1
|
Shuklina M, Stepanova L, Ozhereleva O, Kovaleva A, Vidyaeva I, Korotkov A, Tsybalova L. Inserting CTL Epitopes of the Viral Nucleoprotein to Improve Immunogenicity and Protective Efficacy of Recombinant Protein against Influenza A Virus. BIOLOGY 2024; 13:801. [PMID: 39452110 PMCID: PMC11505154 DOI: 10.3390/biology13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration. This study shows that CD8+ epitopes of NP, inserted into a flagellin-fused protein carrying M2e and HA2, affect the post-vaccination immune humoral response to virus antigens without reducing protection. No differences were found between the two proteins in their ability to stimulate the formation of follicular Th in the spleen, which may contribute to a long-lasting antigen-specific humoral response. The data obtained on Balb/c mice suggest that the insertion of CTL NP epitopes into the flagellin-fused protein carrying M2e and HA2 reduces the antibody response to M2e and A/H3N2. In C57Bl6 mice, this stimulates the formation of NP-specific CD8+ Tem and virus-specific mono- and multifunctional CD4+ and CD8+ Tem in the spleen and completely protects mice from influenza virus subtypes A/H1N1pdm09 and A/H3N2.
Collapse
Affiliation(s)
- Marina Shuklina
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia
| | - Liudmila Stepanova
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia
| | | | | | | | | | | |
Collapse
|
2
|
Borcherding N, Kim W, Quinn M, Han F, Zhou JQ, Sturtz AJ, Schmitz AJ, Lei T, Schattgen SA, Klebert MK, Suessen T, Middleton WD, Goss CW, Liu C, Crawford JC, Thomas PG, Teefey SA, Presti RM, O'Halloran JA, Turner JS, Ellebedy AH, Mudd PA. CD4 + T cells exhibit distinct transcriptional phenotypes in the lymph nodes and blood following mRNA vaccination in humans. Nat Immunol 2024; 25:1731-1741. [PMID: 39164479 PMCID: PMC11627549 DOI: 10.1038/s41590-024-01888-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/06/2024] [Indexed: 08/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mRNA vaccination induce robust CD4+ T cell responses. Using single-cell transcriptomics, here, we evaluated CD4+ T cells specific for the SARS-CoV-2 spike protein in the blood and draining lymph nodes (dLNs) of individuals 3 months and 6 months after vaccination with the BNT162b2 mRNA vaccine. We analyzed 1,277 spike-specific CD4+ T cells, including 238 defined using Trex, a deep learning-based reverse epitope mapping method to predict antigen specificity. Human dLN spike-specific CD4+ follicular helper T (TFH) cells exhibited heterogeneous phenotypes, including germinal center CD4+ TFH cells and CD4+IL-10+ TFH cells. Analysis of an independent cohort of SARS-CoV-2-infected individuals 3 months and 6 months after infection found spike-specific CD4+ T cell profiles in blood that were distinct from those detected in blood 3 months and 6 months after BNT162b2 vaccination. Our findings provide an atlas of human spike-specific CD4+ T cell transcriptional phenotypes in the dLNs and blood following SARS-CoV-2 vaccination or infection.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Michael Quinn
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stefan A Schattgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Charles W Goss
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rachel M Presti
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Ye J, Wei B, Zhou G, Xu Y, He Y, Hu X, Chen X, Zhang G, Liu H. Multi-dimensional characterization of apoptosis in the tumor microenvironment and therapeutic relevance in melanoma. Cell Oncol (Dordr) 2024; 47:1333-1353. [PMID: 38502270 PMCID: PMC11322377 DOI: 10.1007/s13402-024-00930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
PURPOSE Melanoma is widely utilized as a prominent model for the development of immunotherapy, thought an inadequate immune response can occur. Moreover, the development of apoptosis-related therapies and combinations with other therapeutic strategies is impeded by the limited understanding of apoptosis's role within diverse tumor immune microenvironments (TMEs). METHODS Here, we constructed an apoptosis-related tumor microenvironment signature (ATM) and employ multi-dimensional analysis to understand the roles of apoptosis in tumor microenvironment. We further assessed the clinical applications of ATM in nine independent cohorts, and anticipated the impact of ATM on cellular drug response in cultured cells. RESULTS Our ATM model exhibits robust performance in survival prediction in multiple melanoma cohorts. Different ATM groups exhibited distinct molecular signatures and biological processes. The low ATM group exhibited significant enrichment in B cell activation-related pathways. What's more, plasma cells showed the lowest ATM score, highlighting their role as pivotal contributors in the ATM model. Mechanistically, the analysis of the interplay between plasma cells and other immune cells elucidated their crucial role in orchestrating an effective anti-tumor immune response. Significantly, the ATM signature exhibited associations with therapeutic efficacy of immune checkpoint blockade and the drug sensitivity of various agents, including FDA-approved and clinically utilized drugs targeting the VEGF signaling pathway. Finally, ATM was associated with tertiary lymphoid structures (TLS), exhibiting stronger patient stratification ability compared to classical "hot tumors". CONCLUSION Our findings indicate that ATM is a prognostic factor and is associated with the immune response and drug sensitivity in melanoma.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China
| | - Benliang Wei
- Big Data Institute, Central South University, Changsha, Hunan, 410008, China
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China
| | - Yantao Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China
| | - Xiheng Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China.
- Furong Laboratory, Changsha, Hunan, China.
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, 410008, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Changsha, Hunan, 410008, China.
- Big Data Institute, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Varrone M, Tavernari D, Santamaria-Martínez A, Walsh LA, Ciriello G. CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat Genet 2024; 56:74-84. [PMID: 38066188 DOI: 10.1038/s41588-023-01588-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023]
Abstract
Tissues are organized in cellular niches, the composition and interactions of which can be investigated using spatial omics technologies. However, systematic analyses of tissue composition are challenged by the scale and diversity of the data. Here we present CellCharter, an algorithmic framework to identify, characterize, and compare cellular niches in spatially resolved datasets. CellCharter outperformed existing approaches and effectively identified cellular niches across datasets generated using different technologies, and comprising hundreds of samples and millions of cells. In multiple human lung cancer cohorts, CellCharter uncovered a cellular niche composed of tumor-associated neutrophil and cancer cells expressing markers of hypoxia and cell migration. This cancer cell state was spatially segregated from more proliferative tumor cell clusters and was associated with tumor-associated neutrophil infiltration and poor prognosis in independent patient cohorts. Overall, CellCharter enables systematic analyses across data types and technologies to decode the link between spatial tissue architectures and cell plasticity.
