1
|
Verkerke M, Werkman MH, Donega V. Neural stem cells of the subventricular zone: A potential stem cell pool for brain repair in Parkinson's disease. Stem Cell Reports 2025:102533. [PMID: 40513565 DOI: 10.1016/j.stemcr.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease is a neurodegenerative disease caused by the degeneration of dopaminergic neurons in the substantia nigra. There are no curative treatments, and therefore, there is an urgent need for new approaches. One potential strategy being investigated is stem cell-based approaches to replace lost neurons, by, for example, harnessing endogenous neural stem cells (NSCs). These cells are found in the subventricular zone (SVZ) aligning the lateral ventricles and remain in a dormant state in the aged and diseased mammalian brain. However, with the appropriate stimuli, NSCs can shift into an activated state, proliferate, and differentiate. In this review, we discuss how PD pathology affects the behavior of NSCs and current pharmacological strategies to boost regeneration in PD. NSCs of the SVZ could be a stem cell source for brain repair, and future studies should shed light on whether these stem cells have the potential to produce functional neuronal cells.
Collapse
Affiliation(s)
- Marloes Verkerke
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1108, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Maarten H Werkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1108, Amsterdam, the Netherlands
| | - Vanessa Donega
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1108, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Jung H, Kim S. E46K α-Synuclein Mutation Fails to Promote Neurite Outgrowth by Not Inducing Cdc42EP2 Expression, Unlike Wild-Type or A53T α-Synuclein in SK-N-SH Cells. Brain Sci 2024; 15:9. [PMID: 39851377 PMCID: PMC11763803 DOI: 10.3390/brainsci15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated. Thus, we compared the effect of E46K α-syn with other types to identify the mechanisms underlying neurite outgrowth. METHODS We transfected SK-N-SH cells with WT and mutant (A53T and E46K) α-syn to investigate the effects of their overexpression on neurite outgrowth. Then, we compared the differential effects of α-syn on neurite outgrowth using microscopic analysis, including confocal microscopy. We also analyzed the differential regulation of cell division control 42 effector protein 2 (Cdc42EP2) using real-time quantitative polymerase chain reaction and western blot analysis. Finally, to confirm the implication of neurite outgrowth, we knocked down Cdc42EP2 using small interfering RNA. RESULTS Unlike WT and A53T α-syn, E46K α-syn failed to promote neurite outgrowth by not inducing Cdc42EP2 and subsequent βIII-tubulin expression. Cdc42EP2 knockdown impaired neurite outgrowth in WT and A53T α-syn transfectants. CONCLUSIONS Our findings suggest that WT and mutant α-syn are linked to Cdc42EP2 production in neuritogenesis, implying α-syn involvement in the physiological function of axon growth and synapse formation. Thus, α-syn may be a potential therapeutic target for PD.
Collapse
Affiliation(s)
| | - Seonghan Kim
- Department of Anatomy, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
3
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Fauser M, Payonk JP, Weber H, Statz M, Winter C, Hadar R, Appali R, van Rienen U, Brandt MD, Storch A. Subthalamic nucleus but not entopeduncular nucleus deep brain stimulation enhances neurogenesis in the SVZ-olfactory bulb system of Parkinsonian rats. Front Cell Neurosci 2024; 18:1396780. [PMID: 38746080 PMCID: PMC11091264 DOI: 10.3389/fncel.2024.1396780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson's disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.g., memory deficits and olfactory dysfunction. Since DBS affects several of these non-motor symptoms, we analyzed the effects of DBS in the subthalamic nucleus (STN) and the entopeduncular nucleus (EPN) on neurogenesis in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. Methods In our study, we applied five weeks of continuous bilateral STN-DBS or EPN-DBS in 6-OHDA-lesioned rats with stable dopaminergic deficits compared to 6-OHDA-lesioned rats with corresponding sham stimulation. We injected two thymidine analogs to quantify newborn neurons early after DBS onset and three weeks later. Immunohistochemistry identified newborn cells co-labeled with NeuN, TH and GABA within the OB and DG. As a putative mechanism, we simulated the electric field distribution depending on the stimulation site to analyze direct electric effects on neural stem cell proliferation. Results STN-DBS persistently increased the number of newborn dopaminergic and GABAergic neurons in the OB but not in the DG, while EPN-DBS does not impact neurogenesis. These effects do not seem to be mediated via direct electric stimulation of neural stem/progenitor cells within the neurogenic niches. Discussion Our data support target-specific effects of STN-DBS on adult neurogenesis, a putative modulator of non-motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Mareike Fauser
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Jan Philipp Payonk
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Hanna Weber
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Meike Statz
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Christine Winter
- Department of Psychiatry and Neurosciences, Charité University Medicine Berlin, Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Neurosciences, Charité University Medicine Berlin, Berlin, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Moritz D. Brandt
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
