paul Roccaforte
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
13
|
Ribeyre Z, Messier C, Nolet P. No stress memory pattern was detected in sugar maple and white spruce seedlings subjected to experimental droughts. Ecosphere 2022. [DOI: 10.1002/ecs2.4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
- Département des Sciences Biologiques, Centre d'Étude de la Forêt (CEF) University of Québec à Montréal (UQAM) Montreal Quebec Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| |
Collapse
|
14
|
Peltier DMP, Anderegg WRL, Guo JS, Ogle K. Contemporary tree growth shows altered climate memory. Ecol Lett 2022; 25:2663-2674. [PMID: 36257775 DOI: 10.1111/ele.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Trees are long-lived organisms, exhibiting temporally complex growth arising from strong climatic "memory." But conditions are becoming increasingly arid in the western USA. Using a century-long tree-ring network, we find altered climate memory across the entire range of a widespread western US conifer: growth is supported by precipitation falling further into the past (+15 months), while increasingly impacted by more recent temperature conditions (-8 months). Tree-ring datasets can be biased, so we confirm altered climate memory in a second, ecologically-sampled tree-ring network. Predicted drought responses show trees may have also become more sensitive to repeat drought. Finally, plots near sites with relatively longer precipitation memory and shorter temperature memory had significantly lower recent mortality rates (R2 = 0.61). We argue that increased drought frequency has altered climate memory, demonstrate how non-stationarity may arise from failure to account for memory, and suggest memory length may be predictive of future tree mortality.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Jessica S Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA.,School of Informatics, Computing, and Cyber-Systems, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
15
|
Oberleitner F, Hartmann H, Hasibeder R, Huang J, Losso A, Mayr S, Oberhuber W, Wieser G, Bahn M. Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. PLANT, CELL & ENVIRONMENT 2022; 45:2617-2635. [PMID: 35610775 DOI: 10.1111/pce.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wieser
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
17
|
Zlobin IE. Linking the growth patterns of coniferous species with their performance under climate aridization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154971. [PMID: 35367548 DOI: 10.1016/j.scitotenv.2022.154971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Tree growth is highly sensitive to water deficit. At the same time, growth processes substantially influence tree performance under water stress by changing the root-absorbing surface, leaf-transpiring surface, amount of conducting xylem, etc. Drought-induced growth suppression is often higher in conifers than in broadleaf species. This review is devoted to the relations between the growth of coniferous plants and their performance under increasing climate aridization in the temperate and boreal zones of the Northern Hemisphere. For adult trees, available evidence suggests that increasing the frequency and severity of water deficit would be more detrimental to those plants that have higher growth in favorable conditions but decrease growth more prominently under water shortage, compared to trees whose growth is less sensitive to moisture availability. Not only the overall sensitivity of growth processes to water supply but also the asymmetry in response to lower-than-average and higher-than-average moisture conditions can be important for the performance of coniferous trees under upcoming adverse climate change. To fully understand the tree response under future climate change, the responses to both drier and wetter years need to be analyzed separately. In coniferous seedlings, more active growth is usually linked with better drought survival, although physiological reasons for such a link can be different. Growth stability under exacerbating summer water deficit in coniferous plants can be maintained by more active spring growth and/or by a bimodal growth pattern; each strategy has specific advantages and drawbacks. The optimal choice of growth strategy would be critical for future reforestation programs.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| |
Collapse
|
18
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
19
|
Kannenberg SA, Maxwell JT. Disentangling the drivers of non-stationarity in tree growth. TREE PHYSIOLOGY 2022; 42:1128-1130. [PMID: 35298647 DOI: 10.1093/treephys/tpac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Steven A Kannenberg
- School of Biological Sciences, University of Utah, Salt Lake City, 84112 UT, USA