Collapse
Affiliation(s)
- Marco Varrone
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
5
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
6
|
Zhao X, Jiang Y, Ma X, Yang Q, Ding X, Wang H, Yao X, Jin L, Zhang Q. Demystifying the impact of prenatal tobacco exposure on the placental immune microenvironment: Avoiding the tragedy of mending the fold after death. J Cell Mol Med 2023; 27:3026-3052. [PMID: 37700485 PMCID: PMC10568673 DOI: 10.1111/jcmm.17846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Prenatal tobacco exposure (PTE) correlates significantly with a surge in adverse pregnancy outcomes, yet its pathological mechanisms remain partially unexplored. This study aims to meticulously examine the repercussions of PTE on placental immune landscapes, employing a coordinated research methodology encompassing bioinformatics, machine learning and animal studies. Concurrently, it aims to screen biomarkers and potential compounds that could sensitively indicate and mitigate placental immune disorders. In the course of this research, two gene expression omnibus (GEO) microarrays, namely GSE27272 and GSE7434, were included. Gene set enrichment analysis (GSEA) and immune enrichment investigations on differentially expressed genes (DEGs) indicated that PTE might perturb numerous innate or adaptive immune-related biological processes. A cohort of 52 immune-associated DEGs was acquired by cross-referencing the DEGs with gene sets derived from the ImmPort database. A protein-protein interaction (PPI) network was subsequently established, from which 10 hub genes were extracted using the maximal clique centrality (MCC) algorithm (JUN, NPY, SST, FLT4, FGF13, HBEGF, NR0B2, AREG, NR1I2, SEMA5B). Moreover, we substantiated the elevated affinity of tobacco reproductive toxicants, specifically nicotine and nitrosamine, with hub genes through molecular docking (JUN, FGF13 and NR1I2). This suggested that these genes could potentially serve as crucial loci for tobacco's influence on the placental immune microenvironment. To further elucidate the immune microenvironment landscape, consistent clustering analysis was conducted, yielding three subtypes, where the abundance of follicular helper T cells (p < 0.05) in subtype A, M2 macrophages (p < 0.01), neutrophils (p < 0.05) in subtype B and CD8+ T cells (p < 0.05), resting NK cells (p < 0.05), M2 macrophages (p < 0.05) in subtype C were significantly different from the control group. Additionally, three pivotal modules, designated as red, blue and green, were identified, each bearing a close association with differentially infiltrated immunocytes, as discerned by the weighted gene co-expression network analysis (WGCNA). Functional enrichment analysis was subsequently conducted on these modules. To further probe into the mechanisms by which immune-associated DEGs are implicated in intercellular communication, 20 genes serving as ligands or receptors and connected to differentially infiltrating immunocytes were isolated. Employing a variety of machine learning techniques, including one-way logistic regression, LASSO regression, random forest and artificial neural networks, we screened 11 signature genes from the intersection of immune-associated DEGs and secretory protein-encoding genes derived from the Human Protein Atlas. Notably, CCL18 and IFNA4 emerged as prospective peripheral blood markers capable of identifying PTE-induced immune disorders. These markers demonstrated impressive predictive power, as indicated by the area under the curve (AUC) of 0.713 (0.548-0.857) and 0.780 (0.618-0.914), respectively. Furthermore, we predicted 34 potential compounds, including cyclosporine, oestrogen and so on, which may engage with hub genes and attenuate immune disorders instigated by PTE. The diagnostic performance of these biomarkers, alongside the interventional effect of cyclosporine, was further corroborated in animal studies via ELISA, Western blot and immunofluorescence assays. In summary, this study identifies a disturbance in the placental immune landscape, a secondary effect of PTE, which may underlie multiple pregnancy complications. Importantly, our research contributes to the noninvasive and timely detection of PTE-induced placental immune disorders, while also offering innovative therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) GynecologyHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
- Research Institute of Women's Reproductive Health Zhejiang Chinese Medical UniversityHangzhouChina
| | | | - Xiao Ma
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qujia Yang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyi Ding
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hanzhi Wang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xintong Yao
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Linxi Jin
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qin Zhang
- Department of Traditional Chinese Medicine (TCM) GynecologyHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
- Research Institute of Women's Reproductive Health Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
7
|
Martínez-Riaño A, Delgado P, Tercero R, Barrero S, Mendoza P, Oeste CL, Abia D, Rodríguez-Bovolenta E, Turner M, Alarcón B. Recreation of an antigen-driven germinal center in vitro by providing B cells with phagocytic antigen. Commun Biol 2023; 6:437. [PMID: 37081131 PMCID: PMC10119099 DOI: 10.1038/s42003-023-04807-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Successful vaccines rely on activating a functional humoral immune response through the generation of class-switched high affinity immunoglobulins (Igs). The germinal center (GC) reaction is crucial for this process, in which B cells are selected in their search for antigen and T cell help. A major hurdle to understand the mechanisms of B cell:T cell cooperation has been the lack of an antigen-specific in vitro GC system. Here we report the generation of antigen-specific, high-affinity, class-switched Igs in simple 2-cell type cultures of naive B and T cells. B cell antigen uptake by phagocytosis is key to generate these Igs. We have used the method to interrogate if T cells confer directional help to cognate B cells that present antigen and to bystander B cells. We find that bystander B cells do not generate class-switched antibodies due to a defective formation of T-B conjugates and an early conversion into memory B cells.
Collapse
Affiliation(s)
- Ana Martínez-Riaño
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Pilar Delgado
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Rut Tercero
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Sara Barrero
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Pilar Mendoza
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Clara L Oeste
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - David Abia
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | | | - Martin Turner
- The Brabaham Institute, Babraham Hall House, Babraham, Cambridge, CB22 3AT, UK
| | - Balbino Alarcón
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Martínez LE, Ibarrondo J, Guo Y, Penichet ML, Epeldegui M. Follicular CD8+ T Cells Are Elevated in HIV Infection and Induce PD-L1 on B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:33-39. [PMID: 36445393 PMCID: PMC9840893 DOI: 10.4049/jimmunol.2200194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Follicular CD8+CXCR5+ T cells are a specialized CD8+ T cell subset with unique follicular-homing capabilities that have been reported to display effector functions in viral immunity, tumor immunity, and autoimmunity. CD8+CXCR5+ T cells exhibit B cell helper functions and express CD40L, ICOS, programmed cell death protein 1 (PD-1), and BCL-6, the transcriptional regulator of CD4+CXCR5+ T follicular helper cells and of germinal center B cells. HIV is known to be sequestered in lymphoid follicles, and CD8+CXCR5+ T cell frequency is a marker for disease severity, given that HIV-infected patients with lower numbers of circulating CD8+CXCR5+ T cells display lower CD4+ T cell counts. Likewise, several groups have reported a direct correlation between the quantity of CD8+CXCR5+ T cells and suppression of HIV viral load. In this study, we observed elevated absolute numbers of CD8+CXCR5+ and CD8+CXCR5+BCL-6+PD-1+ T cells in the blood of HIV-infected participants of the Multicenter AIDS Cohort Study. We further demonstrated in vitro that activated human CD8+CXCR5+ T cells isolated from peripheral blood and tonsil from healthy donors show increased CD40L expression and induce the production of PD ligand 1 (PD-L1)+IgG+ B cells. Moreover, absolute numbers of CD8+CXCR5+ T cells significantly and positively correlated with numbers of PD-L1+ B cells found in blood of HIV-infected individuals. Altogether, these results show that activated CD8+CXCR5+ T cells have the ability to activate B cells and increase the percentage of PD-L1+ and PD-L1+IgG+ B cells, which provides insights into the early events of B cell activation and differentiation and may play a role in disease progression and lymphomagenesis in HIV-infected individuals.
Collapse
Affiliation(s)
- Laura E. Martínez
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Yu Guo
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Manuel L. Penichet
- AIDS Institute, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA
- The Molecular Biology Institute, University of California, Los Angeles, CA
| | - Marta Epeldegui
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
| |
Collapse
|
9
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
10
|
Bai Z, Lu Z, Liu R, Tang Y, Ye X, Jin M, Wang G, Li X. Iguratimod Restrains Circulating Follicular Helper T Cell Function by Inhibiting Glucose Metabolism via Hif1α-HK2 Axis in Rheumatoid Arthritis. Front Immunol 2022; 13:757616. [PMID: 35720293 PMCID: PMC9199372 DOI: 10.3389/fimmu.2022.757616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Iguratimod (IGU) is a novel disease modified anti-rheumatic drug, which has been found to act directly on B cells for inhibiting the production of antibodies in rheumatoid arthritis (RA) patients. Follicular helper T (Tfh) cells, a key T cell subsets in supporting B cell differentiation and antibody production, have been shown to play critical roles in RA. However, whether IGU can inhibit RA Tfh cells which further restrains B cell function remains unclear. Here, we aimed to explore the roles of IGU in regulating RA circulating Tfh (cTfh) cell function and investigate the potential mechanism associated with cell glucose metabolism. In our study, we found that IGU could act on RA-CD4+ T cells to reduce T cell-dependent antibody production. IGU decreased the percentage of RA cTfh cells and the expression of Tfh cell-related molecules and cytokines which were involved in B cell functions. Importantly, our data showed that IGU significantly restrained the cTfh cell function by inhibiting glucose metabolism, which relied on Hif1α-HK2 axis. In summary, we clarified a new target and mechanism of IGU by restraining RA cTfh cell function via inhibiting Hif1α-HK2-glucose metabolism axis. Our study demonstrates the potential application of IGU in the treatment of diseases related to abnormal metabolism and function of Tfh cells.
Collapse
Affiliation(s)
- Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhimin Lu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaokang Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Agbogan VA, Gastineau P, Tejerina E, Karray S, Zavala F. CpG-Activated Regulatory B-Cell Progenitors Alleviate Murine Graft-Versus-Host-Disease. Front Immunol 2022; 13:790564. [PMID: 35479094 PMCID: PMC9035844 DOI: 10.3389/fimmu.2022.790564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Development of Graft Versus Host Disease (GVHD) represents a major impediment in allogeneic hematopoietic stem cell transplantation (HSCT). The observation that the presence of bone marrow and circulating hematogones correlated with reduced GVHD risks prompted us to evaluate whether B-cell progenitors, which provide protection in various autoimmune disease models following activation with the TLR-9 agonist CpG (CpG-proBs), could likewise reduce this allogeneic disorder. In a murine model of GVHD that recapitulates an initial phase of acute GVHD followed by a phase of chronic sclerodermatous GVHD, we found that CpG-proBs, adoptively transferred during the initial phase of disease, reduced the diarrhea score and mostly prevented cutaneous fibrosis. Progenitors migrated to the draining lymph nodes and to the skin where they mainly differentiated into follicular B cells. CpG activation and IFN-γ expression were required for the protective effect, which resulted in reduced CD4+ T-cell-derived production of critical cytokines such as TGF-β, IL-13 and IL-21. Adoptive transfer of CpG-proBs increased the T follicular regulatory to T follicular helper (Tfr/Tfh) ratio. Moreover, CpG-proBs privileged the accumulation of IL-10-positive CD8+ T cells, B cells and dendritic cells in the skin. However, CpG-proBs did not improve survival. Altogether, our findings support the notion that adoptively transferred CpG-proBs exert immunomodulating effect that alleviates symptoms of GVHD but require additional anti-inflammatory strategy to improve survival.
