1
|
Whitehead CA, Wines BD, Davies AM, McDonnell JM, Trist HM, Esparon SE, Hogarth PM. Stellabody: A novel hexamer-promoting mutation for improved IgG potency. Immunol Rev 2024; 328:438-455. [PMID: 39364646 DOI: 10.1111/imr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Advances in antibody engineering are being directed at the development of next generation immunotherapeutics with improved potency. Hexamerisation of IgG is a normal physiological aspect of IgG biology and recently described mutations that facilitate this process have a substantial impact upon monoclonal antibody behavior resulting in the elicitation of dramatically enhanced complement-dependent cytotoxicity, Fc receptor function, and enhanced antigen binding effects, such as targeted receptor agonism or microbe neutralization. Whereas the discovery of IgG hexamerisation enhancing mutations has largely focused on residues with exposure at the surface of the Fc-Fc and CH2-CH3 interfaces, our unique approach is the engineering of the mostly buried residue H429 in the CH3 domain. Selective substitution at position 429 forms the basis of Stellabody technology, where the choice of amino acid results in distinct hexamerisation outcomes. H429F results in monomeric IgG that hexamerises after target binding, so called "on-target" hexamerisation, while the H429Y mutant forms pH-sensitive hexamers in-solution prior to antigen binding. Moreover, Stellabody technologies are broadly applicable across the family of antibody-based biologic therapeutics, including conventional mAbs, bispecific mAbs, and Ig-like biologics such as Fc-fusions, with applications in diverse diseases.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna M Davies
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, London, UK
| | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, London, UK
| | - Halina M Trist
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Sandra E Esparon
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Habib S, Osborn G, Willsmore Z, Chew MW, Jakubow S, Fitzpatrick A, Wu Y, Sinha K, Lloyd-Hughes H, Geh JLC, MacKenzie-Ross AD, Whittaker S, Sanz-Moreno V, Lacy KE, Karagiannis SN, Adams R. Tumor associated macrophages as key contributors and targets in current and future therapies for melanoma. Expert Rev Clin Immunol 2024; 20:895-911. [PMID: 38533720 PMCID: PMC11286214 DOI: 10.1080/1744666x.2024.2326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Despite the success of immunotherapies for melanoma in recent years, there remains a significant proportion of patients who do not yet derive benefit from available treatments. Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell interactions and functions. However, the most prevalent immune cells within the tumor microenvironment (TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of melanoma, these cells also promote melanoma tumorigenesis and metastasis. AREAS COVERED We present a review of the most up-to-date literatureavailable on PubMed, focussing on studies from within the last 10 years. We also include data from ongoing and recent clinical trials targeting macrophages in melanoma listed on clinicaltrials.gov. EXPERT OPINION Understanding the multifaceted role of macrophages in melanoma, including their interactions with immune and cancer cells, the influence of current therapies on macrophage phenotype and functions and how macrophages could be targeted with novel treatment approaches, are all critical for improving outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Min Waye Chew
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophie Jakubow
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Khushboo Sinha
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | | | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
3
|
Hao YB, Xing J, Sheng XZ, Chi H, Tang XQ, Zhan WB. The Role of Fc Receptors in the Innate Immune System of Flounders Purported to Be Homologs of FcγRII and FcγRIII. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1196-1206. [PMID: 38380986 DOI: 10.4049/jimmunol.2300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.
Collapse
Affiliation(s)
- Yan-Bo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wen-Bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Khoshtinat Nikkhoi S, Yang G, Owji H, Grizotte-Lake M, Cohen RI, Gil Gonzalez L, Massumi M, Hatefi A. Bispecific immune cell engager enhances the anticancer activity of CD16+ NK cells and macrophages in vitro, and eliminates cancer metastasis in NK humanized NOG mice. J Immunother Cancer 2024; 12:e008295. [PMID: 38490714 PMCID: PMC10946374 DOI: 10.1136/jitc-2023-008295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In a prior report, we detailed the isolation and engineering of a bispecific killer cell engager, referred to as BiKE:E5C1. The BiKE:E5C1 exhibits high affinity/specificity for the CD16a activating receptor on natural killer (NK) cells and human epidermal growth factor receptor 2 (HER2) on cancer cells. In vitro studies have demonstrated that BiKE:E5C1 can activate the NK cells and induce the killing of HER2+ ovarian and breast cancer cells, surpassing the performance of the best-in-class monoclonal antibody, Trazimera (trastuzumab). To advance this BiKE technology toward clinical application, the objective of this research was to demonstrate the ability of BiKE:E5C1 to activate CD16+ immune cells such as NK cells and macrophages to kill cancer cells, and eradicate metastatic HER2+ tumors in NK humanized NOG mice. METHODS We assessed BiKE:E5C1's potential to activate CD16-expressing peripheral blood (PB)-NK cells, laNK92 cells, and THP-1-CD16A monocyte-macrophages through flowcytometry and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC) assays. Subsequently, laNK92 cells were selected as effector cells and genetically modified to express the nanoluciferase gene, enabling the monitoring of their viability in NK humanized NOG mice using quantitative bioluminescent imaging (qBLI). To evaluate the functionality of BiKE:E5C1 in vivo, we introduced firefly luciferase-expressing ovarian cancer cells via intraperitoneal injection into hIL-15 and hIL-2 NOG mice, creating a model of ovarian cancer metastasis. Once tumor establishment was confirmed, we treated the mice with laNK92 cells plus BiKE:E5C1 and the response to therapy was assessed using qBLI. RESULTS Our data demonstrate that BiKE:E5C1 activates not only laNK92 cells but also PB-NK cells and macrophages, significantly enhancing their anticancer activities. ADCC assay demonstrated that IgG1 Fc region had no impact on BiKE:E5C1's anticancer activity. In vivo results reveal that both hIL-15 and hIL-2 NOG mouse models support the viability and proliferation of laNK92 cells. Furthermore, it was observed that BiKE:E5C1 activates laNK92 cells in mice, leading to eradication of cancer metastasis in both NK humanized hIL-15 and hIL-2 NOG mouse models. CONCLUSIONS Collectively, our in vivo findings underscore BiKE:E5C1's potential as an immune cell engager capable of activating immune cells for cancer cell elimination, thereby expanding the arsenal of available BiKEs for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Ge Yang
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hajar Owji
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | | - Rick I Cohen
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Lazaro Gil Gonzalez
- St Michael's Hospital Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | - Mohammad Massumi
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Arash Hatefi
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
5
|
Guo Y, Remaily BC, Thomas J, Kim K, Kulp SK, Mace TA, Ganesan LP, Owen DH, Coss CC, Phelps MA. Antibody Drug Clearance: An Underexplored Marker of Outcomes with Checkpoint Inhibitors. Clin Cancer Res 2024; 30:942-958. [PMID: 37921739 PMCID: PMC10922515 DOI: 10.1158/1078-0432.ccr-23-1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Immune-checkpoint inhibitor (ICI) therapy has dramatically changed the clinical landscape for several cancers, and ICI use continues to expand across many cancer types. Low baseline clearance (CL) and/or a large reduction of CL during treatment correlates with better clinical response and longer survival. Similar phenomena have also been reported with other monoclonal antibodies (mAb) in cancer and other diseases, highlighting a characteristic of mAb clinical pharmacology that is potentially shared among various mAbs and diseases. Though tempting to attribute poor outcomes to low drug exposure and arguably low target engagement due to high CL, such speculation is not supported by the relatively flat exposure-response relationship of most ICIs, where a higher dose or exposure is not likely to provide additional benefit. Instead, an elevated and/or increasing CL could be a surrogate marker of the inherent resistant phenotype that cannot be reversed by maximizing drug exposure. The mechanisms connecting ICI clearance, therapeutic efficacy, and resistance are unclear and likely to be multifactorial. Therefore, to explore the potential of ICI CL as an early marker for efficacy, this review highlights the similarities and differences of CL characteristics and CL-response relationships for all FDA-approved ICIs, and we compare and contrast these to selected non-ICI mAbs. We also discuss underlying mechanisms that potentially link mAb CL with efficacy and highlight existing knowledge gaps and future directions where more clinical and preclinical investigations are warranted to clearly understand the value of baseline and/or time-varying CL in predicting response to ICI-based therapeutics.