| | - Justin T Maxwell
- Department of Geography, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
20
|
Serra-Maluquer X, Gazol A, Anderegg WRL, Martínez-Vilalta J, Mencuccini M, Camarero JJ. Wood density and hydraulic traits influence species' growth response to drought across biomes. GLOBAL CHANGE BIOLOGY 2022; 28:3871-3882. [PMID: 35124877 DOI: 10.1111/gcb.16123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/17/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Tree species display a wide variety of water-use strategies, growth rates and capacity to tolerate drought. However, if we want to forecast species capacity to cope with increasing aridity and drought, we need to identify which measurable traits confer resilience to drought across species. Here, we use a global tree ring network (65 species; 1931 site series of ring-width indices-RWI) to evaluate the relationship of long-term growth-drought sensitivity (RWI-SPEI drought index relationship) and short-term growth response to extreme drought episodes (resistance, recovery and resilience indices) with functional traits related to leaf, wood and hydraulic properties. Furthermore, we assess the influence of climate (temperature, precipitation and climatic water deficit) on these trait-growth relationships. We found a close correspondence between the long-term relationship between RWI and SPEI and resistance and recovery of tree growth to severe drought episodes. Species displaying a stronger RWI-SPEI relationship to drought and low resistance and high recovery to extreme drought episodes tended to have a higher wood density (WD) and more negative leaf minimum water potential (Ψmin). Such associations were largely maintained when accounting for direct climate effects. Our results indicate that, at a cross-species level and global scale, wood and hydraulic functional traits explain species' growth responses to drought at short- and long-term scales. These trait-growth response relationships can improve our understanding of the cross-species capacity to withstand climate change and inform models to better predict drought effects on forest ecosystem dynamics.
Collapse
Affiliation(s)
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | | | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallés), Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallés), Catalonia, Spain
- ICREA, Barcelona, Spain
| | | |
Collapse
|
21
|
Zhou XL, Ma JY, Liu ZD, Dai NF, Yang HQ, Yang L, Wang YH, Shen SK. Gene Co-expression Network and Regression Analysis Identify the Transcriptomic, Physiological, and Biochemical Indicators of the Response of Alpine Woody Plant Rhododendron rex to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:896691. [PMID: 35693180 PMCID: PMC9174646 DOI: 10.3389/fpls.2022.896691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Increasing severity of drought stress due to global change and extreme weather has been affecting the biodiversity, function, and stability of forest ecosystems. However, despite being an important component in the alpine and subalpine vegetation in forest ecosystems, Rhododendron species have been paid rare attention in the study of molecular mechanism of tolerance or response to drought. Herein, we investigated the correlation of transcriptomic changes with the physiological and biochemical indicators of Rhododendron rex under drought stress by using the co-expression network approach and regression analysis. Compared with the control treatment, the number of significantly differentially expressed unigenes (DEGs) increased with the degree of drought stress. The DEGs were mainly enriched in the cell wall metabolic process, signaling pathways, sugar metabolism, and nitrogen metabolism. Coupled analysis of the transcriptome, physiological, and biochemical parameters indicated that the metabolic pathways were highly correlated with the physiological and biochemical indicators under drought stress, especially the chlorophyll fluorescence parameters, such as the actual photosynthetic efficiency of photosystem II, electron transport rate, photochemical quenching coefficient, and the maximum quantum efficiency of photosystem II photochemistry. The majority of the response genes related to the metabolic pathways, including photosynthesis, sugar metabolism, and phytohormone signal pathway, were highly expressed under drought stress. In addition, genes associated with cell wall, pectin, and galacturonan metabolism also played crucial roles in the response of R. rex to drought stress. The results provided novel insight into the molecular response of the alpine woody species under drought stress and may improve the understanding of the response of forest ecosystems to the global climate change.