Collapse
Affiliation(s)
- Viviane A. Agbogan
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Saoussen Karray
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
| | - Flora Zavala
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Flora Zavala, ; orcid.org/0000-0002-2338-6802
| |
Collapse
|
12
|
Georgiev H, Papadogianni G, Bernhardt G. Identification of Follicular T Cells in the Gut. Methods Mol Biol 2022; 2380:85-95. [PMID: 34802124 DOI: 10.1007/978-1-0716-1736-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Humoral adaptive immune responses trigger the establishment of plasma B cells secreting antibodies of various isotypes that bind antigen specifically and with high affinity. Moreover, memory B cells will be generated. To accomplish this, B cells need assistance from a special subset of CD4 T cells, the so called follicular T cells that differentiate from naïve T cells in the course of the immune response. Therefore, the study of follicular T cells is of primordial interest when investigating the molecular and cellular determinants of adaptive immune responses. This is done by direct analysis of the cells isolated from mice following an immunological challenge but in many instances such analyses must involve follow-up studies in cell culture requiring living cells. Especially, in vitro experimentation necessitates isolation and sorting of follicular T cells. However, follicular T cells are generally difficult to handle because they are prone to apoptosis and cell death. This is particularly evident when dealing with follicular T cells residing in the gut since we observed that isolation and processing from murine gut notoriously results in very high loss rates when compared for example to cells obtained from immunized peripheral lymph nodes. To bypass these limitations, we developed a protocol that allows for efficient isolation of intact follicular T cells. The protocol introduced here illustrates isolation and handling of follicular T cells using murine Peyer's Patches as an example because they constantly harbor significant amounts of these cells.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| | | | - Günter Bernhardt
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
14
|
Chung NH, Chen YC, Yang SJ, Lin YC, Dou HY, Hui-Ching Wang L, Liao CL, Chow YH. Induction of Th1 and Th2 in the protection against SARS-CoV-2 through mucosal delivery of an adenovirus vaccine expressing an engineered spike protein. Vaccine 2021; 40:574-586. [PMID: 34952759 PMCID: PMC8677488 DOI: 10.1016/j.vaccine.2021.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
A series of recombinant human type 5 adenoviruses that express the full-length or membrane-truncated spike protein (S) of SARS-CoV-2 (AdCoV2-S or AdCoV2-SdTM, respectively) was tested the efficacy against SARS-CoV-2 via intranasal (i.n.) or subcutaneous (s.c.) immunization in a rodent model. Mucosal delivery of adenovirus (Ad) vaccines could induce anti-SARS-CoV-2 IgG and IgA in the serum and in the mucosal, respectively as indicated by vaginal wash (vw) and bronchoalveolar lavage fluid (BALF). Serum anti-SARS-CoV-2 IgG but not IgA in the vw and BALF was induced by AdCoV2-S s.c.. Administration of AdCoV2-S i.n. was able to induce higher anti-SARS-CoV-2 binding and neutralizing antibody levels than s.c. injection. AdCoV2-SdTM i.n. induced a lower antibody responses than AdCoV2-S i.n.. Induced anti-S antibody responses by AdCoV2-S via i.n. or s.c. were not influenced by the pre-existing serum anti-Ad antibody. Novelty, S-specific IgG1 which represented Th2-mediated humoral response was dominantly induced in Ad i.n.-immunized serum in contrast to more IgG2a which represented Th1-mediated cellular response found in Ad s.c.-immunized serum. The activation of S-specific IFN-ɣ and IL-4 in splenic Th1 and Th2 cells, respectively, was observed in the AdCoV2-S i.n. and s.c. groups, indicating the Th1 and Th2 immunity were activated. AdCoV2-S and AdCoV2-SdTM significantly prevented body weight loss and reduced pulmonary viral loads in hamsters. A reduction in inflammation in the lungs was observed in AdCoV-S via i.n. or s.c.-immunized hamsters following a SARS-CoV-2 challenge. It correlated to Th1 cytokine but no inflammatory cytokines secretions found in AdCoV-S i.n. -immunized BALF. These results indicate that intranasal delivery of AdCoV2-S vaccines is safe and potent at preventing SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Nai-Hsiang Chung
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Graduate Program of Biotechnology in Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chin Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shiu-Ju Yang
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Ching Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Ullrich L, Lueder Y, Juergens AL, Wilharm A, Barros-Martins J, Bubke A, Demera A, Ikuta K, Patzer GE, Janssen A, Sandrock I, Prinz I, Rampoldi F. IL-4-Producing Vγ1 +/Vδ6 + γδ T Cells Sustain Germinal Center Reactions in Peyer's Patches of Mice. Front Immunol 2021; 12:729607. [PMID: 34804014 PMCID: PMC8600568 DOI: 10.3389/fimmu.2021.729607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The mucosal immune system is the first line of defense against pathogens. Germinal centers (GCs) in the Peyer's patches (PPs) of the small intestine are constantly generated through stimulation of the microbiota. In this study, we investigated the role of γδ T cells in the GC reactions in PPs. Most γδ T cells in PPs localized in the GCs and expressed a TCR composed of Vγ1 and Vδ6 chains. By using mice with partial and total γδ T cell deficiencies, we found that Vγ1+/Vδ6+ T cells can produce high amounts of IL-4, which drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA. Therefore, we conclude that γδ T cells play a role in sustaining gut homeostasis and symbiosis via supporting the GC reactions in PPs.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/microbiology
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/microbiology
- Immunity, Mucosal
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Immunoglobulin Class Switching
- Interleukin-4/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Intraepithelial Lymphocytes/microbiology
- Lymphocyte Activation
- Lymphocyte Depletion
- Mice, Knockout
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Peyer's Patches/microbiology
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Salmonella Infections/immunology
- Salmonella Infections/metabolism
- Salmonella Infections/microbiology
- Salmonella typhimurium/immunology
- Salmonella typhimurium/pathogenicity
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Koichi Ikuta
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
16
|
Zielen S, Duecker RP, Woelke S, Donath H, Bakhtiar S, Buecker A, Kreyenberg H, Huenecke S, Bader P, Mahlaoui N, Ehl S, El-Helou SM, Pietrucha B, Plebani A, van der Flier M, van Aerde K, Kilic SS, Reda SM, Kostyuchenko L, McDermott E, Galal N, Pignata C, Pérez JLS, Laws HJ, Niehues T, Kutukculer N, Seidel MG, Marques L, Ciznar P, Edgar JDM, Soler-Palacín P, von Bernuth H, Krueger R, Meyts I, Baumann U, Kanariou M, Grimbacher B, Hauck F, Graf D, Granado LIG, Prader S, Reisli I, Slatter M, Rodríguez-Gallego C, Arkwright PD, Bethune C, Deripapa E, Sharapova SO, Lehmberg K, Davies EG, Schuetz C, Kindle G, Schubert R. Simple Measurement of IgA Predicts Immunity and Mortality in Ataxia-Telangiectasia. J Clin Immunol 2021; 41:1878-1892. [PMID: 34477998 PMCID: PMC8604875 DOI: 10.1007/s10875-021-01090-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Patients with ataxia-telangiectasia (A-T) suffer from progressive cerebellar ataxia, immunodeficiency, respiratory failure, and cancer susceptibility. From a clinical point of view, A-T patients with IgA deficiency show more symptoms and may have a poorer prognosis. In this study, we analyzed mortality and immunity data of 659 A-T patients with regard to IgA deficiency collected from the European Society for Immunodeficiencies (ESID) registry and from 66 patients with classical A-T who attended at the Frankfurt Goethe-University between 2012 and 2018. We studied peripheral B- and T-cell subsets and T-cell repertoire of the Frankfurt cohort and survival rates of all A-T patients in the ESID registry. Patients with A-T have significant alterations in their lymphocyte phenotypes. All subsets (CD3, CD4, CD8, CD19, CD4/CD45RA, and CD8/CD45RA) were significantly diminished compared to standard values. Patients with IgA deficiency (n = 35) had significantly lower lymphocyte counts compared to A-T patients without IgA deficiency (n = 31) due to a further decrease of naïve CD4 T-cells, central memory CD4 cells, and regulatory T-cells. Although both patient groups showed affected TCR-ß repertoires compared to controls, no differences could be detected between patients with and without IgA deficiency. Overall survival of patients with IgA deficiency was significantly diminished. For the first time, our data show that patients with IgA deficiency have significantly lower lymphocyte counts and subsets, which are accompanied with reduced survival, compared to A-T patients without IgA deficiency. IgA, a simple surrogate marker, is indicating the poorest prognosis for classical A-T patients. Both non-interventional clinical trials were registered at clinicaltrials.gov 2012 (Susceptibility to infections in ataxia-telangiectasia; NCT02345135) and 2017 (Susceptibility to Infections, tumor risk and liver disease in patients with ataxia-telangiectasia; NCT03357978)
Collapse
Affiliation(s)
- Stefan Zielen
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ruth Pia Duecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany.
