1
|
Janoski JR, Aiello I, Lundberg CW, Finkielstein CV. Circadian clock gene polymorphisms implicated in human pathologies. Trends Genet 2024; 40:834-852. [PMID: 38871615 DOI: 10.1016/j.tig.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
Collapse
Affiliation(s)
- Jesse R Janoski
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Aiello
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Clayton W Lundberg
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
DePoy LM, Petersen KA, Zong W, Ketchesin KD, Matthaei RC, Yin R, Perez MS, Vadnie CA, Becker-Krail D, Scott MR, Tseng GC, McClung CA. Cell-type and sex-specific rhythmic gene expression in the nucleus accumbens. Mol Psychiatry 2024; 29:3117-3127. [PMID: 38678086 PMCID: PMC11449664 DOI: 10.1038/s41380-024-02569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Circadian rhythms are critical for human health and are highly conserved across species. Disruptions in these rhythms contribute to many diseases, including psychiatric disorders. Previous results suggest that circadian genes modulate behavior through specific cell types in the nucleus accumbens (NAc), particularly dopamine D1-expressing medium spiny neurons (MSNs). However, diurnal rhythms in transcript expression have not been investigated in NAc MSNs. In this study we identified and characterized rhythmic transcripts in D1- and D2-expressing neurons and compared rhythmicity results to homogenate as well as astrocyte samples taken from the NAc of male and female mice. We find that all cell types have transcripts with diurnal rhythms and that top rhythmic transcripts are largely core clock genes, which peak at approximately the same time of day in each cell type and sex. While clock-controlled rhythmic transcripts are enriched for protein regulation pathways across cell type, cell signaling and signal transduction related processes are most commonly enriched in MSNs. In contrast to core clock genes, these clock-controlled rhythmic transcripts tend to reach their peak in expression about 2-h later in females than males, suggesting diurnal rhythms in reward may be delayed in females. We also find sex differences in pathway enrichment for rhythmic transcripts peaking at different times of day. Protein folding and immune responses are enriched in transcripts that peak in the dark phase, while metabolic processes are primarily enriched in transcripts that peak in the light phase. Importantly, we also find that several classic markers used to categorize MSNs are rhythmic in the NAc. This is critical since the use of rhythmic markers could lead to over- or under-enrichment of targeted cell types depending on the time at which they are sampled. This study greatly expands our knowledge of how individual cell types contribute to rhythms in the NAc.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Kaitlyn A Petersen
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Kyle D Ketchesin
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Ross C Matthaei
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
| | - RuoFei Yin
- Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Megan S Perez
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Chelsea A Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, 43015, Delaware, OH, USA
| | - Darius Becker-Krail
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Madeline R Scott
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Bouteldja AA, Penichet D, Srivastava LK, Cermakian N. The circadian system: A neglected player in neurodevelopmental disorders. Eur J Neurosci 2024; 60:3858-3890. [PMID: 38816965 DOI: 10.1111/ejn.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.
Collapse
Affiliation(s)
- Ahmed A Bouteldja
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Chung J, Kim YC, Jeong JH. Bipolar Disorder, Circadian Rhythm and Clock Genes. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:211-221. [PMID: 38627069 PMCID: PMC11024693 DOI: 10.9758/cpn.23.1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 04/20/2024]
Abstract
Sleep disturbance and abnormal circadian rhythm might be closely related to bipolar disorder. Several studies involving disturbed sleep/wake cycle, changes in rhythms such as melatonin and cortisol, clock genes, and circadian preference have shown the relationship between bipolar disorder and circadian rhythm. The results differed across different studies. In some studies, a delay in the circadian rhythm was observed in the depressive episode and advanced circadian rhythm was observed during the manic episode. In other studies, a delay in circadian rhythm was observed independent of mood episodes. Accordingly, circadian rhythm disorder was proposed as a trait marker for bipolar disorder. The altered circadian rhythm may represent a pathological mechanism that contributes to the mood episodes. However, a prospective cohort study is needed for further clarification.
Collapse
Affiliation(s)
- Junsoo Chung
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Chan Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong-Hyun Jeong
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Kreuzer K, Birkl-Toeglhofer AM, Haybaeck J, Reiter A, Dalkner N, Fellendorf FT, Maget A, Platzer M, Seidl M, Mendel LM, Lenger M, Birner A, Queissner R, Mairinger M, Obermayer A, Kohlhammer-Dohr A, Stross TM, Häussl A, Hamm C, Schöggl H, Amberger-Otti D, Painold A, Lahousen-Luxenberger T, Leitner-Afschar B, Färber T, Mörkl S, Wagner-Skacel J, Meier-Allard N, Lackner S, Holasek S, Habisch H, Madl T, Reininghaus E, Bengesser SA. PROVIT-CLOCK: A Potential Influence of Probiotics and Vitamin B7 Add-On Treatment and Metabolites on Clock Gene Expression in Major Depression. Neuropsychobiology 2024; 83:135-151. [PMID: 38776887 DOI: 10.1159/000538781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION An increasing body of evidence suggests a strong relationship between gut health and mental state. Lately, a connection between butyrate-producing bacteria and sleep quality has been discussed. The PROVIT study, as a randomized, double-blind, 4-week, multispecies probiotic intervention study, aims at elucidating the potential interconnection between the gut's metabolome and the molecular clock in individuals with major depressive disorder (MDD). METHODS The aim of the PROVIT-CLOCK study was to analyze changes in core clock gene expression during treatment with probiotic intervention versus placebo in fasting blood and the connection with the serum- and stool-metabolome in patients with MDD (n = 53). In addition to clinical assessments in the PROVIT study, metabolomics analyses with 1H nuclear magnetic resonance spectroscopy (stool and serum) and gene expression (RT-qPCR) analysis of the core clock genes ARNTL, PER3, CLOCK, TIMELESS, NR1D1 in peripheral blood mononuclear cells of fasting blood were performed. RESULTS The gene expression levels of the clock gene CLOCK were significantly altered only in individuals receiving probiotic add-on treatment. TIMELESS and ARNTL gene expression changed significantly over the 4-week intervention period in both groups. Various positive and negative correlations between metabolites in serum/stool and core clock gene expression levels were observed. CONCLUSION Changing the gut microbiome by probiotic treatment potentially influences CLOCK gene expression. The preliminary results of the PROVIT-CLOCK study indicate a possible interconnection between the gut microbiome and circadian rhythm potentially orchestrated by metabolites.
Collapse
Affiliation(s)
- Kathrin Kreuzer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Institute of Psychology, University of Bamberg, Bamberg, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Institute of Psychology, University of Bamberg, Bamberg, Germany
| | - Alexandra Reiter
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Frederike T Fellendorf
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Maget
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martina Platzer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Seidl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Lilli-Marie Mendel
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Lenger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Robert Queissner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marco Mairinger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Anna Obermayer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Tatjana Maria Stross
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alfred Häussl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carlo Hamm
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Schöggl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Amberger-Otti
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Birgitta Leitner-Afschar
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Tanja Färber
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Institute of Psychology, University of Bamberg, Bamberg, Germany
| | - Sabrina Mörkl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Jolana Wagner-Skacel
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Eva Reininghaus
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Susanne Astrid Bengesser
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Lu Z, Yang Y, Zhao G, Zhang Y, Sun Y, Liao Y, Kang Z, Feng X, Sun J, Yue W. The Association of Redox Regulatory Drug Target Genes with Psychiatric Disorders: A Mendelian Randomization Study. Antioxidants (Basel) 2024; 13:398. [PMID: 38671846 PMCID: PMC11047424 DOI: 10.3390/antiox13040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Redox regulatory drug (RRD) targets may be considered potential novel drug targets of psychosis due to the fact that the brain is highly susceptible to oxidative stress imbalance. The aim of the present study is to identify potential associations between RRD targets' perturbation and the risk of psychoses; to achieve this, Mendelian randomization analyses were conducted. The expression quantitative trait loci (eQTL) and protein QTL data were used to derive the genetic instrumental variables. We obtained the latest summary data of genome-wide association studies on seven psychoses as outcomes, including schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder (MDD), attention-deficit/hyperactivity disorder, autism, obsessive-compulsive disorder and anorexia nervosa. In total, 95 unique targets were included in the eQTL panel, and 48 targets in the pQTL one. Genetic variations in the vitamin C target (OGFOD2, OR = 0.784, p = 2.14 × 10-7) and melatonin target (RORB, OR = 1.263, p = 8.80 × 10-9) were significantly related to the risk of SCZ. Genetic variation in the vitamin E (PRKCB, OR = 0.248, p = 1.24 × 10-5) target was related to an increased risk of BD. Genetic variation in the vitamin C target (P4HTM: cerebellum, OR = 1.071, p = 4.64 × 10-7; cerebellar hemisphere, OR = 1.092, p = 1.98 × 10-6) was related to an increased risk of MDD. Cognitive function mediated the effects on causal associations. In conclusion, this study provides supportive evidence for a causal association between RRD targets and risk of SCZ, BD or MDD, which were partially mediated by cognition.