Collapse
Affiliation(s)
- Xiong-Li Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Jin-Yan Ma
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhen-Dian Liu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ni-fei Dai
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Hui-Qin Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Liu Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| |
Collapse
|
22
|
Heilman KA, Dietze MC, Arizpe AA, Aragon J, Gray A, Shaw JD, Finley AO, Klesse S, DeRose RJ, Evans MEK. Ecological forecasting of tree growth: Regional fusion of tree-ring and forest inventory data to quantify drivers and characterize uncertainty. GLOBAL CHANGE BIOLOGY 2022; 28:2442-2460. [PMID: 35023229 DOI: 10.1111/gcb.16038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree-ring and forest inventory data within a Bayesian state-space model at a multi-site, regional scale, focusing on Pinus ponderosa var. brachyptera in the southwestern US. Leveraging the complementarity of these two data sources, we parsed the ecological complexity of tree growth into the effects of climate, tree size, stand density, site quality, and their interactions, and quantified uncertainties associated with these effects. New measurements of trees, an ongoing process in forest inventories, were used to confront forecasts of tree diameter with observations, and evaluate alternative tree growth models. We forecasted tree diameter and increment in response to an ensemble of climate change projections, and separated forecast uncertainty into four different causes: initial conditions, parameters, climate drivers, and process error. We found a strong negative effect of fall-spring maximum temperature, and a positive effect of water-year precipitation on tree growth. Furthermore, tree vulnerability to climate stress increases with greater competition, with tree size, and at poor sites. Under future climate scenarios, we forecast increment declines of 22%-117%, while the combined effect of climate and size-related trends results in a 56%-91% decline. Partitioning of forecast uncertainty showed that diameter forecast uncertainty is primarily caused by parameter and initial conditions uncertainty, but increment forecast uncertainty is mostly caused by process error and climate driver uncertainty. This fusion of tree-ring and forest inventory data lays the foundation for robust ecological forecasting of aboveground biomass and carbon accounting at tree, plot, and regional scales, including iterative improvement of model skill.
Collapse
Affiliation(s)
- Kelly A Heilman
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
| | - Michael C Dietze
- Department of Earth & Environment, Boston University, Boston, Massachusetts, USA
| | - Alexis A Arizpe
- Austrian Academy of Sciences, Gregor Mendel Institute, Vienna, Austria
| | - Jacob Aragon
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
| | - Andrew Gray
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - John D Shaw
- Rocky Mountain Research Station, USDA Forest Service, Ogden, Utah, USA
| | - Andrew O Finley
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
| | - Stefan Klesse
- Department of Forest Dynamics, Department of Forest Resources and Management, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - R Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - Margaret E K Evans
- Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
23
|
Short-Term Effects of Droughts and Cold Winters on the Growth of Scots Pine at Coastal Sand Dunes around the South Baltic Sea. FORESTS 2022. [DOI: 10.3390/f13030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coastal dunes near the Baltic Sea are often stabilized by Scots pine forests and are characterized by a mild climate. These ecosystems are affected by water shortages and might be influenced by climate extremes. Considering future climate change, utilizing tree rings could help assess the role of climate extremes on coastal forest growth. We used superposed epoch analysis to study Scots pine responses to droughts and cold winters, with focus on frequency, timing, and duration. We measured ring widths (RW) and latewood blue intensity (LBI) on samples extracted from trees growing at dune ridge and bottom microsites at the south Baltic Sea. At the regional scale, we observed some similarities in tree responses to both extremes between RW and LBI within the same microsite type and region. At the local scale, RW and LBI were more frequently influenced by cold winters than droughts. RW and LBI from dune ridges were more frequently influenced by droughts than RW and LBI from dune bottoms. LBI from both microsites was more often influenced by droughts than RW. RW and LBI from both microsites were similarly often influenced by cold winters. At both scales, the response time of RW and LBI after droughts predominantly lagged by one year, while cold winters were recorded in the same year. The typical duration of growth reductions after both extremes was one year for both RW and LBI. Our study indicates that Scots pine from the Baltic Sea region is sensitive to climate extremes, especially cold winters.
Collapse
|
24
|
Wang J, Ge Y, Cornelissen JHC, Wang XY, Gao S, Bai Y, Chen T, Jing ZW, Zhang CB, Liu WL, Li JM, Yu FH. Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia 2022; 198:507-518. [PMID: 35024959 DOI: 10.1007/s00442-022-05105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Biodiversity loss, exotic plant invasion and climatic change are three important global changes that can affect litter decomposition. These effects may be interactive and these global changes thus need to be considered simultaneously. Here, we assembled herbaceous plant communities with five species richness levels (1, 2, 4, 8 or 16) and subjected them to a drought treatment (no, moderate or intensive drought) that was factorially combined with an invasion treatment (presence or absence of the non-native Symphyotrichum subulatum). We collected litter of these plant communities and let it decompose for 9 months in the plant communities from which it originated. Drought decreased litter decomposition, while invasion by S. subulatum had little impact. Increasing species richness decreased litter decomposition except under intensive drought. A structural equation model showed that drought and species richness affected litter decomposition indirectly through changes in litter nitrogen concentration rather than by altering quantity and diversity of soil meso-fauna or soil physico-chemical properties. The slowed litter decomposition under high species diversity originated from a sampling effect, specifically from low litter nitrogen concentrations in the two dominant species. We conclude that effects on litter decomposition rates that are mediated by changing concentrations of the limiting nutrient in litter need to be considered when predicting effects of global changes such as plant diversity loss.
