1
|
Chhajed SS, Wright IJ, Perez-Priego O. Theory and tests for coordination among hydraulic and photosynthetic traits in co-occurring woody species. THE NEW PHYTOLOGIST 2024; 244:1760-1774. [PMID: 39044658 DOI: 10.1111/nph.19987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/30/2024] [Indexed: 07/25/2024]
Abstract
Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended 'least-cost' optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ΨPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆Ψ) had an interactive effect on ci : ca. CS, WD and ΨPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon-water balance.
Collapse
Affiliation(s)
- Shubham S Chhajed
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ian J Wright
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Oscar Perez-Priego
- Department of Forest Engineering, University of Córdoba, Campus de Rabanales, Crta. N-IV km. 396, C.P. 14071, Córdoba, Spain
| |
Collapse
|
2
|
Zhao B, Song W, Chen Z, Zhang Q, Liu D, Bai Y, Li Z, Dong H, Gao X, Li X, Wang X. A process-based model of climate-driven xylogenesis and tree-ring formation in broad-leaved trees (BTR). TREE PHYSIOLOGY 2024; 44:tpae127. [PMID: 39331735 DOI: 10.1093/treephys/tpae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The process-based xylem formation model is an important tool for understanding the radial growth process of trees and its influencing factors. While numerous xylogenesis models for conifers have been developed, there is a lack of models available for non-coniferous trees. In this study, we present a process-based model designed for xylem formation and ring growth in broad-leaved trees, which we call the Broad-leaved Tree-Ring (BTR) model. Climate factors, including daylength, air temperature, soil moisture and vapor pressure deficit, drive daily xylem cell production (fibers and vessels) and growth (enlargement, wall deposition). The model calculates the total cell area in the simulated zone to determine the annual ring width. The results demonstrate that the BTR model can basically simulate inter-annual variation in ring width and intra-annual changes in vessel and fiber cell formation in Fraxinus mandshurica (ring-porous) and Betula platyphylla (diffuse-porous). The BTR model is a potential tool for understanding how different trees form wood and how climate change influences this process.
Collapse
Affiliation(s)
- Binqing Zhao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Wenqi Song
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zecheng Chen
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Di Liu
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yuxin Bai
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Hanjun Dong
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xiaohui Gao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xingxing Li
- Shijiazhuang Landscape Greening Engineering Project Construction Center, 435-2 Huaizhong Road, Yuhua District, Shijiazhuang 050000, China
| | - Xiaochun Wang
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
3
|
Beckett HAA, Webb D, Turner M, Sheppard A, Ball MC. Bark water uptake through lenticels increases stem hydration and contributes to stem swelling. PLANT, CELL & ENVIRONMENT 2024; 47:72-90. [PMID: 37811590 DOI: 10.1111/pce.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface. Furthermore, using a fluorescent symplastic tracer dye we provide the first evidence that lenticels on the outer bark surface facilitate BWU, thus increasing stem water content by up to 3.7%. X-ray micro-computed tomography showed that BWU was sufficient to cause measurable swelling of stem tissue layers increasing whole stem cross-sectional area by 0.83 mm2 or 2.8%, implicating it as a contributor to the diel patterns of water storage recharge that buffer xylem water potential and maintain hydration of living tissue.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, Australia
| | - Michael Turner
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Adrian Sheppard
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
4
|
Kulhánek M, Asrade DA, Suran P, Sedlář O, Černý J, Balík J. Plant Nutrition-New Methods Based on the Lessons of History: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:4150. [PMID: 38140480 PMCID: PMC10747035 DOI: 10.3390/plants12244150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
As with new technologies, plant nutrition has taken a big step forward in the last two decades. The main objective of this review is to briefly summarise the main pathways in modern plant nutrition and attract potential researchers and publishers to this area. First, this review highlights the importance of long-term field experiments, which provide us with valuable information about the effects of different applied strategies. The second part is dedicated to the new analytical technologies (tomography, spectrometry, and chromatography), intensively studied environments (rhizosphere, soil microbial communities, and enzymatic activity), nutrient relationship indexes, and the general importance of proper data evaluation. The third section is dedicated to the strategies of plant nutrition, i.e., (i) plant breeding, (ii) precision farming, (iii) fertiliser placement, (iv) biostimulants, (v) waste materials as a source of nutrients, and (vi) nanotechnologies. Finally, the increasing environmental risks related to plant nutrition, including biotic and abiotic stress, mainly the threat of soil salinity, are mentioned. In the 21st century, fertiliser application trends should be shifted to local application, precise farming, and nanotechnology; amended with ecofriendly organic fertilisers to ensure sustainable agricultural practices; and supported by new, highly effective crop varieties. To optimise agriculture, only the combination of the mentioned modern strategies supported by a proper analysis based on long-term observations seems to be a suitable pathway.
Collapse
Affiliation(s)
- Martin Kulhánek
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic; (D.A.A.); (P.S.); (O.S.); (J.Č.); (J.B.)
| | | | | | | | | | | |
Collapse
|
5
|
Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C. Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163124. [PMID: 37001665 DOI: 10.1016/j.scitotenv.2023.163124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the β-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.
Collapse
Affiliation(s)
- Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| | - Barbara Baesso Moura
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| |
Collapse
|
6
|
Bucci SJ, Carbonell-Silletta L, Cavallaro A, Arias NS, Campanello PI, Goldstein G, Scholz FG. Bark and sapwood water storage and the atypical pattern of recharge and discharge of water reservoirs indicate low vulnerability to drought in Araucaria araucana. TREE PHYSIOLOGY 2023; 43:248-261. [PMID: 36209429 DOI: 10.1093/treephys/tpac113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Stored water in inner tissues influences the plant water economy, which might be particularly relevant for trees facing increasing dry conditions due to climate change. We studied the water storage in the inner bark and the sapwood of Araucaria araucana (Molina) K. Koch. This species has an extremely thick inner bark and thus it can be used as a model system to assess the impact of internal water storage on plant water balance. Specifically, we analyzed the water circulation pathways in and out of the elastic water storages by using simultaneously frequency domain moisture sensors and dendrometers inserted in the inner bark and in the sapwood, and sap flow determinations during the dry season. The daily patterns of water content and expansion and contraction of the stem tissues were similar to the sap flow pattern. The whole-stem water content and diameter increased in the morning and decreased in the afternoon, contrary to the typical pattern observed in most tree species. An osmotic gradient favoring the water influx from sapwood to inner bark was observed in the morning. There were no lags in the onset of sap flow between different stem heights at the time that recharge of reservoirs occurred. Sap flow at 6 m height was higher than basal sap flow in the afternoon, when the sapwood water content started to decline followed by the water content of the inner bark. Inner bark and sapwood contributed 5-11% to total daily transpiration, allowing the maintenance of high water potentials in the dry season. Our results suggest that the stored water in the stems, the atypical dynamic of recharge and discharge of water from reservoirs and the high tissue capacitance may make an important contribution to the survival of A. araucana during drought periods by maintaining the water balance.
Collapse
Affiliation(s)
- Sandra Janet Bucci
- Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
| | - Luisina Carbonell-Silletta
- Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
| | - Agustin Cavallaro
- Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
| | - Nadia Soledad Arias
- Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
| | - Paula Inés Campanello
- CONICET and Departamento de Ingeniería Forestal, Facultad de Ingeniería, UNPSJB, Esquel U9200, Argentina
| | - Guillermo Goldstein
- Instituto de Ecología, Genética y Evolución de Buenos Aires. UBA-CONICET, Buenos Aires 1425, Argentina
- University of Miami, Coral Gables, FL 33124, USA
| | - Fabián Gustavo Scholz
- Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
- Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9000 Comodoro Rivadavia, Argentina
| |
Collapse
|
7
|
Jiang H, Gu H, Chen H, Sun H, Zhang X, Liu X. Comparative cryogenic extraction rehydration experiments reveal isotope fractionation during root water uptake in Gramineae. THE NEW PHYTOLOGIST 2022; 236:1267-1280. [PMID: 35945699 DOI: 10.1111/nph.18423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Determining whether isotope fractionation occurs during root water uptake is a prerequisite for using stem or xylem water isotopes to trace water sources. However, it is unclear whether isotope fractionation occurs during root water uptake in gramineous crops. We conducted prevalidation experiments to estimate the isotope measurement bias associated with cryogenic vacuum distillation (CVD). Next, we assessed isotope fractionation during root water uptake in two common agronomic crops, wheat (Triticum aestivum L.) and maize (Zea mays L.), under flooding after postdrought stress conditions. Cryogenic vacuum distillation caused significant depletion of 2 H but negligible effects on 18 O for both soil and stem water. Surprisingly CVD caused depletion of 2 H and enrichment of 18 O in root water. Stem and root water δ18 O were more than soil water δ18 O, even considering the uncertainty of CVD. Soil water 18 O was depleted compared with irrigation water 18 O in the pots with plants but enriched relative to irrigation water 18 O in the pots without plants. These results indicate that isotope fractionation occurred during wheat and maize root water uptake after full irrigation and led to a heavy isotope enrichment in stem water. Therefore, the xylem/stem water isotope approach widely used to trace water sources should be carefully evaluated.
