1
|
Garcia G, Labrouche-Colomer S, Duvignaud A, Clequin E, Dussiau C, Trégouët DA, Malvy D, Prevel R, Zouine A, Pellegrin I, Goret J, Mamani-Matsuda M, Dewitte A, James C. Impaired balance between neutrophil extracellular trap formation and degradation by DNases in COVID-19 disease. J Transl Med 2024; 22:246. [PMID: 38454482 PMCID: PMC10919029 DOI: 10.1186/s12967-024-05044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Thrombo-inflammation and neutrophil extracellular traps (NETs) are exacerbated in severe cases of COVID-19, potentially contributing to disease exacerbation. However, the mechanisms underpinning this dysregulation remain elusive. We hypothesised that lower DNase activity may be associated with higher NETosis and clinical worsening in patients with COVID-19. METHODS Biological samples were obtained from hospitalized patients (15 severe, 37 critical at sampling) and 93 non-severe ambulatory cases. Our aims were to compare NET biomarkers, functional DNase levels, and explore mechanisms driving any imbalance concerning disease severity. RESULTS Functional DNase levels were diminished in the most severe patients, paralleling an imbalance between NET markers and DNase activity. DNase1 antigen levels were higher in ambulatory cases but lower in severe patients. DNase1L3 antigen levels remained consistent across subgroups, not rising alongside NET markers. DNASE1 polymorphisms correlated with reduced DNase1 antigen levels. Moreover, a quantitative deficiency in plasmacytoid dendritic cells (pDCs), which primarily express DNase1L3, was observed in critical patients. Analysis of public single-cell RNAseq data revealed reduced DNase1L3 expression in pDCs from severe COVID-19 patient. CONCLUSION Severe and critical COVID-19 cases exhibited an imbalance between NET and DNase functional activity and quantity. Early identification of NETosis imbalance could guide targeted therapies against thrombo-inflammation in COVID-19-related sepsis, such as DNase administration, to avert clinical deterioration. TRIAL REGISTRATION COVERAGE trial (NCT04356495) and COLCOV19-BX study (NCT04332016).
Collapse
Affiliation(s)
- Geoffrey Garcia
- Biology of Cardiovascular Disease, INSERM, UMR 1034, Bordeaux University, CHU Haut-Lévêque, 1 Avenue Magellan, 33600, Pessac, France
| | - Sylvie Labrouche-Colomer
- Biology of Cardiovascular Disease, INSERM, UMR 1034, Bordeaux University, CHU Haut-Lévêque, 1 Avenue Magellan, 33600, Pessac, France
- Laboratory of Hematology, Bordeaux University Hospital, 33600, Pessac, France
| | - Alexandre Duvignaud
- Department of Infectious Diseases and Tropical Medicine, Hôpital Pellegrin, CHU Bordeaux, 33076, Bordeaux, France
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, 33000, Bordeaux, France
| | - Etienne Clequin
- CNRS, ImmunoConcEpT, UMR 5164, Inserm ERL1303, Bordeaux University, 33000, Bordeaux, France
- Department of Anaesthesia and Intensive Care, Bordeaux University Hospital, 33600, Pessac, France
| | - Charles Dussiau
- Biology of Cardiovascular Disease, INSERM, UMR 1034, Bordeaux University, CHU Haut-Lévêque, 1 Avenue Magellan, 33600, Pessac, France
- Laboratory of Hematology, Bordeaux University Hospital, 33600, Pessac, France
| | - David-Alexandre Trégouët
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, 33000, Bordeaux, France
| | - Denis Malvy
- Department of Infectious Diseases and Tropical Medicine, Hôpital Pellegrin, CHU Bordeaux, 33076, Bordeaux, France
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, 33000, Bordeaux, France
| | - Renaud Prevel
- Medical Intensive Care Unit, Bordeaux University Hospital, 33000, Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, UMR 1045, Bordeaux University, 33000, Bordeaux, France
| | - Atika Zouine
- CNRS, INSERM, TBM-Core, US5, UAR 3427, Flow Cytometry Facility, Bordeaux University, 33000, Bordeaux, France
| | - Isabelle Pellegrin
- CNRS, ImmunoConcEpT, UMR 5164, Inserm ERL1303, Bordeaux University, 33000, Bordeaux, France
- Centre de Ressources Biologiques, Bordeaux University Hospital, 33000, Bordeaux, France
| | - Julien Goret
- CNRS, ImmunoConcEpT, UMR 5164, Inserm ERL1303, Bordeaux University, 33000, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
| | - Maria Mamani-Matsuda
- CNRS, ImmunoConcEpT, UMR 5164, Inserm ERL1303, Bordeaux University, 33000, Bordeaux, France
| | - Antoine Dewitte
- CNRS, ImmunoConcEpT, UMR 5164, Inserm ERL1303, Bordeaux University, 33000, Bordeaux, France
- Department of Anaesthesia and Intensive Care, Bordeaux University Hospital, 33600, Pessac, France
| | - Chloe James
- Biology of Cardiovascular Disease, INSERM, UMR 1034, Bordeaux University, CHU Haut-Lévêque, 1 Avenue Magellan, 33600, Pessac, France.
- Laboratory of Hematology, Bordeaux University Hospital, 33600, Pessac, France.
| |
Collapse
|
2
|
Andrejčinová I, Blažková G, Papatheodorou I, Bendíčková K, Bosáková V, Skotáková M, Panovský R, Opatřil L, Vymazal O, Kovačovicová P, Šrámek V, Helán M, Hortová-Kohoutková M, Frič J. Persisting IL-18 levels after COVID-19 correlate with markers of cardiovascular inflammation reflecting potential risk of CVDs development. Heliyon 2024; 10:e25938. [PMID: 38404862 PMCID: PMC10884808 DOI: 10.1016/j.heliyon.2024.e25938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
COVID-19 manifestation is associated with a strong immune system activation leading to inflammation and subsequently affecting the cardiovascular system. The objective of the study was to reveal possible interconnection between prolongated inflammation and the development or exacerbation of long-term cardiovascular complications after COVID-19. We investigated correlations between humoral and cellular immune system markers together with markers of cardiovascular inflammation/dysfunction during COVID-19 onset and subsequent recovery. We analyzed 22 hospitalized patients with severe COVID-19 within three timepoints (acute, 1 and 6 months after COVID-19) in order to track the impact of COVID-19 on the long-term decline of the cardiovascular system fitness and eventual development of CVDs. Among the cytokines dysregulated during COVID-19 changes, we showed significant correlations of IL-18 as a key driver of several pathophysiological changes with markers of cardiovascular inflammation/dysfunction. Our findings established novel immune-related markers, which can be used for the stratification of patients at high risk of CVDs for further therapy.
Collapse
Affiliation(s)
- Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Gabriela Blažková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Monika Skotáková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Roman Panovský
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukáš Opatřil
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Kovačovicová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Šrámek
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Helán
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Hortová-Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
3
|
Tascini C, Cotrufo M, Sozio E, Fanin M, Dellai F, Zanus Forte A, Cesselli D, DE Stefanis P, Ripoli A, Sbrana F, Giuliano S, Fabris M, Girardis M, Curcio F, Bassi F. Potential role of IgM-enriched immunoglobulin as adjuvant treatment in severe SARS-CoV-2 infection. Minerva Anestesiol 2023; 89:884-894. [PMID: 37822148 DOI: 10.23736/s0375-9393.23.17244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND Severe COVID-19 patients are characterized by a dysregulated host response to an infection, with uncontrolled pro- and anti- inflammatory pathway activation. Consistent proportion of patients require admission in intensive care units and are at risk of progression to severe forms of disease. These patients are generally admitted during later stages of the disease, when effective antiviral and monoclonal antibody are not indicated. We aimed to assess the potential role of IgM-enriched intra venous immunoglobulins (IGAM) preparations in this setting. METHODS This retrospective, observational case-controlled study was conducted at a single-center University Hospital of Udine in the Friuli Venezia Giulia Region of Italy. Patients referring to the center between March 2020 and April 2021 was included. During the study period, patient who received Pentaglobin® IGAM treatment (N.=56), administered as compassionate use, was compared with a control group (N.=169) to assess, by propensity score analysis, clinical outcome. RESULTS Untreated controls required, respect to patient treated with IGAM therapy, longer time to hospitalization with no significant differences in death and orotracheal intubation requirement. Significant differences in the two cohort were in: SOFA was higher in treated, while D-dimer and P/F ratio was better in the treatment cohort. Multivariate logistic regression analysis performed on the "matched sample," obtained by a weighting propensity score approach, identify, as significant protective factor for death outcome, the Pentaglobin® treatment (0.820 [0.698-0.963], P=0.016) and low C-reactive protein (1.001 [1.000-1.002], P=0.031) value while the delay of onset hospitalization is associate with a worst outcome (0.983 [0.967-0.999], P=0.041). CONCLUSIONS The present study offers a significant insight concerning the use of IgM-enriched immunoglobulin preparations in patients with SARS-CoV-2 severe infection and also could identifying the specific immunological and biochemical profile of the patient who can more benefit from this therapeutic option.