Collapse
Affiliation(s)
- Jiang Wang
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100038, China
| | - Johannes H C Cornelissen
- System Ecology, Department of Ecological Science, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Xiao-Yan Wang
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Song Gao
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Yi Bai
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Tong Chen
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Zhong-Wang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100038, China
| | - Chong-Bang Zhang
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Wen-Li Liu
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Jun-Min Li
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Fei-Hai Yu
- School of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China. .,Institute of Wetland Ecology and Clone Ecology, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
25
|
Bose AK, Rigling A, Gessler A, Hagedorn F, Brunner I, Feichtinger L, Bigler C, Egli S, Etzold S, Gossner MM, Guidi C, Lévesque M, Meusburger K, Peter M, Saurer M, Scherrer D, Schleppi P, Schönbeck L, Vogel ME, Arx G, Wermelinger B, Wohlgemuth T, Zweifel R, Schaub M. Lessons learned from a long‐term irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K. Bose
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Forestry and Wood Technology Discipline Khulna University Khulna Bangladesh
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Linda Feichtinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Christof Bigler
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Simon Egli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Sophia Etzold
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martin M. Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Claudia Guidi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Mathieu Lévesque
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Katrin Meusburger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Daniel Scherrer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Patrick Schleppi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Leonie Schönbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne EPFL, Station 2 Lausanne Switzerland
| | - Michael E. Vogel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Georg Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Beat Wermelinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| |
Collapse
|
26
|
Peltier DMP, Guo J, Nguyen P, Bangs M, Wilson M, Samuels-Crow K, Yocom LL, Liu Y, Fell MK, Shaw JD, Auty D, Schwalm C, Anderegg WRL, Koch GW, Litvak ME, Ogle K. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. TREE PHYSIOLOGY 2022; 42:71-85. [PMID: 34302167 DOI: 10.1093/treephys/tpab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011-2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011-2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Collapse
Affiliation(s)
- Drew M P Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jessica Guo
- Communications and Cyber Technologies, University of Arizona, Tucson, AZ 85721, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael Bangs
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michelle Wilson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kimberly Samuels-Crow
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Larissa L Yocom
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Yao Liu
- Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Michael K Fell
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, UT 84401, USA
| | - David Auty
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA 02540, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
27
|
Bowman EA, Arnold AE. Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape. THE ISME JOURNAL 2021; 15:3437-3454. [PMID: 34099878 PMCID: PMC8630060 DOI: 10.1038/s41396-021-01006-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/30/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Fungal communities associated with plants often decrease in similarity as the distance between sampling sites increases (i.e., they demonstrate distance decay). In the southwestern USA, forests occur in highlands separated from one another by warmer, drier biomes with plant and fungal communities that differ from those at higher elevations. These disjunct forests are broadly similar in climate to one another, offering an opportunity to examine drivers of distance decay in plant-associated fungi across multiple ecologically similar yet geographically disparate landscapes. We examined ectomycorrhizal and foliar endophytic fungi associated with a dominant forest tree (Pinus ponderosa) in forests across ca. 550 km of geographic distance from northwestern to southeastern Arizona (USA). Both guilds of fungi showed distance decay, but drivers differed for each: ectomycorrhizal fungi are constrained primarily by dispersal limitation, whereas foliar endophytes are constrained by specific environmental conditions. Most ectomycorrhizal fungi were found in only a single forested area, as were many endophytic fungi. Such regional-scale perspectives are needed for baseline estimates of fungal diversity associated with forest trees at a landscape scale, with attention to the sensitivity of different guilds of fungal symbionts to decreasing areas of suitable habitat, increasing disturbance, and related impacts of climate change.