Collapse
Affiliation(s)
- Hanbing Jiang
- Key Laboratory of Agricultural Water Resources, the Innovative Academy of Seed Design, the Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huijie Gu
- Key Laboratory of Agricultural Water Resources, the Innovative Academy of Seed Design, the Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hui Chen
- College of Geographical Sciences, Hebei Normal University, Shijiazhuang, 050016, Hebei, China
| | - Hongyong Sun
- Key Laboratory of Agricultural Water Resources, the Innovative Academy of Seed Design, the Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Xiying Zhang
- Key Laboratory of Agricultural Water Resources, the Innovative Academy of Seed Design, the Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Xiuwei Liu
- Key Laboratory of Agricultural Water Resources, the Innovative Academy of Seed Design, the Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
8
|
Lauriks F, Salomón RL, De Roo L, Goossens W, Leroux O, Steppe K. Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. PLANT PHYSIOLOGY 2022; 188:268-284. [PMID: 34718790 PMCID: PMC8774844 DOI: 10.1093/plphys/kiab497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The timing of abiotic stress elicitors on wood formation largely affects xylem traits that determine xylem efficiency and vulnerability. Nonetheless, seasonal variability of elevated CO2 (eCO2) effects on tree functioning under drought remains largely unknown. To address this knowledge gap, 1-year-old aspen (Populus tremula L.) trees were grown under ambient (±445 ppm) and elevated (±700 ppm) CO2 and exposed to an early (spring/summer 2019) or late (summer/autumn 2018) season drought event. Stomatal conductance and stem shrinkage were monitored in vivo as xylem water potential decreased. Additional trees were harvested for characterization of wood anatomical traits and to determine vulnerability and desorption curves via bench dehydration. The abundance of narrow vessels decreased under eCO2 only during the early season. At this time, xylem vulnerability to embolism formation and hydraulic capacitance during severe drought increased under eCO2. Contrastingly, stomatal closure was delayed during the late season, while hydraulic vulnerability and capacitance remained unaffected under eCO2. Independently of the CO2 treatment, elastic, and inelastic water pools depleted simultaneously after 50% of complete stomatal closure. Our results suggest that the effect of eCO2 on drought physiology and wood traits are small and variable during the growing season and question a sequential capacitive water release from elastic and inelastic pools as drought proceeds.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Olivier Leroux
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Williams CB, Reese Næsborg R, Ambrose AR, Baxter WL, Koch GW, Dawson TE. The dynamics of stem water storage in the tops of Earth's largest trees-Sequoiadendron giganteum. TREE PHYSIOLOGY 2021; 41:2262-2278. [PMID: 34104960 DOI: 10.1093/treephys/tpab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Water stored in tree stems (i.e., trunks and branches) is an important contributor to transpiration that can improve photosynthetic carbon gain and reduce the probability of cavitation. However, in tall trees, the capacity to store water may decline with height because of chronically low water potentials associated with the gravitational potential gradient. We quantified the importance of elastic stem water storage in the top 5-6 m of large (4.2-5.0 m diameter at breast height, 82.1-86.3 m tall) Sequoiadendron giganteum (Lindley) J. Buchholz (giant sequoia) trees using a combination of architectural measurements and automated sensors that monitored summertime diel rhythms in sap flow, stem diameter and water potential. Stem water storage contributed 1.5-1.8% of water transpired at the tree tops, and hydraulic capacitance ranged from 2.6 to 4.1 l MPa-1 m-3. These values, which are considerably smaller than reported for shorter trees, may be associated with persistently low water potentials imposed by gravity and could indicate a trend of decreasing water storage dynamics with height in tree. Branch diameter contraction and expansion consistently and substantially lagged behind fluxes in water potential and sap flow, which occurred in sync. This lag suggests that the inner bark, which consists mostly of live secondary phloem tissue, was an important hydraulic capacitor, and that hydraulic resistance between xylem and phloem retards water transfer between these tissues. We also measured tree-base sap flux, which lagged behind that measured in trunks near the tree tops, indicating additional storage in the large trunks between these measurement positions. Whole-tree sap flow ranged from 2227 to 3752 l day-1, corroborating previous records for similar-sized giant sequoia and representing the largest yet reported for any individual tree. Despite such extraordinarily high daily water use, we estimate that water stored in tree-top stems contributes minimally to transpiration on typical summer days.
Collapse
Affiliation(s)
- Cameron B Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Channel Islands National Park, Ventura, CA 93001, USA
- Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
| | - Rikke Reese Næsborg
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
| | - Anthony R Ambrose
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- The Marmot Society, South Lake Tahoe, CA 96150, USA
| | - Wendy L Baxter
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- The Marmot Society, South Lake Tahoe, CA 96150, USA
| | - George W Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Lauriks F, Salomón RL, De Roo L, Steppe K. Leaf and tree responses of young European aspen trees to elevated atmospheric CO2 concentration vary over the season. TREE PHYSIOLOGY 2021; 41:1877-1892. [PMID: 33824983 DOI: 10.1093/treephys/tpab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Elevated atmospheric CO2 concentration (eCO2) commonly stimulates net leaf assimilation, decreases stomatal conductance and has no clear effect on leaf respiration. However, effects of eCO2 on whole-tree functioning and its seasonal dynamics remain far more uncertain. To evaluate temporal and spatial variability in eCO2 effects, 1-year-old European aspen trees were grown in two treatment chambers under ambient (aCO2, 400 p.p.m.) and elevated (eCO2, 700 p.p.m.) CO2 concentrations during an early (spring 2019) and late (autumn 2018) seasonal experiment. Leaf (net carbon assimilation, stomatal conductance and leaf respiration) and whole-tree (stem growth, sap flow and stem CO2 efflux) responses to eCO2 were measured. Under eCO2, carbon assimilation was stimulated during the early (1.63-fold) and late (1.26-fold) seasonal experiments. Stimulation of carbon assimilation changed over time with largest increases observed in spring when stem volumetric growth was highest, followed by late season down-regulation, when stem volumetric growth ceased. The neutral eCO2 effect on stomatal conductance and leaf respiration measured at leaf level paralleled the unresponsive canopy conductance (derived from sap flow measurements) and stem CO2 efflux measured at tree level. Our results highlight that seasonality in carbon demand for tree growth substantially affects the magnitude of the response to eCO2 at both leaf and whole-tree level.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Epron D, Kamakura M, Azuma W, Dannoura M, Kosugi Y. Diurnal variations in the thickness of the inner bark of tree trunks in relation to xylem water potential and phloem turgor. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:112-124. [PMID: 37283860 PMCID: PMC10168075 DOI: 10.1002/pei3.10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 06/08/2023]
Abstract
The inner bark plays important roles in tree stems, including radial exchange of water with the xylem and translocation of carbohydrates. Both processes affect the water content and the thickness of the inner bark on a diurnal basis. For the first time, we simultaneously measured the diurnal variations in the inner bark thickness of hinoki cypress (Chamaecyparis obtusa) by using point dendrometers and those of local xylem potential by using stem psychrometers located next to the dendrometers to determine how these variations were related to each other, to phloem turgor and carbohydrate transport. We also estimated the axial hydrostatic pressure gradient by measuring the osmolality of the sap extracted from the inner bark. The inner bark shrunk during the day and swelled during the night with an amplitude related to day-to-day and seasonal variations in climate. The relationship between changes in xylem water potential and inner bark thickness exhibited a hysteresis loop during the day with a median lag of 2 h. A phloem turgor-related signal can be retrieved from the diurnal variations in the inner bark thickness, which was higher at the upper than at the lower position along the trunk. However, a downward hydrostatic pressure gradient was only observed at dawn, suggesting diurnal variations in the phloem sap flow velocity.