Collapse
Affiliation(s)
- Carlo Tascini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy -
- Department of Medical Area (DAME), University of Udine, Udine, Italy -
| | - Marco Cotrufo
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Emanuela Sozio
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Matteo Fanin
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Fabiana Dellai
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Agnese Zanus Forte
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Daniela Cesselli
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Paola DE Stefanis
- Section of Anesthesia and Resuscitation2, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Andrea Ripoli
- Department of Bioengineering, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Simone Giuliano
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Martina Fabris
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Modena, Italy
| | - Francesco Curcio
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Flavio Bassi
- Section of Anesthesia and Resuscitation2, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
4
|
García-Nicolás O, Godel A, Zimmer G, Summerfield A. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023:10.1038/s41423-023-01039-4. [PMID: 37253946 DOI: 10.1038/s41423-023-01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.
Collapse
Affiliation(s)
- O García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - A Godel
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Bukreieva T, Kyryk V, Nikulina V, Svitina H, Vega A, Chybisov O, Shablii I, Mankovska O, Lobyntseva G, Nemtinov P, Skrypkina I, Shablii V. Dynamic changes in radiological parameters, immune cells, selected miRNAs, and cytokine levels in peripheral blood of patients with severe COVID‑19. Biomed Rep 2023; 18:33. [PMID: 37034572 PMCID: PMC10074022 DOI: 10.3892/br.2023.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
The present study aimed to investigate the dynamic changes in peripheral blood leucocyte subpopulations, cytokine and miRNA levels, and changes in computed tomography (CT) scores in patients with severe coronavirus disease 2019 (COVID-19) (n=14) and age-matched non-COVID-19 volunteers (n=17), which were included as a reference control group. All data were collected on the day of patient admission (day 0) and on the 7th, 14th and 28th days of follow-up while CT of the lungs was performed on weeks 2, 8, 24 and 48. On day 0, lymphopenia and leucopenia were detected in most patients with COVID-19, as well as an increase in the percentage of banded neutrophils, B cells, and CD4+ Treg cells, and a decrease in the content of PD-1low T cells, classical, plasmacytoid, and regulatory dendritic cells. On day 7, the percentage of T and natural killer cells decreased with a concurrent increase in B cells, but returned to the initial level after treatment discharge. The content of different T and dendritic cell subsets among CD45+ cells increased during two weeks and remained elevated, suggesting the activation of an adaptive immune response. The increase of PD-1-positive subpopulations of T and non-T cells and regulatory CD4 T cells in patients with COVID-19 during the observation period suggests the development of an inflammation control mechanism. The levels of interferon γ-induced protein 10 (IP-10), tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 decreased on day 7, but increased again on days 14 and 28. C-reactive protein and granulocyte colony-stimulating factor (G-CSF) levels decreased gradually throughout the observation period. The relative expression levels of microRNA (miR)-21-5p, miR-221-3p, miR-27a-3p, miR-146a-5p, miR-133a-3p, and miR-126-3p were significantly higher at the beginning of hospitalization compared to non-COVID-19 volunteers. The plasma levels of all miRs, except for miR-126-3p, normalized within one week of treatment. At week 48, CT scores were most prominently correlated with the content of lymphocytes, senescent memory T cells, CD127+ T cells and CD57+ T cells, and increased concentrations of G-CSF, IP-10, and macrophage inflammatory protein-1α.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Vitalii Kyryk
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
- Laboratory of Pathophysiology and Immunology, D.F. Chebotarev State Institute of Gerontology of The National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, Kyiv 04112, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital No. 4, Kyiv 03110, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Oksana Mankovska
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| |
Collapse
|
6
|
Chan KR, Koh CWT, Ng DHL, Qin S, Ooi JSG, Ong EZ, Zhang SLX, Sam H, Kalimuddin S, Low JGH, Ooi EE. Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine 2023; 89:104472. [PMID: 36801619 PMCID: PMC9934388 DOI: 10.1016/j.ebiom.2023.104472] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.
Collapse
Affiliation(s)
- Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| | - Clara W T Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dorothy H L Ng
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shijie Qin
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Justin S G Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eugenia Z Ong
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Summer L X Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Huizhen Sam
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jenny G H Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Eng Eong Ooi
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
7
|
Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol 2023; 113:236-254. [PMID: 36807444 DOI: 10.1093/jleuko/qiac001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.
Collapse
Affiliation(s)
- Md Sahidul Islam
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Zhaoxiong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Research Building N22, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
8
|
Vangeti S, Falck-Jones S, Yu M, Österberg B, Liu S, Asghar M, Sondén K, Paterson C, Whitley P, Albert J, Johansson N, Färnert A, Smed-Sörensen A. Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx. eLife 2023; 12:77345. [PMID: 36752598 PMCID: PMC9977282 DOI: 10.7554/elife.77345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | | | | | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Clinical Microbiology, Karolinska University HospitalStockholmSweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
9
|
Liu S, Luo W, Szatmary P, Zhang X, Lin JW, Chen L, Liu D, Sutton R, Xia Q, Jin T, Liu T, Huang W. Monocytic HLA-DR Expression in Immune Responses of Acute Pancreatitis and COVID-19. Int J Mol Sci 2023; 24:3246. [PMID: 36834656 PMCID: PMC9964039 DOI: 10.3390/ijms24043246] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease with increasing incidence worldwide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world, caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting cells, acts as an indicator of immune function. Research advances have highlighted the predictive values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complications in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered mHLA-DR expression remains unclear, HLA-DR-/low monocytic myeloid-derived suppressor cells are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of patients with acute pancreatitis and COVID-19.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Hopkins FR, Govender M, Svanberg C, Nordgren J, Waller H, Nilsdotter-Augustinsson Å, Henningsson AJ, Hagbom M, Sjöwall J, Nyström S, Larsson M. Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19. Front Immunol 2023; 13:1082912. [PMID: 36685582 PMCID: PMC9846644 DOI: 10.3389/fimmu.2022.1082912] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction After more than two years the Coronavirus disease-19 (COVID-19) pandemic continues to burden healthcare systems and economies worldwide, and it is evident that the effects on the immune system can persist for months post-infection. The activity of myeloid cells such as monocytes and dendritic cells (DC) is essential for correct mobilization of the innate and adaptive responses to a pathogen. Impaired levels and responses of monocytes and DC to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is likely to be a driving force behind the immune dysregulation that characterizes severe COVID-19. Methods Here, we followed a cohort of COVID-19 patients hospitalized during the early waves of the pandemic for 6-7 months. The levels and phenotypes of circulating monocyte and DC subsets were assessed to determine both the early and long-term effects of the SARS-CoV-2 infection. Results We found increased monocyte levels that persisted for 6-7 months, mostly attributed to elevated levels of classical monocytes. Myeloid derived suppressor cells were also elevated over this period. While most DC subsets recovered from an initial decrease, we found elevated levels of cDC2/cDC3 at the 6-7 month timepoint. Analysis of functional markers on monocytes and DC revealed sustained reduction in program death ligand 1 (PD-L1) expression but increased CD86 expression across almost all cell types examined. Finally, C-reactive protein (CRP) correlated positively to the levels of intermediate monocytes and negatively to the recovery of DC subsets. Conclusion By exploring the myeloid compartments, we show here that alterations in the immune landscape remain more than 6 months after severe COVID-19, which could be indicative of ongoing healing and/or persistence of viral antigens.
Collapse
Affiliation(s)
- Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hjalmar Waller
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University, Linköping, Sweden
| | - Anna J. Henningsson
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine in Jönköping, Ryhov County Hospital, Jönköping, Sweden
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Division of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs) for Immunomodulation in COVID-19 Related Acute Respiratory Distress Syndrome (ARDS). J Clin Med 2022; 12:jcm12010304. [PMID: 36615103 PMCID: PMC9820910 DOI: 10.3390/jcm12010304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), might be complicated by Acute Respiratory Distress Syndrome (ARDS) caused by severe lung damage. It is relevant to find treatments for COVID-19-related ARDS. Currently, DHA and EPA n-3 PUFAs, known for their immunomodulatory activities, have been proposed for COVID-19 management, and clinical trials are ongoing. Here, examining COVID-19-related ARDS immunopathology, we reference in vitro and in vivo studies, indicating n-3 PUFA immunomodulation on lung microenvironment (bronchial and alveolar epithelial cells, macrophages, infiltrating immune cells) and ARDS, potentially affecting immune responses in COVID-19-related ARDS. Concerning in vitro studies, evidence exists of the potential anti-inflammatory activity of DHA on airway epithelial cells and monocytes/macrophages; however, it is necessary to analyze n-3 PUFA immunomodulation using viral experimental models relevant to SARS-CoV-2 infection. Then, although pre-clinical investigations in experimental acute lung injury/ARDS revealed beneficial immunomodulation by n-3 PUFAs when extracellular pathogen infections were used as lung inflammatory models, contradictory results were reported using intracellular viral infections. Finally, clinical trials investigating n-3 PUFA immunomodulation in ARDS are limited, with small samples and contradictory results. In conclusion, further in vitro and in vivo investigations are needed to establish whether n-3 PUFAs may have some therapeutic potential in COVID-19-related ARDS.