Collapse
Affiliation(s)
- Elizabeth A. Bowman
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA
| | - A. Elizabeth Arnold
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ USA
| |
Collapse
|
28
|
Bohner T, Diez J. Tree resistance and recovery from drought mediated by multiple abiotic and biotic processes across a large geographic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147744. [PMID: 34051506 DOI: 10.1016/j.scitotenv.2021.147744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, increasing severity of droughts threatens to change forest ecosystem functioning and community structure. Understanding how forest resilience is determined by its two underlying components, resistance and recovery, will help elucidate the mechanisms of drought responses and help inform management strategies. However, drought responses are shaped by complex processes across different scales, including species-specific drought strategies, tree size, competition, local environmental conditions, and the intensity of the drought event. Here, we quantified the reduction in tree growth during drought (an inverse measure of drought resistance) and post-drought recovery for three montane conifers (Abies concolor, Pinus jeffreyi, and Pinus lambertiana) in California. We used tree ring analysis to quantify responses to drought events of varying intensity between 1895 and 2018 across a geographic climatic gradient, to examine the roles of tree size (DBH) and competition (tree density) in mediating drought responses. We found that years of more intense drought corresponded with larger growth reductions and recovery rates were lower following drought years where trees suffered larger reductions. We found little variation among species in their growth reductions during drought events, but significant differences among species in their recovery post-drought. Across the geographic gradient, trees in the driest locations were susceptible to large growth reductions, signaling either strong sensitivity to drought intensity or exposure to the most extreme drought conditions. These growth reductions were not always compensated for by higher recovery rates. We also found that larger trees were more susceptible to drought due to a steeper negative relationship between recovery rates and the intensity of growth reduction during the drought. Contrary to expectations, recovery rates following the most detrimental drought years were higher in denser forests. Our results demonstrate the importance of considering how factors at various spatial and temporal scales affect the different components of drought responses.
Collapse
Affiliation(s)
- Teresa Bohner
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
29
|
Different Temporal Stability and Responses to Droughts between Needleleaf Forests and Broadleaf Forests in North China during 2001–2018. FORESTS 2021. [DOI: 10.3390/f12101331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Droughts can affect the physiological activity of trees, damage tissues, and even trigger mortality, yet the response of different forest types to drought at the decadal time scale remains uncertain. In this study, we used two remote sensing-based vegetation products, the MODIS enhanced vegetation index (EVI) and MODIS gross primary productivity (GPP), to explore the temporal stability of deciduous needleleaf forests (DNFs) and deciduous broadleaf forests (DBFs) in droughts and their legacy effects in North China from 2001 to 2018. The results of both products showed that the temporal stability of DBFs was consistently much higher than that of DNFs, even though the DBFs experienced extreme droughts and the DNFs did not. The DBFs also exhibited similar patterns in their legacy effects from droughts, with these effects extending up to 4 years after the droughts. These results indicate that DBFs have been better acclimated to drought events in North China. Furthermore, the results suggest that the GPP was more sensitive to water variability than EVI. These findings will be helpful for forest modeling, management, and conservation.