Collapse
Affiliation(s)
- Yizhen Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Bryan C. Remaily
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Kyeongmin Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Samuel K. Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Thomas A. Mace
- Department of Internal Medicine, Division of Rheumatology and Immunology, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Latha P. Ganesan
- Department of Internal Medicine, Division of Rheumatology and Immunology, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Dwight H. Owen
- Division of Medical Oncology, Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Mitch A. Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| |
Collapse
|
6
|
Yeo MK, Koh YJ, Park JI, Kim KH. Increased CD16a (FcγRIIIA) Expression in The Tumor Microenvironment of Atypical Neurofibromatous Neoplasms of Uncertain Biologic Potential May Be Associated with Progression from Neurofibromas to Atypical Neurofibromas. J Pers Med 2023; 13:1720. [PMID: 38138947 PMCID: PMC10744712 DOI: 10.3390/jpm13121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurofibroma (NF) is a benign tumor in the peripheral nervous system, but it can infiltrate around structures and cause functional impairment and disfigurement. We incidentally found that the expression of CD16a (Fc gamma receptor IIIA) was increased in NFs compared to in non-neoplastic nerves and hypothesized that CD16 could be relevant to NF progression. We evaluated the expressions of CD16a, CD16b, CD68, TREM2, Galectin-3, S-100, and SOX10 in 38 cases of neurogenic tumors (NF, n = 18; atypical neurofibromatous neoplasm of uncertain biologic potential (ANNUBP), n = 14; and malignant peripheral nerve sheath tumor (MPNST), n = 6) by immunohistochemical staining. In the tumor microenvironment (TME) of the ANNUBPs, CD16a and CD16b expression levels had increased more than in the NFs or MPNSTs. CD68 and Galectin-3 expression levels in the ANNUBPs were higher than in the MPNSTs. Dual immunohistochemical staining showed an overlapping pattern for CD16a and CD68 in TME immune cells. Increased CD16a expression was detected in the ANNUBPs compared to the NFs but decreased with malignant progression. The CD16a overexpression with CD68 positivity in the ANNUBPs potentially reflects that the TME immune modulation could be associated with NF progression to an ANNUBP. Further studies should explore the role of CD16a in immunomodulation for accelerating NF growth.
Collapse
Affiliation(s)
- Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Munwha-ro 266, Daejeon 35015, Republic of Korea;
| | - Yeong Jun Koh
- Department of Computer Science & Engineering, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
- Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Kyung-Hee Kim
- Department of Pathology, Chungnam National University School of Medicine, Munwha-ro 266, Daejeon 35015, Republic of Korea;
| |
Collapse
|
7
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Chenoweth AM, Esparon S, Wines BD, Schuurman J, Labrijn AF, Hogarth PM. Mutation of the TGN1412 anti-CD28 monoclonal antibody lower hinge confers specific FcγRIIb binding and retention of super-agonist activity. Immunol Cell Biol 2023; 101:657-662. [PMID: 36997299 PMCID: PMC10952187 DOI: 10.1111/imcb.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
The agonistic action of several immunomodulatory monoclonal antibodies (mAbs) requires both target antigen binding and clustering of this mAb:target complex by the Fcs interacting with Fcγ receptors (FcγRs), in particular FcγRIIb, on neighboring bystander cells. Fc mutations were made in the immunoglobulin G4 (IgG4)-based TGN1412 anti-CD28 mAb to define the role of FcγR interactions in its "super-agonist" activity. The dual mutation, IgG4-ED269,270 AA, ablated interaction with all human FcγRs and agonistic action was consequentially lost, confirming the FcγR dependence on the action of TGN1412. The IgG4 lower hinge region (F234 L235 G236 G237 ) was modified by L235 E mutation (F234 E235 G236 G237 ), a mutation commonly used to ablate FcγR binding, including in approved therapeutic mAbs. However, rather than ablating all FcγR binding, IgG4-L235 E conferred specific binding to FcγRIIb, the inhibitory Fc receptor. Furthermore, in combination with the core hinge-stabilizing mutation (IgG4-S228 P, L235 E), this mutation increased affinity for FcγRIIb compared with wild-type IgG4. In addition to having FcγRIIb specificity, these engineered TGN1412 antibodies retained their super-agonistic ability, demonstrating that CD28- and FcγRIIb-specific binding are together sufficient for agonistic function. The FcγRIIb-specific nature of IgG4-L235 E has utility for mAb-mediated immune agonism therapies that are dependent on FcγRIIb interaction and of anti-inflammatory mAbs in allergy and autoimmunity that harness FcγRIIb inhibitory signaling.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies GroupBurnet InstituteMelbourneVICAustralia
- Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
- Present address:
St. John's Institute of Dermatology, School of Basic & Medical BiosciencesBreast Cancer Now Research Unit, School of Cancer & Pharmaceutical SciencesKing's College LondonLondonUK
| | - Sandra Esparon
- Immune Therapies GroupBurnet InstituteMelbourneVICAustralia
| | - Bruce D Wines
- Immune Therapies GroupBurnet InstituteMelbourneVICAustralia
- Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
- Department of Clinical PathologyUniversity of MelbourneParkvilleVICAustralia
| | | | | | - P Mark Hogarth
- Immune Therapies GroupBurnet InstituteMelbourneVICAustralia
- Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
- Department of Clinical PathologyUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
9
|
Cotham VC, Liu AP, Wang S, Li N. A generic platform to couple affinity chromatography with native mass spectrometry for the analysis of therapeutic monoclonal antibodies. J Pharm Biomed Anal 2023; 228:115337. [PMID: 36933319 DOI: 10.1016/j.jpba.2023.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Affinity chromatography coupled with native mass spectrometry has emerged as a powerful tool for the analysis of therapeutic monoclonal antibodies (mAbs). Exploiting the specific interactions between mAbs and their ligands, these methods not only provide orthogonal means to study the highly complex mAb attributes, but also offer insights on their biological relevance. Despite the great promise, application of affinity chromatography - native mass spectrometry in routine mAb characterization has been limited, largely due to the complicated experimental set up. In this study, we introduced a generic platform to facilitate the online coupling of different affinity separation modes with native mass spectrometry. Built upon a recently introduced native LC-MS platform, this new strategy can accommodate a wide range of chromatographic conditions, and therefore, allow greatly simplified experimental set up and facile swapping of affinity separation modes. The utility of this platform was demonstrated by successful online coupling of three affinity chromatography methods (protein A, FcγRIIIa, and FcRn) with native mass spectrometry. The developed protein A-MS method was tested both in a "bind-and-elute" mode for rapid mAb screening and in a high-resolution resolving mode to study mAb species with altered protein A affinity. The FcγRIIIa-MS method was applied to achieve glycoform-resolved analyses of both IgG1 and IgG4 subclass molecules. The FcRn-MS method was demonstrated in two case studies, where specific post-translational modifications and Fc mutations were known to alter FcRn affinities.