Collapse
Affiliation(s)
- Daniel Epron
- Graduate School of AgricultureKyoto UniversityKyotoJapan
- AgroParisTechINRAEUMR SILVAUniversité de LorraineNancyFrance
| | - Mai Kamakura
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Wakana Azuma
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | | | - Yoshiko Kosugi
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
12
|
Vitali V, Sutka M, Ojeda L, Aroca R, Amodeo G. Root hydraulics adjustment is governed by a dominant cell-to-cell pathway in Beta vulgaris seedlings exposed to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110873. [PMID: 33775369 DOI: 10.1016/j.plantsci.2021.110873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Soil salinity reduces root hydraulic conductivity (Lpr) of several plant species. However, how cellular signaling and root hydraulic properties are linked in plants that can cope with water restriction remains unclear. In this work, we exposed the halotolerant species red beet (Beta vulgaris) to increasing concentrations of NaCl to determine the components that might be critical to sustaining the capacity to adjust root hydraulics. Our strategy was to use both hydraulic and cellular approaches in hydroponically grown seedlings during the first osmotic phase of salt stress. Interestingly, Lpr presented a bimodal profile response apart from the magnitude of the imposed salt stress. As well as Lpr, the PIP2-aquaporin profile follows an unphosphorylated/phosphorylated pattern when increasing NaCl concentration while PIP1 aquaporins remain constant. Lpr also shows high sensitivity to cycloheximide. In low NaCl concentrations, Lpr was high and 70 % of its capacity could be attributed to the CHX-inhibited cell-to-cell pathway. More interestingly, roots can maintain a constant spontaneous exudated flow that is independent of the applied NaCl concentration. In conclusion, Beta vulgaris root hydraulic adjustment completely lies in a dominant cell-to-cell pathway that contributes to satisfying plant water demands.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Lucas Ojeda
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales & Instituto de Biodiversidad, Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Preisler Y, Tatarinov F, Grünzweig JM, Yakir D. Seeking the "point of no return" in the sequence of events leading to mortality of mature trees. PLANT, CELL & ENVIRONMENT 2021; 44:1315-1328. [PMID: 33175417 DOI: 10.1111/pce.13942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Drought-related tree mortality is increasing globally, but the sequence of events leading to it remains poorly understood. To identify this sequence, we used a 2016 tree mortality event in a semi-arid pine forest where dendrometry and sap flow measurements were carried out in 31 trees, of which seven died. A comparative analysis revealed three stages leading to mortality. First, a decrease in tree diameter in all dying trees, but not in the surviving trees, 8 months "prior to the visual signs of mortality" (PVSM; e.g., near complete canopy browning). Second, a decay to near zero in the diurnal stem swelling/shrinkage dynamics, reflecting the loss of stem radial water flow in the dying trees, 6 months PVSM. Third, cessation of stem sap flow 3 months PVSM. Eventual mortality could therefore be detected long before visual signs were observed, and the three stages identified here demonstrated the differential effects of drought on stem growth, water storage capacity and soil water uptake. The results indicated that breakdown of stem radial water flow and phloem function is a critical element in defining the "point of no return" in the sequence of events leading to mortality of mature trees.
Collapse
Affiliation(s)
- Yakir Preisler
- Earth and Planetary Science Department, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Fedor Tatarinov
- Earth and Planetary Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dan Yakir
- Earth and Planetary Science Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P. Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. THE NEW PHYTOLOGIST 2021; 229:213-229. [PMID: 32790914 DOI: 10.1111/nph.16872] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 05/17/2023]
Abstract
A valid representation of intra-annual wood formation processes in global vegetation models is vital for assessing climate change impacts on the forest carbon stock. Yet, wood formation is generally modelled with photosynthesis, despite mounting evidence that cambial activity is rather directly constrained by limiting environmental factors. Here, we apply a state-of-the-art turgor-driven growth model to simulate 4 yr of hourly stem radial increment from Picea abies (L.) Karst. and Larix decidua Mill. growing along an elevational gradient. For the first time, wood formation observations were used to validate weekly to annual stem radial increment simulations, while environmental measurements were used to assess the climatic constraints on turgor-driven growth. Model simulations matched the observed timing and dynamics of wood formation. Using the detailed model outputs, we identified a strict environmental regulation on stem growth (air temperature > 2°C and soil water potential > -0.6 MPa). Warmer and drier summers reduced the growth rate as a result of turgor limitation despite warmer temperatures being favourable for cambial activity. These findings suggest that turgor is a central driver of the forest carbon sink and should be considered in next-generation vegetation models, particularly in the context of global warming and increasing frequency of droughts.
Collapse
Affiliation(s)
- Richard L Peters
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstrasse 6, Basel, CH-4056, Switzerland
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - Henri E Cuny
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Institut National de l'Information Géographique et Forestière (IGN), 1 rue des blanches terres, Champigneulles, 54115, France
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, B-9000, Belgium
| | - David C Frank
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Laboratory of Tree-Ring Research, 1215 E. Lowell Street, Tucson, AZ, 8572, USA
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| | | | - Antoine Cabon
- Joint Research Unit CTFC - AGROTECNIO, Solsona, E-25280, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, E-08193, Spain
| | - Patrick Fonti
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
15
|
Coussement JR, De Swaef T, Lootens P, Steppe K. Turgor-driven plant growth applied in a soybean functional-structural plant model. ANNALS OF BOTANY 2020; 126:729-744. [PMID: 32304206 PMCID: PMC7489068 DOI: 10.1093/aob/mcaa076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/16/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Turgor pressure within a plant cell represents the key to the mechanistical descriptiion of plant growth, combining the effects of both water and carbon availability. The high level of spatio-temporal variation and diurnal dynamics in turgor pressure within a single plant make it a challenge to model these on the fine spatial scale required for functional-structural plant models (FSPMs). A conceptual model for turgor-driven growth in FSPMs has been established previously, but its practical use has not yet been explored. METHODS A turgor-driven growth model was incorporated in a newly established FSPM for soybean. The FSPM simulates dynamics in photosynthesis, transpiration and turgor pressure in direct relation to plant growth. Comparisons of simulations with field data were used to evaluate the potential and shortcomings of the modelling approach. KEY RESULTS Model simulations revealed the need to include an initial seed carbon contribution, a more realistic sink function, an estimation of respiration, and the distinction between osmotic and structural sugars, in order to achieve a realistic model of plant growth. However, differences between simulations and observations remained in individual organ growth patterns and under different environmental conditions. This exposed the need to further investigate the assumptions of developmental and environmental (in)sensitivity of the parameters, which represent physiological and biophysical organ properties in the model, in future research. CONCLUSIONS The model in its current form is primarily a diagnostic tool, to better understand and model the behaviour of water relations on the scale of individual plant organs throughout the plant life cycle. Potential future applications include its use as a phenotyping tool to capture differences in plant performance between genotypes and growing environments in terms of specific plant characteristics. Additionally, focused experiments can be used to further improve the model mechanisms to lead to better predictive FSPMs, including scenarios of water deficit.
Collapse
Affiliation(s)
- Jonas R Coussement
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Gent, Belgium
- Plant Sciences Unit, Institute of Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Tom De Swaef
- Plant Sciences Unit, Institute of Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Peter Lootens
- Plant Sciences Unit, Institute of Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Gent, Belgium
| |
Collapse
|
16
|
Abstract
Modeling is a fundamental part of quantitative science used to bring together several quantitative components, often developed though detailed reductionist approach on component parts, e.g., sucrose transport through a membrane osmotic relation. It is now generally accepted that phloem transport is the result of bulk solution flow generated by the difference in osmotic pressure between source and sink tissues. However, there is still little agreement on how different sink tissues compete for available carbohydrate. Furthermore, the impact of phloem pathway leakage (unloading) and reloading on source-to-sink carbon transport remains unclear. Moreover, it is debated to what degree the interactions between phloem and xylem flows influence carbohydrate source-sink relations. These aspects are extremely difficult to research by a reductionist approach, with modeling being an important tool to examine the consequences of proposed mechanisms, which can then be tested on whole plants.Phloem/xylem modeling has been at the limits of quantitative modeling, especially when dynamic models are needed to explain tracer studies. Advances in computing now enable more realistic modeling, which are utilized by the PiafMunch approach described here. This model enables a high level of mechanistic detail to be incorporated and the observable effect of it to be tested. In the most recent version of the software with the introduction of tracer dynamics, it can now predict the effects of specific phloem mechanisms upon the shape of evolving tracer profiles.
Collapse
|
17
|
Gimenez BO, Jardine KJ, Higuchi N, Negrón-Juárez RI, Sampaio-Filho IDJ, Cobello LO, Fontes CG, Dawson TE, Varadharajan C, Christianson DS, Spanner GC, Araújo AC, Warren JM, Newman BD, Holm JA, Koven CD, McDowell NG, Chambers JQ. Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015-2016 El Niño Event in the Amazon Forest. FRONTIERS IN PLANT SCIENCE 2019; 10:830. [PMID: 31316536 PMCID: PMC6611341 DOI: 10.3389/fpls.2019.00830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/07/2019] [Indexed: 05/11/2023]
Abstract
Current climate change scenarios indicate warmer temperatures and the potential for more extreme droughts in the tropics, such that a mechanistic understanding of the water cycle from individual trees to landscapes is needed to adequately predict future changes in forest structure and function. In this study, we contrasted physiological responses of tropical trees during a normal dry season with the extreme dry season due to the 2015-2016 El Niño-Southern Oscillation (ENSO) event. We quantified high resolution temporal dynamics of sap velocity (Vs), stomatal conductance (gs) and leaf water potential (ΨL) of multiple canopy trees, and their correlations with leaf temperature (Tleaf) and environmental conditions [direct solar radiation, air temperature (Tair) and vapor pressure deficit (VPD)]. The experiment leveraged canopy access towers to measure adjacent trees at the ZF2 and Tapajós tropical forest research (near the cities of Manaus and Santarém). The temporal difference between the peak of gs (late morning) and the peak of VPD (early afternoon) is one of the major regulators of sap velocity hysteresis patterns. Sap velocity displayed species-specific diurnal hysteresis patterns reflected by changes in Tleaf. In the morning, Tleaf and sap velocity displayed a sigmoidal relationship. In the afternoon, stomatal conductance declined as Tleaf approached a daily peak, allowing ΨL to begin recovery, while sap velocity declined with an exponential relationship with Tleaf. In Manaus, hysteresis indices of the variables Tleaf-Tair and ΨL-Tleaf were calculated for different species and a significant difference (p < 0.01, α = 0.05) was observed when the 2015 dry season (ENSO period) was compared with the 2017 dry season ("control scenario"). In some days during the 2015 ENSO event, Tleaf approached 40°C for all studied species and the differences between Tleaf and Tair reached as high at 8°C (average difference: 1.65 ± 1.07°C). Generally, Tleaf was higher than Tair during the middle morning to early afternoon, and lower than Tair during the early morning, late afternoon and night. Our results support the hypothesis that partial stomatal closure allows for a recovery in ΨL during the afternoon period giving an observed counterclockwise hysteresis pattern between ΨL and Tleaf.