Collapse
|
30
|
Ukkola AM, De Kauwe MG, Roderick ML, Burrell A, Lehmann P, Pitman AJ. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. GLOBAL CHANGE BIOLOGY 2021; 27:4367-4380. [PMID: 34091984 DOI: 10.1111/gcb.15729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Dryland vegetation productivity is strongly modulated by water availability. As precipitation patterns and variability are altered by climate change, there is a pressing need to better understand vegetation responses to precipitation variability in these ecologically fragile regions. Here we present a global analysis of dryland sensitivity to annual precipitation variations using long-term records of normalized difference vegetation index (NDVI). We show that while precipitation explains 66% of spatial gradients in NDVI across dryland regions, precipitation only accounts for <26% of temporal NDVI variability over most (>75%) dryland regions. We observed this weaker temporal relative to spatial relationship between NDVI and precipitation across all global drylands. We confirmed this result using three alternative water availability metrics that account for water loss to evaporation, and growing season and precipitation timing. This suggests that predicting vegetation responses to future rainfall using space-for-time substitution will strongly overestimate precipitation control on interannual variability in aboveground growth. We explore multiple mechanisms to explain the discrepancy between spatial and temporal responses and find contributions from multiple factors including local-scale vegetation characteristics, climate and soil properties. Earth system models (ESMs) from the latest Coupled Model Intercomparison Project overestimate the observed vegetation sensitivity to precipitation variability up to threefold, particularly during dry years. Given projections of increasing meteorological drought, ESMs are likely to overestimate the impacts of future drought on dryland vegetation with observations suggesting that dryland vegetation is more resistant to annual precipitation variations than ESMs project.
Collapse
Affiliation(s)
- Anna M Ukkola
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, UNSW Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Climate Extremes and Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Michael L Roderick
- ARC Centre of Excellence for Climate Extremes and Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | | | - Peter Lehmann
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Andy J Pitman
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado-Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, de Andrés EG, Karger DN, Lebourgeois F, Lévesque M, Martínez-Sancho E, Menzel A, Neuwirth B, Nicolas M, Sanders TGM, Scharnweber T, Schröder J, Zweifel R, Gessler A, Rigling A. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147222. [PMID: 34088042 DOI: 10.1016/j.scitotenv.2021.147222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, USA; Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Isabel Dorado-Liñán
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - David I Forrester
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jordane Gavinet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 route de Mende, F-34293 Montpellier, Cedex 5, France
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Ester González de Andrés
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Dirk Nikolaus Karger
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | | | - Mathieu Lévesque
- ETH Zurich, Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22, 8092 Zurich, Switzerland
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F-77300, France
| | - Tanja G M Sanders
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
32
|
Marqués L, Peltier DMP, Camarero JJ, Zavala MA, Madrigal-González J, Sangüesa-Barreda G, Ogle K. Disentangling the Legacies of Climate and Management on Tree Growth. Ecosystems 2021; 25:215-235. [PMID: 35210936 PMCID: PMC8827397 DOI: 10.1007/s10021-021-00650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.
Collapse
Affiliation(s)
- Laura Marqués
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), Universitätstrasse 2, 8092 Zürich, Switzerland
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá (UAH), Edificio Ciencias, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Drew M. P. Peltier
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86011 USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011 USA
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología, (IPE–CSIC), Avda. Montañana, 1005, 50192 Zaragoza, Spain
| | - Miguel A. Zavala
- Forest Ecology and Restoration Group, Department of Life Sciences, Universidad de Alcalá (UAH), Edificio Ciencias, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Jaime Madrigal-González
- Institute for Environmental Sciences, Climate Change Impacts and Risks in the Anthropocene, University of Geneva, 66 Boulevard Carl Vogt, 1205 Geneva, Switzerland
- Departamento de Biología Animal, Ecología, Edafología, Parasitología, Química agrícola, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | | | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86011 USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011 USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011 USA
| |
Collapse
|
33
|
Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California. CLIMATE 2021. [DOI: 10.3390/cli9050082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ponderosa pine (Pinus ponderosa, Douglas ex C. Lawson) is a climate-sensitive tree species dominant in the mixed conifer stands of the San Bernardino Mountains of California. However, the close proximity to the city of Los Angeles has resulted in extremely high levels of air pollution. Nitrogen (N) deposition, resulting from nitrous oxides emitted from incomplete combustion of fossil fuels, has been recorded in this region since the 1980s. The impact of this N deposition on ponderosa pine growth is complex and often obscured by other stressors including climate, bark beetle attack, and tropospheric ozone pollution. Here I use a 160-year-long (1855–2015) ponderosa pine tree ring chronology to examine the annual response of tree growth to both N deposition and climate in this region. The chronology is generated from 34 tree cores taken near Crestline, CA. A stepwise multiple regression between the tree ring chronology and various climate and air pollution stressors indicates that drought conditions at the end of the rainy season (March) and NO2 pollution during the water year (pOct-Sep) exhibit primary controls on growth (r2-adj = 0.65, p < 0.001). The direct correlation between NO2 and tree growth suggests that N deposition has a positive impact on ponderosa pine bole growth in this region. However, it is important to note that ozone, a known stressor to ponderosa pine trees, and NO2 are also highly correlated (r = 0.84, p < 0.05). Chronic exposure to both ozone and nitrogen dioxide may, therefore, have unexpected impacts on tree sensitivity to climate and other stressors in a warming world.