5
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
6
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
7
|
Martin-Lopez E, Vidyadhara DJ, Liberia T, Meller SJ, Harmon LE, Hsu RM, Spence N, Brennan B, Han K, Yücel B, Chandra SS, Greer CA. α-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease. J Neurosci 2023; 43:1051-1071. [PMID: 36596700 PMCID: PMC9908323 DOI: 10.1523/jneurosci.1526-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Teresa Liberia
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sarah J Meller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Leah E Harmon
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Ryan M Hsu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Natalie Spence
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Betül Yücel
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
8
|
Surya K, Manickam N, Jayachandran KS, Kandasamy M, Anusuyadevi M. Resveratrol Mediated Regulation of Hippocampal Neuroregenerative Plasticity via SIRT1 Pathway in Synergy with Wnt Signaling: Neurotherapeutic Implications to Mitigate Memory Loss in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S125-S140. [PMID: 36463442 PMCID: PMC10473144 DOI: 10.3233/jad-220559] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a major form of dementia. Abnormal amyloidogenic event-mediated degeneration of cholinergic neurons in the cognitive centers of the brain has been attributed to neuropathological sequelae and behavioral deficits in AD. Besides, impaired adult neurogenesis in the hippocampus has experimentally been realized as an underlying cause of dementia regardless of neurodegeneration. Therefore, nourishing the neurogenic process in the hippocampus has been considered an effective therapeutic strategy to mitigate memory loss. In the physiological state, the Wnt pathway has been identified as a potent mitogenic generator in the hippocampal stem cell niche. However, downstream components of Wnt signaling have been noticed to be downregulated in AD brains. Resveratrol (RSV) is a potent Sirtuin1 (SIRT1) enhancer that facilitates neuroprotection and promotes neurogenesis in the hippocampus of the adult brain. While SIRT1 is an important positive regulator of Wnt signaling, ample reports indicate that RSV treatment strongly mediates the fate determination of stem cells through Wnt signaling. However, the possible therapeutic roles of RSV-mediated SIRT1 enhancement on the regulation of hippocampal neurogenesis and reversal of memory loss through the Wnt signaling pathway have not been addressed yet. Taken together, this review describes RSV-mediated effects on the regulation of hippocampal neurogenesis via the activation of SIRT1 in synergy with the Wnt signaling. Further, the article emphasizes a hypothesis that RSV treatment can provoke the activation of quiescent neural stem cells and prime their neurogenic capacity in the hippocampus via Wnt signaling in AD.
Collapse
Affiliation(s)
- Kumar Surya
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nivethitha Manickam
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kesavan Swaminathan Jayachandran
- Department of Bioinformatics, Molecular Cardiology and Drug Discovery Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Mahesh Kandasamy
- Department of Animal Science, Laboratory of Stem Cells and Neuroregeneration, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi, India
| | - Muthuswamy Anusuyadevi
- Department of Biochemistry, Molecular Neuro-gerontology Laboratory, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
9
|
Garcia-Garrote M, Parga JA, Labandeira PJ, Labandeira-Garcia JL, Rodriguez-Pallares J. Dopamine regulates adult neurogenesis in the ventricular-subventricular zone via dopamine D3 angiotensin type 2 receptor interactions. Stem Cells 2021; 39:1778-1794. [PMID: 34521155 DOI: 10.1002/stem.3457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a dynamic and highly regulated process and different studies suggest that dopamine modulates ventricular-subventricular zone (V-SVZ) neurogenesis. However, the specific role of dopamine and the mechanisms/factors underlying its effects on physiological and pathological conditions such as Parkinson's disease (PD) are not fully understood. Recent studies have described counter-regulatory interactions between renin-angiotensin system (RAS) and dopamine in peripheral tissues and in the nigrostriatal system. We have previously demonstrated that angiotensin receptors regulate proliferation and generation of neuroblasts in the rodent V-SVZ. However, possible interactions between dopamine receptors and RAS in the V-SVZ and their role in alterations of neurogenesis in animal models of PD have not been investigated. In V-SVZ cultures, activation of dopamine receptors induced changes in the expression of angiotensin receptors. Moreover, dopamine, via D2-like receptors and particularly D3 receptors, increased generation of neurospheres derived from the V-SVZ and this effect was mediated by angiotensin type-2 (AT2) receptors. In rats, we observed a marked reduction in proliferation and generation of neuroblasts in the V-SVZ of dopamine-depleted animals, and inhibition of AT1 receptors or activation of AT2 receptors restored proliferation and generation of neuroblasts to control levels. Moreover, intrastriatal mesencephalic grafts partially restored proliferation and generation of neuroblasts observed in the V-SVZ of dopamine-depleted rats. Our data revealed that dopamine and angiotensin receptor interactions play a major role in the regulation of V-SVZ and suggest potential beneficial effects of RAS modulators on the regulation of adult V-SVZ neurogenesis.