Collapse
|
12
|
Enomoto N. Pathological Roles of Pulmonary Cells in Acute Lung Injury: Lessons from Clinical Practice. Int J Mol Sci 2022; 23:ijms232315027. [PMID: 36499351 PMCID: PMC9736972 DOI: 10.3390/ijms232315027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Interstitial lung diseases (ILD) are relatively rare and sometimes become life threatening. In particular, rapidly progressive ILD, which frequently presents as acute lung injury (ALI) on lung histopathology, shows poor prognosis if proper and immediate treatments are not initiated. These devastating conditions include acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), clinically amyopathic dermatomyositis (CADM), epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced lung injury, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection named coronavirus disease 2019 (COVID-19). In this review, clinical information, physical findings, laboratory examinations, and findings on lung high-resolution computed tomography and lung histopathology are presented, focusing on majorly damaged cells in each disease. Furthermore, treatments that should be immediately initiated in clinical practice for each disease are illustrated to save patients with these diseases.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; ; Tel.: +81-53-435-2263; Fax: +81-53-435-2354
- Health Administration Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
13
|
Rajamanickam A, Kumar NP, Pandiaraj AN, Selvaraj N, Munisankar S, Renji RM, Venkatramani V, Murhekar M, Thangaraj JWV, Kumar MS, Kumar CPG, Bhatnagar T, Ponnaiah M, Sabarinathan R, Saravanakumar V, Babu S. Restoration of dendritic cell homeostasis and Type I/Type III interferon levels in convalescent COVID-19 individuals. BMC Immunol 2022; 23:51. [PMID: 36289478 PMCID: PMC9607715 DOI: 10.1186/s12865-022-00526-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Plasmacytoid and myeloid dendritic cells play a vital role in the protection against viral infections. In COVID-19, there is an impairment of dendritic cell (DC) function and interferon secretion which has been correlated with disease severity. Results In this study, we described the frequency of DC subsets and the plasma levels of Type I (IFNα, IFNβ) and Type III Interferons (IFNλ1), IFNλ2) and IFNλ3) in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the frequencies of pDC and mDC increase from Days 15–30 to Days 61–90 and plateau thereafter. Similarly, the levels of IFNα, IFNβ, IFNλ1, IFNλ2 and IFNλ3 increase from Days 15–30 to Days 61–90 and plateau thereafter. COVID-19 patients with severe disease exhibit diminished frequencies of pDC and mDC and decreased levels of IFNα, IFNβ, IFNλ1, IFNλ2 and IFNλ3. Finally, the percentages of DC subsets positively correlated with the levels of Type I and Type III IFNs. Conclusion Thus, our study provides evidence of restoration of homeostatic levels in DC subset frequencies and circulating levels of Type I and Type III IFNs in convalescent COVID-19 individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00526-z.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Nathella Pavan Kumar
- grid.417330.20000 0004 1767 6138Immunology-ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu India
| | - Arul Nancy Pandiaraj
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Nandhini Selvaraj
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Saravanan Munisankar
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | - Rachel Mariam Renji
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| | | | - Manoj Murhekar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | | | - Muthusamy Santhosh Kumar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | | | - Tarun Bhatnagar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Manickam Ponnaiah
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Ramasamy Sabarinathan
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Velusamy Saravanakumar
- grid.419587.60000 0004 1767 6269ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu India
| | - Subash Babu
- grid.419685.7ICER-ICMR-NIRT-International Center for Excellence in Research, Chennai, Tamil Nadu India
| |
Collapse
|
14
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
15
|
Lavis P, Morra S, Orte Cano C, Albayrak N, Corbière V, Olislagers V, Dauby N, Del Marmol V, Marchant A, Decaestecker C, Mascart F, De Vos N, Van de Borne P, Salmon I, Remmelink M, Parmentier M, Cardozo AK, Bondue B. Chemerin plasma levels are increased in COVID-19 patients and are an independent risk factor of mortality. Front Immunol 2022; 13:941663. [PMID: 36032171 PMCID: PMC9412239 DOI: 10.3389/fimmu.2022.941663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
Background Chemerin is an extracellular protein with chemotactic activities and its expression is increased in various diseases such as metabolic syndrome and inflammatory conditions. Its role in lung pathology has not yet been extensively studied but both known pro- and anti-inflammatory properties have been observed. The aim of our study was to evaluate the involvement of the chemerin/ChemR23 system in the physiopathology of COVID-19 with a particular focus on its prognostic value. Methods Blood samples from confirmed COVID-19 patients were collected at day 1, 5 and 14 from admission to Erasme Hospital (Brussels – Belgium). Chemerin concentrations and inflammatory biomarkers were analyzed in the plasma. Blood cells subtypes and their expression of ChemR23 were determined by flow cytometry. The expression of chemerin and ChemR23 was evaluated on lung tissue from autopsied COVID-19 patients by immunohistochemistry (IHC). Results 21 healthy controls (HC) and 88 COVID-19 patients, including 40 in intensive care unit (ICU) were included. Plasma chemerin concentration were significantly higher in ICU patients than in HC at all time-points analyzed (p<0.0001). Moreover, they were higher in deceased patients compared to survivors (p<0.05). Logistic univariate regression and multivariate analysis demonstrated that chemerin level at day 14 of admission was an independent risk factor for death. Accordingly, chemerin levels correlated with inflammatory biomarkers such as C-reactive protein and tumor necrosis factor α. Finally, IHC analysis revealed a strong expression of ChemR23 on smooth muscle cells and chemerin on myofibroblasts in advanced acute respiratory distress syndrome (ARDS). Discussion Increased plasma chemerin levels are a marker of severity and may predict death of COVID-19 patients. However, multicentric studies are needed, before chemerin can be considered as a biomarker of severity and death used in daily clinical practice. Further studies are also necessary to identify the precise mechanisms of the chemerin/ChemR23 system in ARDS secondary to viral pneumonia.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Carmen Orte Cano
- Department of Dermatology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Nurhan Albayrak
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Olislagers
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
- Department of Infectious Diseases, C.H.U. Saint-Pierre, Brussels, Belgium
| | - Véronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis, Université libre de Bruxelles, Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles, Brussels, Belgium
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe Van de Borne
- Department of Cardiology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Centre Universitaire inter Régional d’expertise en Anatomie Pathologique Hospitalière, Jumet, Belgium
| | - Myriam Remmelink
- Department of Pathology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Marc Parmentier
- I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling group, Experimental Gastroenterology Laboratory and Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- *Correspondence: Benjamin Bondue,
| |
Collapse
|
16
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused millions of deaths in the past two years. Although initially little was understood about this virus, recent research has significantly advanced and landed interferons (IFNs) in the spotlight. While Type I and III IFN have long been known as central to antiviral immunity, in the case of COVID-19 their role was initially controversial. However, the protective function of IFN is now well supported by the identification of human deficiencies in IFN responses as a predictor of disease severity. Here, we will review the cell types and pathways that lead to IFN production as well as the importance of IFN timing and location for disease outcome. We will further discuss the mechanisms that SARS-CoV-2 uses to evade IFN responses, and the current efforts to implement IFNs as therapeutics in the treatment of COVID-19. It is essential to understand the relationships between SARS-CoV-2 and IFN to better inform treatments that exploit IFN functions to alleviate COVID-19.
Collapse
Affiliation(s)
- Carolina Chiale
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Trever T. Greene
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Elina I. Zuniga
- Division of Biological SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
17
|
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Rep 2022; 40:111148. [PMID: 35858624 PMCID: PMC9279298 DOI: 10.1016/j.celrep.2022.111148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.
Collapse
|
18
|
Ding J, Zheng Y, Wang G, Zheng J, Chai D. The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer 2022; 1877:188763. [PMID: 35872287 DOI: 10.1016/j.bbcan.2022.188763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Therapeutic dendritic cell (DC) vaccines stimulate the elimination of tumor cells by the immune system. However, while antigen-specific T cell responses induced by DC vaccines are commonly observed, the clinical response rate is relatively poor, necessitating vaccine optimization. There is evidence that the suppression of DC function by immune checkpoints hinders the anti-tumor immune responses mediated by DC vaccines, ultimately leading to the immune escape of the tumor cells. The use of immune checkpoint inhibitors (ICIs) and immune checkpoint activators (ICAs) has extended the immunotherapeutic range. It is known that both inhibitory and stimulatory checkpoint molecules are expressed by most DC subsets and can thus be used to manipulate the effectiveness of DC vaccines. Such manipulation has been investigated using strategies such as chemotherapy, agonistic or antagonistic antibodies, siRNA, shRNA, CRISPR-Cas9, soluble antibodies, lentiviruses, and adenoviruses to maximize the efficacy of DC vaccines. Thus, a deeper understanding of immune checkpoints may assist in the development of improved DC vaccines. Here, we review the actions of various ICIs or ICAs shown by preclinical studies, as well as their potential application in DC vaccines. New therapeutic interventional strategies for blocking and stimulating immune checkpoint molecules in DCs are also described in detail.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
19
|
Lamacchia G, Mazzoni A, Spinicci M, Vanni A, Salvati L, Peruzzi B, Bencini S, Capone M, Carnasciali A, Farahvachi P, Rocca A, Kiros ST, Graziani L, Zammarchi L, Mencarini J, Colao MG, Caporale R, Liotta F, Cosmi L, Rossolini GM, Bartoloni A, Maggi L, Annunziato F. Clinical and Immunological Features of SARS-CoV-2 Breakthrough Infections in Vaccinated Individuals Requiring Hospitalization. J Clin Immunol 2022; 42:1379-1391. [PMID: 35809212 PMCID: PMC9674730 DOI: 10.1007/s10875-022-01325-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
Abstract
Background and Purpose Waning immunity and the surge of SARS-CoV-2 variants are responsible for breakthrough infections, i.e., infections in fully vaccinated individuals. Although the majority of vaccinated infected subjects report mild or no symptoms, some others require hospitalization. The clinical and immunological features of vaccinated hospitalized COVID-19 patients are currently unknown. Methods Twenty-nine unvaccinated and 36 vaccinated hospitalized COVID-19 patients were prospectively enrolled and clinical and laboratory data were gathered. Immunophenotyping of leukocytes’ subsets, T and B cell SARS-CoV-2-specific responses were evaluated via flow cytometry. Anti-IFN-α autoantibodies were measured via ELISA. Results Despite vaccinated patients were older and with more comorbidities, unvaccinated subjects showed higher levels of pro-inflammatory markers, more severe disease, and increased mortality rate. Accordingly, they presented significant alterations in the circulating leukocyte composition, typical of severe COVID-19. Vaccinated patients displayed higher levels of anti-Spike IgGs and Spike-specific B cells. Of all participants, survivors showed higher levels of anti-Spike IgGs and Spike-specific CD4+ T cells than non-survivors. At hospital admission, 6 out of 65 patients (9.2%) displayed high serum concentrations of autoantibodies targeting IFN-α. Remarkably, 3 were unvaccinated and eventually died, while the other 3 were vaccinated and survived. Conclusion Despite more severe pre-existing clinical conditions, vaccinated patients have good outcome. A rapid activation of anti-SARS-CoV-2-specific immunity is fundamental for the resolution of the infection. Therefore, prior immunization through vaccination provides a significant contribution to prevention of disease worsening and can even overcome the presence of high-risk factors (i.e., older age, comorbidities, anti-IFN-α autoantibodies). Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01325-2.