Collapse
Affiliation(s)
- Victoria C Cotham
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Anita P Liu
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
10
|
Suzuki K, Tajima M, Tokumaru Y, Oshiro Y, Nagata S, Kamada H, Kihara M, Nakano K, Honjo T, Ohta A. Anti-PD-1 antibodies recognizing the membrane-proximal region are PD-1 agonists that can down-regulate inflammatory diseases. Sci Immunol 2023; 8:eadd4947. [PMID: 36638191 DOI: 10.1126/sciimmunol.add4947] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The PD-1 receptor triggers a negative immunoregulatory mechanism that prevents overactivation of immune cells and subsequent inflammatory diseases. Because of its biological significance, PD-1 has been a drug target for modulating immune responses. Immunoenhancing anti-PD-1 blocking antibodies have become a widely used cancer treatment; however, little is known about the required characteristics for anti-PD-1 antibodies to be capable of stimulating immunosuppressive activity. Here, we show that PD-1 agonists exist in the group of anti-PD-1 antibodies recognizing the membrane-proximal extracellular region in sharp contrast to the binding of the membrane-distal region by blocking antibodies. This trend was consistent in an analysis of 81 anti-human PD-1 monoclonal antibodies. Because PD-1 agonist antibodies trigger immunosuppressive signaling by cross-linking PD-1 molecules, Fc engineering to enhance FcγRIIB binding of PD-1 agonist antibodies notably improved human T cell inhibition. A PD-1 agonist antibody suppressed inflammation in murine disease models, indicating its clinical potential for treatment of various inflammatory disorders, including autoimmune diseases.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Pharmaceutical R&D Division, Meiji Seika Pharma Co. Ltd., Tokyo 104-8002, Japan
| | - Masaki Tajima
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yosuke Tokumaru
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Pharmaceutical R&D Division, Meiji Seika Pharma Co. Ltd., Tokyo 104-8002, Japan
| | - Yuya Oshiro
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan.,Pharmaceutical R&D Division, Meiji Seika Pharma Co. Ltd., Tokyo 104-8002, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki 567-0085, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kohei Nakano
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akio Ohta
- Department of Immunology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| |
Collapse
|
11
|
Nikkhoi SK, Li G, Eleya S, Yang G, Vandavasi VG, Hatefi A. Bispecific killer cell engager with high affinity and specificity toward CD16a on NK cells for cancer immunotherapy. Front Immunol 2023; 13:1039969. [PMID: 36685519 PMCID: PMC9852913 DOI: 10.3389/fimmu.2022.1039969] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction The Fc region of monoclonal antibodies (mAbs) interacts with the CD16a receptor on natural killer (NK) cells with "low affinity" and "low selectivity". This low affinity/selectivity interaction results in not only suboptimal anticancer activity but also induction of adverse effects. CD16a on NK cells binds to the antibody-coated cells, leading to antibody-dependent cell-mediated cytotoxicity (ADCC). Recent clinical data have shown that the increased binding affinity between mAb Fc region and CD16a receptor is responsible for significantly improved therapeutic outcomes. Therefore, the objective of this study was to develop a bispecific killer cell engager (BiKE) with high affinity and specificity/selectivity toward CD16a receptor for NK cell-based cancer immunotherapy. Methods To engineer BiKE, a llama was immunized, then high binding anti-CD16a and anti-HER2 VHH clones were isolated using phage display. ELISA, flow cytometry, and biolayer interferometry (BLI) data showed that the isolated anti-CD16a VHH has high affinity (sub-nanomolar) toward CD16a antigen without cross-reactivity with CD16b-NA1 on neutrophils or CD32b on B cells. Similarly, the data showed that the isolated anti-HER2 VHH has high affinity/specificity toward HER2 antigen. Using a semi-flexible linker, anti-HER2 VHH was recombinantly fused with anti-CD16a VHH to create BiKE:HER2/CD16a. Then, the ability of BiKE:HER2/CD16a to activate NK cells to release cytokines and kill HER2+ cancer cells was measured. As effector cells, both high-affinity haNK92 (CD16+, V176) and low-affinity laNK92 (CD16+, F176) cells were used. Results and discussion The data showed that the engineered BiKE:HER2/CD16a activates haNK92 and laNK92 cells to release cytokines much greater than best-in-class mAbs in the clinic. The cytotoxicity data also showed that the developed BiKE induces higher ADCC to both ovarian and breast cancer cells in comparison to Trazimera™ (trastuzumab). According to the BLI data, BiKE:HER2/CD16 recognizes a different epitope on CD16a antigen than IgG-based mAbs; thus, it provides the opportunity for not only monotherapy but also combination therapy with other antibody drugs such as checkpoint inhibitors and antibody-drug conjugates. Taken together, the data demonstrate the creation of a novel BiKE with high affinity and specificity toward CD16a on NK cells with the potential to elicit a superior therapeutic response in patients with HER2+ cancer than existing anti-HER2 mAbs.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Suha Eleya
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Ge Yang
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Venu Gopal Vandavasi
- Department of Chemistry, Biophysics Core Facility, Princeton University, Princeton, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Maciuba S, Bowden GD, Stratton HJ, Wisniewski K, Schteingart CD, Almagro JC, Valadon P, Lowitz J, Glaser SM, Lee G, Dolatyari M, Navratilova E, Porreca F, Rivière PJ. Discovery and characterization of prolactin neutralizing monoclonal antibodies for the treatment of female-prevalent pain disorders. MAbs 2023; 15:2254676. [PMID: 37698877 PMCID: PMC10498814 DOI: 10.1080/19420862.2023.2254676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Grace Lee
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Mahdi Dolatyari
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
13
|
Adams R, Osborn G, Mukhia B, Laddach R, Willsmore Z, Chenoweth A, Geh JLC, MacKenzie Ross AD, Healy C, Barber L, Tsoka S, Sanz-Moreno V, Lacy KE, Karagiannis SN. Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies. Oncoimmunology 2022; 11:2127284. [PMID: 36211808 PMCID: PMC9543025 DOI: 10.1080/2162402x.2022.2127284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Bipashna Mukhia
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Jenny L C Geh
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | | | - Katie E Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK,CONTACT Sophia N Karagiannis St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK
| |
Collapse
|
14
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
15
|
Chen X, Jiang L, Liu X. Natural killer cells: the next wave in cancer immunotherapy. Front Immunol 2022; 13:954804. [PMID: 35967421 PMCID: PMC9364606 DOI: 10.3389/fimmu.2022.954804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapies focusing on rejuvenating T cell activities, like PD-1/PD-L1 and CTLA-4 blockade, have unprecedentedly revolutionized the landscape of cancer treatment. Yet a previously underexplored component of the immune system - natural killer (NK) cell, is coming to the forefront of immunotherapeutic attempts. In this review, we discuss the contributions of NK cells in the success of current immunotherapies, provide an overview of the current preclinical and clinical strategies at harnessing NK cells for cancer treatment, and highlight that NK cell-mediated therapies emerge as a major target in the next wave of cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | | |
Collapse
|
16
|
Wang W, Chen Q. Antigen improves binding of IgGs to FcγRs in SPR analysis. Anal Biochem 2022; 640:114411. [PMID: 34648807 DOI: 10.1016/j.ab.2021.114411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
FcγR binding characterization is one of the critical attributes during the development of therapeutic antibodies. Here, we report a novel assay format to characterize IgG-FcγR interaction in the presence of antigen using Surface plasmon resonance (SPR). The new assay format was developed by creating stable antigen/antibody immunocomplexes on a sensor chip surface before injection of FcγRs. In this assay format, binding activity of both huIgG1 (including IgG1 Fc fusion Protein) and huIgG2 increased significantly to most activating human FcγRs, especially to FcγRI, FcγRIIa-131H and FcγRIIIa-158F. To our knowledge, this study provides the first set of evidence using a biophysical method to demonstrate antigen binding facilitating IgG-FcγR interaction, especially for huIgG2 where previous studies did not indicate its binding to human FcγRI or FcγRIIIa-158F. Although further studies are needed to investigate the correlation of the binding data with effector function data in vivo, our results suggest that it may be useful to evaluate the IgG-FcγR interaction in the presence of antigen to help design safer and more effective biotherapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - Qing Chen
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
17
|
SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma. Blood 2022; 139:1160-1176. [PMID: 35201323 DOI: 10.1182/blood.2021012448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Anti-CD38 monoclonal antibodies (mAbs) represent a breakthrough in the treatment of multiple myeloma (MM), yet some patients fail to respond or progress quickly with this therapy, highlighting the need for novel approaches. In this study we compared the preclinical efficacy of SAR442085, a next-generation anti-CD38 mAb with enhanced affinity for activating Fcγ receptors (FcγR), with first-generation anti-CD38 mAb daratumumab and isatuximab. In surface plasmon resonance and cellular binding assays, we found that SAR442085 had higher binding affinity than daratumumab and isatuximab for FcγRIIa (CD32a) and FcγRIIIa (CD16a). SAR442085 also exhibited better in vitro antibody-dependent cellular cytotoxicity (ADCC) against a panel of MM cells expressing variable CD38 receptor densities including MM patients' primary plasma cells. The enhanced ADCC of SAR442085 was confirmed using NK-92 cells bearing low and high affinity FcγRIIIa (CD16a)-158F/V variants. Using MM patients' primary bone marrow cells, we confirmed that SAR442085 had an increased ability to engage FcγRIIIa, resulting in higher natural killer (NK) cell activation and degranulation against primary plasma cells than preexisting Fc wild-type anti-CD38 mAbs. Finally, using huFcgR transgenic mice that express human Fcγ receptors under the control of their human regulatory elements, we demonstrated that SAR442085 had higher NK cell-dependent in vivo antitumor efficacy and better survival than daratumumab and isatuximab against EL4 thymoma or VK*MYC myeloma cells overexpressing human CD38. These results highlight the preclinical efficacy of SAR442085 and support the current evaluation of this next-generation anti-CD38 antibody in phase I clinical development in patients with relapsed/refractory MM.