Collapse
Affiliation(s)
| | - Kolby J. Jardine
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Robinson I. Negrón-Juárez
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | - Clarissa G. Fontes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Todd E. Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Charuleka Varadharajan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Danielle S. Christianson
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | - Jeffrey M. Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brent D. Newman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jennifer A. Holm
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Charles D. Koven
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nate G. McDowell
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jeffrey Q. Chambers
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Geography, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
18
|
Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees. FORESTS 2019. [DOI: 10.3390/f10050396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.
Collapse
|
19
|
Rodríguez-Gamir J, Xue J, Clearwater MJ, Meason DF, Clinton PW, Domec JC. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. PLANT, CELL & ENVIRONMENT 2019; 42:717-729. [PMID: 30307040 DOI: 10.1111/pce.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
Stomatal regulation is crucial for forest species performance and survival on drought-prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs ) and leaf water potential (Ψleaf ). All clones experienced a substantial decrease in root-specific root hydraulic conductance (Kroot-r ) in response to the water stress, but leaf-specific shoot hydraulic conductance (Kshoot-l ) did not change in any of the clones. The reduction in Kroot-r caused a decrease in leaf-specific whole-plant hydraulic conductance (Kplant-l ). Among clones, the larger the decrease in Kplant-l , the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot-r and gs . Our results demonstrated that the reduction in Kplant-l , attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant-l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.
Collapse
Affiliation(s)
- Juan Rodríguez-Gamir
- Departamento de Suelos y Riegos, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra de El boquerón s/n. 38270. San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Forest Systems, Scion, PO Box 29237, Christchurch, 8440, New Zealand
| | - Jianming Xue
- Forest Systems, Scion, PO Box 29237, Christchurch, 8440, New Zealand
| | - Michael J Clearwater
- Environmental Research Institute, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - Dean F Meason
- Forest Systems, Scion, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Peter W Clinton
- Forest Systems, Scion, PO Box 29237, Christchurch, 8440, New Zealand
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR INRA ISPA 1391, Gradignan, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
20
|
di Francescantonio D, Villagra M, Goldstein G, Campanello PI. Leaf phenology and water-use patterns of canopy trees in Northern Argentinean subtropical forests. TREE PHYSIOLOGY 2018; 38:1841-1854. [PMID: 29986095 DOI: 10.1093/treephys/tpy072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Tree physiological processes are affected not only by environmental conditions, but also by phenological leaf stages. During foliar expansion, rapid changes occur, such as the activation of metabolic processes that encompass a hydraulic link between xylem and phloem pathways at a whole-tree level. Daily and seasonal changes in stem diameter may reveal different temporal dynamics of water use and recharge in tree reservoirs. Foliar phenological patterns were studied in relation to stem dimensional changes in 10 canopy tree species with different phenological patterns (three deciduous, three brevideciduous and four evergreen species). Additionally, we assessed (i) daily sap flow fluctuations in branch and main stem, (ii) diurnal changes in sapwood volumetric water content and (iii) stem radius variations during leafless, expanding and mature leaves periods in three of the 10 tree species (two deciduous and one brevideciduous). During the leaf expansion phase, the diameter of trees decreased in all 10 species, with a larger impact on deciduous and brevideciduous species. For the subset of deciduous and brevideciduous species, the movement of long-distance water transport occurred first near the branches and then in the main stem during the leafless stage. Changes in stored water use and a decrease in the volumetric water content and the radius of the main stem during this period suggest that there is a contribution of water from internal stem reservoirs toward the construction of new leaves.
Collapse
Affiliation(s)
- Débora di Francescantonio
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Misiones (UNaM), Bertoni 85, Puerto Iguazú, Misiones, Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA), Bertoni 85, Puerto Iguazú, Misiones, Argentina
| | - Mariana Villagra
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Misiones (UNaM), Bertoni 85, Puerto Iguazú, Misiones, Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA), Bertoni 85, Puerto Iguazú, Misiones, Argentina
| | - Guillermo Goldstein
- Laboratorio de Ecología Funcional, Departamento de Ecología Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula I Campanello
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Misiones (UNaM), Bertoni 85, Puerto Iguazú, Misiones, Argentina
- Centro de Estudios Ambientales Integrados, Universidad Nacional de la Patagonia San Juan Bosco, Facultad de Ingeniería, Esquel, Chubut, Argentina
| |
Collapse
|
21
|
Steppe K, Vandegehuchte MW, Van de Wal BAE, Hoste P, Guyot A, Lovelock CE, Lockington DA. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. TREE PHYSIOLOGY 2018; 38:979-991. [PMID: 29562244 DOI: 10.1093/treephys/tpy024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Mangrove forests depend on a dense structure of sufficiently large trees to fulfil their essential functions as providers of food and wood for animals and people, CO2 sinks and protection from storms. Growth of these forests is known to be dependent on the salinity of soil water, but the influence of foliar uptake of rainwater as a freshwater source, additional to soil water, has hardly been investigated. Under field conditions in Australia, stem diameter variation, sap flow and stem water potential of the grey mangrove (Avicennia marina (Forssk.) Vierh.) were simultaneously measured during alternating dry and rainy periods. We found that sap flow in A. marina was reversed, from canopy to roots, during and shortly after rainfall events. Simultaneously, stem diameters rapidly increased with growth rates up to 70 μm h-1, which is about 25-75 times the normal growth rate reported in temperate trees. A mechanistic tree model was applied to provide evidence that A. marina trees take up water through their leaves, and that this water contributes to turgor-driven stem growth. Our results indicate that direct uptake of freshwater by the canopy during rainfall supports mangrove tree growth and serve as a call to consider this water uptake pathway if we aspire to correctly assess influences of changing rainfall patterns on mangrove tree growth.
Collapse
Affiliation(s)
- Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium
| | - Maurits W Vandegehuchte
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium
| | - Bart A E Van de Wal
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium
| | - Pieter Hoste
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium
| | - Adrien Guyot
- National Centre for Groundwater Research and Training, Flinders University, Adelaide, South Australia, Australia
- School of Civil Engineering, The University of Queensland, St. Lucia, Queensland, Australia
- Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| | - Catherine E Lovelock
- National Centre for Groundwater Research and Training, Flinders University, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - David A Lockington
- National Centre for Groundwater Research and Training, Flinders University, Adelaide, South Australia, Australia
- School of Civil Engineering, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
22
|
De Baerdemaeker NJF, Hias N, Van den Bulcke J, Keulemans W, Steppe K. The effect of polyploidization on tree hydraulic functioning. AMERICAN JOURNAL OF BOTANY 2018; 105:161-171. [PMID: 29570227 DOI: 10.1002/ajb2.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. METHODS Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. KEY RESULTS Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. CONCLUSIONS Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Niek Hias
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Wannes Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
23
|
Zlinszky A, Barfod A. Short interval overnight laser scanning suggest sub-circadian periodicity of tree turgor. PLANT SIGNALING & BEHAVIOR 2018; 13:e1439655. [PMID: 29431575 PMCID: PMC5846560 DOI: 10.1080/15592324.2018.1439655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 06/02/2023]
Abstract
A recent study by Zlinszky et al., 1 uses high-resolution terrestrial laser scanning to investigate the variability of overnight movement of leaves and branches in vascular plants. This study finds among others that the investigated plants show periodic movements of around one centimetre in amplitude and 2-6 hour periodicity. Sub-circadian process dynamics of plants were so far not in focus of research, but here we compare the findings with other published cases of short-term periodicity in leaf turgor, sap flow and especially trunk diameter. Several authors have noted overnight variations in these parameters within periods of several hours and in absence of environmental changes with similar dynamics. We revisit the unknown questions of short-term plant movement and make a suggestion for future research.