Collapse
Affiliation(s)
- Giulia Lamacchia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Michele Spinicci
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.,Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Benedetta Peruzzi
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Sara Bencini
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Alberto Carnasciali
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Parham Farahvachi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Arianna Rocca
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Seble Tekle Kiros
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Lucia Graziani
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy
| | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.,Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Jessica Mencarini
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Maria Grazia Colao
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Roberto Caporale
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.,Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy.,Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.,Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.,Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy.
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini, 6, 50134, Florence, Italy. .,Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
20
|
McLeish KR, Shrestha R, Vashishta A, Rane MJ, Barati MT, Brier ME, Lau MG, Hu X, Chen O, Wessel CR, Spalding T, Bush SE, Ijemere K, Hopkins CD, Cooke EA, Tandon S, Manning T, Uriarte SM, Huang J, Yan J. Differential Functional Responses of Neutrophil Subsets in Severe COVID-19 Patients. Front Immunol 2022; 13:879686. [PMID: 35711435 PMCID: PMC9197482 DOI: 10.3389/fimmu.2022.879686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Neutrophils play a significant role in determining disease severity following SARS-CoV-2 infection. Gene and protein expression defines several neutrophil clusters in COVID-19, including the emergence of low density neutrophils (LDN) that are associated with severe disease. The functional capabilities of these neutrophil clusters and correlation with gene and protein expression are unknown. To define host defense and immunosuppressive functions of normal density neutrophils (NDN) and LDN from COVID-19 patients, we recruited 64 patients with severe COVID-19 and 26 healthy donors (HD). Phagocytosis, respiratory burst activity, degranulation, neutrophil extracellular trap (NET) formation, and T-cell suppression in those neutrophil subsets were measured. NDN from severe/critical COVID-19 patients showed evidence of priming with enhanced phagocytosis, respiratory burst activity, and degranulation of secretory vesicles and gelatinase and specific granules, while NET formation was similar to HD NDN. COVID LDN response was impaired except for enhanced NET formation. A subset of COVID LDN with intermediate CD16 expression (CD16Int LDN) promoted T cell proliferation to a level similar to HD NDN, while COVID NDN and the CD16Hi LDN failed to stimulate T-cell activation. All 3 COVID-19 neutrophil populations suppressed stimulation of IFN-γ production, compared to HD NDN. We conclude that NDN and LDN from COVID-19 patients possess complementary functional capabilities that may act cooperatively to determine disease severity. We predict that global neutrophil responses that induce COVID-19 ARDS will vary depending on the proportion of neutrophil subsets.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, KY, United States
- *Correspondence: Kenneth R. McLeish, ; Jun Yan,
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville, KY, United States
| | - Aruna Vashishta
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, KY, United States
| | - Madhavi J. Rane
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, KY, United States
| | - Michelle T. Barati
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, KY, United States
| | - Michael E. Brier
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, KY, United States
| | - Mario Gutierrez Lau
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, KY, United States
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Caitlin R. Wessel
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Travis Spalding
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Sarah E. Bush
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Kenechi Ijemere
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - C. Danielle Hopkins
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Elizabeth A. Cooke
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Shweta Tandon
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, KY, United States
| | - Terri Manning
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, KY, United States
| | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, KY, United States
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, KY, United States
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville, KY, United States
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, United States
- *Correspondence: Kenneth R. McLeish, ; Jun Yan,
| |
Collapse
|
21
|
Choi S, Jeon SA, Heo BY, Kang JG, Jung Y, Duong PTT, Song IC, Kim JH, Kim SY, Kwon J. Gene Set Enrichment Analysis Reveals That Fucoidan Induces Type I IFN Pathways in BMDC. Nutrients 2022; 14:nu14112242. [PMID: 35684042 PMCID: PMC9182765 DOI: 10.3390/nu14112242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has been proposed to effectively treat and prevent various viral infections. However, the mechanisms behind its antiviral activity are not completely understood. We investigate here the global transcriptional changes in bone marrow-derived dendritic cells (BMDCs) using RNA-Seq technology. Through both analysis of differentially expressed genes (DEG) and gene set enrichment analysis (GSEA), we found that fucoidan-treated BMDCs were enriched in virus-specific response pathways, including that of SARS-CoV-2, as well as pathways associated with nucleic acid-sensing receptors (RLR, TLR, NLR, STING), and type I interferon (IFN) production. We show that these transcriptome changes are driven by well-known regulators of the inflammatory response against viruses, including IRF, NF-κB, and STAT family transcription factors. Furthermore, 435 of the 950 upregulated DEGs are classified as type I IFN-stimulated genes (ISGs). Flow cytometric analysis additionally showed that fucoidan increased MHCII, CD80, and CD40 surface markers in BMDCs, indicative of greater antigen presentation and co-stimulation functionality. Our current study suggests that fucoidan transcriptionally activates PRR signaling, type I IFN production and signaling, ISGs production, and DC maturation, highlighting a potential mechanism of fucoidan-induced antiviral activity.
Collapse
Affiliation(s)
- Suyoung Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.C.); (B.Y.H.); (Y.J.); (P.T.T.D.); (I.-C.S.)
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Korea
| | - Sol A Jeon
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.A.J.); (J.-H.K.)
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Bu Yeon Heo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.C.); (B.Y.H.); (Y.J.); (P.T.T.D.); (I.-C.S.)
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Korea
| | - Ju-Gyeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yunju Jung
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.C.); (B.Y.H.); (Y.J.); (P.T.T.D.); (I.-C.S.)
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Pham Thi Thuy Duong
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.C.); (B.Y.H.); (Y.J.); (P.T.T.D.); (I.-C.S.)
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Korea
| | - Ik-Chan Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.C.); (B.Y.H.); (Y.J.); (P.T.T.D.); (I.-C.S.)
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Korea
- Department of Internal Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.A.J.); (J.-H.K.)
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.A.J.); (J.-H.K.)
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.-Y.K.); (J.K.); Tel.: +82-42-280-6937 (J.K); Fax: +82-42-583-8216 (J.K.)
| | - Jaeyul Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.C.); (B.Y.H.); (Y.J.); (P.T.T.D.); (I.-C.S.)
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Education, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (S.-Y.K.); (J.K.); Tel.: +82-42-280-6937 (J.K); Fax: +82-42-583-8216 (J.K.)
| |
Collapse
|
22
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
23
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
24
|
Ghanem MH, Shih AJ, Khalili H, Werth EG, Chakrabarty JK, Brown LM, Simpfendorfer KR, Gregersen PK. Proteomic and Single-Cell Transcriptomic Dissection of Human Plasmacytoid Dendritic Cell Response to Influenza Virus. Front Immunol 2022; 13:814627. [PMID: 35401570 PMCID: PMC8984281 DOI: 10.3389/fimmu.2022.814627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells [pDCs] represent a rare innate immune subset uniquely endowed with the capacity to produce substantial amounts of type-I interferons. This function of pDCs is critical for effective antiviral defenses and has been implicated in autoimmunity. While IFN-I and select cytokines have been recognized as pDC secreted products, a comprehensive agnostic profiling of the pDC secretome in response to a physiologic stimulus has not been reported. We applied LC-MS/MS to catalogue the repertoire of proteins secreted by pDCs in the unperturbed condition and in response to challenge with influenza H1N1. We report the identification of a baseline pDC secretome, and the repertoire of virus-induced proteins including most type-I interferons, various cytokines, chemokines and granzyme B. Additionally, using single-cell RNA-seq [scRNA-seq], we perform multidimensional analyses of pDC transcriptional diversity immediately ex vivo and following stimulation. Our data evidence preexisting pDC heterogeneity, with subsequent highly specialized roles within the pDC population upon stimulation ranging from dedicated cytokine super-producers to cells with APC-like traits. Dynamic expression of transcription factors and surface markers characterize subclusters within activated pDCs. Integrating the proteomic and transcriptomic datasets confirms the pDC-subcluster origin of the proteins identified in the secretome. Our findings represent the most comprehensive molecular characterization of primary human pDCs at baseline, and in response to influenza virus, reported to date.