Collapse
Affiliation(s)
- Zhe Lu
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yang Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Guorui Zhao
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yuyanan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yaoyao Sun
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yundan Liao
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Zhewei Kang
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Junyuan Sun
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
7
|
Murray GC, Bubier JA, Zinder OJ, Harris B, Clark J, Christopher MC, Hanley C, Tjong H, Li M, Ngan CY, Reinholdt L, Burgess RW, Tadenev ALD. An allelic series of spontaneous Rorb mutant mice exhibit a gait phenotype, changes in retina morphology and behavior, and gene expression signatures associated with the unfolded protein response. G3 (BETHESDA, MD.) 2023; 13:jkad131. [PMID: 37300435 PMCID: PMC10411600 DOI: 10.1093/g3journal/jkad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The Retinoid-related orphan receptor beta (RORβ) gene encodes a developmental transcription factor and has 2 predominant isoforms created through alternative first exon usage; one specific to the retina and another present more broadly in the central nervous system, particularly regions involved in sensory processing. RORβ belongs to the nuclear receptor family and plays important roles in cell fate specification in the retina and cortical layer formation. In mice, loss of RORβ causes disorganized retina layers, postnatal degeneration, and production of immature cone photoreceptors. Hyperflexion or "high-stepping" of rear limbs caused by reduced presynaptic inhibition by Rorb-expressing inhibitory interneurons of the spinal cord is evident in RORβ-deficient mice. RORβ variants in patients are associated with susceptibility to various neurodevelopmental conditions, primarily generalized epilepsies, but including intellectual disability, bipolar, and autism spectrum disorders. The mechanisms by which RORβ variants confer susceptibility to these neurodevelopmental disorders are unknown but may involve aberrant neural circuit formation and hyperexcitability during development. Here we report an allelic series in 5 strains of spontaneous Rorb mutant mice with a high-stepping gait phenotype. We show retinal abnormalities in a subset of these mutants and demonstrate significant differences in various behavioral phenotypes related to cognition. Gene expression analyses in all 5 mutants reveal a shared over-representation of the unfolded protein response and pathways related to endoplasmic reticulum stress, suggesting a possible mechanism of susceptibility relevant to patients.
Collapse
Affiliation(s)
- George C Murray
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | | | | | | - James Clark
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Harianto Tjong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Meihong Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | |
Collapse
|
8
|
Codoñer-Franch P, Gombert M, Martínez-Raga J, Cenit MC. Circadian Disruption and Mental Health: The Chronotherapeutic Potential of Microbiome-Based and Dietary Strategies. Int J Mol Sci 2023; 24:ijms24087579. [PMID: 37108739 PMCID: PMC10146651 DOI: 10.3390/ijms24087579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mental illness is alarmingly on the rise, and circadian disruptions linked to a modern lifestyle may largely explain this trend. Impaired circadian rhythms are associated with mental disorders. The evening chronotype, which is linked to circadian misalignment, is a risk factor for severe psychiatric symptoms and psychiatric metabolic comorbidities. Resynchronization of circadian rhythms commonly improves psychiatric symptoms. Furthermore, evidence indicates that preventing circadian misalignment may help reduce the risk of psychiatric disorders and the impact of neuro-immuno-metabolic disturbances in psychiatry. The gut microbiota exhibits diurnal rhythmicity, as largely governed by meal timing, which regulates the host's circadian rhythms. Temporal circadian regulation of feeding has emerged as a promising chronotherapeutic strategy to prevent and/or help with the treatment of mental illnesses, largely through the modulation of gut microbiota. Here, we provide an overview of the link between circadian disruption and mental illness. We summarize the connection between gut microbiota and circadian rhythms, supporting the idea that gut microbiota modulation may aid in preventing circadian misalignment and in the resynchronization of disrupted circadian rhythms. We describe diurnal microbiome rhythmicity and its related factors, highlighting the role of meal timing. Lastly, we emphasize the necessity and rationale for further research to develop effective and safe microbiome and dietary strategies based on chrononutrition to combat mental illness.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
- Department of Pediatrics, University Hospital Doctor Peset, Foundation for the Promotion of Health and Bio-Medical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - José Martínez-Raga
- Department of Psychiatry and Clinical Psychology, Hospital Universitario Doctor Peset, University of Valencia, 46017 Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
9
|
Johnson JS, Cote AC, Dobbyn A, Sloofman LG, Xu J, Cotter L, Charney AW, Birgegård A, Jordan J, Kennedy M, Landén M, Maguire SL, Martin NG, Mortensen PB, Thornton LM, Bulik CM, Huckins LM. Mapping anorexia nervosa genes to clinical phenotypes. Psychol Med 2023; 53:2619-2633. [PMID: 35379376 PMCID: PMC10123844 DOI: 10.1017/s0033291721004554] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Anorexia nervosa (AN) is a psychiatric disorder with complex etiology, with a significant portion of disease risk imparted by genetics. Traditional genome-wide association studies (GWAS) produce principal evidence for the association of genetic variants with disease. Transcriptomic imputation (TI) allows for the translation of those variants into regulatory mechanisms, which can then be used to assess the functional outcome of genetically regulated gene expression (GReX) in a broader setting through the use of phenome-wide association studies (pheWASs) in large and diverse clinical biobank populations with electronic health record phenotypes. METHODS Here, we applied TI using S-PrediXcan to translate the most recent PGC-ED AN GWAS findings into AN-GReX. For significant genes, we imputed AN-GReX in the Mount Sinai BioMe™ Biobank and performed pheWASs on over 2000 outcomes to test the clinical consequences of aberrant expression of these genes. We performed a secondary analysis to assess the impact of body mass index (BMI) and sex on AN-GReX clinical associations. RESULTS Our S-PrediXcan analysis identified 53 genes associated with AN, including what is, to our knowledge, the first-genetic association of AN with the major histocompatibility complex. AN-GReX was associated with autoimmune, metabolic, and gastrointestinal diagnoses in our biobank cohort, as well as measures of cholesterol, medications, substance use, and pain. Additionally, our analyses showed moderation of AN-GReX associations with measures of cholesterol and substance use by BMI, and moderation of AN-GReX associations with celiac disease by sex. CONCLUSIONS Our BMI-stratified results provide potential avenues of functional mechanism for AN-genes to investigate further.
Collapse
Affiliation(s)
- Jessica S. Johnson
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alanna C. Cote
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda Dobbyn
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura G. Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Xu
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liam Cotter
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander W. Charney
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Mental Illness Research, Education and Clinical Centers, Bronx, NY 14068, USA
| | | | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Jordan
- Department of Psychological Medicine, Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, 8140 Christchurch, New Zealand
| | - Martin Kennedy
- Department of Psychological Medicine, Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, 8140 Christchurch, New Zealand
| | - Mikaél Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, SE-413 45 Gothenburg, Sweden
| | - Sarah L. Maguire
- InsideOut Institute, University of Sydney, New South Wales 2006, Australia
| | - Nicholas G. Martin
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Laura M. Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Mental Illness Research, Education and Clinical Centers, Bronx, NY 14068, USA
| |
Collapse
|
10
|
Lower morning levels of cortisol and neuropeptides in blood samples from patients with bipolar disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
A Pattern to Link Adenosine Signaling, Circadian System, and Potential Final Common Pathway in the Pathogenesis of Major Depressive Disorder. Mol Neurobiol 2022; 59:6713-6723. [PMID: 35999325 PMCID: PMC9525429 DOI: 10.1007/s12035-022-03001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Several studies have reported separate roles of adenosine receptors and circadian clockwork in major depressive disorder. While less evidence exists for regulation of the circadian clock by adenosine signaling, a small number of studies have linked the adenosinergic system, the molecular circadian clock, and mood regulation. In this article, we review relevant advances and propose that adenosine receptor signaling, including canonical and other alternative downstream cellular pathways, regulates circadian gene expression, which in turn may underlie the pathogenesis of mood disorders. Moreover, we summarize the convergent point of these signaling pathways and put forward a pattern by which Homer1a expression, regulated by both cAMP-response element binding protein (CREB) and circadian clock genes, may be the final common pathogenetic mechanism in depression.
Collapse
|
12
|
Bengesser SA, Hohenberger H, Tropper B, Dalkner N, Birner A, Fellendorf FT, Platzer M, Rieger A, Maget A, Hamm C, Queissner R, Pilz R, Bauer K, Lenger M, Mörkl S, Wagner-Skacel J, Kapfhammer HP, Meier-Allard N, Stracke A, Holasek SJ, Murphy L, Reininghaus EZ. Gene expression analysis of MAOA and the clock gene ARNTL in individuals with bipolar disorder compared to healthy controls. World J Biol Psychiatry 2022; 23:287-294. [PMID: 34468263 DOI: 10.1080/15622975.2021.1973816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Circadian rhythms are associated with bipolar disorder (BD). This cross-sectional study aimed at investigating ARNTL and MAOA gene expression differences (1) between individuals with BD and controls, (2) between affective episodes, and (3) the relationship between ARNTL and MAOA expression. METHODS ARNTL and MAOA gene expression in peripheral mononuclear blood cells were analysed from fasting blood samples (BD n = 81, controls n = 54) with quantitative real-time PCR operating on TaqMan® assays (normalised to 18S RNA expression). ANCOVAs corrected for age, sex, body mass index, and medication was used to evaluate expression differences and correlation analyses for the relation between ARNTL and MAOA expression. RESULTS ARNTL gene expression differed between affective episodes (F(2,78) = 3.198, p = 0.047, Partial Eta2= 0.083), but not between BD and controls (n.s.). ARNTL and MAOA expression correlated positively in BD (r = 0.704, p < 0.001) and in controls (r = 0.932, p < 0.001). MAOA expression differed neither between BD and controls nor between affective episodes (n.s.). DISCUSSION Clock gene expression changes were observed in different affective states of BD. More precisely, ARNTL gene expression was significantly higher in euthymia than in depression. ARNTL and MAOA gene expression correlated significantly in BD and in controls, which emphasises the strong concatenation between circadian rhythms and neurotransmitter breakdown.