Collapse
|
18
|
López-Martínez R, Albaiceta GM, Amado-Rodríguez L, Cuesta-Llavona E, Gómez J, García-Clemente M, Vázquez-Coto D, Alvarez V, Coto E. The FCGR2Ars1801274 polymorphism was associated with the risk of death among COVID-19 patients. Clin Immunol 2022; 236:108954. [PMID: 35149195 PMCID: PMC8824710 DOI: 10.1016/j.clim.2022.108954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Polymorphisms of Fcγ receptors have been associated with variable responses to infections. We determined the association of functional polymorphisms rs1801274 in the FCGR2A and rs396991 in the FCGR3A with COVID-19 severity. This study involved 453 patients with severe COVID-19, in which the FCGR2A rs1801274 G-allele (131-Arg) was significantly associated with death (p = 0.02, OR = 1.47). This effect was independent of age and increased IL6 and D-Dimer levels. This study suggests that the FCGR2A gene might be associated with the risk of death among COVID-19 patients. Our study has several limitations, mainly the limited number of patients and the inclusion of a single population. It is thus necessary to confirm this result in larger cohorts from different populations.
Collapse
Affiliation(s)
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Marta García-Clemente
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Victoria Alvarez
- Inmunología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
19
|
Zhong J, Liu S, Zou T, Yan W, Zhou M, Liu B, Rao X, Wang Y, Sun Z, Wang Y. All Fiber-Optic Immunosensors Based on Elliptical Core Helical Intermediate-Period Fiber Grating with Low-Sensitivity to Environmental Disturbances. BIOSENSORS 2022; 12:99. [PMID: 35200359 PMCID: PMC8869875 DOI: 10.3390/bios12020099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
An all fiber-optic immunosensor based on elliptical core helical intermediate-period fiber grating (E-HIPFG) is proposed for the specific detection of human immunoglobulin G (human IgG). E-HIPFGs are all-fiber transducers that do not include any additional coating materials or fiber architectures, simplifying the fabrication process and promising the stability of the E-HIPFG biosensor. For human IgG recognition, the surface of an E-HIPFG is functionalized by goat anti-human IgG. The functionalized E-HIPFG is tested by human IgG solutions with a concentration range of 10-100 μg/mL and shows a high sensitivity of 0.018 nm/(μg/mL) and a limit of detection (LOD) of 4.7 μg/mL. Notably, the functionalized E-HIPFG biosensor is found to be insensitive to environmental disturbances, with a temperature sensitivity of 2.6 pm/°C, a strain sensitivity of 1.2 pm/με, and a torsion sensitivity of -23.566 nm/(rad/mm). The results demonstrate the considerable properties of the immunosensor, with high resistance to environmental perturbations, indicating significant potential for applications in mobile biosensors and compact devices.
Collapse
Affiliation(s)
- Junlan Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Shen Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Tao Zou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Wenqi Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Min Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Bonan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Xing Rao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Ying Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Zhongyuan Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.Z.); (T.Z.); (W.Y.); (M.Z.); (B.L.); (X.R.); (Y.W.); (Z.S.); (Y.W.)
| |
Collapse
|
20
|
Irani V, Soliman C, Raftis MA, Guy AJ, Elbourne A, Ramsland PA. Expression of monoclonal antibodies for functional and structural studies. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Bohländer F, Weißmüller S, Riehl D, Gutscher M, Schüttrumpf J, Faust S. The Functional Role of IgA in the IgM/IgA-Enriched Immunoglobulin Preparation Trimodulin. Biomedicines 2021; 9:1828. [PMID: 34944644 PMCID: PMC8698729 DOI: 10.3390/biomedicines9121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
In comparison to human immunoglobulin (Ig) G, antibodies of IgA class are not well investigated. In line with this, the functional role of the IgA component in IgM/IgA-enriched immunoglobulin preparations is also largely unknown. In recent years, powerful anti-pathogenic and immunomodulatory properties of human serum IgA especially on neutrophil function were unraveled. Therefore, the aim of our work is to investigate functional aspects of the trimodulin IgA component, a new plasma-derived polyvalent immunoglobulin preparation containing ~56% IgG, ~23% IgM and ~21% IgA. The functional role of IgA was investigated by analyzing the interaction of IgA with FcαRI, comparing trimodulin with standard intravenous IgG (IVIG) preparation and investigating Fc receptor (FcR)-dependent functions by excluding IgM-mediated effects. Trimodulin demonstrated potent immunomodulatory, as well as anti-pathogenic effects in our neutrophil model (neutrophil-like HL-60 cells). The IgA component of trimodulin was shown to induce a strong FcαRI-dependent inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) signaling, counteract lipopolysaccharide-induced inflammation and mediate phagocytosis of Staphylococcus aureus. The fine-tuned balance between immunomodulatory and anti-pathogenic effects of trimodulin were shown to be dose-dependent. Summarized, our data demonstrate the functional role of IgA in trimodulin, highlighting the importance of this immunoglobulin class in immunoglobulin therapy.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Sabrina Weißmüller
- Department of Translational Research, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Dennis Riehl
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Marcus Gutscher
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Jörg Schüttrumpf
- Corporate R&D, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Stefanie Faust
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| |
Collapse
|
22
|
Nawab DH. Vaccinal antibodies: Fc antibody engineering to improve the antiviral antibody response and induce vaccine-like effects. Hum Vaccin Immunother 2021; 17:5532-5545. [PMID: 34844516 PMCID: PMC8903937 DOI: 10.1080/21645515.2021.1985891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 10/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent clinical need for efficient virus therapies and vaccines. Although the functional importance of antibodies is indisputable in viral infections, there are still significant unmet needs that require vast improvements in antibody-based therapeutics. The IgG Fc domain can be engineered to produce antibodies with tailored and potent responses that will meet these clinical demands. Engaging Fc receptors (FcRs) to perform effector functions as cytotoxicity, phagocytosis, complement activation, intracellular neutralization and controlling antibody persistence. Furthermore, it produces vaccine-like effects by activating signals to stimulate T-cell responses, have proven to be required for protection, as neutralization alone does not off the full protection capacity of antibodies. This review highlights antiviral Fc functions and FcRs' contributions in linking innate and adaptive immunity against viral threats. Moreover, it provides the latest Fc engineering strategies to improve the safety and efficacy of human antiviral antibodies and vaccines.