| | - Sandra Woelke
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Helena Donath
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sharhzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Aileen Buecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine M El-Helou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Michiel van der Flier
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van Aerde
- Department of Pediatrics, Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sara S Kilic
- Department of Pediatric Immunology and Rheumatology, the School of Medicine, Uludag University, Bursa, Turkey
| | - Shereen M Reda
- Department of Pediatrics, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv, Ukraine
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Unit, Nottingham University Hospitals, Nottingham, UK
| | - Nermeen Galal
- Department of Pediatrics, Cairo University Specialized Pediatric Hospital, Cairo, Egypt
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Juan Luis Santos Pérez
- Infectious Diseases and Immunodeficiencies Unit, Service of Pediatrics, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Hans-Juergen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Duesseldorf, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Krefeld, Germany
| | - Necil Kutukculer
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Laura Marques
- Pediatric Department, Infectious Diseases and Immunodeficiencies Unit, Porto Hospital Center, Porto, Portugal
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Children University Hospital in Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall D'Hebron Research Institute, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Horst von Bernuth
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany
- Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Krueger
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, and the Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Centre for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dagmar Graf
- MVZ Dr. Reising-Ackermann Und Kollegen, Leipzig, Germany
| | - Luis Ignacio Gonzalez Granado
- Primary Immunodeficiencies Unit, Pediatrics, Hospital 12 Octubre, Complutense University School of Medicine, Madrid, Spain
| | - Seraina Prader
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ismail Reisli
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, UK
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Dr. Negrin University Hospital of Gran Canaria, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester and Royal Manchester Children's Hospital, Manchester, UK
| | | | - Elena Deripapa
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Minsk, Belarus
| | - Kai Lehmberg
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Graham Davies
- Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FREEZE Biobank, Center for Biobanking, Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
17
|
Ng A, Chiorazzi N. Potential Relevance of B-cell Maturation Pathways in Defining the Cell(s) of Origin for Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am 2021; 35:665-685. [PMID: 34174979 DOI: 10.1016/j.hoc.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a common, incurable disease of undefined cause. Notably, the normal cell equivalents of CLL cells remain elusive, and it is possible that the disease emanates from several normal B-cell subsets. This article reviews the literature relating to this issue, focusing on recent findings, in particular made through epigenetic analyses that strongly support the disease developing from a normal Ag-experienced and memory cell-like B lymphocyte. It also reports the known pathways whereby normal B lymphocytes mature after antigenic challenge and proposes that this information is relevant in defining the cells of origin of this disease.
Collapse
Affiliation(s)
- Anita Ng
- The Karches Center for Oncology Research, Institute for Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, USA
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, Institute for Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
18
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
The ubiquitin ligase Peli1 inhibits ICOS and thereby Tfh-mediated immunity. Cell Mol Immunol 2021; 18:969-978. [PMID: 33707688 PMCID: PMC8115645 DOI: 10.1038/s41423-021-00660-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 11/11/2022] Open
Abstract
T follicular helper (Tfh) cells are crucial for regulating autoimmune inflammation and protective immunity against viral infection. However, the molecular mechanism controlling Tfh cell differentiation is poorly understood. Here, through two mixed bone marrow chimeric experiments, we identified Peli1, a T cell-enriched E3 ubiquitin ligase, as an intrinsic regulator that inhibits Tfh cell differentiation. Peli1 deficiency significantly promoted c-Rel-mediated inducible T-cell costimulator (ICOS) expression, and PELI1 mRNA expression was negatively associated with ICOS expression on human CD4+ T cells. Mechanistically, increased ICOS expression on Peli1-KO CD4+ T cells enhanced the activation of PI3K-AKT signaling and thus suppressed the expression of Klf2, a transcription factor that inhibits Tfh differentiation. Therefore, reconstitution of Klf2 abolished the differences in Tfh differentiation and germinal center reaction between WT and Peli1-KO cells. As a consequence, Peli1-deficient CD4+ T cells promoted lupus-like autoimmunity but protected against H1N1 influenza virus infection in mouse models. Collectively, our findings established Peli1 as a critical negative regulator of Tfh differentiation and indicated that targeting Peli1 may have beneficial therapeutic effects in Tfh-related autoimmunity or infectious diseases.
Collapse
|
20
|
Duckworth BC, Groom JR. Conversations that count: Cellular interactions that drive T cell fate. Immunol Rev 2021; 300:203-219. [PMID: 33586207 PMCID: PMC8048805 DOI: 10.1111/imr.12945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The relationship between the extrinsic environment and the internal transcriptional network is circular. Naive T cells first engage with antigen‐presenting cells to set transcriptional differentiation networks in motion. In turn, this regulates specific chemokine receptors that direct migration into distinct lymph node niches. Movement into these regions brings newly activated T cells into contact with accessory cells and cytokines that reinforce the differentiation programming to specify T cell function. We and others have observed similarities in the transcriptional networks that specify both CD4+ T follicular helper (TFH) cells and CD8+ central memory stem‐like (TSCM) cells. Here, we compare and contrast the current knowledge for these shared differentiation programs, compared to their effector counterparts, CD4+ T‐helper 1 (TH1) and CD8+ short‐lived effector (TSLEC) cells. Understanding the interplay between cellular interactions and transcriptional programming is essential to harness T cell differentiation that is fit for purpose; to stimulate potent T cell effector function for the elimination of chronic infection and cancer; or to amplify the formation of humoral immunity and longevity of cellular memory to prevent infectious diseases.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
21
|
Ripperger TJ, Bhattacharya D. Transcriptional and Metabolic Control of Memory B Cells and Plasma Cells. Annu Rev Immunol 2021; 39:345-368. [PMID: 33556247 DOI: 10.1146/annurev-immunol-093019-125603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.
Collapse
Affiliation(s)
- Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| |
Collapse
|
22
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, Palomba P, Mirabella M, Cascioli S, Palange P, Cuccaro I, Milito C, Zumla A, Maeurer M, Camisa V, Vinci MR, Santoro A, Cimini E, Marchioni L, Nicastri E, Palmieri F, Agrati C, Ippolito G, Porzio O, Concato C, Onetti Muda A, Raponi M, Quintarelli C, Quinti I, Locatelli F. Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases. Front Immunol 2020; 11:610300. [PMID: 33391280 PMCID: PMC7772470 DOI: 10.3389/fimmu.2020.610300] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.
Collapse
Affiliation(s)
- Rita Carsetti
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
- Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
- Health Directorate, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eva Piano Mortari
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Sara Terreri
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Francesco Corrente
- Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Patrizia Palomba
- Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Mattia Mirabella
- Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Simona Cascioli
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases Pulmonary Division, Policlinico Umberto I Hospital, Rome, Italy
| | - Ilaria Cuccaro
- Department of Public Health and Infectious Diseases Pulmonary Division, Policlinico Umberto I Hospital, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunotherapy Programme, Champalimaud Foundation, Lisbon, Portugal
- Med Clinic, University of Mainz, Mainz, Germany
| | - Vincenzo Camisa
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
- Health Directorate, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Rosaria Vinci
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
- Health Directorate, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Annapaola Santoro
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
- Health Directorate, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Cimini
- Cellular Immunology Laboratory, INMI L Spallanzani, IRCCS, Rome, Italy
| | | | | | | | - Chiara Agrati
- Cellular Immunology Laboratory, INMI L Spallanzani, IRCCS, Rome, Italy
| | | | - Ottavia Porzio
- Medical Laboratory Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Concato
- Virology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Onetti Muda
- Department of Laboratories, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Massimiliano Raponi
- Health Directorate, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
24
|
Masum MA, Ichii O, Elewa YHA, Otani Y, Namba T, Kon Y. Vasculature-Associated Lymphoid Tissue: A Unique Tertiary Lymphoid Tissue Correlates With Renal Lesions in Lupus Nephritis Mouse Model. Front Immunol 2020; 11:595672. [PMID: 33384689 PMCID: PMC7770167 DOI: 10.3389/fimmu.2020.595672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Lupus nephritis (LN) is a common complication in young patients and the most predominant cause of glomerulonephritis. Infiltrating immune cells and presence of immunocomplexes in the kidney are hallmarks of LN, which is closely associated with renal lesions (RLs). However, their regulatory mechanism in the kidney remains unclear, which is valuable for prevention of RL development. Here, we show the development of vasculature-associated lymphoid tissue (VALT) in LN, which is related to renal inflammatory cytokines, indicating that VALT is a unique tertiary lymphoid tissue. Transcriptomic analysis revealed different chemokines and costimulatory molecules for VALT induction and organization. Vascular and perivascular structures showed lymphoid tissue organization through lymphorganogenic chemokine production. Transcriptional profile and intracellular interaction also demonstrated antigen presentation, lymphocyte activity, clonal expansion, follicular, and germinal center activity in VALT. Importantly, VALT size was correlated with infiltrating immune cells in kidney and RLs, indicating its direct correlation with the development of RLs. In addition, dexamethasone administration reduced VALT size. Therefore, inhibition of VALT formation would be a novel therapeutic strategy against LN.