Collapse
Affiliation(s)
- S A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - H Hohenberger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - B Tropper
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - N Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - A Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - F T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - M Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - A Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - A Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - C Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - R Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - R Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - K Bauer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - M Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - S Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - J Wagner-Skacel
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - H P Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - N Meier-Allard
- Otto Loewi Research Center, Chair of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - A Stracke
- Otto Loewi Research Center, Chair of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - S J Holasek
- Otto Loewi Research Center, Chair of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - L Murphy
- CAMH Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - E Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Zhou L, Fitzpatrick K, Olker C, Vitaterna MH, Turek FW. Casein kinase 1 epsilon and circadian misalignment impact affective behaviours in mice. Eur J Neurosci 2021; 55:2939-2954. [PMID: 34514665 DOI: 10.1111/ejn.15456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2021] [Indexed: 01/24/2023]
Abstract
Affective behaviours and mental health are profoundly affected by disturbances in circadian rhythms. Casein kinase 1 epsilon (CSNK1E) is a core component of the circadian clock. Mice with tau or null mutation of this gene have shortened and lengthened circadian period respectively. Here, we examined anxiety-like, fear, and despair behaviours in both male and female mice of these two different mutants. Compared with wild-type mice, we found reductions in fear and anxiety-like behaviours in both mutant lines and in both sexes, with the tau mutants exhibiting the greatest phenotypic changes. However, the behavioural despair had distinct phenotypic patterns, with markedly less behavioural despair in female null mutants, but not in tau mutants of either sex. To determine whether abnormal light entrainment of tau mutants to 24-h light-dark cycles contributes to these phenotypic differences, we also examined these behaviours in tau mutants on a 20-h light-dark cycle close to their endogenous circadian period. The normalized entrainment restored more wild-type-like behaviours for fear and anxiety, but it induced behavioural despair in tau mutant females. These data show that both mutations of Csnk1e broadly affect fear and anxiety-like behaviours, while the effects on behavioural despair vary with genetics, photoperiod, and sex, suggesting that the mechanisms by which Csnk1e affects fear and anxiety-like behaviours may be similar, but distinct from those affecting behavioural despair. Our study also provides experimental evidence in support of the hypothesis of beneficial outcomes from properly entrained circadian rhythms in terms of the anxiety-like and fear behaviours.
Collapse
Affiliation(s)
- Lili Zhou
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Karrie Fitzpatrick
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Martha H Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
14
|
Schürhoff F, Corfdir C, Pignon B, Lajnef M, Richard JR, Marcos E, Pelissolo A, Leboyer M, Adnot S, Jamain S, Szöke A. No alteration of leukocyte telomere length in first episode psychosis. Psychiatry Res 2021; 301:113941. [PMID: 33945962 DOI: 10.1016/j.psychres.2021.113941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022]
Abstract
Both shorter telomeres and schizophrenia have been associated with a decrease in life expectancy. Furthermore, several studies found a shorter telomere length (TL) in schizophrenia. Understanding whether or not telomere shortening is directly related to pathophysiology of schizophrenia or is a consequence of a cumulative exposure to chronic stress is of major importance. Comparing the TL of subjects at the very beginning of the disease (FEP) and control subjects could help to decide between these two hypotheses. The aim of the present study was to compare TL between FEP subjects (N=91) and controls (N=137). After accounting for multiple potential confounders, no significant association was observed between FEP and TL. Our result is consistent with the hypothesis that psycho-social stress / adversities and stressful situations in people with schizophrenia affect TL rather than that telomere erosion contributes to the development of this disorder.
Collapse
Affiliation(s)
- Franck Schürhoff
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France.
| | - Cécile Corfdir
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Baptiste Pignon
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Mohamed Lajnef
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Jean-Romain Richard
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie - Explorations fonctionnelles, Hôpital Henri Mondor, AP-HP, FHU SENEC, Créteil, 94000, France
| | - Antoine Pelissolo
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Marion Leboyer
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Serge Adnot
- INSERM U955, Département de Physiologie - Explorations fonctionnelles, Hôpital Henri Mondor, AP-HP, FHU SENEC, Créteil, 94000, France
| | - Stephane Jamain
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| | - Andrei Szöke
- Univ Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires « H. Mondor », DMU IMPACT, INSERM, IMRB, translational Neuropsychiatry, Fondation FondaMental F-94010 Creteil, France
| |
Collapse
|
15
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
16
|
Partington HS, Nutter JM, Eells JB. Nurr1 deficiency shortens free running period, enhances photoentrainment to phase advance, and disrupts circadian cycling of the dopamine neuron phenotype. Behav Brain Res 2021; 411:113347. [PMID: 33991560 DOI: 10.1016/j.bbr.2021.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Neurological and neuropsychiatric disorders, including addiction, schizophrenia, and Parkinson's disease (PD), involve dysfunction in midbrain dopamine (DA) neurotransmission with severity of disease symptoms and progression associated with disrupted circadian rhythms. The nuclear transcription factor Nurr1, essential for DA neuron (DAN) development, survival, and maintenance, is also known to interact with circadian rhythm regulating clock proteins. In the Nurr1-null heterozygous (+/-) mice, a Nurr1 deficient model which reproduces some of the alterations in DA function found in schizophrenia and PD, we measured, using wheel-running activity, the free running period (tau) and photoperiod entrainment. Because Nurr1 has a role in regulating the DA phenotype, we also measured the circadian fluctuations in the number of DANs using tyrosine hydroxylase (TH) immunofluorescence. In Nurr1 +/- mice, tau was significantly shorter and entrainment to a 6 h earlier shift in the dark cycle was accelerated. The Nurr1 wild-type (+/+) mice cycled DAN numbers across time, with a significantly greater number (∼2-fold increase) of DANs at zeitgeber time (ZT) 0 than ZT12. The +/- mice, however, did not cycle the DA phenotype, as no differences in DAN numbers were observed between ZT0 and ZT12. Additionally, the +/- mice had significantly fewer DANs at ZT0 but not at ZT12 as compared to +/+ mice. Based these data, circadian rhythms and fluctuations in the DA phenotype requires normal Nurr1 function. A better understanding is needed of the mechanisms regulating the DA phenotype and subsequent neurotransmission across the circadian cycle and how this is altered in circadian rhythm and DA neurotransmission-associated disorders.
Collapse
Affiliation(s)
- Heath S Partington
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA
| | - Jennifer Makenzie Nutter
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA
| | - Jeffrey B Eells
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA.
| |
Collapse
|
17
|
Yang SY, Hong KS, Cho Y, Cho EY, Choi Y, Kim Y, Park T, Ha K, Baek JH. Association between the Arylalkylamine N-Acetyltransferase (AANAT) Gene and Seasonality in Patients with Bipolar Disorder. Psychiatry Investig 2021; 18:453-462. [PMID: 33993688 PMCID: PMC8169335 DOI: 10.30773/pi.2020.0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is complex genetic disorder. Therefore, approaches using clinical phenotypes such as biological rhythm disruption could be an alternative. In this study, we explored the relationship between melatonin pathway genes with circadian and seasonal rhythms of BD. METHODS We recruited clinically stable patients with BD (n=324). We measured the seasonal variation of mood and behavior (seasonality), and circadian preference, on a lifetime basis. We analyzed 34 variants in four genes (MTNR1a, MTNR1b, AANAT, ASMT) involved in the melatonin pathway. RESULTS Four variants were nominally associated with seasonality and circadian preference. After multiple test corrections, the rs116879618 in AANAT remained significantly associated with seasonality (corrected p=0.0151). When analyzing additional variants of AANAT through imputation, the rs117849139, rs77121614 and rs28936679 (corrected p=0.0086, 0.0154, and 0.0092) also showed a significant association with seasonality. CONCLUSION This is the first study reporting the relationship between variants of AANAT and seasonality in patients with BD. Since AANAT controls the level of melatonin production in accordance with light and darkness, this study suggests that melatonin may be involved in the pathogenesis of BD, which frequently shows a seasonality of behaviors and symptom manifestations.
Collapse
Affiliation(s)
- So Yung Yang
- Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.,Institute of Behavioral and Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Sue Hong
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Youngah Cho
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun-Young Cho
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Yujin Choi
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
18
|
Abstract
During the evolution of life, the temporal rhythm of our rotating planet was internalized in the form of circadian rhythms. Circadian rhythms are ~24h internal manifestations that drive daily patterns of physiology and behavior. These rhythms are entrained (synchronized) to the external environment, primarily by the light-dark cycle, and precisely controlled via molecular clocks located within the suprachiasmatic nucleus of the hypothalamus. Misalignment and/or disruption of circadian rhythms can have detrimental consequences for human health. Indeed, studies suggest strong associations between mental health and circadian rhythms. However, direct interactions between mood regulation and the circadian system are just beginning to be uncovered and appreciated. This chapter examines the relationship between disruption of circadian rhythms and mental health. The primary focus will be outlining the association between circadian disruption, in the form of night shift work, exposure to light at night, jet lag, and social jet lag, and psychiatric illness (i.e., anxiety, major depressive disorder, bipolar disorder, and schizophrenia). Additionally, we review animal models of disrupted circadian rhythms, which provide further evidence in support of a strong association between circadian disruption and affective responses. Finally, we discuss future directions for the field and suggest areas of study that require further investigation.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
19
|
Nonmedical Interventions for Schizophrenia: A Review of Diet, Exercise, and Social Roles. Holist Nurs Pract 2020; 34:73-82. [PMID: 32049694 DOI: 10.1097/hnp.0000000000000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Schizophrenia is a major mental illness with a disease course that is influenced by lifestyle. The risk-benefit ratio for alternative interventions is more favorable than for antipsychotics in long-term treatment. Dietary interventions may target autoimmune features, vitamin or mineral deficiencies, abnormal lipid metabolism, gluten sensitivity, or others. Examples of interventions involving diet, physical activity, or physical processes or social interventions including talk therapy exist in the literature. Notwithstanding, the general utility of these types of interventions remains inconclusive, awaiting long-term randomized trials. A perspective that separates the cause of the disease from its symptoms may be helpful in treatment planning and is warranted to distinguish between short-term and long-term recovery goals.