Collapse
Affiliation(s)
- András Zlinszky
- Ecoinformatics and Biodiversity Section, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary
| | - Anders Barfod
- Ecoinformatics and Biodiversity Section, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Zlinszky A, Barfod A. Short interval overnight laser scanning suggests sub-circadian periodicity of tree turgor. PLANT SIGNALING & BEHAVIOR 2018; 13:e1441656. [PMID: 29452027 PMCID: PMC5846552 DOI: 10.1080/15592324.2018.1441656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
A recent study by Zlinszky et al., 1 uses high-resolution terrestrial laser scanning to investigate the variability of overnight movement of leaves and branches in vascular plants. This study finds among others that the investigated plants show periodic movements of around one centimetre in amplitude and 2-6 hour periodicity. Sub-circadian process dynamics of plants were so far not in focus of research, but here we compare the findings with other published cases of short-term periodicity in leaf turgor, sap flow and especially trunk diameter. Several authors have noted overnight variations in these parameters within periods of several hours and in absence of environmental changes with similar dynamics. We revisit the unknown questions of short-term plant movement and make a suggestion for future research.
Collapse
Affiliation(s)
- András Zlinszky
- Ecoinformatics and Biodiversity Section, Department of Bioscience, Aarhus University
- Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences
| | - Anders Barfod
- Ecoinformatics and Biodiversity Section, Department of Bioscience, Aarhus University
| |
Collapse
|
25
|
Himeno S, Azuma W, Gyokusen K, Ishii HR. Leaf water maintains daytime transpiration in young Cryptomeria japonica trees. TREE PHYSIOLOGY 2017; 37:1394-1403. [PMID: 28575486 DOI: 10.1093/treephys/tpx056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Compared with stem water storage, leaf water storage is understudied although it may be important for alleviating water stress by contributing quickly and directly to transpiration demand. To quantify the relative contribution of stem versus leaf water storage to daily water deficit, we measured diurnal changes in transpiration rate, sap-flow velocity and stem radius of 10-year-old Cryptomeria japonica D. Don trees. We assumed that the duration of time lags between transpiration rate and sap-flow velocity reflected stored water in the stem and leaf, and that stem volume change represented water content of elastic tissue. The relationship between fresh mass and water potential of the whole tree indicated that the study trees had capacity to store, on average, 91.4 ml of water per kg fresh mass at turgor loss. Leaves, sapwood and elastic tissue contributed around 51%, 29% and 20% of stored water, respectively. During morning, transpiration rates were higher than sap-flow velocity suggesting depletion of stored water. During the first 2 h after onset of transpiration, stored water contributed more than 100% of whole-tree transpiration. Depletion of leaf water (PLeaf) and sapwood water (PSap) coincided with the onset of transpiration and became maximum around 15:00 h. Depletion of elastic tissue water (PElastic) lagged behind that of PLeaf and PSap by 1-2 h, indicating that replenishment of stored water occurs late in the day when low leaf water potentials resulting from daytime transpiration drive water uptake. Maximum depletion of PLeaf was about 1-3 times and 5-10 times that of PSap and PElastic, respectively. The contribution of PLeaf to total daily transpiration was 5-8%, while those of PSap and PElastic were 3-4% and 0.7-1%, respectively. Our results suggest the importance of leaf water storage in maintaining daily transpiration in young C. japonica trees.
Collapse
Affiliation(s)
- Sawa Himeno
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Wakana Azuma
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Koichiro Gyokusen
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - H Roaki Ishii
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
26
|
Salomón RL, Limousin JM, Ourcival JM, Rodríguez-Calcerrada J, Steppe K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. PLANT, CELL & ENVIRONMENT 2017; 40:1379-1391. [PMID: 28152583 DOI: 10.1111/pce.12928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 05/25/2023]
Abstract
Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non-stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (RX ) and stem hydraulic capacitance (CS ) with predawn water potential (ΨPD ). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when CS was allowed to decrease with decreasing ΨPD . Hydraulic capacitance decreased from 62 to 25 kg m-3 MPa-1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in CS for tree hydraulic functioning, and they suggest that CS should be considered to predict the drought response of trees with models.
Collapse
Affiliation(s)
- Roberto L Salomón
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links, 653-9000, Ghent, Belgium
| | - Jean-Marc Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE, CNRS, UMR 5175, 1919 route de Mende, F-34293, Montpellier, Cedex 5, France
| | - Jean-Marc Ourcival
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE, CNRS, UMR 5175, 1919 route de Mende, F-34293, Montpellier, Cedex 5, France
| | - Jesús Rodríguez-Calcerrada
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links, 653-9000, Ghent, Belgium
| |
Collapse
|
27
|
Epila J, De Baerdemaeker NJF, Vergeynst LL, Maes WH, Beeckman H, Steppe K. Capacitive water release and internal leaf water relocation delay drought-induced cavitation in African Maesopsis eminii. TREE PHYSIOLOGY 2017; 37:481-490. [PMID: 28062725 DOI: 10.1093/treephys/tpw128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
The impact of drought on the hydraulic functioning of important African tree species, like Maesopsis eminii Engl., is poorly understood. To map the hydraulic response to drought-induced cavitation, sole reliance on the water potential at which 50% loss of xylem hydraulic conductivity (ψ50) occurs might be limiting and at times misleading as the value alone does not give a comprehensive overview of strategies evoked by M. eminii to cope with drought. This article therefore uses a methodological framework to study the different aspects of drought-induced cavitation and water relations in M. eminii. Hydraulic functioning of whole-branch segments was investigated during bench-top dehydration. Cumulative acoustic emissions and continuous weight measurements were used to quantify M. eminii's vulnerability to drought-induced cavitation and hydraulic capacitance. Wood structural traits, including wood density, vessel area, diameter and wall thickness, vessel grouping index, solitary vessel index and vessel wall reinforcement, were used to underpin observed physiological responses. On average, M. eminii's ψ50 (±SE) was -1.9 ± 0.1 MPa, portraying its xylem as drought vulnerable, just as one would expect for a common tropical pioneer. However, M. eminii additionally employed an interesting desiccation delay strategy, fuelled by internal relocation of leaf water, hydraulic capacitance and the presence of parenchyma around the xylem vessels. Our findings suggest that exclusive dependence on ψ50 would have misdirected our assessments of M. eminii's drought stress vulnerability. Hydraulic capacitance linked to anatomy and leaf-water relocation behaviour was equally important to better understand M. eminii's drought survival strategies. Because our study was conducted on branches of 3-year-old greenhouse-grown M. eminii seedlings, the findings cannot be simply extrapolated to adult M. eminii trees or their mature wood, because structural and physiological plant properties change with age. The techniques and methodological framework used in this study are, however, transferable to other species regardless of age.
Collapse
Affiliation(s)
- Jackie Epila
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
- CAVElab Computational & Applied Vegetation Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000Ghent, Belgium
| | - Lidewei L Vergeynst
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000Ghent, Belgium
| | - Wouter H Maes
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
- Remote Sensing, University of Technology Sydney (UTS), 745 Harris Str., Broadway 2007, NSW, Australia
| | - Hans Beeckman
- Laboratory for Wood Biology and Xylarium (Royal Museum for Central Africa), Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000Ghent, Belgium
| |
Collapse
|
28
|
Lintunen A, Lindfors L, Nikinmaa E, Hölttä T. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula. TREE PHYSIOLOGY 2017; 37:491-500. [PMID: 27998974 DOI: 10.1093/treephys/tpw114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the amount of water stored in the xylem parenchyma is an important reservoir for trees to buffer daily fluctuations in water relations.
Collapse
Affiliation(s)
- Anna Lintunen
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
| | - Lauri Lindfors
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
- Department of Physics, University of Helsinki, P.O. BOX 64, FI-00014 Helsinki, Finland
| | - Eero Nikinmaa
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, P.O. BOX 27, FI-00014 Helsinki, Finland
| |
Collapse
|
29
|
Zweifel R, Haeni M, Buchmann N, Eugster W. Are trees able to grow in periods of stem shrinkage? THE NEW PHYTOLOGIST 2016; 211:839-849. [PMID: 27189708 DOI: 10.1111/nph.13995] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a conceptualization of potential growth processes that may occur during periods of shrinking and expanding SR below a precedent maximum. Here, we investigated two physiological concepts: the linear growth (LG) concept, assuming linear growth, versus the zero growth (ZG) concept, assuming no growth during periods of stem shrinkage. We evaluated the physiological mechanisms underlying these two concepts and assessed their respective plausibilities using SR data obtained from 15 deciduous and evergreen trees. The application of the LG concept produced steady growth rates, whereas growth rates varied strongly under the ZG concept, more in accordance with mechanistic expectations. Further, growth increased for a maximum of 120 min after periods of stem shrinkage, indicating limited growth activity during those periods. However, this extra growth was found to be a small fraction of total growth only. Furthermore, TWD under the ZG concept was better explained by a hydraulic plant model than TWD under the LG concept. We conclude that periods of stem shrinkage allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings.