Collapse
Affiliation(s)
- Maria Garcia-Garrote
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo J Labandeira
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
10
|
Behere A, Thörnqvist PO, Winberg S, Ingelsson M, Bergström J, Ekmark-Lewén S. Visualization of early oligomeric α-synuclein pathology and its impact on the dopaminergic system in the (Thy-1)-h[A30P]α-syn transgenic mouse model. J Neurosci Res 2021; 99:2525-2539. [PMID: 34292621 DOI: 10.1002/jnr.24927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022]
Abstract
Aggregation of alpha-synuclein (α-syn) into Lewy bodies and Lewy neurites is a pathological hallmark in the Parkinson´s disease (PD) brain. The formation of α-syn oligomers is believed to be an early pathogenic event and the A30P mutation in the gene encoding α-syn, causing familial PD, has been shown to cause an accelerated oligomerization. Due to the problem of preserving antigen conformation on tissue surfaces, α-syn oligomers are difficult to detect ex vivo using conventional immunohistochemistry with oligomer-selective antibodies. Herein, we have instead employed the previously reported α-syn oligomer proximity ligation assay (ASO-PLA), along with a wide variety of biochemical assays, to discern the pathological progression of α-syn oligomers and their impact on the dopaminergic system in male and female (Thy-1)-h[A30P]α-syn transgenic (A30P-tg) mice. Our results reveal a previously undetected abundance of α-syn oligomers in midbrain of young mice, whereas phosphorylated (pS129) and proteinase k-resistant α-syn species were observed to a larger extent in aged mice. Although we did not detect loss of dopaminergic neurons in A30P-tg mice, a dysregulation in the monoaminergic system was recorded in older mice. Taken together, ASO-PLA should be a useful method for the detection of early changes in α-syn aggregation on brain tissue, from experimental mouse models in addition to post mortem PD cases.
Collapse
Affiliation(s)
- Anish Behere
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Physiology Unit, Uppsala University, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Physiology Unit, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sara Ekmark-Lewén
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Fauser M, Pan-Montojo F, Richter C, Kahle PJ, Schwarz SC, Schwarz J, Storch A, Hermann A. Chronic-Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis. Cells 2021; 10:775. [PMID: 33807497 PMCID: PMC8066763 DOI: 10.3390/cells10040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Consecutive adult neurogenesis is a well-known phenomenon in the ventricular-subventricular zone of the lateral wall of the lateral ventricles (V-SVZ) and has been controversially discussed in so-called "non-neurogenic" brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. OBJECTIVE/HYPOTHESIS To analyze the influence of chronic-progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V-SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). METHODS We used Thy1-m[A30P]h α synuclein mice and Leu9'Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V-SVZ, the aqueduct and the fourth ventricle. RESULTS In both animal models, overall proliferative activity in the V-SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V-SVZ in Leu9'Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. CONCLUSIONS Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely.
Collapse
Affiliation(s)
- Mareike Fauser
- Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.F.); (A.S.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Francisco Pan-Montojo
- Munich Cluster for Systems Neurology, Department of Psychiatry, University Hospital LMU, 80336 Munich, Germany;
| | - Christian Richter
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Philipp J. Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany;
- German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Sigrid C. Schwarz
- Department of Neurology, University Hospital Leipzig, 04103 Leipzig, Germany; (S.C.S.); (J.S.)
| | - Johannes Schwarz
- Department of Neurology, University Hospital Leipzig, 04103 Leipzig, Germany; (S.C.S.); (J.S.)