Collapse
|
20
|
Wagner-Skacel J, Dalkner N, Moerkl S, Kreuzer K, Farzi A, Lackner S, Painold A, Reininghaus EZ, Butler MI, Bengesser S. Sleep and Microbiome in Psychiatric Diseases. Nutrients 2020; 12:nu12082198. [PMID: 32718072 PMCID: PMC7468877 DOI: 10.3390/nu12082198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives: Disturbances in the gut–brain barrier play an essential role in the development of mental disorders. There is considerable evidence showing that the gut microbiome not only affects digestive, metabolic and immune functions of the host but also regulates host sleep and mental states through the microbiota–gut–brain axis. The present review summarizes the role of the gut microbiome in the context of circadian rhythms, nutrition and sleep in psychiatric disorders. Methods: A PubMed search (studies published between April 2015–April 2020) was conducted with the keywords: “sleep, microbiome and psychiatry”; “sleep, microbiome and depression”; “sleep, microbiome and bipolar disorder”, “sleep, microbiome and schizophrenia”, “sleep, microbiome and anorexia nervosa”, “sleep, microbiome and substance use disorder”, “sleep, microbiome and anxiety”; “clock gene expression and microbiome”, “clock gene expression and nutrition”. Only studies investigating the relationship between sleep and microbiome in psychiatric patients were included in the review. Results: Search results yielded two cross-sectional studies analyzing sleep and gut microbiome in 154 individuals with bipolar disorder and one interventional study analyzing the effect of fecal microbiota transplantation in 17 individuals with irritable bowel syndrome on sleep. In patients with bipolar disorder, Faecalibacterium was significantly associated with improved sleep quality scores and a significant correlation between Lactobacillus counts and sleep. Conclusion: Translational research on this important field is limited and further investigation of the bidirectional pathways on sleep and the gut microbiome in mood disorders is warranted.
Collapse
Affiliation(s)
- Jolana Wagner-Skacel
- Department of Medical Psychology, Medical University of Graz (MUG), 8036 Graz, Austria;
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz (MUG), 8036 Graz, Austria; (N.D.); (S.M.); (K.K.); (A.P.); (E.Z.R.)
| | - Sabrina Moerkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz (MUG), 8036 Graz, Austria; (N.D.); (S.M.); (K.K.); (A.P.); (E.Z.R.)
| | - Kathrin Kreuzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz (MUG), 8036 Graz, Austria; (N.D.); (S.M.); (K.K.); (A.P.); (E.Z.R.)
| | - Aitak Farzi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8036 Graz, Austria;
| | - Sonja Lackner
- Otto Loewi Research Center (for Vascular Biology, Immunology andI), Division of Immunology and Pathophysiology, Medical University of Graz (MUG), 8036 Graz, Austria;
| | - Annamaria Painold
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz (MUG), 8036 Graz, Austria; (N.D.); (S.M.); (K.K.); (A.P.); (E.Z.R.)
| | - Eva Z. Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz (MUG), 8036 Graz, Austria; (N.D.); (S.M.); (K.K.); (A.P.); (E.Z.R.)
| | - Mary I. Butler
- Department of Psychiatry, University College Cork, T12 YN60 Cork, Ireland;
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz (MUG), 8036 Graz, Austria; (N.D.); (S.M.); (K.K.); (A.P.); (E.Z.R.)
- Correspondence: ; Tel.: +43-316-86224
| |
Collapse
|
21
|
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci 2020; 14:636. [PMID: 32655359 PMCID: PMC7324687 DOI: 10.3389/fnins.2020.00636] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD) is a common feature of schizophrenia, and is associated with symptom severity and patient quality of life. It is commonly manifested as disturbances to the sleep/wake cycle, with sleep abnormalities occurring in up to 80% of patients, making it one of the most common symptoms of this disorder. Severe circadian misalignment has also been reported, including non-24 h periods and phase advances and delays. In parallel, there are alterations to physiological circadian parameters such as body temperature and rhythmic hormone production. At the molecular level, alterations in the rhythmic expression of core clock genes indicate a dysfunctional circadian clock. Furthermore, genetic association studies have demonstrated that mutations in several clock genes are associated with a higher risk of schizophrenia. Collectively, the evidence strongly suggests that sleep and circadian disruption is not only a symptom of schizophrenia but also plays an important causal role in this disorder. The alterations in dopamine signaling that occur in schizophrenia are likely to be central to this role. Dopamine is well-documented to be involved in the regulation of the sleep/wake cycle, in which it acts to promote wakefulness, such that elevated dopamine levels can disturb sleep. There is also evidence for the influence of dopamine on the circadian clock, such as through entrainment of the master clock in the suprachiasmatic nuclei (SCN), and dopamine signaling itself is under circadian control. Therefore dopamine is closely linked with sleep and the circadian system; it appears that they have a complex, bidirectional relationship in the pathogenesis of schizophrenia, such that disturbances to one exacerbate abnormalities in the other. This review will provide an overview of the evidence for a role of SCRD in schizophrenia, and examine the interplay of this with altered dopamine signaling. We will assess the evidence to suggest common underlying mechanisms in the regulation of sleep/circadian rhythms and the pathophysiology of schizophrenia. Improvements in sleep are associated with improvements in symptoms, along with quality of life measures such as cognitive ability and employability. Therefore the circadian system holds valuable potential as a new therapeutic target for this disorder.
Collapse
Affiliation(s)
- Anna Ashton
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry 2020; 10:28. [PMID: 32066704 PMCID: PMC7026420 DOI: 10.1038/s41398-020-0694-0] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are internal manifestations of the solar day that permit adaptations to predictable environmental temporal changes. These ~24-h rhythms are controlled by molecular clockworks within the brain that are reset daily to precisely 24 h by exposure to the light-dark cycle. Information from the master clock in the mammalian hypothalamus conveys temporal information to the entire body via humoral and neural communication. A bidirectional relationship exists between mood disorders and circadian rhythms. Mood disorders are often associated with disrupted circadian clock-controlled responses, such as sleep and cortisol secretion, whereas disruption of circadian rhythms via jet lag, night-shift work, or exposure to artificial light at night, can precipitate or exacerbate affective symptoms in susceptible individuals. Evidence suggests strong associations between circadian rhythms and mental health, but only recently have studies begun to discover the direct interactions between the circadian system and mood regulation. This review provides an overview of disrupted circadian rhythms and the relationship to behavioral health and psychiatry. The focus of this review is delineating the role of disruption of circadian rhythms on mood disorders using human night shift studies, as well as jet lag studies to identify links. We also review animal models of disrupted circadian rhythms on affective responses. Lastly, we propose low-cost behavioral and lifestyle changes to improve circadian rhythms and presumably behavioral health.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
- Department of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
23
|
Park M, Kim SA, Yee J, Shin J, Lee KY, Joo EJ. Significant role of gene-gene interactions of clock genes in mood disorder. J Affect Disord 2019; 257:510-517. [PMID: 31323592 DOI: 10.1016/j.jad.2019.06.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND The genetic interactions in the circadian rhythm biological system are promising as a source of pathophysiology in mood disorder. We examined the role of the gene-gene interactions of clock genes in mood disorder. METHODS We included 413 patients with mood disorder and 1294 controls. The clock genes investigated were BHLHB2, CLOCK, CSNK1E, NR1D1, PER2, PER3, and TIMELESS. Allele, genotype, and haplotype associations were tested. Gene--gene interactions were analyzed using the non-parametric model-free multifactor-dimensionality reduction (MDR) method. RESULTS TIMELESS rs4630333 and CSNK1E rs135745 were significantly associated with both major depressive disorder and bipolar disorder. The CLOCK haplotype was also strongly associated. The genetic roles of these SNPs were consistent from the allele and genotypic associations to the MDR interaction results. In MDR analysis, the combination of TIMELESS rs4630333 and CSNK1E rs135745 exhibited the most significant association with mood disorders in the two-locus model. BHLHB2 rs2137947 for major depressive disorder and CLOCK rs12649507 for bipolar disorder were the most significant third loci in the three-locus combination model. The four-locus SNP combination model showed the best balanced accuracy (BA), but its cross-validation consistency (CVC) was unsatisfactory. LIMITATIONS We included only 17 SNPs for seven circadian genes due to our limited resources; all subjects were ethnically Korean. CONCLUSIONS Our results suggest significant single-gene associations and gene-gene interactions of circadian genes with mood disorder. Gene-gene interactions play a crucial role in mood disorder, even when individual clock genes do not have significant roles.
Collapse
Affiliation(s)
- Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Jaeyong Yee
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Jieun Shin
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Psychiatry, Nowon Eulji Meical Center, Eulji University, Seoul, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Psychiatry, Nowon Eulji Meical Center, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Wang C, Deng S, Sun L, Li L, Hu YQ. A nonparametric test for association with multiple loci in the retrospective case-control study. Stat Methods Med Res 2019; 29:589-602. [PMID: 30987531 DOI: 10.1177/0962280219842892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genome-wide association studies aim at identifying common or rare variants associated with common diseases and explaining more heritability. It is well known that common diseases are influenced by multiple single nucleotide polymorphisms (SNPs) that are usually correlated in location or function. In order to powerfully detect association signals, it is highly desirable to take account of correlations or linkage disequilibrium (LD) information among multiple SNPs in testing for association. In this article, we propose a test SLIDE that depicts the difference of the average multi-locus genotypes between cases and controls and derive its variance-covariance matrix in the retrospective design. This matrix is composed of the pairwise LD between SNPs. Thus SLIDE can borrow the strength from an external database in the population of interest with a few thousands to hundreds of thousands individuals to improve the power for detecting association. Extensive simulations show that SLIDE has apparent superiority over the existing methods, especially in the situation involving both common and rare variants, both protective and deleterious variants. Furthermore, the efficiency of the proposed method is demonstrated in the application to the data from the Wellcome Trust Case Control Consortium.