Collapse
Affiliation(s)
- Dhuha H Nawab
- Pharmacy Department, Ministry of Health, Saudi Arabia
| |
Collapse
|
23
|
Yan D, Ra OH, Yan B. The nucleoside antiviral prodrug remdesivir in treating COVID-19 and beyond with interspecies significance. ANIMAL DISEASES 2021; 1:15. [PMID: 34778881 PMCID: PMC8422062 DOI: 10.1186/s44149-021-00017-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/25/2021] [Indexed: 01/18/2023] Open
Abstract
Infectious pandemics result in hundreds and millions of deaths, notable examples of the Spanish Flu, the Black Death and smallpox. The current pandemic, caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is unprecedented even in the historical term of pandemics. The unprecedentedness is featured by multiple surges, rapid identification of therapeutic options and accelerated development of vaccines. Remdesivir, originally developed for Ebola viral disease, is the first treatment of COVID-19 (Coronavirus disease 2019) approved by the United States Food and Drug Administration. As demonstrated by in vitro and preclinical studies, this therapeutic agent is highly potent with a broad spectrum activity against viruses from as many as seven families even cross species. However, randomized controlled trials have failed to confirm the efficacy and safety. Remdesivir improves some clinical signs but not critical parameters such as mortality. This antiviral agent is an ester/phosphorylation prodrug and excessive hydrolysis which increases cellular toxicity. Remdesivir is given intravenously, leading to concentration spikes and likely increasing the potential of hydrolysis-based toxicity. This review has proposed a conceptual framework for improving its efficacy and minimizing toxicity not only for the COVID-19 pandemic but also for future ones caused by remdesivir-sensitive viruses.
Collapse
Affiliation(s)
- Daisy Yan
- Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St, Philadelphia, PA 19107 USA
| | - One Hyuk Ra
- Department of Anesthesiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229 USA
| |
Collapse
|
24
|
Charab W, Rosenberger MG, Shivram H, Mirazee JM, Donkor M, Shekhar SR, Gjuka D, Khoo KH, Kim JE, Iyer VR, Georgiou G. IgG Immune Complexes Inhibit Naïve T Cell Proliferation and Suppress Effector Function in Cytotoxic T Cells. Front Immunol 2021; 12:713704. [PMID: 34447380 PMCID: PMC8383740 DOI: 10.3389/fimmu.2021.713704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
Elevated levels of circulating immune complexes are associated with autoimmunity and with worse prognoses in cancer. Here, we examined the effects of well-defined, soluble immune complexes (ICs) on human peripheral T cells. We demonstrate that IgG-ICs inhibit the proliferation and differentiation of a subset of naïve T cells but stimulate the division of another naïve-like T cell subset. Phenotypic analysis by multi-parameter flow cytometry and RNA-Seq were used to characterize the inhibited and stimulated T cells revealing that the inhibited subset presented immature features resembling those of recent thymic emigrants and non-activated naïve T cells, whereas the stimulated subset exhibited transcriptional features indicative of a more differentiated, early memory progenitor with a naïve-like phenotype. Furthermore, we show that while IgG1-ICs do not profoundly inhibit the proliferation of memory T cells, IgG1-ICs suppress the production of granzyme-β and perforin in cytotoxic memory T cells. Our findings reveal how ICs can link humoral immunity and T cell function.
Collapse
Affiliation(s)
- Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew G. Rosenberger
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Haridha Shivram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Justin M. Mirazee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Moses Donkor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Soumya R. Shekhar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Donjeta Gjuka
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Kimberly H. Khoo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
25
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
26
|
Kumar S, Ghosh S, Sharma G, Wang Z, Kehry MR, Marino MH, Neben TY, Lu S, Luo S, Roberts S, Ramaswamy S, Danaee H, Jenkins D. Preclinical characterization of dostarlimab, a therapeutic anti-PD-1 antibody with potent activity to enhance immune function in in vitro cellular assays and in vivo animal models. MAbs 2021; 13:1954136. [PMID: 34313545 PMCID: PMC8317941 DOI: 10.1080/19420862.2021.1954136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibitors of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have dramatically changed the treatment landscape for patients with cancer. Clinical activity of anti-PD-(L)1 antibodies has resulted in increased median overall survival and durable responses in patients across selected tumor types. To date, 6 PD-1 and PD-L1, here collectively referred to as PD-(L)1, pathway inhibitors are approved by the US Food and Drug Administration for clinical use. The availability of multiple anti-PD-(L)1 antibodies provides treatment and dosing regimen choice for patients with cancer. Here, we describe the nonclinical characterization of dostarlimab (TSR-042), a humanized anti-PD-1 antibody, which binds with high affinity to human PD-1 and effectively inhibits its interaction with its ligands, PD-L1 and PD-L2. Dostarlimab enhanced effector T-cell functions, including cytokine production, in vitro. Since dostarlimab does not bind mouse PD-1, its single-agent antitumor activity was evaluated using humanized mouse models. In this model system, dostarlimab demonstrated antitumor activity as assessed by tumor growth inhibition, which was associated with increased infiltration of immune cells. Single-dose and 4-week repeat-dose toxicology studies in cynomolgus monkeys indicated that dostarlimab was well tolerated. In a clinical setting, based on data from the GARNET trial, dostarlimab (Jemperli) was approved for the treatment of adult patients with mismatch repair–deficient recurrent or advanced endometrial cancer that had progressed on or following prior treatment with a platinum-containing regimen. Taken together, these data demonstrate that dostarlimab is a potent anti-PD-1 receptor antagonist, with properties that support its continued clinical investigation in patients with cancer.
Collapse
Affiliation(s)
- Sujatha Kumar
- Translational Research, Immuno-Oncology, Checkmate Pharmaceuticals, Cambridge, MA, USA
| | - Srimoyee Ghosh
- Oncology Experimental Medicine Unit, GlaxoSmithKline, Waltham, MA, USA
| | - Geeta Sharma
- Synthetic Lethal Research Unit, Oncolog, GlaxoSmithKline, Waltham, MA, USA
| | - Zebin Wang
- Translational Strategy & Research, GlaxoSmithKline,Waltham, MA, USA
| | | | | | | | - Sharon Lu
- Clinical Pharmacology, Scholar Rock, Cambridge, MA, USA
| | - Shouqi Luo
- Toxicology, Atea Pharmaceuticals, Boston, MA, USA
| | - Simon Roberts
- Nonclinical Development, Research In Vivo/In Vitro Translation, GlaxoSmithKline, Waltham, MA, USA
| | | | - Hadi Danaee
- Translational Medicine, Blue Print Medicines, Cambridge, MA, USA
| | | |
Collapse
|
27
|
Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R, Palmieri G. Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs. Cancers (Basel) 2021; 13:cancers13102500. [PMID: 34065399 PMCID: PMC8161310 DOI: 10.3390/cancers13102500] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells play a major role in cancer immunotherapy based on tumor-targeting mAbs. NK cell-mediated tumor cell killing and cytokine secretion are powerfully stimulated upon interaction with IgG-opsonized tumor cells, through the aggregation of FcγRIIIA/CD16 IgG receptor. Advances in basic and translational NK cell biology have led to the development of strategies that, by improving mAb-dependent antitumor responses, may overcome the current limitations of antibody therapy attributable to tolerance, immunosuppressive microenvironment, and genotypic factors. This review provides an overview of the immunotherapeutic strategies being pursued to improve the efficacy of mAb-induced NK antitumor activity. The exploitation of antibody combinations, antibody-based molecules, used alone or combined with adoptive NK cell therapy, will be uncovered. Within the landscape of NK cell heterogeneity, we stress the role of memory NK cells as promising effectors in the next generation of immunotherapy with the aim to obtain long-lasting tumor control. Abstract Natural killer (NK) cells hold a pivotal role in tumor-targeting monoclonal antibody (mAb)-based activity due to the expression of CD16, the low-affinity receptor for IgG. Indeed, beyond exerting cytotoxic function, activated NK cells also produce an array of cytokines and chemokines, through which they interface with and potentiate adaptive immune responses. Thus, CD16-activated NK cells can concur to mAb-dependent “vaccinal effect”, i.e., the development of antigen-specific responses, which may be highly relevant in maintaining long-term protection of treated patients. On this basis, the review will focus on strategies aimed at potentiating NK cell-mediated antitumor functions in tumor-targeting mAb-based regimens, represented by (a) mAb manipulation strategies, aimed at augmenting recruitment and efficacy of NK cells, such as Fc-engineering, and the design of bi- or trispecific NK cell engagers and (b) the possible exploitation of memory NK cells, whose distinctive characteristics (enhanced responsiveness to CD16 engagement, longevity, and intrinsic resistance to the immunosuppressive microenvironment) may maximize therapeutic mAb antitumor efficacy.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- ReiThera Srl, 00128 Rome, Italy
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| |