Collapse
Affiliation(s)
- Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Godot V, Tcherakian C, Gil L, Cervera-Marzal I, Li G, Cheng L, Ortonne N, Lelièvre JD, Pantaleo G, Fenwick C, Centlivre M, Mouquet H, Cardinaud S, Zurawski SM, Zurawski G, Milpied P, Su L, Lévy Y. TLR-9 agonist and CD40-targeting vaccination induces HIV-1 envelope-specific B cells with a diversified immunoglobulin repertoire in humanized mice. PLoS Pathog 2020; 16:e1009025. [PMID: 33253297 PMCID: PMC7728200 DOI: 10.1371/journal.ppat.1009025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/10/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023] Open
Abstract
The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans.
Collapse
Affiliation(s)
- Véronique Godot
- Vaccine Research Institute, Creteil, France
- Inserm U955, Equipe 16, Créteil, France
| | | | - Laurine Gil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Iñaki Cervera-Marzal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nicolas Ortonne
- AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d’Anatomopathologie, Créteil, France
| | - Jean-Daniel Lelièvre
- Vaccine Research Institute, Creteil, France
- Inserm U955, Equipe 16, Créteil, France
- AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d’Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Creteil, France
- Service of Immunology and Allergy Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Vaccine Research Institute, Creteil, France
- Service of Immunology and Allergy Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mireille Centlivre
- Vaccine Research Institute, Creteil, France
- Inserm U955, Equipe 16, Créteil, France
| | - Hugo Mouquet
- Laboratory of Immunology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1222, Paris, France
| | - Sylvain Cardinaud
- Vaccine Research Institute, Creteil, France
- Inserm U955, Equipe 16, Créteil, France
| | - Sandra M. Zurawski
- Vaccine Research Institute, Creteil, France
- Baylor Scott and White Research Institute and INSERM U955, Dallas, Texas, United States of America
| | - Gerard Zurawski
- Vaccine Research Institute, Creteil, France
- Baylor Scott and White Research Institute and INSERM U955, Dallas, Texas, United States of America
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yves Lévy
- Vaccine Research Institute, Creteil, France
- Inserm U955, Equipe 16, Créteil, France
- AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d’Immunologie Clinique et Maladies Infectieuses, Créteil, France
| |
Collapse
|
26
|
Wang Y, Guo J. Immune cell landscape analysis reveals prognostic immune cells and its potential mechanism in squamous cell lung carcinoma. PeerJ 2020; 8:e9996. [PMID: 33083119 PMCID: PMC7543728 DOI: 10.7717/peerj.9996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Squamous cell lung carcinoma (LUSC) was closely associated with smoking which was known to have a distant immunosuppression effect. In this study, we aimed to explore the relationship between immune cells and clinical outcomes of LUSC patients with smoking history. Methods The immune cell infiltration and RNA expression profiles of LUSC patients were collected from The Cancer Genome Atlas (TCGA). Then, the correlation between immune cell infiltration and clinical characteristics was explored. According to the level of immune cell infiltration, LUSC patients with smoking history were divided into high or low group to screen the differentially expressed lncRNAs and mRNAs. The prediction of target genes was performed by miRanda. Finally, the prognostic value of a certain signature was confirmed in an independent dataset. Results Higher abundance of tumor-infiltrating T follicular helper (Tfh) cells together with a lower abundance of resting memory CD4 T cells had been found in LUSC current reformed smokers for ≤15 years and current smoking patients. Moreover, Tfh cell infiltration was not only associated with better overall survival (OS) but also varied from different degrees of TNM stage. Low expression of lncRNA PWRN1 and its potential regulating genes DMRTB1, PIRT, APOBEC1, and ZPBP2 were associated with better OS. Combining PWRN1 and four regulating genes as a signature, patients with higher-level expression of the signature had shorter survival time in not only the TCGA but also in the GEO dataset. Conclusions It was found that Tfh cells presented higher infiltration in LUSC current reformed smokers for ≤15 years and current smokers, while resting memory CD4 T cells had lower infiltration. The signature consisting of PWRN1 as well as its predicted targeted mRNAs was dysregulated in different levels of Tfh cell infiltration and might indicate patients' OS.
Collapse
Affiliation(s)
- Yongyong Wang
- Cardio-Thoracic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianji Guo
- Cardio-Thoracic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Sheikh AA, Cooper L, Feng M, Souza-Fonseca-Guimaraes F, Lafouresse F, Duckworth BC, Huntington ND, Moon JJ, Pellegrini M, Nutt SL, Belz GT, Good-Jacobson KL, Groom JR. Context-Dependent Role for T-bet in T Follicular Helper Differentiation and Germinal Center Function following Viral Infection. Cell Rep 2020; 28:1758-1772.e4. [PMID: 31412245 PMCID: PMC6711398 DOI: 10.1016/j.celrep.2019.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/29/2019] [Accepted: 07/11/2019] [Indexed: 12/03/2022] Open
Abstract
Following infection, inflammatory cues upregulate core transcriptional programs to establish pathogen-specific protection. In viral infections, T follicular helper (TFH) cells express the prototypical T helper 1 transcription factor T-bet. Several studies have demonstrated essential but conflicting roles for T-bet in TFH biology. Understanding the basis of this controversy is crucial, as modulation of T-bet expression instructs TFH differentiation and ultimately protective antibody responses. Comparing influenza and LCMV viral infections, we demonstrate that the role of T-bet is contingent on the environmental setting of TFH differentiation, IL-2 signaling, and T cell competition. Furthermore, we demonstrate that T-bet expression by either TFH or GC B cells independently drives antibody isotype class switching. Specifically, T cell-specific loss of T-bet promotes IgG1, whereas B cell-specific loss of T-bet inhibits IgG2a/c switching. Combined, this work highlights that the context-dependent induction of T-bet instructs the development of protective, neutralizing antibodies following viral infection or vaccination. Shiekh et al. show that, in influenza and LCMV infections, the role of the transcription factor T-bet in TFH differentiation is contingent on environmental cues, IL-2 signaling, and T cell competition. Cell-specific T-bet expression independently drives antibody isotype class switching. Therefore T-bet instructs immune protection in a context-dependent manner.
Collapse
Affiliation(s)
- Amania A Sheikh
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Meiqi Feng
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fanny Lafouresse
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Equipe labellisée Ligue Nationale contre le cancer, Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas D Huntington
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA 02129, USA
| | - Marc Pellegrini
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Stephen L Nutt
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabrielle T Belz
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
28
|
Inflammatory Cells in Diffuse Large B Cell Lymphoma. J Clin Med 2020; 9:jcm9082418. [PMID: 32731512 PMCID: PMC7463675 DOI: 10.3390/jcm9082418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.
Collapse
|
29
|
Chong AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:23-32. [PMID: 32538534 PMCID: PMC7482418 DOI: 10.1111/ajt.15844] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Reduced PD-1 expression on circulating follicular and conventional FOXP3+ Treg cells in children with new onset type 1 diabetes and autoantibody-positive at-risk children. Clin Immunol 2020; 211:108319. [DOI: 10.1016/j.clim.2019.108319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
31
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
32
|
Gostic KM, Bridge R, Brady S, Viboud C, Worobey M, Lloyd-Smith JO. Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics. PLoS Pathog 2019; 15:e1008109. [PMID: 31856206 PMCID: PMC6922319 DOI: 10.1371/journal.ppat.1008109] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/25/2019] [Indexed: 11/25/2022] Open
Abstract
Across decades of co-circulation in humans, influenza A subtypes H1N1 and H3N2 have caused seasonal epidemics characterized by different age distributions of cases and mortality. H3N2 causes the majority of severe, clinically attended cases in high-risk elderly cohorts, and the majority of overall deaths, whereas H1N1 causes fewer deaths overall, and cases shifted towards young and middle-aged adults. These contrasting age profiles may result from differences in childhood imprinting to H1N1 and H3N2 or from differences in evolutionary rate between subtypes. Here we analyze a large epidemiological surveillance dataset to test whether childhood immune imprinting shapes seasonal influenza epidemiology, and if so, whether it acts primarily via homosubtypic immune memory or via broader, heterosubtypic memory. We also test the impact of evolutionary differences between influenza subtypes on age distributions of cases. Likelihood-based model comparison shows that narrow, within-subtype imprinting shapes seasonal influenza risk alongside age-specific risk factors. The data do not support a strong effect of evolutionary rate, or of broadly protective imprinting that acts across subtypes. Our findings emphasize that childhood exposures can imprint a lifelong immunological bias toward particular influenza subtypes, and that these cohort-specific biases shape epidemic age distributions. As a consequence, newer and less "senior" antibody responses acquired later in life do not provide the same strength of protection as responses imprinted in childhood. Finally, we project that the relatively low mortality burden of H1N1 may increase in the coming decades, as cohorts that lack H1N1-specific imprinting eventually reach old age.