Collapse
Affiliation(s)
- Chan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biostatistics, Fudan University, Shanghai, China.,Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Shufang Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Leiming Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Liming Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Biostatistics, Fudan University, Shanghai, China.,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Geoffroy PA, Curis E, Courtin C, Moreira J, Morvillers T, Etain B, Laplanche JL, Bellivier F, Marie-Claire C. Lithium response in bipolar disorders and core clock genes expression. World J Biol Psychiatry 2018; 19:619-632. [PMID: 28095742 DOI: 10.1080/15622975.2017.1282174] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We examine whether the lithium response is associated with changes in the expression of core clock genes. METHODS The effect of a therapeutic concentration of lithium (1 mM) on the expression levels of 17 circadian genes was examined in lymphoblastoid cell lines (LCLs) derived from two well-characterized groups of bipolar disorder patients, defined as lithium non-responders (NR, n = 20) or excellent responders (ER, n = 16). Quantitative real-time PCR (qRT-PCR) was conducted at 2, 4 and 8 days (d2, d4 and d8) with and without lithium exposure. RESULTS At d2, in ER only, BHLHE41, RORA, PER1, ARNTL, CRY2, BHLHE40 and CSNK1D were upregulated, whereas NR1D1 was downregulated. At d4, in ER only, CRY1 was downregulated. At d8, in NR only, GSK3β was upregulated and DBP, TIMELESS and CRY1 were downregulated. Significant Group × Lithium interactions existed for NR1D1 at d2 (P = 0.02), and CRY1 at d4 (P = 0.02). Longitudinal analyses showed differential temporal evolutions between NR and ER (significant Time × Group interaction) for PER3, NR1D1, DBP, RORA, CSNK1D and TIMELESS; and a significant Time × Lithium interaction for NR1D1. Coexpression data analyses suggested distinct groups of circadian genes concurrently modulated by lithium. CONCLUSIONS In LCLs, lithium influences expression of circadian genes with differences in amplitude and kinetics according to the patient's lithium response status.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,c AP-HP, GH Saint-Louis-Lariboisière-F. Widal , Pôle de Psychiatrie et de Médecine Addictologique , Paris , France.,d Fondation FondaMental , Créteil , France
| | - Emmanuel Curis
- a Inserm U1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France.,f Laboratoire de biomathématiques, Faculté de pharmacie de Paris Université Paris Descartes , Paris , France.,g Département de biostatistiques et d'informatique médicales , Hôpital Saint-Louis, APHP , Paris , France
| | - Cindie Courtin
- a Inserm U1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| | - Jeverson Moreira
- a Inserm U1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| | | | - Bruno Etain
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,c AP-HP, GH Saint-Louis-Lariboisière-F. Widal , Pôle de Psychiatrie et de Médecine Addictologique , Paris , France.,d Fondation FondaMental , Créteil , France
| | - Jean-Louis Laplanche
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| | - Frank Bellivier
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,c AP-HP, GH Saint-Louis-Lariboisière-F. Widal , Pôle de Psychiatrie et de Médecine Addictologique , Paris , France.,d Fondation FondaMental , Créteil , France
| | - Cynthia Marie-Claire
- a Inserm U1144 , Paris , France.,b Université Paris Diderot , Sorbonne Paris Cité, UMR-S 1144 , Paris , France.,e Université Paris Descartes , UMR-S 1144 , Paris , France
| |
Collapse
|
26
|
Lee KY, Ahn YM, Kim SH, Kang HG, Joo EJ. Genetic association study of CSNK1E gene in bipolar disorder and circadian characteristics. Nord J Psychiatry 2018; 72:599-604. [PMID: 30445897 DOI: 10.1080/08039488.2018.1509125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND A circadian rhythm disturbance is one of the essential components of the phenotype of bipolar disorder. It has been reported that casein kinase 1 epsilon (CSNK1E), a member of the clock gene family, is associated with psychiatric phenotypes. OBJECTIVES We performed a genetic association study to determine the genetic role of CSNK1E in bipolar disorder and circadian rhythm disturbances in the Korean population. METHODS The present study included 215 patients with bipolar disorder and 773 controls. Circadian characteristics were measured by the Korean version of the Composite Scale of Morningness (CS). Single-nucleotide polymorphisms (SNPs) of CSNK1E, rs1534891 and rs2075984, were genotyped. Chi-square analyses were performed to evaluate associations involving alleles and genotypes. Haplotype analysis was also performed, and the permutation p value was calculated. We also tested further associations involving these SNPs and scores on the CS. RESULTS We found a positive association between SNP rs2075984 and bipolar disorder in both the allelic (p = .003) and genotypic (p = .006) distributions. No allelic or genotypic association between SNP rs1534891 and bipolar disorder was observed. A significant association of haplotype with bipolar disorder was found (p = .033). However, no association between the CS and the genotype of either SNP was found in the total sample. CONCLUSION CSNK1E SNP rs2075984 seemed to play a significant role in the development of bipolar disorder in this Korean sample. This association does not seem to relate to the phase preference measured by the CS. Further studies on CSNK1E with larger samples and more SNPs are necessary.
Collapse
Affiliation(s)
- Kyu Young Lee
- a Department of Neuropsychiatry , Eulji University School of Medicine , Daegeon , Korea.,b Department of Psychiatry, Nowon Eulji Meical Center , Eulji University , Seoul , Korea
| | - Yong Min Ahn
- c Department of Neuropsychiatry , Seoul National University Hospital , Seoul , Korea.,d Department of Psychiatry and Behavioral Science , Seoul National University College of Medicine , Seoul , Korea.,e Institute of Human Behavioral Medicine , Seoul National University College of Medicine , Seoul , Korea
| | - Se Hyun Kim
- f Department of Neuropsychiatry , Dongguk University International Hospital , Gyeonggi , Republic of Korea.,g Institute of Clinical Psychopharmacology , Dongguk University School of Medicine , Gyeonggi , Republic of Korea
| | - Hee-Gyoo Kang
- h Department of Senior Healthcare, BK21 Program, Graduate School , Eulji University , Daejeon , Korea.,i Institute for Senior Industry , Eulji University , Seongnam , Korea.,j Department of Biomedical Laboratory Science, Graduate School of Health Science , Eulji University , Seongnam , Korea
| | - Eun-Jeong Joo
- a Department of Neuropsychiatry , Eulji University School of Medicine , Daegeon , Korea.,b Department of Psychiatry, Nowon Eulji Meical Center , Eulji University , Seoul , Korea
| |
Collapse
|
27
|
Dorokhov VB, Puchkova AN, Arsen’ev GN, Slominsky PA, Dementienko VV, Sveshnikov DS, Putilov AA. Association of obesity in shift workers with the minor allele of a single-nucleotide polymorphism (rs4851377) in the largest circadian clock gene (NPAS2). BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1537558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra N. Puchkova
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb N. Arsen’ev
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Petr A. Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, the Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Valeriy V. Dementienko
- Laboratory of Medical Electronics, Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, Moscow, Russia
| | - Dmitry S. Sveshnikov
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia, Moscow, Russia
| | - Arcady A. Putilov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Kim SH, Park HG, Jeong SH, Kang UG, Ahn YM, Kim YS. Electroconvulsive Seizure Alters the Expression and Daily Oscillation of Circadian Genes in the Rat Frontal Cortex. Psychiatry Investig 2018; 15:717-726. [PMID: 29945428 PMCID: PMC6056691 DOI: 10.30773/pi.2018.01.18.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is the most effective treatment for mood disorders. Accumulating evidence has suggested the important role of circadian genes in mood disorders. However, the effects of ECT on circadian genes have not been systemically investigated. METHODS We examined the expression and daily oscillation of major circadian genes in the rat frontal cortex after electroconvulsive seizure (ECS). RESULTS Firstly, mRNA and protein level were investigated at 24 hr after single ECS (E1X) and repeated ECS treatements for 10 days (E10X), which showed more remarkable changes after E10X than E1X. mRNA expression of Rorα, Bmal1, Clock, Per1, and Cry1 was decreased, while Rev-erbα expression was increased at 24 hr after E10X compared to sham. The proteins showed similar pattern of changes. Next, the effects on oscillation and rhythm properties (mesor, amplitude, and acrophase) were examined, which also showed more prominent changes after E10X than E1X. After E10X, mesor of Rorα, Bmal1, and Cry1 was reduced, and that of Rev-erbα was increased. Five genes, Rev-erbα, Bmal1, Per1, Per2, and Cry2, showed earlier acrophase after E10X. CONCLUSION The findings suggest that repeated ECS induces reduced expression and phase advance of major circadian genes in the in vivo rat frontal cortex.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong Hoon Jeong
- Department of Psychiatry, Eulji University School of Medicine, Eulji University Hospital, Daejeon, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang, Republic of Korea
| |
Collapse
|
29
|
Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. Oncotarget 2018; 8:24088-24098. [PMID: 28412756 PMCID: PMC5421829 DOI: 10.18632/oncotarget.15493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 × 10−5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ∼ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.