Collapse
|
28
|
Song D, Wang W, Dong C, Ning Z, Liu X, Liu C, Du G, Sha C, Wang K, Lu J, Sun B, Zhao Y, Wang Q, Xu H, Li Y, Shen Z, Jiao J, Wang R, Tian J, Liu W, Wang L, Deng YQ, Dou C. Structure and function analysis of a potent human neutralizing antibody CA521 FALA against SARS-CoV-2. Commun Biol 2021; 4:500. [PMID: 33893388 PMCID: PMC8065039 DOI: 10.1038/s42003-021-02029-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic, which has resulted in more than two million deaths at 2021 February . There is currently no approved therapeutics for treating COVID-19. The SARS-CoV-2 Spike protein is considered a key therapeutic target by many researchers. Here we describe the identification of several monoclonal antibodies that target SARS-CoV-2 Spike protein. One human antibody, CA521FALA, demonstrated neutralization potential by immunizing human antibody transgenic mice. CA521FALA showed potent SARS-CoV-2-specific neutralization activity against SARS-CoV-2 pseudovirus and authentic SARS-CoV-2 infection in vitro. CA521FALA also demonstrated having a long half-life of 9.5 days in mice and 9.3 days in rhesus monkeys. CA521FALA inhibited SARS-CoV-2 infection in SARS-CoV-2 susceptible mice at a therapeutic setting with virus titer of the lung reduced by 4.5 logs. Structural analysis by cryo-EM revealed that CA521FALA recognizes an epitope overlapping with angiotensin converting enzyme 2 (ACE2)-binding sites in SARS-CoV-2 RBD in the Spike protein. CA521FALA blocks the interaction by binding all three RBDs of one SARS-CoV-2 spike trimer simultaneously. These results demonstrate the importance for antibody-based therapeutic interventions against COVID-19 and identifies CA521FALA a promising antibody that reacts with SARS-CoV-2 Spike protein to strongly neutralize its activity.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- COVID-19/epidemiology
- COVID-19/prevention & control
- COVID-19/virology
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Pandemics
- Protein Binding/drug effects
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Mice
Collapse
Affiliation(s)
- Deyong Song
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Wenbo Wang
- Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuangchuang Dong
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Zhenfei Ning
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiu Liu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Chuan Liu
- Shuimu BioSciences Ltd., Beijing, China
| | - Guangying Du
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Chunjie Sha
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Kailin Wang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Jun Lu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Baiping Sun
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Yanyan Zhao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Qiaoping Wang
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Hongguang Xu
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Ying Li
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Zhenduo Shen
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Jie Jiao
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Ruiying Wang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Jingwei Tian
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Wanhui Liu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Lan Wang
- Division of Monoclonal Antibodies, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.
| | - Changlin Dou
- Antibody Research and Development Center, Shandong Boan Biotechnology Co., Ltd., Yantai, China.
| |
Collapse
|
29
|
George B, Amjesh R, Paul AM, Santhoshkumar TR, Pillai MR, Kumar R. Evidence of a dysregulated vitamin D endocrine system in SARS-CoV-2 infected patient's lung cells. Sci Rep 2021; 11:8570. [PMID: 33883570 PMCID: PMC8060306 DOI: 10.1038/s41598-021-87703-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Although a defective vitamin D endocrine system has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D endocrine system and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D endocrine system in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes, as potentially modulated by vitamin D endocrine system, were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D endocrine system in SARS-CoV-2-infected cells. Protein-protein interaction network of differentially expressed vitamin D-modulated genes were enriched in the immune system, NF-κB/cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results presented here povide computational evidence to implicate a dysregulated vitamin D endocrine system in the pathobiology of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Revikumar Amjesh
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA.
| |
Collapse
|
30
|
Selva KJ, van de Sandt CE, Lemke MM, Lee CY, Shoffner SK, Chua BY, Davis SK, Nguyen THO, Rowntree LC, Hensen L, Koutsakos M, Wong CY, Mordant F, Jackson DC, Flanagan KL, Crowe J, Tosif S, Neeland MR, Sutton P, Licciardi PV, Crawford NW, Cheng AC, Doolan DL, Amanat F, Krammer F, Chappell K, Modhiran N, Watterson D, Young P, Lee WS, Wines BD, Mark Hogarth P, Esterbauer R, Kelly HG, Tan HX, Juno JA, Wheatley AK, Kent SJ, Arnold KB, Kedzierska K, Chung AW. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat Commun 2021; 12:2037. [PMID: 33795692 PMCID: PMC8016934 DOI: 10.1038/s41467-021-22236-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kevin J Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Suzanne K Shoffner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katie L Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip Sutton
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Immunisation Service, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Infection Prevention & Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Suarez-Kelly L, Sun SH, Ren C, Rampersaud IV, Albertson D, Duggan MC, Noel TC, Courtney N, Buteyn NJ, Moritz C, Yu L, Yildiz VO, Butchar JP, Tridandapani S, Rampersaud AA, Carson WE. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS APPLIED NANO MATERIALS 2021; 4:3122-3139. [PMID: 34027313 PMCID: PMC8136585 DOI: 10.1021/acsanm.1c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.
Collapse
Affiliation(s)
- Lorena
P. Suarez-Kelly
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey Ren
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Isaac V. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - David Albertson
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Megan C. Duggan
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany C. Noel
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Courtney
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel J. Buteyn
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles Moritz
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Lianbo Yu
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Vedat O. Yildiz
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan P. Butchar
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Susheela Tridandapani
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arfaan A. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - William E. Carson
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
- . Phone: (614)
293-6306. Fax: (614) 293-3465
| |
Collapse
|
32
|
Bednarczyk M, Medina-Montano C, Fittler FJ, Stege H, Roskamp M, Kuske M, Langer C, Vahldieck M, Montermann E, Tubbe I, Röhrig N, Dzionek A, Grabbe S, Bros M. Complement-Opsonized Nano-Carriers Are Bound by Dendritic Cells (DC) via Complement Receptor (CR)3, and by B Cell Subpopulations via CR-1/2, and Affect the Activation of DC and B-1 Cells. Int J Mol Sci 2021; 22:2869. [PMID: 33799879 PMCID: PMC8001596 DOI: 10.3390/ijms22062869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanocarriers (NC) for biomedical applications has gained large interest due to their potential to co-deliver drugs in a cell-type-targeting manner. However, depending on their surface characteristics, NC accumulate serum factors, termed protein corona, which may affect their cellular binding. We have previously shown that NC coated with carbohydrates to enable biocompatibility triggered the lectin-dependent complement pathway, resulting in enhanced binding to B cells via complement receptor (CR)1/2. Here we show that such NC also engaged all types of splenic leukocytes known to express CR3 at a high rate when NC were pre-incubated with native mouse serum resulting in complement opsonization. By focusing on dendritic cells (DC) as an important antigen-presenting cell type, we show that CR3 was essential for binding/uptake of complement-opsonized NC, whereas CR4, which in mouse is specifically expressed by DC, played no role. Further, a minor B cell subpopulation (B-1), which is important for first-line pathogen responses, and co-expressed CR1/2 and CR3, in general, engaged NC to a much higher extent than normal B cells. Here, we identified CR-1/2 as necessary for binding of complement-opsonized NC, whereas CR3 was dispensable. Interestingly, the binding of complement-opsonized NC to both DC and B-1 cells affected the expression of activation markers. Our findings may have important implications for the design of nano-vaccines against infectious diseases, which codeliver pathogen-specific protein antigen and adjuvant, aimed to induce a broad adaptive cellular and humoral immune response by inducing cytotoxic T lymphocytes that kill infected cells and pathogen-neutralizing antibodies, respectively. Decoration of nano-vaccines either with carbohydrates to trigger complement activation in vivo or with active complement may result in concomitant targeting of DC and B cells and thereby may strongly enhance the extent of dual cellular/humoral immune responses.