Collapse
Affiliation(s)
- Mustafa H Ghanem
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Andrew J Shih
- The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Houman Khalili
- The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Jayanta K Chakrabarty
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Kim R Simpfendorfer
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Peter K Gregersen
- Department of Molecular Medicine, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,The Institute of Molecular Medicine at The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
25
|
Ahmadi E, Bagherpour Z, Zarei E, Omidkhoda A. Pathological effects of SARS-CoV-2 on hematological and immunological cells: Alterations in count, morphology, and function. Pathol Res Pract 2022; 231:153782. [PMID: 35121363 PMCID: PMC8800420 DOI: 10.1016/j.prp.2022.153782] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 outbreak, spread rapidly and infected more than 140 million people with more than three million victims worldwide. The SARS-CoV-2 causes destructive changes in the immunological and hematological system of the host. These alterations appear to play a critical role in disease pathology and the emerging of clinical manifestations. In this review, we aimed to discuss the effect of COVID-19 on the count, function and morphology of immune and blood cells and the role of these changes in the pathophysiology of the disease. Knowledge of these changes may help with better management and treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Ehsan Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Bagherpour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elmira Zarei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azadeh Omidkhoda
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Park SJ, Nam DE, Seong HC, Hahn YS. New Discovery of Myeloid-Derived Suppressor Cell's Tale on Viral Infection and COVID-19. Front Immunol 2022; 13:842535. [PMID: 35185933 PMCID: PMC8850309 DOI: 10.3389/fimmu.2022.842535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Da-eun Nam
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Hae Chang Seong
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
27
|
Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Commun Biol 2022; 5:102. [PMID: 35091696 PMCID: PMC8799722 DOI: 10.1038/s42003-022-03035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.
Collapse
Affiliation(s)
- Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Foulkes AS, Selvaggi C, Shinnick D, Lumish H, Kim E, Cao T, Thaweethai T, Qian J, Lu F, Yan J, Cheng D, He W, Clerkin KJ, Madhavan MV, Meigs JB, Triant VA, Lubitz SA, Gupta A, Bassett IV, Reilly MP. Understanding the Link Between Obesity and Severe COVID-19 Outcomes: Causal Mediation by Systemic Inflammatory Response. J Clin Endocrinol Metab 2022; 107:e698-e707. [PMID: 34473294 PMCID: PMC8499919 DOI: 10.1210/clinem/dgab629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Obesity is an established risk factor for severe COVID-19 outcomes. The mechanistic underpinnings of this association are not well-understood. OBJECTIVE To evaluate the mediating role of systemic inflammation in obesity-associated COVID-19 outcomes. METHODS This hospital-based, observational study included 3828 SARS-CoV-2-infected patients who were hospitalized February to May 2020 at Massachusetts General Hospital (MGH) or Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP). We use mediation analysis to evaluate whether peak inflammatory biomarkers (C-reactive protein [CRP], erythrocyte sedimentation rate [ESR], D-dimer, ferritin, white blood cell count and interleukin-6) are in the causal pathway between obesity (BMI ≥ 30) and mechanical ventilation or death within 28 days of presentation to care. RESULTS In the MGH cohort (n = 1202), obesity was associated with greater likelihood of ventilation or death (OR = 1.73; 95% CI = [1.25, 2.41]; P = 0.001) and higher peak CRP (P < 0.001) compared with nonobese patients. The estimated proportion of the association between obesity and ventilation or death mediated by CRP was 0.49 (P < 0.001). Evidence of mediation was more pronounced in patients < 65 years (proportion mediated = 0.52 [P < 0.001] vs 0.44 [P = 0.180]). Findings were more moderate but consistent for peak ESR. Mediation by other inflammatory markers was not supported. Results were replicated in CUIMC/NYP cohort (n = 2626). CONCLUSION Findings support systemic inflammatory pathways in obesity-associated severe COVID-19 disease, particularly in patients < 65 years, captured by CRP and ESR. Contextualized in clinical trial findings, these results reveal therapeutic opportunity to target systemic inflammatory pathways and monitor interventions in high-risk subgroups and particularly obese patients.
Collapse
Affiliation(s)
- Andrea S Foulkes
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caitlin Selvaggi
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel Shinnick
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Heidi Lumish
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Eunyoung Kim
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Tingyi Cao
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tanayott Thaweethai
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Qian
- Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Frances Lu
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joyce Yan
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Cheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei He
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Kevin J Clerkin
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Mahesh V Madhavan
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Virginia A Triant
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A Lubitz
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aakriti Gupta
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Ingrid V Bassett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Muredach P Reilly
- Division of Cardiology, Columbia University, New York, NY 10027, USA
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
29
|
Wu H, He P, Ren Y, Xiao S, Wang W, Liu Z, Li H, Wang Z, Zhang D, Cai J, Zhou X, Jiang D, Fei X, Zhao L, Zhang H, Liu Z, Chen R, Li W, Wang C, Zhang S, Qin J, Nashan B, Sun C. Postmortem high-dimensional immune profiling of severe COVID-19 patients reveals distinct patterns of immunosuppression and immunoactivation. Nat Commun 2022; 13:269. [PMID: 35022412 PMCID: PMC8755743 DOI: 10.1038/s41467-021-27723-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
A complete diagnostic autopsy is the gold-standard to gain insight into Coronavirus disease 2019 (COVID-19) pathogenesis. To delineate the in situ immune responses to SARS-CoV-2 viral infection, here we perform comprehensive high-dimensional transcriptional and spatial immune profiling in 22 COVID-19 decedents from Wuhan, China. We find TIM-3-mediated and PD-1-mediated immunosuppression as a hallmark of severe COVID-19, particularly in men, with PD-1+ cells being proximal rather than distal to TIM-3+ cells. Concurrently, lymphocytes are distal, while activated myeloid cells are proximal, to SARS-CoV-2 viral antigens, consistent with prevalent SARS-CoV-2 infection of myeloid cells in multiple organs. Finally, viral load positively correlates with specific immunosuppression and dendritic cell markers. In summary, our data show that SARS-CoV-2 viral infection induces lymphocyte suppression yet myeloid activation in severe COVID-19, so these two cell types likely have distinct functions in severe COVID-19 disease progression, and should be targeted differently for therapy.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Peiqi He
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yong Ren
- Department of Pathology, the First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Shiqi Xiao
- Department of Pathology, the First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Zhenbang Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Heng Li
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Zhe Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Wuhan, Hubei, 430015, China
| | - Jun Cai
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Xiangdong Zhou
- Third Military Medical University Daping Hospital, Chongqing, 400038, China
| | - Dongpo Jiang
- Third Military Medical University Daping Hospital, Chongqing, 400038, China
| | - Xiaochun Fei
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Lei Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Heng Zhang
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Zhenhua Liu
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Rong Chen
- Wuhan Jinyintan Hospital, Wuhan, Hubei, 430015, China
| | - Weiqing Li
- Department of Critical Care Medicine, Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Chaofu Wang
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Peking, 100730, China
| | - Jiwei Qin
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Björn Nashan
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Cheng Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
30
|
Borcherding L, Teksen AS, Grosser B, Schaller T, Hirschbühl K, Claus R, Spring O, Wittmann M, Römmele C, Sipos É, Märkl B. Impaired Dendritic Cell Homing in COVID-19. Front Med (Lausanne) 2021; 8:761372. [PMID: 34805226 PMCID: PMC8601231 DOI: 10.3389/fmed.2021.761372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
The high mortality of COVID-19 is mostly attributed to acute respiratory distress syndrome (ARDS), whose histopathological correlate is diffuse alveolar damage (DAD). Furthermore, severe COVID-19 is often accompanied by a cytokine storm and a disrupted response of the adaptive immune system. Studies aiming to depict this dysregulation have mostly investigated the peripheral cell count as well as the functionality of immune cells. We investigated the impact of SARS-CoV-2 on antigen-presenting cells using multiplexed immunofluorescence. Similar to MERS-CoV and SARS-CoV, SARS-CoV-2 appears to be impairing the maturation of dendritic cells (DCs). DC maturation involves a switch in surface antigen expression, which enables the cells' homing to lymph nodes and the subsequent activation of T-cells. As quantitative descriptions of the local inflammatory infiltrate are still scarce, we compared the cell population of professional antigen-presenting cells (APC) in the lungs of COVID-19 autopsy cases in different stages of DAD. We found an increased count of myeloid dendritic cells (mDCs) in later stages. Interestingly, mDCs also showed no significant upregulation of maturation markers in DAD-specimens with high viral load. Accumulation of immature mDCs, which are unable to home to lymph nodes, ultimately results in an inadequate T-cell response.