Collapse
|
30
|
Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet 2018; 26:R128-R138. [PMID: 28977444 PMCID: PMC5886477 DOI: 10.1093/hmg/ddx240] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/12/2022] Open
Abstract
Circadian rhythms are 24-h rhythms in physiology and behaviour generated by molecular clocks, which serve to coordinate internal time with the external world. The circadian system is a master regulator of nearly all physiology and its disruption has major consequences on health. Sleep and circadian rhythm disruption (SCRD) is a ubiquitous feature in today's 24/7 society, and studies on shift-workers have shown that SCRD can lead not only to cognitive impairment, but also metabolic syndrome and psychiatric illness including depression (1,2). Mouse models of clock mutants recapitulate these deficits, implicating mechanistic and causal links between SCRD and disease pathophysiology (3-5). Importantly, treating clock disruption reverses and attenuates these adverse health states in animal models (6,7), thus establishing the circadian system as a novel therapeutic target. Significantly, circadian and clock-controlled gene mutations have recently been identified by Genome-Wide Association Studies (GWAS) in the aetiology of sleep, mental health and metabolic disorders. This review will focus upon the genetics of circadian rhythms in sleep and health.
Collapse
Affiliation(s)
- Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, OMPI-G, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Lewis Taylor
- Sleep and Circadian Neuroscience Institute, OMPI-G, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zeinab Wakaf
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, OMPI-G, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
31
|
Patouret R, Doebelin C, Garcia-Ordonez RD, Chang MR, Ruiz C, Cameron MD, Griffin PR, Kamenecka TM. Identification of an aminothiazole series of RORβ modulators. Bioorg Med Chem Lett 2018; 28:1178-1181. [PMID: 29534930 PMCID: PMC5859951 DOI: 10.1016/j.bmcl.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
Crystallography has identified stearic acid, ALRT 1550 and ATRA as ligands that bind RORβ, however, none of these molecules represent good starting points to develop optimized small molecule modulators. Recently, Compound 1 was identified as a potent dual RORβ and RORγ inverse agonist with no activity towards RORα (Fig. 1). To our knowledge, this is one of only two small molecule RORβ inverse agonists identified in the primary literature from a tractable chemical series and represents an ideal starting point from which to design RORβ-selective modulators. Herein we describe our SAR optimization efforts that led to a series of potent neutral antagonists of RORβ.
Collapse
Affiliation(s)
- Rémi Patouret
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Christelle Doebelin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Ruben D Garcia-Ordonez
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Mi Ra Chang
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Claudia Ruiz
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Michael D Cameron
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- The Scripps Research Institute, Scripps Florida, Department of Molecular Medicine, 130 Scripps Way #A2A, Jupiter, FL 33458, USA.
| |
Collapse
|
32
|
Schuch JB, Genro JP, Bastos CR, Ghisleni G, Tovo-Rodrigues L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am J Med Genet B Neuropsychiatr Genet 2018; 177:181-198. [PMID: 28902457 DOI: 10.1002/ajmg.b.32599] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The circadian clock system drives daily rhythms in physiology, metabolism, and behavior in mammals. Molecular mechanisms of this system consist of multiple clock genes, with Circadian Locomotor Output Cycles Kaput (CLOCK) as a core member that plays an important role in a wide range of behaviors. Alterations in the CLOCK gene are associated with common psychiatric disorders as well as with circadian disturbances comorbidities. This review addresses animal, molecular, and genetic studies evaluating the role of the CLOCK gene on many psychiatric conditions, namely autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, major depressive disorder, bipolar disorder, anxiety disorder, and substance use disorder. Many animal experiments focusing on the effects of the Clock gene in behavior related to psychiatric conditions have shown consistent biological plausibility and promising findings. In humans, genetic and gene expression studies regarding disorder susceptibility, sleep disturbances related comorbidities, and response to pharmacological treatment, in general, are in agreement with animal studies. However, the number of controversial results is high. Literature suggests that the CLOCK gene exerts important influence on these conditions, and influences the susceptibility to phenotypes of psychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline B Schuch
- Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P Genro
- Graduate Program in Bioscience, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clarissa R Bastos
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Graduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Pfaffenseller B, Kapczinski F, Gallitano AL, Klamt F. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder. Front Behav Neurosci 2018; 12:15. [PMID: 29459824 PMCID: PMC5807664 DOI: 10.3389/fnbeh.2018.00015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs) are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3) of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF) that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.
Collapse
Affiliation(s)
- Bianca Pfaffenseller
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ, United States
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
34
|
Garbazza C, Benedetti F. Genetic Factors Affecting Seasonality, Mood, and the Circadian Clock. Front Endocrinol (Lausanne) 2018; 9:481. [PMID: 30190706 PMCID: PMC6115502 DOI: 10.3389/fendo.2018.00481] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
In healthy humans, seasonality has been documented in psychological variables, chronotype, sleep, feeding, metabolic and autonomic function, thermoregulation, neurotransmission, and hormonal response to stimulation, thus representing a relevant factor to account for, especially when considering the individual susceptibility to disease. Mood is largely recognized as one of the central aspects of human behavior influenced by seasonal variations. This historical notion, already mentioned in ancient medical reports, has been recently confirmed by fMRI findings, which showed that seasonality in human cognitive brain functions may influence affective control with annual variations. Thus, seasonality plays a major role in mood disorders, affecting psychopathology, and representing the behavioral correlate of a heightened sensitivity to factors influencing circannual rhythms in patients. Although the genetic basis of seasonality and seasonal affective disorder (SAD) has not been established so far, there is growing evidence that factors affecting the biological clock, such as gene polymorphisms of the core clock machinery and seasonal changes of the light-dark cycle, exert a marked influence on the behavior of patients affected by mood disorders. Here we review recent findings about the effects of individual gene variants on seasonality, mood, and psychopathological characteristics.
Collapse
Affiliation(s)
- Corrado Garbazza
- Centre for Chronobiology, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- *Correspondence: Corrado Garbazza
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
35
|
Brasil Rocha PM, Campos SB, Neves FS, da Silva Filho HC. Genetic Association of the PERIOD3 (Per3) Clock Gene with Bipolar Disorder. Psychiatry Investig 2017; 14:674-680. [PMID: 29042894 PMCID: PMC5639137 DOI: 10.4306/pi.2017.14.5.674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/26/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Circadian rhythms have been linked to psychiatric disorders such as Depression and Bipolar Disorder (BD). Given previous evidences of sleep/circadian disturbances as well as the genetic susceptibility for BD, we decided to investigate the possible link between the PERIOD3 (Per3) circadian gene and BD. METHODS This is a genetic association case (BD) vs. control study of the Per3 gene. We further subdivided our BD sample into "good sleepers" (PSQI ≤5) and "poor sleepers" (PSQI>5) according to the Pittsburgh Sleep Quality Index (PSQI) global score, and then we assessed genetic association of the Per3 gene with sleep quality in the BD group. RESULTS There were 209 cases and 213 controls in our sample. The GT genotype of the SNP rs707467 significantly associated with BD (χ2=8.80; p-value=0.01; adjusted residual=±2.6). We also found significant association of the SNP rs10462020 allele T with BD (χ2=5.81; p-value=0.01) as well as the genotype TT (χ2= 6.01; p-value=0.04; adjusted residual=±2.4). CONCLUSION In this study we demonstrated evidences of genetic association between the Per3 gene and BD. The results of association between the Per3 gene and BD in our sample may bring additional evidence to the former findings of association between the Per3 gene and BD.
Collapse
Affiliation(s)
- Paulo Marcos Brasil Rocha
- Institute of Biological Sciences, Post-Graduation Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Becho Campos
- Post-Graduation Program in Molecular Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Silva Neves
- Institute of Biological Sciences, Post-Graduation Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Mental Health Department, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Humberto Corrêa da Silva Filho
- Institute of Biological Sciences, Post-Graduation Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Post-Graduation Program in Molecular Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Mental Health Department, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Medicine School, UNI-BH (University Center of Belo Horizonte)-Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
36
|
Shou H, Cui L, Hickie I, Lameira D, Lamers F, Zhang J, Crainiceanu C, Zipunnikov V, Merikangas KR. Dysregulation of objectively assessed 24-hour motor activity patterns as a potential marker for bipolar I disorder: results of a community-based family study. Transl Psychiatry 2017; 7:e1211. [PMID: 28892068 PMCID: PMC5611716 DOI: 10.1038/tp.2017.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 01/10/2023] Open
Abstract
There has been a growing number of studies that have employed actigraphy to investigate differences in motor activity in mood disorders. In general, these studies have shown that people with bipolar disorders (BPDs) tend to exhibit greater variability and less daytime motor activity than controls. The goal of this study was to examine whether patterns of motor activity differ in euthymic individuals across the full range of mood disorder subtypes (Bipolar I (BPI), Bipolar II (BPII) and major depression (MDD)) compared with unaffected controls in a community-based family study of mood spectrum disorders. Minute-to-minute activity counts derived from actigraphy were collected over a 2-week period for each participant. Prospective assessments of the level, timing and day-to-day variability of physical activity measures were compared across diagnostic groups after controlling for a comprehensive list of potential confounding factors. After adjusting for the effects of age, sex, body mass index (BMI) and medication use, the BPI group had lower median activity intensity levels across the second half of the day and greater variability in the afternoon compared with controls. Those with a history of BPII had increased variability during the night time compared with controls, indicating poorer sleep quality. No differences were found in the average intensity, variability or timing of activity in comparisons between other mood disorder subgroups and controls. Findings confirm evidence from previous studies that BPI may be a manifestation of a rhythm disturbance that is most prominent during the second half of the day. The present study is the largest study to date that included the full range of mood disorder subgroups in a nonclinical sample that increases the generalizability of our findings to the general community. The manifestations of activity patterns outside of acute episodes add to the accumulating evidence that dysregulation of patterns of activity may constitute a potential biomarker for BPD.