Collapse
Affiliation(s)
- Katelyn M. Gostic
- Dept. of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rebecca Bridge
- Arizona Department of Health Services, Phoenix, Arizona, United States of America
| | - Shane Brady
- Arizona Department of Health Services, Phoenix, Arizona, United States of America
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Worobey
- Dept. of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - James O. Lloyd-Smith
- Dept. of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
33
|
Ding T, Niu H, Zhao X, Gao C, Li X, Wang C. T-Follicular Regulatory Cells: Potential Therapeutic Targets in Rheumatoid Arthritis. Front Immunol 2019; 10:2709. [PMID: 31849938 PMCID: PMC6901970 DOI: 10.3389/fimmu.2019.02709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is an incurable aggressive chronic inflammatory joint disease with a worldwide prevalence. High levels of autoantibodies and chronic inflammation may be involved in the pathology. Notably, T follicular regulatory (Tfr) cells are critical mediators of T follicular helper (Tfh) cell generation and antibody production in the germinal center (GC) reaction. Changes in the number and function of Tfr cells may lead to dysregulation of the GC reaction and the production of aberrant autoantibodies. Regulation of the function and number of Tfr cells could be an effective strategy for precisely controlling antibody production, reestablishing immune homeostasis, and thereby improving the outcome of RA. This review summarizes advances in our understanding of the biology and functions of Tfr cells. The involvement of Tfr cells and other immune cell subsets in RA is also discussed. Furthermore, we highlight the potential therapeutic targets related to Tfr cells and restoring the Tfr/Tfh balance via cytokines, microRNAs, the mammalian target of rapamycin (mTOR) signaling pathway, and the gut microbiota, which will facilitate further research on RA and other immune-mediated diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongqing Niu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangcong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Yamahara K, Lee K, Egawa Y, Nakashima N, Ikegami S. Surgical outcomes and unique histological features of tonsils after tonsillectomy in adults with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome. Auris Nasus Larynx 2019; 47:254-261. [PMID: 31495531 DOI: 10.1016/j.anl.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 08/21/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Data on the adult-onset periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome are scarce. European studies reported that unlike pediatric-onset PFAPA, tonsillectomy is ineffective for adult-onset PFAPA. The aims of this study were (1) to assess the response to tonsillectomy in a cohort of Japanese adult-onset PFAPA patients and (2) to evaluate the histologic appearance of tonsils in adult-onset PFAPA patients and to compare them with those of tonsils from age- and sex-matched controls with chronic tonsillitis. METHODS In this retrospective cohort study, 5 adults with PFAPA and 15 controls who had undergone tonsillectomy were recruited. The size of the tonsil germinal centers was measured by hematoxylin and eosin staining, and the number and density of B and T lymphocytes in germinal centers were measured by immunohistochemistry, using CD3, CD4 and CD8 as T cell markers and CD20 as B cell marker. RESULTS All patients had complete remission of the symptoms after surgery. PFAPA patients had significantly smaller germinal center areas than controls. The number and density of CD8+ cells in germinal centers were significantly lower in tonsils from PFAPA compared with controls. No differences were found between the two groups in CD3+, CD4+, and CD20+ cells. These results are compatible with the tonsillar features of pediatric-onset PFAPA. CONCLUSION Our report demonstrates that tonsillectomy might be effective for adult-onset PFAPA and that tonsils of adult- and pediatric-onset PFAPA share the same histological features. These results suggest that the pathogenic mechanisms of adult- and pediatric-onset PFAPA are identical.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, 420-8630, Japan.
| | - Kana Lee
- Department of Otolaryngology, Shin-Suma General Hospital, Kobe, Hyogo 654-0048, Japan
| | - Yuki Egawa
- Department of Pathology, Shizuoka City Shizuoka Hospital, Shizuoka, 420-8630, Japan
| | - Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Satoshi Ikegami
- Department of Otolaryngology, Head and Neck Surgery, Shizuoka City Shizuoka Hospital, Shizuoka, 420-8630, Japan
| |
Collapse
|
35
|
Jin H, Yang K, Zhang H, Chen Y, Qi H, Fan Z, Huang F, Xuan L, Lin R, Zhao K, Liu Q. Expansion of circulating extrafollicular helper T-like cells in patients with chronic graft-versus-host disease. J Autoimmun 2019; 100:95-104. [PMID: 30878167 DOI: 10.1016/j.jaut.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Previous studies have shown that T follicular helper cells (Tfh) contribute to immune pathology in cGVHD, but the function of extrafollicular helper T cells during cGVHD pathogenesis remains largely unknown. In the current study, we identified circulating extrafollicular helper T-like cells (CD44hiCD62LloPSGL-1loCD4+, c-extrafollicular Th-like) in human peripheral blood. We performed phenotypic and functional analyses of c-extrafollicular Th-like cells from 80 patients after allo-HSCT to explore the role of these cells in the development of human cGVHD. Patients with active cGVHD had significantly higher frequencies and counts of c-extrafollicular Th-like cells than those of patients without cGVHD. The expansion of c-extrafollicular Th-like cells was more significant in patients with moderate/severe cGVHD than that of patients with mild cGVHD. C-extrafollicular Th-like cells from patients with active cGVHD exhibited increased functional abilities to induce plasmablast differentiation and IgG1 secretion compared to those of patients without cGVHD. Moreover, c-extrafollicular Th-like cell levels were highly correlated with the generation of autoreactive B cells, plasmablasts and IgG1 antibodies. Our studies provide new insights into human cGVHD pathogenesis and identify c-extrafollicular Th-like cells as a key element in the development of human cGVHD.
Collapse
Affiliation(s)
- Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibo Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Haiyan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hanzhou Qi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, China.
| |
Collapse
|
36
|
Pivotal role for α V integrins in sustained Tfh support of the germinal center response for long-lived plasma cell generation. Proc Natl Acad Sci U S A 2019; 116:4462-4470. [PMID: 30770452 DOI: 10.1073/pnas.1809329116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CD4+ follicular helper T cells (Tfh) are essential for germinal center (GC) reactions in the lymph node that generate high-affinity, long-lived plasma cells (LLPCs). Temporal GC analysis suggests B memory cells (Bmem) are generated early, while LLPCs are generated late in the GC reaction. Distinct roles for Tfh at these temporally different stages are not yet clear. Tfh entry into the GC is highly dynamic and the signals that maintain Tfh within the GC for support of late LLPC production are poorly understood. The GC is marked by inflammation-induced presentation of specific ECM components. To determine if T cell recognition of these ECM components played a role in Tfh support of the GC, we immunized mice with a T cell-restricted deletion of the ECM-binding integrin αV (αV-CD4 cKO). T cell integrin αV deletion led to a striking defect in the number and size of the GCs following immunization with OVA protein in complete Freund's adjuvant. The GC defect was not due to integrin αV deficiency impeding Tfh generation or follicle entry or the ability of αV-CD4 cKO Tfh to contact and support B cell activation. Instead, integrin αV was essential for T cell-intrinsic accumulation within the GC. Altered Tfh positioning resulted in lower-affinity antibodies and a dramatic loss of LLPCs. Influenza A infection revealed that αV integrin was not required for Tfh support of Bmem but was essential for Tfh support of LLPCs. We highlight an αV integrin-ECM-guided mechanism of Tfh GC accumulation that selectively impacts GC output of LLPCs but not Bmem.
Collapse
|
37
|
Li X, Gadzinsky A, Gong L, Tong H, Calderon V, Li Y, Kitamura D, Klein U, Langdon WY, Hou F, Zou YR, Gu H. Cbl Ubiquitin Ligases Control B Cell Exit from the Germinal-Center Reaction. Immunity 2018; 48:530-541.e6. [PMID: 29562201 DOI: 10.1016/j.immuni.2018.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs.