Collapse
Affiliation(s)
- Roman Zweifel
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf, CH-8903, Switzerland
| | - Matthias Haeni
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Institute of Agricultural Sciences, ETH Zurich, Universitatstrasse 2, Zurich, 8092, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitatstrasse 2, Zurich, 8092, Switzerland
| | - Werner Eugster
- Institute of Agricultural Sciences, ETH Zurich, Universitatstrasse 2, Zurich, 8092, Switzerland
| |
Collapse
|
30
|
Charra-Vaskou K, Badel E, Charrier G, Ponomarenko A, Bonhomme M, Foucat L, Mayr S, Améglio T. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:739-50. [PMID: 26585223 PMCID: PMC4737071 DOI: 10.1093/jxb/erv486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems.
Collapse
Affiliation(s)
- Katline Charra-Vaskou
- INRA, UMR PIAF, F-63100 Clermont-Ferrand, France Clermont Université, Blaise Pascal University, UMR PIAF, F-63100 Clermont-Ferrand, France
| | - Eric Badel
- INRA, UMR PIAF, F-63100 Clermont-Ferrand, France Clermont Université, Blaise Pascal University, UMR PIAF, F-63100 Clermont-Ferrand, France
| | - Guillaume Charrier
- Department of Botany, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexandre Ponomarenko
- INRA, UMR PIAF, F-63100 Clermont-Ferrand, France Clermont Université, Blaise Pascal University, UMR PIAF, F-63100 Clermont-Ferrand, France
| | - Marc Bonhomme
- INRA, UMR PIAF, F-63100 Clermont-Ferrand, France Clermont Université, Blaise Pascal University, UMR PIAF, F-63100 Clermont-Ferrand, France
| | | | - Stefan Mayr
- Department of Botany, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Thierry Améglio
- INRA, UMR PIAF, F-63100 Clermont-Ferrand, France Clermont Université, Blaise Pascal University, UMR PIAF, F-63100 Clermont-Ferrand, France
| |
Collapse
|
31
|
Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P, Mencuccini M, Nikinmaa E. Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. PLANT, CELL & ENVIRONMENT 2016; 39:233-44. [PMID: 25808847 DOI: 10.1111/pce.12541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/22/2015] [Accepted: 03/05/2015] [Indexed: 05/16/2023]
Abstract
The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water-potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field-measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water-potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late-summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water-potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth.
Collapse
Affiliation(s)
- Tommy Chan
- Department of Forest Ecology, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Teemu Hölttä
- Department of Forest Ecology, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Frank Berninger
- Department of Forest Ecology, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Harri Mäkinen
- Finnish Forest Research Institute, Vantaa, FIN-01301, Finland
| | - Pekka Nöjd
- Finnish Forest Research Institute, Vantaa, FIN-01301, Finland
| | | | - Eero Nikinmaa
- Department of Forest Ecology, University of Helsinki, Helsinki, FIN-00014, Finland
| |
Collapse
|
32
|
De Swaef T, De Schepper V, Vandegehuchte MW, Steppe K. Stem diameter variations as a versatile research tool in ecophysiology. TREE PHYSIOLOGY 2015; 35:1047-61. [PMID: 26377875 DOI: 10.1093/treephys/tpv080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
High-resolution stem diameter variations (SDV) are widely recognized as a useful drought stress indicator and have therefore been used in many irrigation scheduling studies. More recently, SDV have been used in combination with other plant measurements and biophysical modelling to study fundamental mechanisms underlying whole-plant functioning and growth. The present review aims to scrutinize the important insights emerging from these more recent SDV applications to identify trends in ongoing fundamental research. The main mechanism underlying SDV is variation in water content in stem tissues, originating from reversible shrinkage and swelling of dead and living tissues, and irreversible growth. The contribution of different stem tissues to the overall SDV signal is currently under debate and shows variation with species and plant age, but can be investigated by combining SDV with state-of-the-art technology like magnetic resonance imaging. Various physiological mechanisms, such as water and carbon transport, and mechanical properties influence the SDV pattern, making it an extensive source of information on dynamic plant behaviour. To unravel these dynamics and to extract information on plant physiology or plant biophysics from SDV, mechanistic modelling has proved to be valuable. Biophysical models integrate different mechanisms underlying SDV, and help us to explain the resulting SDV signal. Using an elementary modelling approach, we demonstrate the application of SDV as a tool to examine plant water relations, plant hydraulics, plant carbon relations, plant nutrition, freezing effects, plant phenology and dendroclimatology. In the ever-expanding SDV knowledge base we identified two principal research tracks. First, in detailed short-term experiments, SDV measurements are combined with other plant measurements and modelling to discover patterns in phloem turgor, phloem osmotic concentrations, root pressure and plant endogenous control. Second, long-term SDV time series covering many different species, regions and climates provide an expanding amount of phenotypic data of growth, phenology and survival in relation to microclimate, soil water availability, species or genotype, which can be coupled with genetic information to support ecological and breeding research under on-going global change. This under-exploited source of information has now encouraged research groups to set up coordinated initiatives to explore this data pool via global analysis techniques and data-mining.
Collapse
Affiliation(s)
- Tom De Swaef
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 21, 9090 Melle, Belgium Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Maurits W Vandegehuchte
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
33
|
Hubeau M, Steppe K. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning. TRENDS IN PLANT SCIENCE 2015; 20:676-685. [PMID: 26440436 DOI: 10.1016/j.tplants.2015.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 05/23/2023]
Abstract
Medical imaging techniques are rapidly expanding in the field of plant sciences. Positron emission tomography (PET) is advancing as a powerful functional imaging technique to decipher in vivo the function of xylem water flow (with (15)O or (18)F), phloem sugar flow (with (11)C or (18)F), and the importance of their strong coupling. However, much remains to be learned about how water flow and sugar distribution are coordinated in intact plants, both under present and future climate regimes. We propose to use PET analysis of plants (plant-PET) to visualize and generate these missing data about integrated xylem and phloem transport. These insights are crucial to understanding how a given environment will affect plant physiological processes and growth.
Collapse
Affiliation(s)
- Michiel Hubeau
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Pfautsch S, Hölttä T, Mencuccini M. Hydraulic functioning of tree stems--fusing ray anatomy, radial transfer and capacitance. TREE PHYSIOLOGY 2015; 35:706-22. [PMID: 26163488 DOI: 10.1093/treephys/tpv058] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/20/2015] [Indexed: 05/11/2023]
Abstract
Not long ago, textbooks on plant physiology divulged the view that phloem and xylem are separate transport systems with exclusive functions. Phloem was flowing downwards providing roots with carbohydrates. Xylem transported water upwards from roots to leaves. This simplified view has changed forever. Today we have a much-refined understanding of the complex transport mechanisms, regulatory functions and surprisingly ingenuous solutions trees have evolved to distribute carbohydrates and water internally to fuel growth and help mediate biotic and abiotic stresses. This review focuses on functional links between tissues of the inner bark region (i.e., more than just phloem) and the xylem, facilitated by radially aligned and interconnected parenchyma cells, called rays. Rays are usually found along the entire vertical axis of tree stems, mediating a number of transport processes. We use a top-down approach to unveil the role of rays in these processes. Due to the central role of rays in facilitating the coupling of inner bark and xylem we dedicate the first section to ray anatomy, pathways and control mechanisms involved in radial transport. In the second section, basic concepts and models for radial movement through rays are introduced and their impacts on water and carbon fluxes at the whole-tree level are discussed. This section is followed by a closer look at the capacitive function of composite tissues in stems where gradual changes in water potential generate a diurnal 'pulse'. We explain how this pulse can be measured and interpreted, and where the limitations of such analyses are. Towards the end of this review, we include a brief description of the role of radial transport during limited availability of water. By elucidating the strong hydraulic link between inner bark and xylem, the traditional view of two separate transport systems dissolves and the idea of one interconnected, yet highly segregated transport network for carbohydrates and water arises.
Collapse
Affiliation(s)
- Sebastian Pfautsch
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014, Finland
| | - Maurizio Mencuccini
- School of Geo-Science, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN, UK ICREA at CREAF, Campus de UAB, Cerdanyola del Valles 08023, Barcelona, Spain
| |
Collapse
|
35
|
Steppe K, Sterck F, Deslauriers A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. TRENDS IN PLANT SCIENCE 2015; 20:335-43. [PMID: 25911419 DOI: 10.1016/j.tplants.2015.03.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 05/08/2023]
Abstract
Impacts of climate on stem growth in trees are studied in anatomical, ecophysiological, and ecological disciplines, but an integrative framework to assess those impacts remains lacking. In this opinion article, we argue that three research efforts are required to provide that integration. First, we need to identify the missing links in diel patterns in stem diameter and stem growth and relate those patterns to the underlying mechanisms that control water and carbon balance. Second, we should focus on the understudied mechanisms responsible for seasonal impacts on such diel patterns. Third, information on stem anatomy and ecophysiology should be integrated in the same experiments and mechanistic plant growth models to capture both diel and seasonal scales.