Collapse
Affiliation(s)
- H Shou
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA,Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - L Cui
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA
| | - I Hickie
- Brain and Mind Institute, University of Sydney, Sydney, NSW, Australia
| | - D Lameira
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA,Department of Psychology, George Mason University, Fairfax, VA, USA
| | - F Lamers
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - J Zhang
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, PRC
| | - C Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - V Zipunnikov
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - K R Merikangas
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD, USA,Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Porter Neuroscience Research Center, MSC#3720, Bethesda, MD 20892, USA. E-mail:
| |
Collapse
|
37
|
Melo MC, Abreu RL, Linhares Neto VB, de Bruin PF, de Bruin VM. Chronotype and circadian rhythm in bipolar disorder: A systematic review. Sleep Med Rev 2017; 34:46-58. [DOI: 10.1016/j.smrv.2016.06.007] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/01/2022]
|
38
|
Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Effects of circadian clock genes and health-related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS One 2017; 12:e0173861. [PMID: 28296937 PMCID: PMC5352001 DOI: 10.1371/journal.pone.0173861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Increased risk of developing metabolic syndrome (MetS) has been associated with the circadian clock genes. In this study, we assessed whether 29 circadian clock-related genes (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and VIPR2) are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing MetS and its individual components. A total of 3,000 Taiwanese subjects from the Taiwan Biobank were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our data showed a nominal association of MetS with several single nucleotide polymorphisms (SNPs) in five key circadian clock genes including ARNTL, GSK3B, PER3, RORA, and RORB; but none of these SNPs persisted significantly after performing Bonferroni correction. Moreover, we identified the effect of GSK3B rs2199503 on high fasting glucose (P = 0.0002). Additionally, we found interactions among the ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, RORA rs8034880, and RORB rs972902 SNPs influenced MetS (P < 0.001 ~ P = 0.002). Finally, we investigated the influence of interactions between ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, and RORB rs972902 with environmental factors such as alcohol consumption, smoking status, and physical activity on MetS and its individual components (P < 0.001 ~ P = 0.002). Our study indicates that circadian clock genes such as ARNTL, GSK3B, PER3, RORA, and RORB genes may contribute to the risk of MetS independently as well as through gene-gene and gene-environment interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Vita Genomics, Inc., Taipei, Taiwan
- TickleFish Systems Corporation, Seattle, Western Australia, United States of America
- * E-mail: (EL); (SJT)
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C. Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (EL); (SJT)
| |
Collapse
|
39
|
Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S. Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biol Psychiatry 2017; 81:536-547. [PMID: 27259817 PMCID: PMC5065936 DOI: 10.1016/j.biopsych.2016.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Growing evidence points to a key role for somatostatin (SST) in schizophrenia (SZ) and bipolar disorder (BD). In the amygdala, neurons expressing SST play an important role in the regulation of anxiety, which is often comorbid in these disorders. We tested the hypothesis that SST-immunoreactive (IR) neurons are decreased in the amygdala of subjects with SZ and BD. Evidence for circadian SST expression in the amygdala and disrupted circadian rhythms and rhythmic peaks of anxiety in BD suggest a disruption of rhythmic expression of SST in this disorder. METHODS Amygdala sections from 12 SZ, 15 BD, and 15 control subjects were processed for immunocytochemistry for SST and neuropeptide Y, a neuropeptide partially coexpressed in SST-IR neurons. Total numbers (Nt) of IR neurons were measured. Time of death was used to test associations with circadian rhythms. RESULTS SST-IR neurons were decreased in the lateral amygdala nucleus in BD (Nt, p = .003) and SZ (Nt, p = .02). In normal control subjects, Nt of SST-IR neurons varied according to time of death. This pattern was altered in BD subjects, characterized by decreases of SST-IR neurons selectively in subjects with time of death corresponding to the day (6:00 am to 5:59 pm). Numbers of neuropeptide Y-IR neurons were not affected. CONCLUSIONS Decreased SST-IR neurons in the amygdala of patients with SZ and BD, interpreted here as decreased SST expression, may disrupt responses to fear and anxiety regulation in these individuals. In BD, our findings raise the possibility that morning peaks of anxiety depend on a disruption of circadian regulation of SST expression in the amygdala.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jason T Wiseman
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Lucy Ehrenfeld
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Bengesser SA, Reininghaus EZ, Lackner N, Birner A, Fellendorf FT, Platzer M, Kainzbauer N, Tropper B, Hörmanseder C, Queissner R, Kapfhammer HP, Wallner-Liebmann SJ, Fuchs R, Petek E, Windpassinger C, Schnalzenberger M, Reininghaus B, Evert B, Waha A. Is the molecular clock ticking differently in bipolar disorder? Methylation analysis of the clock gene ARNTL. World J Biol Psychiatry 2016; 19:S21-S29. [PMID: 27739341 DOI: 10.1080/15622975.2016.1231421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The clock gene ARNTL is associated with the transcription activation of monoamine oxidase A according to previous literature. Thus, we hypothesised that methylation of ARNTL may differ between bipolar disorder (BD) and controls. METHODS The methylation status of one CpG island covering the first exon of ARNTL (PS2) and one site in the 5' region of ARNTL (cg05733463) were analysed in patients with BD (n = 151) versus controls (n = 66). Methylation analysis was performed by bisulphite-conversion of DNA from fasting blood with the EpiTect Bisulfite Kit, PCR and pyrosequencing. Analysis of covariances considering the covariates age, body mass index, sex, smoking, lithium and anticonvulsant intake were performed to test methylation differences between BD and controls. RESULTS Methylation at cg05733463 of ARNTL was significantly higher in BD than in controls (F(1,209) = 44.500, P < .001). In contrast, methylation was significantly lower in BD at PS2_POS1 compared to controls (F(1,128) = 5.787, P = .018) and by trend at PS2_POS2 (F(1,128) = 3.033, P = .084) and POS7 (F(1,34) = 3.425, P = .073). CONCLUSIONS Methylation of ARNTL differed significantly between BD and controls. Thus, our study suggests that altered epigenetic regulation of ARNTL might provide a mechanistic basis for better understanding circadian rhythms and mood swings in BD.
Collapse
Affiliation(s)
- Susanne A Bengesser
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Eva Z Reininghaus
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Nina Lackner
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Armin Birner
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | | | - Martina Platzer
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Nora Kainzbauer
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Bernhard Tropper
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Christa Hörmanseder
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Robert Queissner
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | | | | | - Robert Fuchs
- b Institute of Pathophysiology and Immunology , Medical University of Graz (MUG) , Graz , Austria
| | - Erwin Petek
- c Institute of Human Genetics , Medical University of Graz (MUG) , Graz , Austria
| | | | - Mario Schnalzenberger
- d Institute of Economics , JKU Linz , Leonding, Linz , Austria
- e Cubido business solutions , Leonding, Linz , Austria
| | - Bernd Reininghaus
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
- f Justuspark Bad Hall , Austria
| | - Bernd Evert
- g Department of Neurology , University of Bonn , Germany
| | - Andreas Waha
- h Institute of Neuropathology , University of Bonn , Germany
| |
Collapse
|
41
|
Yates NJ. Schizophrenia: the role of sleep and circadian rhythms in regulating dopamine and psychosis. Rev Neurosci 2016; 27:669-687. [DOI: 10.1515/revneuro-2016-0030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/26/2016] [Indexed: 12/27/2022]
Abstract
AbstractSchizophrenia has long been associated with abnormalities in circadian rhythms and sleep. Up until now, there have been no thorough reviews of the potential mechanisms behind the myriad of circadian and sleep abnormalities observed in schizophrenia and psychosis. We present evidence of sleep playing an important role in psychosis predominantly mediated by dopaminergic pathways. A synthesis of both human and animal experimental work suggests that the interplay between sleep and dopamine is important in the generation and maintenance of psychosis. In particular, both animal and human data point to sleep disruption increasing dopamine release and sensitivity. Furthermore, elevated dopamine levels disrupt sleep and circadian rhythms. The synthesis of knowledge suggests that circadian rhythms, dopamine dysregulation, and psychosis are intricately linked. This suggests that treatment of circadian disturbance may be a useful target in improving the lives and symptoms of patients with schizophrenia.