Collapse
Affiliation(s)
- Xin Li
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Liying Gong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Haijun Tong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Yue Li
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Sciences, Noda, Chiba 162-8601, Japan
| | - Ulf Klein
- Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds LS97TF, UK
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Fajian Hou
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Rui Zou
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Hua Gu
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
38
|
Gonzalez DG, Cote CM, Patel JR, Smith CB, Zhang Y, Nickerson KM, Zhang T, Kerfoot SM, Haberman AM. Nonredundant Roles of IL-21 and IL-4 in the Phased Initiation of Germinal Center B Cells and Subsequent Self-Renewal Transitions. THE JOURNAL OF IMMUNOLOGY 2018; 201:3569-3579. [PMID: 30446568 DOI: 10.4049/jimmunol.1500497] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/19/2018] [Indexed: 11/19/2022]
Abstract
We examined the unique contributions of the cytokines IL-21 and IL-4 on germinal center (GC) B cell initiation and subsequent maturation in a murine model system. Similar to other reports, we found T follicular helper cell expression of IL-21 begins prior to T follicular helper cell migration into the B cell follicle and precedes that of IL-4. Consistent with this timing, IL-21 signaling has a greater influence on the perifollicular pre-GC B cell transition to the intrafollicular stage. Notably, Bcl6hi B cells can form in the combined absence of IL-21R- and STAT6-derived signals; however, these nascent GC B cells cease to proliferate and are more prone to apoptosis. When B cells lack either IL-21R or STAT6, aberrant GCs form atypical centroblasts and centrocytes that differ in their phenotypic maturation and costimulatory molecule expression. Thus, IL-4 and IL-21 play nonredundant roles in the phased progression of GC B cell development that can initiate in the combined absence of these cytokine signals.
Collapse
Affiliation(s)
- David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, CT 06519.,Department of Genetics, Yale University, New Haven, CT 06519
| | - Christine M Cote
- Department of Immunobiology, Yale University, New Haven, CT 06519
| | - Jaymin R Patel
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06519
| | - Colin B Smith
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Yuqi Zhang
- Department of Surgery, Yale-New Haven Hospital, New Haven, CT 06519
| | - Kevin M Nickerson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tingting Zhang
- Department of Immunobiology, Yale University, New Haven, CT 06519
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and
| | - Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, CT 06519; .,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06519
| |
Collapse
|
39
|
Stebegg M, Kumar SD, Silva-Cayetano A, Fonseca VR, Linterman MA, Graca L. Regulation of the Germinal Center Response. Front Immunol 2018; 9:2469. [PMID: 30410492 PMCID: PMC6209676 DOI: 10.3389/fimmu.2018.02469] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022] Open
Abstract
The germinal center (GC) is a specialized microstructure that forms in secondary lymphoid tissues, producing long-lived antibody secreting plasma cells and memory B cells, which can provide protection against reinfection. Within the GC, B cells undergo somatic mutation of the genes encoding their B cell receptors which, following successful selection, can lead to the emergence of B cell clones that bind antigen with high affinity. However, this mutation process can also be dangerous, as it can create autoreactive clones that can cause autoimmunity. Because of this, regulation of GC reactions is critical to ensure high affinity antibody production and to enforce self-tolerance by avoiding emergence of autoreactive B cell clones. A productive GC response requires the collaboration of multiple cell types. The stromal cell network orchestrates GC cell dynamics by controlling antigen delivery and cell trafficking. T follicular helper (Tfh) cells provide specialized help to GC B cells through cognate T-B cell interactions while Foxp3+ T follicular regulatory (Tfr) cells are key mediators of GC regulation. However, regulation of GC responses is not a simple outcome of Tfh/Tfr balance, but also involves the contribution of other cell types to modulate the GC microenvironment and to avoid autoimmunity. Thus, the regulation of the GC is complex, and occurs at multiple levels. In this review we outline recent developments in the biology of cell subsets involved in the regulation of GC reactions, in both secondary lymphoid tissues, and Peyer's patches (PPs). We discuss the mechanisms which enable the generation of potent protective humoral immunity whilst GC-derived autoimmunity is avoided.
Collapse
Affiliation(s)
| | - Saumya D Kumar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Valter R Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, Lisbon, Portugal
| | | | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
40
|
Shen J, Luo X, Wu Q, Huang J, Xiao G, Wang L, Yang B, Li H, Wu C. A Subset of CXCR5 +CD8 + T Cells in the Germinal Centers From Human Tonsils and Lymph Nodes Help B Cells Produce Immunoglobulins. Front Immunol 2018; 9:2287. [PMID: 30344522 PMCID: PMC6183281 DOI: 10.3389/fimmu.2018.02287] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Recent studies indicated that CXCR5+CD8+ T cells in lymph nodes could eradicate virus-infected target cells. However, in the current study we found that a subset of CXCR5+CD8+ T cells in the germinal centers from human tonsils or lymph nodes are predominately memory cells that express CD45RO and CD27. The involvement of CXCR5+CD8+ T cells in humoral immune responses is suggested by their localization in B cell follicles and by the concomitant expression of costimulatory molecules, including CD40L and ICOS after activation. In addition, CXCR5+CD8+ memory T cells produced significantly higher levels of IL-21, IFN-γ, and IL-4 at mRNA and protein levels compared to CXCR5−CD8+ memory T cells, but IL-21-expressing CXCR5+CD8+ T cells did not express Granzyme B and perforin. When cocultured with sorted B cells, sorted CXCR5+CD8+ T cells promoted the production of antibodies compared to sorted CXCR5−CD8+ T cells. However, fixed CD8+ T cells failed to help B cells and the neutralyzing antibodies against IL-21 or CD40L inhibited the promoting effects of sorted CXCR5+CD8+ T cells on B cells for the production of antibodies. Finally, we found that in the germinal centers of lymph nodes from HIV-infected patients contained more CXCR5+CD8+ T cells compared to normal lymph nodes. Due to their versatile functional capacities, CXCR5+CD8+ T cells are promising candidate cells for immune therapies, particularly when CD4+ T cell help are limited.
Collapse
Affiliation(s)
- Juan Shen
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| | - Xi Luo
- Affiliated Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiongli Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Guanying Xiao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Binyan Yang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| | - Huabin Li
- Eye and Ent Hospital of Fudan Hospital, Shanghai, China
| | - Changyou Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Chen M, Lin X, Olsen N, He X, Zheng SG. Advances in T follicular helper and T follicular regulatory cells in transplantation immunity. Transplant Rev (Orlando) 2018; 32:187-193. [PMID: 30139705 DOI: 10.1016/j.trre.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
B cells play a crucial role in alloreactivity of organ transplant rejection and graft versus host diseases (GVHD). Over the past decade, it has been well recognized that B-cell infiltration in allografts and de novo donor-specific antibodies (DSA) were strongly associated with severe graft rejection and loss, as well as glucocorticoid resistance. Emerging evidence has demonstrated that Follicular T helper (Tfh) cells are key effectors to promote the proliferation and differentiation of B cells into antibody-producing plasmablasts and memory B cells. T-follicular regulatory (Tfr) cells are a recently recognized cell population that has a negative regulatory role on Tfh cells in the follicle, preventing incessant antibody production. It is still less clear how those humoral immunoreactive cells affect transplant rejection and allograft loss. This review focuses on the production and function of Tfr/Tfh cells in the transplant environment. Better understanding of the functions and mechanisms of Tfr/Tfh cells will help to design new strategies to prevent allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Maogen Chen
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaohong Lin
- Division of general surgery, The Eastern Hospital of the First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xiaoshun He
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
42
|
New insights into the development of B cell responses: Implications for solid organ transplantation. Hum Immunol 2018; 80:378-384. [PMID: 30240897 DOI: 10.1016/j.humimm.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
A resurgent interest in the role of B cells following solid organ transplantation is being driven by clinical data suggesting that antibody mediated rejection (AMR) is a major cause of dysfunction and organ transplant failure. These observations suggest that, in a subset of patients, current immunotherapies are failing to control the development of alloantibody responses, and/or failing to reverse the production or the effects of alloantibodies. Quantification of donor-specific antibodies (DSA) has proven to be an imperfect predictor of AMR, and efforts to improve DSA quantification anticipate that this will result in improved predictive power. At the same time, attempts to control of ABMR have focused on the non-specific elimination of B cells, plasma cells (PCs) or circulating antibodies. In the past decade, there has been an improvement in our understanding of the processes that drive B cell differentiation into germinal center (GC)-dependent or GC-independent memory B cells and antibody-secreting PC. These insights are suggesting new ways to more specifically target the DSA response, which may lead to better long-term allograft survival outcomes while preserving protective immunity. In this review, new insights into processes that lead to antibody production upon primary and secondary antigen encounter are discussed, and the potential implications to DSA production as well as future areas of investigation to control AMR are discussed.