Collapse
Affiliation(s)
- Lukas Borcherding
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Bianca Grosser
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tina Schaller
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Klaus Hirschbühl
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Oliver Spring
- Anesthesiology and Operative Intensive Care Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Wittmann
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Éva Sipos
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
31
|
Lim J, Puan KJ, Wang LW, Teng KWW, Loh CY, Tan KP, Carissimo G, Chan YH, Poh CM, Lee CYP, Fong SW, Yeo NKW, Chee RSL, Amrun SN, Chang ZW, Tay MZ, Torres-Ruesta A, Leo Fernandez N, How W, Andiappan AK, Lee W, Duan K, Tan SY, Yan G, Kalimuddin S, Lye DC, Leo YS, Ong SWX, Young BE, Renia L, Ng LFP, Lee B, Rötzschke O. Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals. Front Immunol 2021; 12:710217. [PMID: 34867943 PMCID: PMC8640498 DOI: 10.3389/fimmu.2021.710217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
Severe SARS-CoV-2 infection can trigger uncontrolled innate and adaptive immune responses, which are commonly associated with lymphopenia and increased neutrophil counts. However, whether the immune abnormalities observed in mild to severely infected patients persist into convalescence remains unclear. Herein, comparisons were drawn between the immune responses of COVID-19 infected and convalescent adults. Strikingly, survivors of severe COVID-19 had decreased proportions of NKT and Vδ2 T cells, and increased proportions of low-density neutrophils, IgA+/CD86+/CD123+ non-classical monocytes and hyperactivated HLADR+CD38+ CD8+ T cells, and elevated levels of pro-inflammatory cytokines such as hepatocyte growth factor and vascular endothelial growth factor A, long after virus clearance. Our study suggests potential immune correlates of "long COVID-19", and defines key cells and cytokines that delineate true and quasi-convalescent states.
Collapse
Affiliation(s)
- Jackwee Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Karen Wei Weng Teng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chiew Yee Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kim Peng Tan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Cheryl Yi-Pin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Siew-Wai Fong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nicholas Kim-Wah Yeo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rhonda Sin-Ling Chee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zi Wei Chang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Matthew Zirui Tay
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norman Leo Fernandez
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wilson How
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wendy Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Seow-Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore, Singapore
| | - Gabriel Yan
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Sean W. X. Ong
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Barnaby E. Young
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
32
|
Zulu MZ, Sureshchandra S, Pinski AN, Doratt B, Shen W, Messaoudi I. Obesity Correlates With Pronounced Aberrant Innate Immune Responses in Hospitalized Aged COVID-19 Patients. Front Immunol 2021; 12:760288. [PMID: 34707619 PMCID: PMC8542887 DOI: 10.3389/fimmu.2021.760288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Both age and obesity are leading risk factors for severe coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, although most infections occur in individuals under the age of 55 years, 95% of hospitalizations, admissions to the intensive care unit, and deaths occur in those over the age of 55 years. Moreover, hospitalized COVID-19 patients have a higher prevalence of obesity. It is generally believed that chronic low-grade inflammation and dysregulated innate and adaptive immune responses that are associated with aging and obesity are responsible for this elevated risk of severe disease. However, the impact of advanced age and obesity on the host response to SARS-CoV-2 infection remains poorly defined. In this study, we assessed changes in the concentration of soluble immune mediators, IgG antibody titers, frequency of circulating immune cells, and cytokine responses to mitogen stimulation as a function of BMI and age. We detected significant negative correlations between BMI and myeloid immune cell subsets that were more pronounced in aged patients. Similarly, inflammatory cytokine production by monocytes was also negatively correlated with BMI in aged patients. These data suggest that the BMI-dependent impact on host response to SARS-CoV-2 is more pronounced on innate responses of aged patients.
Collapse
Affiliation(s)
- Michael Z Zulu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Brianna Doratt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Weining Shen
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States.,Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
33
|
Rauti R, Shahoha M, Leichtmann-Bardoogo Y, Nasser R, Paz E, Tamir R, Miller V, Babich T, Shaked K, Ehrlich A, Ioannidis K, Nahmias Y, Sharan R, Ashery U, Maoz BM. Effect of SARS-CoV-2 proteins on vascular permeability. eLife 2021; 10:69314. [PMID: 34694226 PMCID: PMC8545399 DOI: 10.7554/elife.69314] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 infection leads to severe disease associated with cytokine storm, vascular dysfunction, coagulation, and progressive lung damage. It affects several vital organs, seemingly through a pathological effect on endothelial cells. The SARS-CoV-2 genome encodes 29 proteins, whose contribution to the disease manifestations, and especially endothelial complications, is unknown. We cloned and expressed 26 of these proteins in human cells and characterized the endothelial response to overexpression of each, individually. Whereas most proteins induced significant changes in endothelial permeability, nsp2, nsp5_c145a (catalytic dead mutant of nsp5), and nsp7 also reduced CD31, and increased von Willebrand factor expression and IL-6, suggesting endothelial dysfunction. Using propagation-based analysis of a protein–protein interaction (PPI) network, we predicted the endothelial proteins affected by the viral proteins that potentially mediate these effects. We further applied our PPI model to identify the role of each SARS-CoV-2 protein in other tissues affected by coronavirus disease (COVID-19). While validating the PPI network model, we found that the tight junction (TJ) proteins cadherin-5, ZO-1, and β-catenin are affected by nsp2, nsp5_c145a, and nsp7 consistent with the model prediction. Overall, this work identifies the SARS-CoV-2 proteins that might be most detrimental in terms of endothelial dysfunction, thereby shedding light on vascular aspects of COVID-19.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Rami Nasser
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Paz
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Tamir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Miller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tal Babich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kfir Shaked
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ben Meir Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Bonnet B, Cosme J, Dupuis C, Coupez E, Adda M, Calvet L, Fabre L, Saint-Sardos P, Bereiziat M, Vidal M, Laurichesse H, Souweine B, Evrard B. Severe COVID-19 is characterized by the co-occurrence of moderate cytokine inflammation and severe monocyte dysregulation. EBioMedicine 2021; 73:103622. [PMID: 34678611 PMCID: PMC8526358 DOI: 10.1016/j.ebiom.2021.103622] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background SARS-CoV-2 has been responsible for considerable mortality worldwide, owing in particular to pulmonary failures such as ARDS, but also to other visceral failures and secondary infections. Recent progress in the characterization of the immunological mechanisms that result in severe organ injury led to the emergence of two successive hypotheses simultaneously tested here: hyperinflammation with cytokine storm syndrome or dysregulation of protective immunity resulting in immunosuppression and unrestrained viral dissemination. Methods In a prospective observational monocentric study of 134 patients, we analysed a panel of plasma inflammatory and anti-inflammatory cytokines and measured monocyte dysregulation via their membrane expression of HLA-DR. We first compared the results of patients with moderate forms hospitalized in an infectious disease unit with those of patients with severe forms hospitalized in an intensive care unit. In the latter group of patients, we then analysed the differences between the surviving and non-surviving groups and between the groups with or without secondary infections. Findings Higher blood IL-6 levels, lower quantitative expression of HLA-DR on blood monocytes and higher IL-6/mHLA-DR ratios were statistically associated with the risk of severe forms of the disease and among the latter with death and the early onset of secondary infections. Interpretation The unique immunological profile in patients with severe COVID-19 corresponds to a moderate cytokine inflammation associated with severe monocyte dysregulation. Individuals with major CSS were rare in our cohort of hospitalized patients, especially since the use of corticosteroids, but formed a very severe subgroup of the disease. Funding None.
Collapse
Affiliation(s)
- Benjamin Bonnet
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France; Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Justine Cosme
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Claire Dupuis
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Elisabeth Coupez
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Mireille Adda
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Laure Calvet
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Laurie Fabre
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Pierre Saint-Sardos
- Laboratoire de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Marine Bereiziat
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Magali Vidal
- Service de Maladies Infectieuses et Tropicales, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Henri Laurichesse
- Service de Maladies Infectieuses et Tropicales, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bertrand Souweine
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bertrand Evrard
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France; Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
35
|
Rajamanickam A, Kumar NP, Pandiarajan AN, Selvaraj N, Munisankar S, Renji RM, Venkatramani V, Murhekar M, Thangaraj JWV, Kumar MS, Kumar CPG, Bhatnagar T, Ponnaiah M, Sabarinathan R, Saravanakumar V, Babu S. Dynamic alterations in monocyte numbers, subset frequencies and activation markers in acute and convalescent COVID-19 individuals. Sci Rep 2021; 11:20254. [PMID: 34642411 PMCID: PMC8511073 DOI: 10.1038/s41598-021-99705-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes are thought to play an important role in host defence and pathogenesis of COVID-19. However, a comprehensive examination of monocyte numbers and function has not been performed longitudinally in acute and convalescent COVID-19. We examined the absolute counts of monocytes, the frequency of monocyte subsets, the plasma levels of monocyte activation markers using flowcytometry and ELISA in seven groups of COVID-19 individuals, classified based on days since RT-PCR confirmation of SARS-CoV2 infection. Our data shows that the absolute counts of total monocytes and the frequencies of intermediate and non-classical monocytes increases from Days 15-30 to Days 61-90 and plateau thereafter. In contrast, the frequency of classical monocytes decreases from Days 15-30 till Days 121-150. The plasma levels of sCD14, CRP, sCD163 and sTissue Factor (sTF)-all decrease from Days 15-30 till Days 151-180. COVID-19 patients with severe disease exhibit higher levels of monocyte counts and higher frequencies of classical monocytes and lower frequencies of intermediate and non-classical monocytes and elevated plasma levels of sCD14, CRP, sCD163 and sTF in comparison with mild disease. Thus, our study provides evidence of dynamic alterations in monocyte counts, subset frequencies and activation status in acute and convalescent COVID-19 individuals.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India.