Collapse
Affiliation(s)
- Nathanael James Yates
- 1School of Animal Biology, Experimental and Regenerative Neurosciences, M317, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, WA, Australia
| |
Collapse
|
42
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
43
|
Geoffroy PA, Etain B, Lajnef M, Zerdazi EH, Brichant-Petitjean C, Heilbronner U, Hou L, Degenhardt F, Rietschel M, McMahon FJ, Schulze TG, Jamain S, Marie-Claire C, Bellivier F. Circadian genes and lithium response in bipolar disorders: associations with PPARGC1A (PGC-1α) and RORA. GENES BRAIN AND BEHAVIOR 2016; 15:660-8. [DOI: 10.1111/gbb.12306] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/01/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- P. A. Geoffroy
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
- Fondation FondaMental; Créteil France
| | - B. Etain
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
- Fondation FondaMental; Créteil France
| | - M. Lajnef
- Inserm U955, Psychiatrie Translationnelle; Créteil France
| | - E-H. Zerdazi
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- AP-HP, Pôle de Psychiatrie, groupe hospitalier Henri Mondor; Créteil France
| | - C. Brichant-Petitjean
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
| | - U. Heilbronner
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University; Munich Germany
| | - L. Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services; Bethesda MD USA
| | - F. Degenhardt
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - M. Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Heidelberg Germany
| | - F. J. McMahon
- Human Genetics Branch, NIMH Intramural Research Program, National Institutes of Health, and; Department of Psychiatry, Johns Hopkins University School of Medicine; Baltimore MD USA
| | - T. G. Schulze
- Institute of Psychiatric Phenomics and Genomics; Ludwig-Maximilians-University; Munich Germany
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health; Mannheim Germany
- Department of Psychiatry and Psychotherapy, University Medical Center; Georg-August-University; Göttingen Germany
| | - S. Jamain
- Fondation FondaMental; Créteil France
- Inserm U955, Psychiatrie Translationnelle; Créteil France
- Université Paris Est, Faculté de Médecine; Créteil France
| | - C. Marie-Claire
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
| | - F. Bellivier
- Inserm U1144; Paris F-75006 France
- Université Paris Descartes; UMR-S 1144; Paris F-75006 France
- Université Paris Diderot; Sorbonne Paris Cité, UMR-S 1144; Paris F-75013 France
- Pôle de Psychiatrie et de Médecine Addictologique; AP-HP, GH Saint-Louis, Lariboisière, F. Widal; 75475 Paris cedex 10 France
- Fondation FondaMental; Créteil France
| |
Collapse
|
44
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
45
|
Mokros Ł, Karbownik MS, Nowakowska-Domagała K, Szemraj J, Wieteska Ł, Woźniak K, Witusik A, Antczak A, Pietras T. Haloperidol, but not olanzapine, may affect expression of PER1 and CRY1 genes in human glioblastoma cell line. BIOL RHYTHM RES 2016; 47:865-871. [PMID: 27746588 PMCID: PMC5044774 DOI: 10.1080/09291016.2016.1202379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023]
Abstract
Background: There is barely any evidence of antipsychotic drugs affecting the molecular clockwork in human, yet it is suggested that clock genes are associated with dopaminergic transmission, i.e. the main target of this therapeutics. We decided to verify if haloperidol and olanzapine affect expression of CLOCK, BMAL1, PER1 and CRY1 in a human central nervous system cell line model. Methods: U-87MG human glioblastoma cell line was used as an experimental model. The cells were incubated with or without haloperidol and olanzapine in the concentration of 5 and 20 μM for 24 h. Real-time quantitative polymerase chain reaction with the ΔCT analysis was used to examine the effect of haloperidol and olanzapine on the mRNA expression of the genes. Results: At 5 μM, haloperidol decreased expression of CRY1 almost 20-fold. There was nearly a 1.5-fold increase in expression of PER1. Considering the 20 μM haloperidol concentration and both olanzapine concentrations, no other statistically significant effect was observed. Conclusions: At certain concentration, haloperidol seems to affect expression of particular clock genes in a human central nervous system cell line model, yet mechanism underlying this phenomenon remains elusive.
Collapse
Affiliation(s)
- Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Łódź , Łódź , Poland
| | | | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź , Łódź , Poland
| | - Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Łódź , Łódź , Poland
| | - Karol Woźniak
- Mental Health Centre, Pabianice Medical Centre , Pabianice , Poland
| | - Andrzej Witusik
- Department of Psychology, Faculty of Social Sciences, Piotrków Trybunalski Division, Jan Kochanowski Memorial University of Humanities and Sciences , Piotrków Trybunalski , Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Łódź, Barlicki Memorial Hospital , Łódź , Poland
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Łódź , Łódź , Poland
| |
Collapse
|
46
|
Johansson AS, Owe-Larsson B, Hetta J, Lundkvist GB. Altered circadian clock gene expression in patients with schizophrenia. Schizophr Res 2016; 174:17-23. [PMID: 27132483 DOI: 10.1016/j.schres.2016.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Impaired circadian rhythmicity has been reported in several psychiatric disorders. Schizophrenia is commonly associated with aberrant sleep-wake cycles and insomnia. It is not known if schizophrenia is associated with disturbances in molecular rhythmicity. We cultured fibroblasts from skin samples obtained from patients with chronic schizophrenia and from healthy controls, respectively, and analyzed the circadian expression during 48h of the clock genes CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα and DBP. In fibroblasts obtained from patients with chronic schizophrenia, we found a loss of rhythmic expression of CRY1 and PER2 compared to cells from healthy controls. We also estimated the sleep quality in these patients and found that most of them suffered from poor sleep in comparison with the healthy controls. In another patient sample, we analyzed mononuclear blood cells from patients with schizophrenia experiencing their first episode of psychosis, and found decreased expression of CLOCK, PER2 and CRY1 compared to blood cells from healthy controls. These novel findings show disturbances in the molecular clock in schizophrenia and have important implications in our understanding of the aberrant rhythms reported in this disease.
Collapse
Affiliation(s)
- Anne-Sofie Johansson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| | - Björn Owe-Larsson
- Department of Clinical Neuroscience, Karolinska Institutet, Section of Psychiatry at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Jerker Hetta
- Department of Clinical Neuroscience, Karolinska Institutet, Section of Psychiatry at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Gabriella B Lundkvist
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Kim EY, Kim SH, Lee HJ, Kim B, Kim YS, Ahn YM. Sex-specific association between the albumin D-element binding protein gene and metabolic syndrome in patients with bipolar disorder and schizophrenia. Psychiatry Res 2016; 240:47-52. [PMID: 27084990 DOI: 10.1016/j.psychres.2016.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/22/2016] [Accepted: 03/25/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Eun Young Kim
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Hyun Jeong Lee
- Mental Health Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Bora Kim
- Department of Psychiatry, University of California, San Francisco, USA
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Pfaffenseller B, da Silva Magalhães PV, De Bastiani MA, Castro MAA, Gallitano AL, Kapczinski F, Klamt F. Differential expression of transcriptional regulatory units in the prefrontal cortex of patients with bipolar disorder: potential role of early growth response gene 3. Transl Psychiatry 2016; 6:e805. [PMID: 27163206 PMCID: PMC5070056 DOI: 10.1038/tp.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Bipolar disorder (BD) is a severe mental illness with a strong genetic component. Despite its high degree of heritability, current genetic studies have failed to reveal individual loci of large effect size. In lieu of focusing on individual genes, we investigated regulatory units (regulons) in BD to identify candidate transcription factors (TFs) that regulate large groups of differentially expressed genes. Network-based approaches should elucidate the molecular pathways governing the pathophysiology of BD and reveal targets for potential therapeutic intervention. The data from a large-scale microarray study was used to reconstruct the transcriptional associations in the human prefrontal cortex, and results from two independent microarray data sets to obtain BD gene signatures. The regulatory network was derived by mapping the significant interactions between known TFs and all potential targets. Five regulons were identified in both transcriptional network models: early growth response 3 (EGR3), TSC22 domain family, member 4 (TSC22D4), interleukin enhancer-binding factor 2 (ILF2), Y-box binding protein 1 (YBX1) and MAP-kinase-activating death domain (MADD). With a high stringency threshold, the consensus across tests was achieved only for the EGR3 regulon. We identified EGR3 in the prefrontal cortex as a potential key target, robustly repressed in both BD signatures. Considering that EGR3 translates environmental stimuli into long-term changes in the brain, disruption in biological pathways involving EGR3 may induce an impaired response to stress and influence on risk for psychiatric disorders, particularly BD.
Collapse
Affiliation(s)
- B Pfaffenseller
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - P V da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos Street, Porto Alegre 90035 903, Brazil. E-mail:
| | - M A De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Polytechnic Center, Curitiba, Brazil
| | - A L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - F Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
49
|
Alphs L, Fu DJ, Turkoz I. Paliperidone for the treatment of schizoaffective disorder. Expert Opin Pharmacother 2016; 17:871-83. [DOI: 10.1517/14656566.2016.1161029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Sun HQ, Li SX, Chen FB, Zhang Y, Li P, Jin M, Sun Y, Wang F, Mi WF, Shi L, Yue JL, Yang FD, Lu L. Diurnal neurobiological alterations after exposure to clozapine in first-episode schizophrenia patients. Psychoneuroendocrinology 2016; 64:108-16. [PMID: 26630391 DOI: 10.1016/j.psyneuen.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Irregular circadian rhythm and some of its most characteristic symptoms are frequently observed in patients with schizophrenia. However, changes in the expression of clock genes or neuropeptides that are related to the regulation of circadian rhythm may influence the susceptibility to recurrence after antipsychotic treatment in schizophrenia, but this possibility has not been investigated. METHODS Blood samples were collected from 15 healthy male controls and 13 male schizophrenia patients at 4h intervals for 24h before and after treatment with clozapine for 8 weeks. The outcome measures included the relative expression of clock gene mRNA PERIOD1 (PER1), PERIOD2 (PER2), PERIOD3 (PER3) and the levels of plasma cortisol, orexin, and insulin. RESULTS Compared with healthy controls, schizophrenia patients presented disruptions in diurnal rhythms of the expression of PER1, PER3, and NPAS2 and the release of orexin, accompanied by a delayed phase in the expression of PER2, decreases in PER3 and NPAS2 expression, and an increase in cortisol levels at baseline. Several of these disruptions (i.e., in PER1 and PER3 expression) persisted after 8 weeks of clozapine treatment, similar to the decreases in the 24-h expression of PER3 and NPAS2. Clozapine treatment for 8 weeks significantly decreased the 24-h levels of PER2 and increased the 24-h levels of insulin. CONCLUSION These persistent neurobiological changes that occur after 8 weeks of clozapine treatment may contribute to the vulnerability to recurrence and efficacy of long-term maintenance treatment in schizophrenia.
Collapse
Affiliation(s)
- Hong-Qiang Sun
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Fang-Bin Chen
- 102 Military Hospital of China, Changzhou 213000, China
| | - Yan Zhang
- 102 Military Hospital of China, Changzhou 213000, China
| | - Peng Li
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; 102 Military Hospital of China, Changzhou 213000, China
| | - Mei Jin
- 102 Military Hospital of China, Changzhou 213000, China
| | - Yan Sun
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Wei-Feng Mi
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Le Shi
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Jing-Li Yue
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Fu-De Yang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Lin Lu
- Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorder, Peking University, Beijing 100191, China.
| |
Collapse
|