Collapse
Affiliation(s)
- Monika Bednarczyk
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Frederic Julien Fittler
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Meike Roskamp
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Michael Kuske
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Christian Langer
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Marco Vahldieck
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Andrzej Dzionek
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch Gladbach, Germany; (M.R.); (C.L.); (M.V.); (A.D.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (C.M.-M.); (F.J.F.); (H.S.); (M.K.); (E.M.); (I.T.); (N.R.); (S.G.)
| |
Collapse
|
33
|
Lara S, Anania JC, Virtanen A, Stenhammar V, Kleinau S. Importance of antibody isotypes in antitumor immunity by monocytes and complement using human-immune tumor models. Eur J Immunol 2021; 51:1218-1233. [PMID: 33533020 DOI: 10.1002/eji.202048885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Indexed: 02/01/2023]
Abstract
Monoclonal antibodies (mAbs) have revolutionized clinical medicine, especially in the field of cancer immunotherapy. The challenge now is to improve the response rates, as immunotherapy still fails for many patients. Strategies to enhance tumor cell death is a fundamental aim, but relevant model systems for human tumor immunology are lacking. Herein, we have developed a preclinical human immune - three-dimensional (3D) tumor model (spheroids) to map the efficiency of tumor-specific isotypes for improved tumor cell killing. Different anti-CD20 Rituximab (RTX) isotypes alone or in combination, were evaluated for mediating complement-dependent cytotoxicity and antibody-dependent phagocytosis by human monocytic cells in 3D spheroids, in parallel with monolayer cultures, of human CD20+ B-cell lymphomas. We demonstrate that the IgG3 variant of RTX has the greatest tumoricidal effect over other isotypes, and when combined with apoptosis-inducing RTX-IgG2 isotype the therapeutic effect can be substantially enhanced. The results show further that the treatment outcome by RTX isotypes is influenced by tumor morphology and expression of the complement inhibitor CD59. Hence, the human immune-3D tumor model is a clinical relevant and attractive ex vivo system to predict mAbs for best efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jessica C Anania
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Center for Cancer Immunology, University of Southampton, Southampton, UK
| | - Alexander Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Viktoria Stenhammar
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Vukovic N, van Elsas A, Verbeek JS, Zaiss DMW. Isotype selection for antibody-based cancer therapy. Clin Exp Immunol 2021; 203:351-365. [PMID: 33155272 PMCID: PMC7874837 DOI: 10.1111/cei.13545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
The clinical application of monoclonal antibodies (mAbs) has revolutionized the field of cancer therapy, as it has enabled the successful treatment of previously untreatable types of cancer. Different mechanisms play a role in the anti-tumour effect of mAbs. These include blocking of tumour-specific growth factor receptors or of immune modulatory molecules as well as complement and cell-mediated tumour cell lysis. Thus, for many mAbs, Fc-mediated effector functions critically contribute to the efficacy of treatment. As immunoglobulin (Ig) isotypes differ in their ability to bind to Fc receptors on immune cells as well as in their ability to activate complement, they differ in the immune responses they activate. Therefore, the choice of antibody isotype for therapeutic mAbs is dictated by its intended mechanism of action. Considering that clinical efficacy of many mAbs is currently achieved only in subsets of patients, optimal isotype selection and Fc optimization during antibody development may represent an important step towards improved patient outcome. Here, we discuss the current knowledge of the therapeutic effector functions of different isotypes and Fc-engineering strategies to improve mAbs application.
Collapse
Affiliation(s)
- N. Vukovic
- Institute of Immunology and Infection ResearchSchool of Biological SciencesUniversity of EdinburghAshworth LaboratoriesEdinburghUK
| | | | - J. S. Verbeek
- Department of Biomedical EngineeringToin University of YokohamaYokohamaJapan
| | - D. M. W. Zaiss
- Institute of Immunology and Infection ResearchSchool of Biological SciencesUniversity of EdinburghAshworth LaboratoriesEdinburghUK
| |
Collapse
|
35
|
|
36
|
Barb AW. Fc γ receptor compositional heterogeneity: Considerations for immunotherapy development. J Biol Chem 2021; 296:100057. [PMID: 33172893 PMCID: PMC7948983 DOI: 10.1074/jbc.rev120.013168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antibody-binding crystallizable fragment (Fc) γ receptors (FcγRs) are expressed by leukocytes and activate or suppress a cellular response once engaged with an antibody-coated target. Therapeutic mAbs that require FcγR binding for therapeutic efficacy are now frontline treatments for multiple diseases. However, substantially fewer development efforts are focused on the FcγRs, despite accounting for half of the antibody-receptor complex. The recent success of engineered cell-based immunotherapies now provides a mechanism to introduce modified FcγRs into the clinic. FcγRs are highly heterogeneous because of multiple functionally distinct alleles for many genes, the presence of membrane-tethered and soluble forms, and a high degree of post-translational modification, notably asparagine-linked glycans. One significant factor limiting FcγR improvement is the fundamental lack of knowledge regarding endogenous receptor forms present in the human body. This review describes the composition of FcγRs isolated from primary human leukocytes, summarizes recent efforts to engineer FcγRs, and concludes with a description of potential FcγR features to enrich for enhanced function. Further understanding FcγR biology could accelerate the development of new clinical therapies targeting immune-related disease.
Collapse
Affiliation(s)
- Adam W Barb
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
37
|
Brewis N. Improvement of Key Characteristics of Antibodies. LEARNING MATERIALS IN BIOSCIENCES 2021. [DOI: 10.1007/978-3-030-54630-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-Engineering for Modulated Effector Functions-Improving Antibodies for Cancer Treatment. Antibodies (Basel) 2020; 9:E64. [PMID: 33212886 PMCID: PMC7709126 DOI: 10.3390/antib9040064] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The majority of monoclonal antibody (mAb) therapeutics possess the ability to engage innate immune effectors through interactions mediated by their fragment crystallizable (Fc) domain. By delivering Fc-Fc gamma receptor (FcγR) and Fc-C1q interactions, mAb are able to link exquisite specificity to powerful cellular and complement-mediated effector functions. Fc interactions can also facilitate enhanced target clustering to evoke potent receptor signaling. These observations have driven decades-long research to delineate the properties within the Fc that elicit these various activities, identifying key amino acid residues and elucidating the important role of glycosylation. They have also fostered a growing interest in Fc-engineering whereby this knowledge is exploited to modulate Fc effector function to suit specific mechanisms of action and therapeutic purposes. In this review, we document the insight that has been generated through the study of the Fc domain; revealing the underpinning structure-function relationships and how the Fc has been engineered to produce an increasing number of antibodies that are appearing in the clinic with augmented abilities to treat cancer.