Collapse
Affiliation(s)
- Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| |
Collapse
|
36
|
Windt CW, Blümler P. A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow. TREE PHYSIOLOGY 2015; 35:366-75. [PMID: 25595754 DOI: 10.1093/treephys/tpu105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 11/10/2014] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree (Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree (Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone.
Collapse
Affiliation(s)
- Carel W Windt
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Peter Blümler
- Institute of Physics, University of Mainz, Mainz, Germany
| |
Collapse
|
37
|
Oliva Carrasco L, Bucci SJ, Di Francescantonio D, Lezcano OA, Campanello PI, Scholz FG, Rodríguez S, Madanes N, Cristiano PM, Hao GY, Holbrook NM, Goldstein G. Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. TREE PHYSIOLOGY 2015; 35:354-65. [PMID: 25428825 DOI: 10.1093/treephys/tpu087] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 05/13/2023]
Abstract
Wood biophysical properties and the dynamics of water storage discharge and refilling were studied in the trunk of canopy tree species with diverse life history and functional traits in subtropical forests of northeast Argentina. Multiple techniques assessing capacitance and storage capacity were used simultaneously to improve our understanding of the functional significance of internal water sources in trunks of large trees. Sapwood capacitances of 10 tree species were characterized using pressure-volume relationships of sapwood samples obtained from the trunk. Frequency domain reflectometry was used to continuously monitor the volumetric water content in the main stems. Simultaneous sap flow measurements on branches and at the base of the tree trunk, as well as diurnal variations in trunk contraction and expansion, were used as additional measures of stem water storage use and refilling dynamics. All evidence indicates that tree trunk internal water storage contributes from 6 to 28% of the daily water budget of large trees depending on the species. The contribution of stored water in stems of trees to total daily transpiration was greater for deciduous species, which exhibited higher capacitance and lower sapwood density. A linear relationship across species was observed between wood density and growth rates with the higher wood density species (mostly evergreen) associated with lower growth rates and the lower wood density species (mostly deciduous) associated with higher growth rates. The large sapwood capacitance in deciduous species may help to avoid catastrophic embolism in xylem conduits. This may be a low-cost adaptation to avoid water deficits during peak water use at midday and under temporary drought periods and will contribute to higher growth rates in deciduous tree species compared with evergreen ones. Large capacitance appears to have a central role in the rapid growth patterns of deciduous species facilitating rapid canopy access as these species are less shade tolerant than evergreen species.
Collapse
Affiliation(s)
- Laureano Oliva Carrasco
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS), Facultad de Ciencias Forestales (FCF), Universidad Nacional de Misiones, Bertoni 85, Puerto Iguazú (3370), Misiones, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Laboratorio de Ecología Funcional, Departamento de Ecología Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra J Bucci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Grupo de Estudios Biofísicos y Ecofisiológicos, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Débora Di Francescantonio
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS), Facultad de Ciencias Forestales (FCF), Universidad Nacional de Misiones, Bertoni 85, Puerto Iguazú (3370), Misiones, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Oscar A Lezcano
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS), Facultad de Ciencias Forestales (FCF), Universidad Nacional de Misiones, Bertoni 85, Puerto Iguazú (3370), Misiones, Argentina
| | - Paula I Campanello
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS), Facultad de Ciencias Forestales (FCF), Universidad Nacional de Misiones, Bertoni 85, Puerto Iguazú (3370), Misiones, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fabián G Scholz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Grupo de Estudios Biofísicos y Ecofisiológicos, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Sabrina Rodríguez
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical (IBS), Facultad de Ciencias Forestales (FCF), Universidad Nacional de Misiones, Bertoni 85, Puerto Iguazú (3370), Misiones, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Laboratorio de Ecología Funcional, Departamento de Ecología Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N Madanes
- Laboratorio de Ecología Funcional, Departamento de Ecología Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Piedad M Cristiano
- Laboratorio de Ecología Funcional, Departamento de Ecología Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guang-You Hao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guillermo Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Laboratorio de Ecología Funcional, Departamento de Ecología Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA
| |
Collapse
|
38
|
Baert A, De Schepper V, Steppe K. Variable hydraulic resistances and their impact on plant drought response modelling. TREE PHYSIOLOGY 2015; 35:439-449. [PMID: 25273815 DOI: 10.1093/treephys/tpu078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/17/2014] [Indexed: 06/03/2023]
Abstract
Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts.
Collapse
Affiliation(s)
- Annelies Baert
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
39
|
Sade N, Shatil-Cohen A, Attia Z, Maurel C, Boursiac Y, Kelly G, Granot D, Yaaran A, Lerner S, Moshelion M. The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. PLANT PHYSIOLOGY 2014; 166:1609-20. [PMID: 25266632 PMCID: PMC4226360 DOI: 10.1104/pp.114.248633] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/24/2014] [Indexed: 05/18/2023]
Abstract
Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (P(f)), mesophyll conductance of CO2, photosynthesis, K(leaf), transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased K(leaf) but no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced P(f), but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed.
Collapse
Affiliation(s)
- Nir Sade
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Arava Shatil-Cohen
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Ziv Attia
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Christophe Maurel
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Yann Boursiac
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Gilor Kelly
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - David Granot
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Adi Yaaran
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Stephen Lerner
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.S., A.S.-C., Z.A., G.K., A.Y., S.L., M.M.);Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier cedex 2, France (C.M., Y.B.); andInstitute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (G.K., D.G.)
| |
Collapse
|
40
|
Vandegehuchte MW, Guyot A, Hubeau M, De Swaef T, Lockington DA, Steppe K. Modelling reveals endogenous osmotic adaptation of storage tissue water potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa. ANNALS OF BOTANY 2014; 114:667-76. [PMID: 24534674 PMCID: PMC4217682 DOI: 10.1093/aob/mct311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/13/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. METHODS Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. KEY RESULTS Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. CONCLUSIONS The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.
Collapse
Affiliation(s)
- Maurits W. Vandegehuchte
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Adrien Guyot
- National Centre for Groundwater Research and Training School of Civil Engineering, The University of Queensland, 4072 Brisbane, Australia
| | - Michiel Hubeau
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Tom De Swaef
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 21, 9090 Melle, Belgium
| | - David A. Lockington
- National Centre for Groundwater Research and Training School of Civil Engineering, The University of Queensland, 4072 Brisbane, Australia
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
41
|
Dawes MA, Zweifel R, Dawes N, Rixen C, Hagedorn F. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. THE NEW PHYTOLOGIST 2014; 202:1237-1248. [PMID: 24571288 DOI: 10.1111/nph.12742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species.
Collapse
Affiliation(s)
- Melissa A Dawes
- Mountain Ecosystems, WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Roman Zweifel
- Ecophysiology, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Nicholas Dawes
- Snow Cover and Micrometeorology, WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Christian Rixen
- Mountain Ecosystems, WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Frank Hagedorn
- Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
42
|
Zweifel R, Drew DM, Schweingruber F, Downes GM. Xylem as the main origin of stem radius changes in Eucalyptus. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:520-534. [PMID: 32481010 DOI: 10.1071/fp13240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/08/2013] [Indexed: 06/11/2023]
Abstract
The state-of-the-art interpretation of stem radius changes (DRTotal) for tree water relations is based on knowledge from mostly slow growing tree species. The ratio between diurnal size fluctuations of the rigid xylem (DRXylem) and the respective fluctuations of the elastic bark (DRBark) is known to be small (<0.4) and is of importance for the localisation of water storage dynamics in stems. In this study, fast growing Eucalyptus globulus Labill. in Tasmania were investigated by point dendrometers in order to investigate tree water relations. Unexpectedly, DRXylem was found to be the main driver of DRTotal with the bark acting as a passive layer on top of the fluctuating xylem under most conditions. Accordingly, the ratio between the diurnal fluctuations of the two tissues was found to be much higher (0.6-1.6) than everything reported before. Based on simulations using a hydraulic plant model, the high tissue-specific elasticity of the Eucalyptus xylem was found to explain this atypical response and not osmotically-driven processes or species-specific flow resistances. The wide zone of secondary thickening xylem in various stages of lignification is proposed to be an important component of the high wood elasticity. The tissue acts as additional water storage like the bark and may positively affect the water transport efficiency.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - David M Drew
- CSIRO Ecosystem Sciences, Private Bag 12, Hobart, Tas. 7001, Australia
| | - Fritz Schweingruber
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Geoffrey M Downes
- CSIRO Ecosystem Sciences, Private Bag 12, Hobart, Tas. 7001, Australia
| |
Collapse
|
43
|
Robert EMR, Jambia AH, Schmitz N, De Ryck DJR, De Mey J, Kairo JG, Dahdouh-Guebas F, Beeckman H, Koedam N. How to catch the patch? A dendrometer study of the radial increment through successive cambia in the mangrove Avicennia. ANNALS OF BOTANY 2014; 113:741-52. [PMID: 24510216 PMCID: PMC3936594 DOI: 10.1093/aob/mcu001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/26/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought. Methods Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year. KEY RESULTS Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment. CONCLUSIONS It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained.