Collapse
|
43
|
Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R. Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front Immunol 2018; 9:1884. [PMID: 30158933 PMCID: PMC6104131 DOI: 10.3389/fimmu.2018.01884] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells play key role in providing help to B cells during germinal center (GC) reactions. Generation of protective antibodies against various infections is an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh cell responses has been implicated in various autoimmune disorders, inflammation, and malignancy. Thus, their differentiation and maintenance must be closely regulated to ensure appropriate help to B cells. The generation and function of Tfh cells is regulated by multiple checkpoints including their early priming stage in T zones and throughout the effector stage of differentiation in GCs. Signaling pathways activated downstream of cytokine and costimulatory receptors as well as consequent activation of subset-specific transcriptional factors are essential steps for Tfh cell generation. Thus, understanding the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into spotlight potential targets for novel therapies. In this review, we discuss the recent findings related to the molecular mechanisms of Tfh cell differentiation and their role in normal immune responses and antibody-mediated diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tayab C Waseem
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anupama Sahoo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayahati Bieerkehazhi
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Roza Nurieva
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
44
|
Lee YJ, Park JA, Kwon H, Choi YS, Jung KC, Park SH, Lee EB. Role of Stem Cell-Like Memory T Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol 2018; 70:1459-1469. [DOI: 10.1002/art.40524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ye Ji Lee
- Seoul National University College of Medicine; Seoul South Korea
| | - Ji Ah Park
- Seoul National University College of Medicine; Seoul South Korea
| | - Hyunmi Kwon
- Seoul National University College of Medicine; Seoul South Korea
| | - Youn Soo Choi
- Seoul National University College of Medicine; Seoul South Korea
| | | | - Seong Hoe Park
- Seoul National University College of Medicine; Seoul South Korea
| | - Eun Bong Lee
- Seoul National University College of Medicine; Seoul South Korea
| |
Collapse
|
45
|
Aid M, Dupuy FP, Moysi E, Moir S, Haddad EK, Estes JD, Sekaly RP, Petrovas C, Ribeiro SP. Follicular CD4 T Helper Cells As a Major HIV Reservoir Compartment: A Molecular Perspective. Front Immunol 2018; 9:895. [PMID: 29967602 PMCID: PMC6015877 DOI: 10.3389/fimmu.2018.00895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Effective antiretroviral therapy (ART) has prevented the progression to AIDS and reduced HIV-related morbidities and mortality for the majority of infected individuals. However, a lifelong administration of ART is necessary, placing an inordinate burden on individuals and public health systems. Therefore, discovering therapeutic regimens able to eradicate or functionally cure HIV infection is of great importance. ART interruption leads to viral rebound highlighting the establishment and maintenance of a latent viral reservoir compartment even under long-term treatment. Follicular helper CD4 T cells (TFH) have been reported as a major cell compartment contributing to viral persistence, consequent to their susceptibility to infection and ability to release replication-competent new virions. Here, we discuss the molecular profiles and potential mechanisms that support the role of TFH cells as one of the major HIV reservoirs.
Collapse
Affiliation(s)
- Malika Aid
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA, United States
| | - Frank P Dupuy
- Centre hospitalier de l'Université de Montréal, Montreal, QC, United States
| | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIH, Bethesda, MD, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Elias K Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jacob D Estes
- Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Rafick Pierre Sekaly
- Pathology Department, Case Western Reserve University, Cleveland, OH, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIH, Bethesda, MD, United States
| | | |
Collapse
|
46
|
Miyazawa R, Murata N, Matsuura Y, Shibasaki Y, Yabu T, Nakanishi T. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp. Front Immunol 2018; 9:1321. [PMID: 29951063 PMCID: PMC6008321 DOI: 10.3389/fimmu.2018.01321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1+ and CD8α+ T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3ε, zap-70, and lck in CD4-1+ and CD8α+ T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.
Collapse
Affiliation(s)
| | - Norifumi Murata
- Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Yuta Matsuura
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Minami-ise, Japan
| | - Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Takeshi Yabu
- Department of Applied Biological Science, Nihon University, Fujisawa, Japan
| | | |
Collapse
|
47
|
Maroilley T, Berri M, Lemonnier G, Esquerré D, Chevaleyre C, Mélo S, Meurens F, Coville JL, Leplat JJ, Rau A, Bed'hom B, Vincent-Naulleau S, Mercat MJ, Billon Y, Lepage P, Rogel-Gaillard C, Estellé J. Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues. Sci Rep 2018; 8:9077. [PMID: 29899562 PMCID: PMC5998120 DOI: 10.1038/s41598-018-27019-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/18/2018] [Indexed: 01/09/2023] Open
Abstract
The epithelium of the intestinal mucosa and the gut-associated lymphoid tissues (GALT) constitute an essential physical and immunological barrier against pathogens. In order to study the specificities of the GALT transcriptome in pigs, we compared the transcriptome profiles of jejunal and ileal Peyer’s patches (PPs), mesenteric lymph nodes (MLNs) and peripheral blood (PB) of four male piglets by RNA-Seq. We identified 1,103 differentially expressed (DE) genes between ileal PPs (IPPs) and jejunal PPs (JPPs), and six times more DE genes between PPs and MLNs. The master regulator genes FOXP3, GATA3, STAT4, TBX21 and RORC were less expressed in IPPs compared to JPPs, whereas the transcription factor BCL6 was found more expressed in IPPs. In comparison between IPPs and JPPs, our analyses revealed predominant differential expression related to the differentiation of T cells into Th1, Th2, Th17 and iTreg in JPPs. Our results were consistent with previous reports regarding a higher T/B cells ratio in JPPs compared to IPPs. We found antisense transcription for respectively 24%, 22% and 14% of the transcripts detected in MLNs, PPs and PB, and significant positive correlations between PB and GALT transcriptomes. Allele-specific expression analyses revealed both shared and tissue-specific cis-genetic control of gene expression.
Collapse
Affiliation(s)
- T Maroilley
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M Berri
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | - G Lemonnier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - D Esquerré
- GenPhySE, INRA, INPT, ENVT, Université de Toulouse, 31326, Castenet-Tolosan, France
| | - C Chevaleyre
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | - S Mélo
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | - F Meurens
- ISP, INRA, Université de Tours, 37380, Nouzilly, France.,BIOEPAR, INRA, Oniris, La Chantrerie, 44307, Nantes, France
| | - J L Coville
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - J J Leplat
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,LREG, IRCM, DRF, CEA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - A Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - B Bed'hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Vincent-Naulleau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,LREG, IRCM, DRF, CEA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M J Mercat
- BIOPORC and IFIP-Institut du porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu, France
| | - Y Billon
- GENESI, INRA, 17700, Surgères, France
| | - P Lepage
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - C Rogel-Gaillard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - J Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
48
|
Chromatin remodeling by the NuRD complex regulates development of follicular helper and regulatory T cells. Proc Natl Acad Sci U S A 2018; 115:6780-6785. [PMID: 29891681 DOI: 10.1073/pnas.1805239115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage commitment and differentiation into CD4+ T cell subsets reflect an interplay between chromatin regulators and transcription factors (TF). Follicular T cell development is regulated by the Bcl6 TF, which helps determine the phenotype and follicular localization of both CD4+ follicular helper T cells (TFH) and follicular regulatory T cells (TFR). Here we show that Bcl6-dependent control of follicular T cells is mediated by a complex formed between Bcl6 and the Mi-2β-nucleosome-remodeling deacetylase complex (Mi-2β-NuRD). Formation of this complex reflects the contribution of the intracellular isoform of osteopontin (OPN-i), which acts as a scaffold to stabilize binding between Bcl6 and the NuRD complex that together regulate the genetic program of both TFH and TFR cells. Defective assembly of the Bcl6-NuRD complex distorts follicular T cell differentiation, resulting in impaired TFR development and skewing of the TFH lineage toward a TH1-like program that includes expression of Blimp1, Tbet, granzyme B, and IFNγ. These findings define a core Bcl6-directed transcriptional complex that enables CD4+ follicular T cells to regulate the germinal center response.
Collapse
|
49
|
Balelli I, Milišić V, Wainrib G. Random walks on binary strings applied to the somatic hypermutation of B-cells. Math Biosci 2018; 300:168-186. [DOI: 10.1016/j.mbs.2018.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/19/2018] [Indexed: 11/29/2022]
|
50
|
Mendoza P, Martínez-Martín N, Bovolenta ER, Reyes-Garau D, Hernansanz-Agustín P, Delgado P, Diaz-Muñoz MD, Oeste CL, Fernández-Pisonero I, Castellano E, Martínez-Ruiz A, Alonso-Lopez D, Santos E, Bustelo XR, Kurosaki T, Alarcón B. R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes. Sci Signal 2018; 11:11/532/eaal1506. [DOI: 10.1126/scisignal.aal1506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|