Collapse
Affiliation(s)
- Rena Liu
- GlaxoSmithKline Research and Development, Stevenage SG1 2NY, UK;
| | - Robert J. Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Emma Teal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| |
Collapse
|
39
|
Klein C, Jamois C, Nielsen T. Anti-CD20 treatment for B-cell malignancies: current status and future directions. Expert Opin Biol Ther 2020; 21:161-181. [PMID: 32933335 DOI: 10.1080/14712598.2020.1822318] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The introduction of anti-CD20 monoclonal antibody therapy with rituximab in the 1990s greatly improved outcomes for patients with B-cell malignancies. Disease resistance or relapse after successful initial therapy and declining efficacy of subsequent rounds of treatment were the basis for the development of alternative anti-CD20-based antibody therapies. AREAS COVERED The novel anti-CD20 antibodies of atumumab, ublituximab, and obinutuzumab were developed to be differentiated via structural and mechanistic features over rituximab. We provide an overview of preclinical and clinical data, and demonstrate ways in which the pharmacodynamic properties of these novel agents translate into clinical benefit for patients. EXPERT OPINION Of the novel anti-CD20 antibodies, only obinutuzumab has shown consistently improved efficacy over rituximab in randomized pivotal trials in indolent non-Hodgkin lymphoma and chronic lymphocytic leukemia. The Phase 3 GALLIUM trial demonstrated significant improvements in progression-free survival with obinutuzumab-based immunochemotherapy over rituximab-based immunochemotherapy. Novel combinations of obinutuzumab, including with chemotherapy-free options are being explored, such as with the newly approved combinations of obinutuzumab with venetoclax, ibrutinib, or acalabrutinib. The biggest unmet need remains in the treatment of diffuse large B-cell lymphoma; emerging options in this field include the use of CAR-T cells and T-cell bispecific antibodies.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Candice Jamois
- Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel , Basel, Switzerland
| | - Tina Nielsen
- Product Development Oncology, F. Hoffmann-La Roche Ltd , Basel, Switzerland
| |
Collapse
|
40
|
Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, Scarlata S, Agrò FE. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020; 288:192-206. [PMID: 32348588 PMCID: PMC7267177 DOI: 10.1111/joim.13091] [Citation(s) in RCA: 708] [Impact Index Per Article: 141.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a novel coronavirus from the same family as SARS-CoV and Middle East respiratory syndrome coronavirus, has spread worldwide leading the World Health Organization to declare a pandemic. The disease caused by SARS-CoV-2, coronavirus disease 2019 (COVID-19), presents flu-like symptoms which can become serious in high-risk individuals. Here, we provide an overview of the known clinical features and treatment options for COVID-19. We carried out a systematic literature search using the main online databases (PubMed, Google Scholar, MEDLINE, UpToDate, Embase and Web of Science) with the following keywords: 'COVID-19', '2019-nCoV', 'coronavirus' and 'SARS-CoV-2'. We included publications from 1 January 2019 to 3 April 2020 which focused on clinical features and treatments. We found that infection is transmitted from human to human and through contact with contaminated environmental surfaces. Hand hygiene is fundamental to prevent contamination. Wearing personal protective equipment is recommended in specific environments. The main symptoms of COVID-19 are fever, cough, fatigue, slight dyspnoea, sore throat, headache, conjunctivitis and gastrointestinal issues. Real-time PCR is used as a diagnostic tool using nasal swab, tracheal aspirate or bronchoalveolar lavage samples. Computed tomography findings are important for both diagnosis and follow-up. To date, there is no evidence of any effective treatment for COVID-19. The main therapies being used to treat the disease are antiviral drugs, chloroquine/hydroxychloroquine and respiratory therapy. In conclusion, although many therapies have been proposed, quarantine is the only intervention that appears to be effective in decreasing the contagion rate. Specifically designed randomized clinical trials are needed to determine the most appropriate evidence-based treatment modality.
Collapse
Affiliation(s)
- Giuseppe Pascarella
- Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Alessandro Strumia
- Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Chiara Piliego
- Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Federica Bruno
- Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Romualdo Del Buono
- Department of Anaesthesia, Intensive Care and Pain Management, Humanitas Mater Domini Hospital, Castellanza, Italy
| | - Fabio Costa
- Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Simone Scarlata
- Geriatrics, Unit of Respiratory Pathophysiology, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| | - Felice Eugenio Agrò
- Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio Medico University and Teaching Hospital, Rome, Italy
| |
Collapse
|
41
|
Afzali S, Salehi S, Shahi A, Amirzargar A. B cell modulation strategies in the improvement of transplantation outcomes. Mol Immunol 2020; 125:140-150. [PMID: 32682148 DOI: 10.1016/j.molimm.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
Successful transplantation outcome is the final goal in most end stage and nonfunctional organs; however, despite using different therapeutic strategies, antibody-mediated rejection is still a big obstacle. B cells have a key role in transplant rejection by several functions, such as antibody production, antigen presenting, contribution in T cell activation, forming the germinal center, and tertiary lymphoid organs. Therefore, B cells modulation seems to be very crucial in transplant outcome. A double-edged sword function is considered for B cells during transplantation; On the one hand, antibody production against the transplanted organ induces antibody-mediated rejection. On the other hand, IL10 production by regulatory B (Breg) cells induces graft tolerance. Nowadays, several monoclonal antibodies (mAb) are available for B cell modulation that are routinely used in transplant recipients, among which rituximab (anti-CD20 mAb) act in eliminating B cells. However, there are some other monoclonal antibodies, such as epratuzumab and Inotuzumab ozogamicin (IO), which exert anti-CD22 activity, resulting in disruption of B cell functions and induction of tolerance in autoimmune disease or B cell malignancies; that notwithstanding, these mAbs have not yet been tried in transplantation. In this review, we focus on different methods for modulating the activity of B cells as well as induction of Breg cells, aiming to prevent the allograft rejection.
Collapse
Affiliation(s)
- Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Schijns V, Lavelle EC. Prevention and treatment of COVID-19 disease by controlled modulation of innate immunity. Eur J Immunol 2020; 50:932-938. [PMID: 32438473 PMCID: PMC7280664 DOI: 10.1002/eji.202048693] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/27/2022]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an enormous threat to global public health and economies. Human coronaviruses normally cause no or mild respiratory disease but in the past two decades, potentially fatal coronavirus infections have emerged, causing respiratory tract illnesses such as pneumonia and bronchitis. These include severe acute respiratory syndrome coronavirus (SARS-CoV), followed by the Middle East respiratory syndrome coronavirus (MERS-CoV), and recently the SARS-CoV-2 coronavirus outbreak that emerged in Wuhan, China, in December 2019. Currently, most COVID-19 patients receive traditional supportive care including breathing assistance. To halt the ongoing spread of the pandemic SARS-CoV-2 coronavirus and rescue individual patients, established drugs and new therapies are under evaluation. Since it will be some time until a safe and effective vaccine will be available, the immediate priority is to harness innate immunity to accelerate early antiviral immune responses. Second, since excessive inflammation is a major cause of pathology, targeted anti-inflammatory responses are being evaluated to reduce inflammation-induced damage to the respiratory tract and cytokine storms. Here, we highlight prominent immunotherapies at various stages of development that aim for augmented anti-coronavirus immunity and reduction of pathological inflammation.
Collapse
Affiliation(s)
- Virgil Schijns
- Epitopoietic Research Corporation (ERC), Schaijk, The Netherlands.,Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
43
|
Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci U S A 2020; 117:13967-13974. [PMID: 32503918 PMCID: PMC7322019 DOI: 10.1073/pnas.2008209117] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Molecular dynamics and free energy simulations have been carried out to elucidate the structural origin of differential protein-protein interactions between the common receptor protein angiotensin converting enzyme 2 (ACE2) and the receptor binding domains of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [A. E. Gorbalenya et al., Nat. Microbiol. 5, 536-544 (2020)] that causes coronavirus disease 2019 (COVID-19) [P. Zhou et al., Nature 579, 270-273 (2020)] and the SARS coronavirus in the 2002-2003 (SARS-CoV) [T. Kuiken et al., Lancet 362, 263-270 (2003)] outbreak. Analysis of the dynamic trajectories reveals that the binding interface consists of a primarily hydrophobic region and a delicate hydrogen-bonding network in the 2019 novel coronavirus. A key mutation from a hydrophobic residue in the SARS-CoV sequence to Lys417 in SARS-CoV-2 creates a salt bridge across the central hydrophobic contact region, which along with polar residue mutations results in greater electrostatic complementarity than that of the SARS-CoV complex. Furthermore, both electrostatic effects and enhanced hydrophobic packing due to removal of four out of five proline residues in a short 12-residue loop lead to conformation shift toward a more tilted binding groove in the complex in comparison with the SARS-CoV complex. On the other hand, hydrophobic contacts in the complex of the SARS-CoV-neutralizing antibody 80R are disrupted in the SARS-CoV-2 homology complex model, which is attributed to failure of recognition of SARS-CoV-2 by 80R.
Collapse
|
44
|
Nguyen-Robertson C, Haque A, Mintern J, La Flamme AC. COVID-19: searching for clues among other respiratory viruses. Immunol Cell Biol 2020; 98:247-250. [PMID: 32319148 DOI: 10.1111/imcb.12336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Catriona Nguyen-Robertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Justine Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC, Melbourne, Australia
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
45
|
Chung AW. Multifaceted roles of antibody Fc effector functions: from protection to pathology. Immunol Cell Biol 2020; 98:251-252. [PMID: 32274825 DOI: 10.1111/imcb.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| |
Collapse
|