| | - Nathella Pavan Kumar
- Immunology-ICMR-National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| | - Arul Nancy Pandiarajan
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| | - Nandhini Selvaraj
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| | - Saravanan Munisankar
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| | - Rachel Mariam Renji
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| | - Vijayalakshmi Venkatramani
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| | - Manoj Murhekar
- ICMR-National Institute of Epidemiology, Chennai, TamilNadu, India
| | | | | | - C P Girish Kumar
- ICMR-National Institute of Epidemiology, Chennai, TamilNadu, India
| | - Tarun Bhatnagar
- ICMR-National Institute of Epidemiology, Chennai, TamilNadu, India
| | | | - R Sabarinathan
- ICMR-National Institute of Epidemiology, Chennai, TamilNadu, India
| | - V Saravanakumar
- ICMR-National Institute of Epidemiology, Chennai, TamilNadu, India
| | - Subash Babu
- International Center for Excellence in Research - ICMR- National Institute for Research in Tuberculosis, Chennai, TamilNadu, India
| |
Collapse
|
36
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
37
|
Siemińska I, Węglarczyk K, Surmiak M, Kurowska-Baran D, Sanak M, Siedlar M, Baran J. Mild and Asymptomatic COVID-19 Convalescents Present Long-Term Endotype of Immunosuppression Associated With Neutrophil Subsets Possessing Regulatory Functions. Front Immunol 2021; 12:748097. [PMID: 34659245 PMCID: PMC8511487 DOI: 10.3389/fimmu.2021.748097] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Kurowska-Baran
- Department of Clinical Microbiology, Laboratory of Virology and Serology, University Children’s Hospital, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
38
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
39
|
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a coagulation dysfunction which has different underlying mechanisms and factors. Patients with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection have an increased risk for thromboembolic and bleeding complications. Incidences are high, and mainly consist of venous thromboembolism (VTE), which significantly contributes to morbidity and mortality in affected patients. Thromboprophylaxis is recommended in all hospitalized COVID-19 patients. Therapeutic doses of antithrombotic agents are only beneficial in noncritically ill patients, and usual care thromboprophylaxis is sufficient in critically ill patients at the ICU. Regarding screening for VTE, high quality evidence is warranted to investigate the significance of asymptomatic DVT in the ICU setting and its influence on PE and mortality.
Collapse
|
40
|
Salvi V, Nguyen HO, Sozio F, Schioppa T, Gaudenzi C, Laffranchi M, Scapini P, Passari M, Barbazza I, Tiberio L, Tamassia N, Garlanda C, Del Prete A, Cassatella MA, Mantovani A, Sozzani S, Bosisio D. SARS-CoV-2-associated ssRNAs activate inflammation and immunity via TLR7/8. JCI Insight 2021; 6:e150542. [PMID: 34375313 PMCID: PMC8492321 DOI: 10.1172/jci.insight.150542] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
The inflammatory and IFN pathways of innate immunity play a key role in the resistance and pathogenesis of coronavirus disease 2019 (COVID-19). Innate sensors and SARS-CoV-2–associated molecular patterns (SAMPs) remain to be completely defined. Here, we identified single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and function, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream of these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identified TLR7/8 as a crucial cellular sensor of ssRNAs encoded by SARS-CoV-2 involved in host resistance and the disease pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Cecilia Garlanda
- Research in Immunology and Infectious Disease, IRCCS Humanities Research Hospital, Milan, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Alberto Mantovani
- Research in Immunology and Infectious Disease, IRCCS Humanities Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
42
|
Avendaño-Ortiz J, Lozano-Rodríguez R, Martín-Quirós A, Maroun-Eid C, Terrón-Arcos V, Montalbán-Hernández K, Valentín J, Muñoz Del Val E, García-Garrido MA, Del Balzo-Castillo Á, Casalvilla-Dueñas JC, Peinado M, Gómez L, Herrero-Benito C, Rubio C, Cubillos-Zapata C, Pascual-Iglesias A, Del Fresno C, Aguirre LA, López-Collazo E. SARS-CoV-2 Proteins Induce Endotoxin Tolerance Hallmarks: A Demonstration in Patients with COVID-19. THE JOURNAL OF IMMUNOLOGY 2021; 207:162-174. [PMID: 34183364 DOI: 10.4049/jimmunol.2001449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/16/2021] [Indexed: 01/08/2023]
Abstract
According to a large number of reported cohorts, sepsis has been observed in nearly all deceased patients with COVID-19. We and others have described sepsis, among other pathologies, to be an endotoxin tolerance (ET)-related disease. In this study, we demonstrate that the culture of human blood cells from healthy volunteers in the presence of SARS-CoV-2 proteins induced ET hallmarks, including impairment of proinflammatory cytokine production, low MHC class II (HLA-DR) expression, poor T cell proliferation, and enhancing of both phagocytosis and tissue remodeling. Moreover, we report the presence of SARS-CoV-2 blood circulating proteins in patients with COVID-19 and how these levels correlate with an ET status, the viral RNA presence of SARS-CoV-2 in plasma, as well as with an increase in the proportion of patients with secondary infections.
Collapse
Affiliation(s)
- José Avendaño-Ortiz
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Roberto Lozano-Rodríguez
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Alejandro Martín-Quirós
- Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Charbel Maroun-Eid
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón-Arcos
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Karla Montalbán-Hernández
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Jaime Valentín
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Elena Muñoz Del Val
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Miguel A García-Garrido
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Álvaro Del Balzo-Castillo
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - José Carlos Casalvilla-Dueñas
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - María Peinado
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Laura Gómez
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Emergency Department and Emergent Pathology Research Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; and
| | - Carmen Herrero-Benito
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carolina Rubio
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Alejandro Pascual-Iglesias
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carlos Del Fresno
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Luis A Aguirre
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; .,Tumor Immunology Laboratory, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Center for Biomedical Research Network, Madrid, Spain
| |
Collapse
|
43
|
Cell Death in Coronavirus Infections: Uncovering Its Role during COVID-19. Cells 2021; 10:cells10071585. [PMID: 34201847 PMCID: PMC8306954 DOI: 10.3390/cells10071585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cell death mechanisms are crucial to maintain an appropriate environment for the functionality of healthy cells. However, during viral infections, dysregulation of these processes can be present and can participate in the pathogenetic mechanisms of the disease. In this review, we describe some features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and some immunopathogenic mechanisms characterizing the present coronavirus disease (COVID-19). Lymphopenia and monocytopenia are important contributors to COVID-19 immunopathogenesis. The fine mechanisms underlying these phenomena are still unknown, and several hypotheses have been raised, some of which assign a role to cell death as far as the reduction of specific types of immune cells is concerned. Thus, we discuss three major pathways such as apoptosis, necroptosis, and pyroptosis, and suggest that all of them likely occur simultaneously in COVID-19 patients. We describe that SARS-CoV-2 can have both a direct and an indirect role in inducing cell death. Indeed, on the one hand, cell death can be caused by the virus entry into cells, on the other, the excessive concentration of cytokines and chemokines, a process that is known as a COVID-19-related cytokine storm, exerts deleterious effects on circulating immune cells. However, the overall knowledge of these mechanisms is still scarce and further studies are needed to delineate new therapeutic strategies.
Collapse
|
44
|
Trombetta AC, Farias GB, Gomes AMC, Godinho-Santos A, Rosmaninho P, Conceição CM, Laia J, Santos DF, Almeida ARM, Mota C, Gomes A, Serrano M, Veldhoen M, Sousa AE, Fernandes SM. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Front Immunol 2021; 12:691725. [PMID: 34248984 PMCID: PMC8265310 DOI: 10.3389/fimmu.2021.691725] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
After more than one year since the COVID-19 outbreak, patients with severe disease still constitute the bottleneck of the pandemic management. Aberrant inflammatory responses, ranging from cytokine storm to immune-suppression, were described in COVID-19 and no treatment was demonstrated to change the prognosis significantly. Therefore, there is an urgent need for understanding the underlying pathogenic mechanisms to guide therapeutic interventions. This study was designed to assess myeloid cell activation and phenotype leading to recovery in patients surviving severe COVID-19. We evaluated longitudinally patients with COVID-19 related respiratory insufficiency, stratified according to the need of intensive care unit admission (ICU, n = 11, and No-ICU, n = 9), and age and sex matched healthy controls (HCs, n = 11), by flow cytometry and a wide array of serum inflammatory/immune-regulatory mediators. All patients featured systemic immune-regulatory myeloid cell phenotype as assessed by both unsupervised and supervised analysis of circulating monocyte and dendritic cell subsets. Specifically, we observed a reduction of CD14lowCD16+ monocytes, and reduced expression of CD80, CD86, and Slan. Moreover, mDCs, pDCs, and basophils were significantly reduced, in comparison to healthy subjects. Contemporaneously, both monocytes and DCs showed increased expression of CD163, CD204, CD206, and PD-L1 immune-regulatory markers. The expansion of M2-like monocytes was significantly higher at admission in patients featuring detectable SARS-CoV-2 plasma viral load and it was positively correlated with the levels of specific antibodies. In No-ICU patients, we observed a peak of the alterations at admission and a progressive regression to a phenotype similar to HCs at discharge. Interestingly, in ICU patients, the expression of immuno-suppressive markers progressively increased until discharge. Notably, an increase of M2-like HLA-DRhighPD-L1+ cells in CD14++CD16− monocytes and in dendritic cell subsets was observed at ICU discharge. Furthermore, IFN-γ and IL-12p40 showed a decline over time in ICU patients, while high values of IL1RA and IL-10 were maintained. In conclusion, these results support that timely acquisition of a myeloid cell immune-regulatory phenotype might contribute to recovery in severe systemic SARS-CoV-2 infection and suggest that therapeutic agents favoring an innate immune system regulatory shift may represent the best strategy to be implemented at this stage.