Collapse
|
34
|
|
35
|
Peltier DMP, Ogle K. Tree growth sensitivity to climate is temporally variable. Ecol Lett 2020; 23:1561-1572. [DOI: 10.1111/ele.13575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Drew M. P. Peltier
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
36
|
Zweifel R, Etzold S, Sterck F, Gessler A, Anfodillo T, Mencuccini M, von Arx G, Lazzarin M, Haeni M, Feichtinger L, Meusburger K, Knuesel S, Walthert L, Salmon Y, Bose AK, Schoenbeck L, Hug C, De Girardi N, Giuggiola A, Schaub M, Rigling A. Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment. THE NEW PHYTOLOGIST 2020; 227:1081-1096. [PMID: 32259280 PMCID: PMC7383578 DOI: 10.1111/nph.16582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Frank Sterck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forest Ecology and Management GroupWageningen University6701Wageningenthe Netherlands
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro‐ForestaliUniversity of Padova35020LegnaroItaly
| | - Maurizio Mencuccini
- ICREA08010BarcelonaSpain
- CREAFUniversidad Autonoma de Barcelona08193BarcelonaSpain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Martina Lazzarin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Horticulture and Product PhysiologyWageningen UniversityWageningen6701the Netherlands
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Linda Feichtinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Simon Knuesel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/PhysicsUniversity of Helsinki00100HelsinkiFinland
- Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of Helsinki00100HelsinkiFinland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna University9208KhulnaBangladesh
| | - Leonie Schoenbeck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Christian Hug
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Nicolas De Girardi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Arnaud Giuggiola
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| |
Collapse
|
37
|
He W, Liu H, Qi Y, Liu F, Zhu X. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. GLOBAL CHANGE BIOLOGY 2020; 26:3627-3638. [PMID: 32162388 DOI: 10.1111/gcb.15078] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 03/01/2020] [Indexed: 05/17/2023]
Abstract
Nonstructural carbohydrates (NSCs) facilitate the adaptation of trees to drought stress. There have been a large number of studies exploring NSC changes in individual plant species and individual organ under drought and showed different trends; however, an understanding of the universal pattern of the plant NSCs responses to drought, particularly to drought duration, is still lacking. Here, we compiled data from 47 experimental studies on 52 tree species and conducted a meta-analysis to evaluate the responses of soluble sugars, starch, and TNSC (total nonstructural carbohydrates including both soluble sugars and starch) concentrations in different tree organs (leaf, stem, and root) to drought intensity and duration. We found that starch in all organs decreased and soluble sugars in leaf increased with prolonged experiment time, and the changes in soluble sugars in all organs were stronger under severe drought than under slight-to-moderate drought. Under slight-to-moderate drought, the NSC content of each organ varied with time, while with the extension of the drought duration, the NSCs gradually approached the control value (no drought stress); this trend remained in the late drought, which means that trees activated physiological regulation processes to increase carbon storage and reduce the risks of carbon starvation. In contrast, long-term severe drought could lead to a net loss of carbohydrates, especially in the root, implying that prolonged severe drought could lead to NSC depletion in the whole plant. As prolonged drought duration has occurred in and is projected for many regions, this paper could shed light into studies on how trees respond and adapt extending drought duration through nonstructural carbon production, transportation, and reallocation.
Collapse
Affiliation(s)
- Wenqi He
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Yang Qi
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Feng Liu
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Xinrong Zhu
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| |
Collapse
|
38
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
39
|
Szejner P, Belmecheri S, Ehleringer JR, Monson RK. Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia 2019; 192:241-259. [DOI: 10.1007/s00442-019-04550-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023]
|