Collapse
Affiliation(s)
- Elisabeth M. R. Robert
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), B-3080 Tervuren, Belgium
| | | | - Nele Schmitz
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), B-3080 Tervuren, Belgium
| | - Dennis J. R. De Ryck
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), B-3080 Tervuren, Belgium
- Laboratory of Systems Ecology and Resource Management, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Johan De Mey
- Radiology, Universitair Ziekenhuis Brussel, B-1090 Brussels, Belgium
| | - James G. Kairo
- Kenya Marine and Fisheries Research Institute (KMFRI), Mombasa, Kenya
| | - Farid Dahdouh-Guebas
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratory of Systems Ecology and Resource Management, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Hans Beeckman
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), B-3080 Tervuren, Belgium
| | - Nico Koedam
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| |
Collapse
|
44
|
Mencuccini M, Hölttä T, Sevanto S, Nikinmaa E. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. THE NEW PHYTOLOGIST 2013; 198:1143-1154. [PMID: 23517018 DOI: 10.1111/nph.12224] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
· Currently, phloem transport in plants under field conditions is not well understood. This is largely the result of the lack of techniques suitable for the measurement of the physiological properties of phloem. · We present a model that interprets the changes in xylem diameter and live bark thickness and separates the components responsible for such changes. We test the predictions from this model on data from three mature Scots pine trees in Finland. The model separates the live bark thickness variations caused by bark water capacitance from a residual signal interpreted to indicate the turgor changes in the bark. · The predictions from the model are consistent with processes related to phloem transport. At the diurnal scale, this signal is related to patterns of photosynthetic activity and phloem loading. At the seasonal scale, bark turgor showed rapid changes during two droughts and after two rainfall events, consistent with physiological predictions. Daily cumulative totals of this turgor term were related to daily cumulative totals of canopy photosynthesis. Finally, the model parameter representing radial hydraulic conductance between phloem and xylem showed a temperature dependence consistent with the temperature-driven changes in water viscosity. · We propose that this model has potential for the continuous field monitoring of tree phloem function.
Collapse
Affiliation(s)
- Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
- ICREA at CREAF, Edifici C, Campus de Bellaterra (UAB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Sanna Sevanto
- Los Alamos National Laboratories, Los Alamos, NM, 87545-0001, USA
| | - Eero Nikinmaa
- Department of Forest Sciences, University of Helsinki, Helsinki, FIN-00014, Finland
| |
Collapse
|
45
|
Etzold S, Zweifel R, Ruehr NK, Eugster W, Buchmann N. Long-term stem CO2 concentration measurements in Norway spruce in relation to biotic and abiotic factors. THE NEW PHYTOLOGIST 2013; 197:1173-1184. [PMID: 23316716 DOI: 10.1111/nph.12115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
Stem CO(2) concentrations (stem [CO(2)]) undergo large temporal variations that need to be understood to better link tree physiological processes to biosphere-atmosphere CO(2) exchange. During 19 months, stem [CO(2)] was continuously measured in mature subalpine Norway spruce trees (Picea abies) and jointly analysed with stem, soil and air temperatures, sap flow rates, stem radius changes and CO(2) efflux rates from stem and soil on different time scales. Stem [CO(2)] exhibited a strong seasonality, of which over 80% could be explained with stem and soil temperatures. Both physical equilibrium processes of CO(2) between water and air according to Henry's law as well as physiological effects, including sap flow and local respiration, concurrently contributed to these temporal variations. Moreover, the explanatory power of potential biological drivers (stem radius changes, sap flow and soil respiration) varied strongly with season and temporal resolution. We conclude that seasonal and daily courses of stem [CO(2)] in spruce trees are a combined effect of physical equilibrium and tree physiological processes. Furthermore, we emphasize the relevance of axial diffusion of CO(2) along air-filled spaces in the wood, and potential wound response processes owing to sensor installation.
Collapse
Affiliation(s)
- Sophia Etzold
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), 82467, Garmisch-Partenkirchen, Germany
| | - Werner Eugster
- ETH Zurich, Institute of Agricultural Sciences, Universitaetsstrasse 2, 8092, Zurich, Switzerland
| | - Nina Buchmann
- ETH Zurich, Institute of Agricultural Sciences, Universitaetsstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
46
|
De Swaef T, Hanssens J, Cornelis A, Steppe K. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. ANNALS OF BOTANY 2013; 111:271-82. [PMID: 23211757 PMCID: PMC3555520 DOI: 10.1093/aob/mcs249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/08/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Upward water movement in plants via the xylem is generally attributed to the cohesion-tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pressure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompting the need for indirect and non-destructive measurement techniques. METHODS A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion-tension principles. KEY RESULTS Transpiration-driven sap flow rates are typically inversely related to stem diameter changes; however, this inverse relationship was no longer valid under conditions of low transpiration. This decoupling between sap flow rates and stem diameter variations was mathematically related to root pressure. CONCLUSIONS Root pressure can be estimated in a non-destructive, repeatable manner, using only external plant sensors and a mechanistic model.
Collapse
Affiliation(s)
- Tom De Swaef
- Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
47
|
De Swaef T, Driever SM, Van Meulebroek L, Vanhaecke L, Marcelis LFM, Steppe K. Understanding the effect of carbon status on stem diameter variations. ANNALS OF BOTANY 2013; 111:31-46. [PMID: 23186836 PMCID: PMC3523646 DOI: 10.1093/aob/mcs233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/27/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. METHODS A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the 'one common assimilate pool' concept for tomato. KEY RESULTS Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. CONCLUSIONS Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions.
Collapse
Affiliation(s)
- Tom De Swaef
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
48
|
Baert A, Villez K, Steppe K. Functional unfold principal component analysis for automatic plant-based stress detection in grapevine. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:519-530. [PMID: 32480803 DOI: 10.1071/fp12007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/26/2012] [Indexed: 06/11/2023]
Abstract
Detection of drought stress is of great importance in grapevines because the plant's water status strongly affects the quality of the grapes and hence, resulting wine. Measurements of stem diameter variations show promise for detecting drought stress, but they depend strongly on microclimatic changes. Tools for advanced data analysis might be helpful to distinguish drought from microclimate effects. To this end, we explored the possibilities of two data mining techniques: Unfold principal component analysis (UPCA) - an already established tool in several biotechnological domains - and functional unfold principal component analysis (FUPCA) - a newer technique combining functional data analysis with UPCA. With FUPCA, the original, multivariate time series of variables are first approximated by fitting the least-squares optimal linear combination of orthonomal basis functions. The resulting coefficients of these linear combinations are then subjected to UPCA. Both techniques were used to detect when the measured stem diameter variations in grapevine deviated from their normal conditions due to drought stress. Stress was detected with both UPCA and FUPCA days before visible symptoms appeared. However, FUPCA is less complex in the statistical sense and more robust than original UPCA modelling. Moreover, FUPCA can handle days with missing data, which is not possible with UPCA.
Collapse
Affiliation(s)
- Annelies Baert
- Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Kris Villez
- Laboratory for Intelligent Process Systems, School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kathy Steppe
- Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
49
|
De Schepper V, van Dusschoten D, Copini P, Jahnke S, Steppe K. MRI links stem water content to stem diameter variations in transpiring trees. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2645-53. [PMID: 22268159 DOI: 10.1093/jxb/err445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In trees, stem diameter variations are related to changes in stem water content, because internally stored water is depleted and replenished over a day. To confirm this relationship, non-invasive magnetic resonance imaging (MRI) was combined with point dendrometer measurements in three actively transpiring oak (Quercus robur L.) trees. Two of these oak trees were girdled to study the stem increment above the girdling zone. MRI images and micrographs of stem cross-sections revealed a close link between the water distribution and the anatomical features of the stem. Stem tissues with the highest amount of water were physiologically the most active ones, being the youngest differentiating xylem cells, the cambium and the youngest differentiating and conductive phloem cells. Daily changes in stem diameter corresponded well with the simultaneously MRI-measured amount of water, confirming their strong interdependence. MRI images also revealed that the amount of water in the elastic bark tissues, excluding cambium and the youngest phloem, contributed most to the daily stem diameter changes. After bark removal, an additional increase in stem diameter was measured above the girdle. This increase was attributed not only to the cambial production of new cells, but also to swelling of existing bark cells. In conclusion, the comparison of MRI and dendrometer measurements confirmed previous interpretations and applications of dendrometers and illustrates the additional and complementary information MRI can reveal regarding water relations in plants.
Collapse
Affiliation(s)
- Veerle De Schepper
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|