Collapse
Affiliation(s)
- Amelia C Trombetta
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Guilherme B Farias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André M C Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clinica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina M Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joel Laia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana F Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Medicina II, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Andreia Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Serrano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana M Fernandes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clinica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Medicina Intensiva, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
45
|
Rowlands M, Segal F, Hartl D. Myeloid-Derived Suppressor Cells as a Potential Biomarker and Therapeutic Target in COVID-19. Front Immunol 2021; 12:697405. [PMID: 34220859 PMCID: PMC8250151 DOI: 10.3389/fimmu.2021.697405] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical presentations of COVID-19 are highly variable, yet the precise mechanisms that govern the pathophysiology of different disease courses remain poorly defined. Across the spectrum of disease severity, COVID-19 impairs both innate and adaptive host immune responses by activating innate immune cell recruitment, while resulting in low lymphocyte counts. Recently, several reports have shown that patients with severe COVID-19 exhibit a dysregulated myeloid cell compartment, with increased myeloid-derived suppressor cells (MDSCs) correlating with disease severity. MDSCs, in turn, promote virus survival by suppressing T-cell responses and driving a highly pro-inflammatory state through the secretion of various mediators of immune activation. Here, we summarize the evidence on MDSCs and myeloid cell dysregulation in COVID-19 infection and discuss the potential of MDSCs as biomarkers and therapeutic targets in COVID-19 pneumonia and associated disease.
Collapse
Affiliation(s)
- Marianna Rowlands
- Novartis Institutes for BioMedical Research (NIBR) Translational Medicine, Cambridge, MA, United States
| | - Florencia Segal
- Novartis Institutes for BioMedical Research (NIBR) Translational Medicine, Cambridge, MA, United States
| | - Dominik Hartl
- Novartis Institutes for BioMedical Research (NIBR), Translational Medicine, Basel, Switzerland.,Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
Hazeldine J, Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol 2021; 12:680134. [PMID: 34149717 PMCID: PMC8206563 DOI: 10.3389/fimmu.2021.680134] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
47
|
Kos I, Balensiefer B, Lesan V, Kaddu-Mulindwa D, Thurner L, Christofyllakis K, Bittenbring JT, Ahlgrimm M, Seiffert M, Wagenpfeil S, Bewarder Y, Neumann F, Rixecker T, Smola S, Link A, Krawczyk M, Lammert F, Lepper PM, Bals R, Stilgenbauer S, Bewarder M. Increased B-cell activity with consumption of activated monocytes in severe COVID-19 patients. Eur J Immunol 2021; 51:1449-1460. [PMID: 33788264 PMCID: PMC8250224 DOI: 10.1002/eji.202049163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
The pathogenesis of autoimmune complications triggered by SARS-CoV2 has not been completely elucidated. Here, we performed an analysis of the cellular immune status, cell ratios, and monocyte populations of patients with COVID-19 treated in the intensive care unit (ICU) (cohort 1, N = 23) and normal care unit (NCU) (cohort 2, n = 10) compared with control groups: patients treated in ICU for noninfectious reasons (cohort 3, n = 30) and patients treated in NCU for infections other than COVID-19 (cohort 4, n = 21). Patients in cohort 1 presented significant differences in comparison with the other cohorts, including reduced frequencies of lymphocytes, reduced CD8+T-cell count, reduced percentage of activated and intermediate monocytes and an increased B/T8 cell ratio. Over time, patients in cohort 1 who died presented with lower counts of B, T, CD4+ T, CD8+ T-lymphocytes, NK cells, and activated monocytes. The B/T8 ratio was significantly lower in the group of survivors. In cohort 1, significantly higher levels of IgG1 and IgG3 were found, whereas cohort 3 presented higher levels of IgG3 compared to controls. Among many immune changes, an elevated B/T8-cell ratio and a reduced rate of activated monocytes were mainly observed in patients with severe COVID-19. Both parameters were associated with death in cohort 1.
Collapse
Affiliation(s)
- Igor Kos
- Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | | | - Vadim Lesan
- Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | | | - Lorenz Thurner
- Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | | | | | - Manfred Ahlgrimm
- Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometrics, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Yvonne Bewarder
- Department of Cardiology, Angiology and Intensive Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Frank Neumann
- Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| | - Torben Rixecker
- Department of Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Andreas Link
- Department of Cardiology, Angiology and Intensive Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
- Hannover Medical School, Hannover, Germany
| | - Philipp M Lepper
- Department of Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Robert Bals
- Department of Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | | | - Moritz Bewarder
- Internal Medicine I, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
48
|
Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021; 55:101508. [PMID: 34728121 PMCID: PMC8547971 DOI: 10.1016/j.smim.2021.101508] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
One and half year following the occurrence of COVID-19 pandemic, significant efforts from laboratories all over the world generated a huge amount of data describing the prototypical features of immunity in the course of SARS-CoV-2 infection. In this Review, we rationalize and organize the main observations, trying to define a "core" signature of immunity in COVID-19. We identified six hallmarks describing the main alterations occurring in the early infection phase and in the course of the disease, which predispose to severe illness. The six hallmarks are dysregulated type I IFN activity, hyperinflammation, lymphopenia, lymphocyte impairment, dysregulated myeloid response, and heterogeneous adaptive immunity to SARS-CoV-2. Dysregulation and exhaustion came out as the trait d'union, connecting abnormalities affecting both innate and adaptive immunity, humoral and cellular responses.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
49
|
Niles MA, Gogesch P, Kronhart S, Ortega Iannazzo S, Kochs G, Waibler Z, Anzaghe M. Macrophages and Dendritic Cells Are Not the Major Source of Pro-Inflammatory Cytokines Upon SARS-CoV-2 Infection. Front Immunol 2021; 12:647824. [PMID: 34122407 PMCID: PMC8187925 DOI: 10.3389/fimmu.2021.647824] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
The exact role of innate immune cells upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their contribution to the formation of the corona virus-induced disease (COVID)-19 associated cytokine storm is not yet fully understood. We show that human in vitro differentiated myeloid dendritic cells (mDC) as well as M1 and M2 macrophages are susceptible to infection with SARS-CoV-2 but are not productively infected. Furthermore, infected mDC, M1-, and M2 macrophages show only slight changes in their activation status. Surprisingly, none of the infected innate immune cells produced the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, or interferon (IFN)-α. Moreover, even in co-infection experiments using different stimuli, as well as non-influenza (non-flu) or influenza A (flu) viruses, only very minor IL-6 production was induced. In summary, we conclude that mDC and macrophages are unlikely the source of the first wave of cytokines upon infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Marc A. Niles
- Section “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, Langen, Germany
| | - Patricia Gogesch
- Section “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefanie Kronhart
- Section “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, Langen, Germany
| | - Samira Ortega Iannazzo
- Section “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, Langen, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zoe Waibler
- Section “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, Langen, Germany
| | - Martina Anzaghe
- Section “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
50
|
Yeo JG, Leong JY, Tay SH, Nadua KD, Anderson DE, Lim AJM, Ng XW, Poh SL, Guo D, Yaung KN, Kumar P, Wasser M, Hazirah SN, Sutamam N, Chua CJH, Qui M, Foo R, Gamage AM, Yeo KT, Ramakrishna L, Arkachaisri T, Young BE, Lye DC, Wang LF, Chong CY, Tan NWH, Li J, Kam KQ, Ginhoux F, Thoon KC, Chan JKY, Yung CF, Albani S. A Virus-Specific Immune Rheostat in the Immunome of Patients Recovering From Mild COVID-19. Front Immunol 2021; 12:674279. [PMID: 34113347 PMCID: PMC8185226 DOI: 10.3389/fimmu.2021.674279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
An accurate depiction of the convalescent COVID-19 immunome will help delineate the immunological milieu crucial for disease resolution and protection. Using mass cytometry, we characterized the immune architecture in patients recovering from mild COVID-19. We identified a virus-specific immune rheostat composed of an effector T (Teff) cell recall response that is balanced by the enrichment of a highly specialized regulatory T (Treg) cell subset. Both components were reactive against a peptide pool covering the receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. We also observed expansion of IFNγ+ memory CD4+ T cells and virus-specific follicular helper T (TFH) cells. Overall, these findings pinpoint critical immune effector and regulatory mechanisms essential for a potent, yet harmless resolution of COVID-19 infection.
Collapse
Affiliation(s)
- Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialities, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Jing Yao Leong
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Shi Huan Tay
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Karen Donceras Nadua
- Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Amanda Jin Mei Lim
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Xiang Wen Ng
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Su Li Poh
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dianyan Guo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Pavanish Kumar
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Martin Wasser
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Sharifah Nur Hazirah
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Nursyuhadah Sutamam
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Jian Hui Chua
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Martin Qui
- Duke-NUS Medical School, Singapore, Singapore
| | - Randy Foo
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Kee Thai Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lakshmi Ramakrishna
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Rheumatology and Immunology Service, Department of Pediatric Subspecialities, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Barnaby E Young
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,National Centre for Infectious Diseases, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - David Chien Lye
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,National Centre for Infectious Diseases, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Lin-Fa Wang
- Duke-NUS Medical School, Singapore, Singapore
| | - Chia Yin Chong
- Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Natalie Woon Hui Tan
- Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Jiahui Li
- Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kai-Qian Kam
- Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Florent Ginhoux
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Koh Cheng Thoon
- Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Duke-NUS Medical School, Singapore, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chee Fu Yung
- Duke-NUS Medical School, Singapore, Singapore.,Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialities, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|