- Department of Neurology, Klinik Haag i. OB, 83527 Oberbayern, Germany
| | - Alexander Storch
- Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.F.); (A.S.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany;
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany;
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| |
Collapse
|
12
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
13
|
Zhang XM, Anwar S, Kim Y, Brown J, Comte I, Cai H, Cai NN, Wade-Martins R, Szele FG. The A30P α-synuclein mutation decreases subventricular zone proliferation. Hum Mol Genet 2019; 28:2283-2294. [PMID: 31267130 PMCID: PMC6606853 DOI: 10.1093/hmg/ddz057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is associated with olfactory defects in addition to dopaminergic degeneration. Dopaminergic signalling is necessary for subventricular zone (SVZ) proliferation and olfactory bulb (OB) neurogenesis. Alpha-synuclein (α-syn or Snca) modulates dopaminergic neurotransmission, and SNCA mutations cause familial PD, but how α-syn and its mutations affect adult neurogenesis is unclear. To address this, we studied a bacterial artificial chromosome transgenic mouse expressing the A30P SNCA familial PD point mutation on an Snca-/- background. We confirmed that the SNCA-A30P transgene recapitulates endogenous α-syn expression patterns and levels by immunohistochemical detection of endogenous α-syn in a wild-type mouse and transgenic SNCA-A30P α-syn protein in the forebrain. The number of SVZ stem cells (BrdU+GFAP+) was decreased in SNCA-A30P mice, whereas proliferating (phospho-histone 3+) cells were decreased in Snca-/- and even more so in SNCA-A30P mice. Similarly, SNCA-A30P mice had fewer Mash1+ transit-amplifying SVZ progenitor cells but Snca-/- mice did not. These data suggest the A30P mutation aggravates the effect of Snca loss in the SVZ. Interestingly, calbindin+ and calretinin (CalR)+ periglomerular neurons were decreased in both Snca-/-, and SNCA-A30P mice but tyrosine hydroxylase+ periglomerular OB neurons were only decreased in Snca-/- mice. Cell death decreased in the OB granule layer of Snca-/- and SNCA-A30P mice. In the same region, CalR+ numbers increased in Snca-/- and SNCA-A30P mice. Thus, α-syn loss and human A30P SNCA decrease SVZ proliferation, cell death in the OB and differentially alter interneuron numbers. Similar disruptions in human neurogenesis may contribute to the olfactory deficits, which are observed in PD.
Collapse
Affiliation(s)
- Xue-Ming Zhang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
- College of Veterinary Medicine, Jilin University, Xi-an Road, Changchun, China
| | - Sabina Anwar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, UK
| | - Yongsoo Kim
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
| | - Jennifer Brown
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
| | - Isabelle Comte
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
| | - Huan Cai
- College of Veterinary Medicine, Jilin University, Xi-an Road, Changchun, China
| | - Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Xi-an Road, Changchun, China
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, UK
| |
Collapse
|
14
|
Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson's disease. Behav Pharmacol 2019. [PMID: 29543651 DOI: 10.1097/fbp.0000000000000389] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The factors that trigger the pathophysiology of Parkinson's disease (PD) are unknown. However, it is suggested that environmental factors, such as exposure to pesticides, play an important role, in addition to genetic predisposition and aging. Early signs of PD can appear in the gastrointestinal (GI) tract and in the olfactory system, preceding the onset of motor impairments by many years. The present study assessed the effects of oral rotenone administration (30 mg/kg) in inducing GI and olfactory dysfunctions associated with PD in mice. Here we show that rotenone transiently increased myeloperoxidase activity within 24 h of administration. Leucocyte infiltration in the colon, associated with histological damage and disrupted GI motility, were observed following treatment with rotenone for 7 days. Moreover, 7 days of treatment with rotenone disrupted olfactory discrimination in mice without affecting social recognition ability. The presence of specific deficits in olfactory function occurred with a concomitant decrease in tyrosine hydroxylase-positive neurons and an increase in serotonin (5-hydroxytryptamine) turnover in the olfactory bulb. These findings suggest that in Swiss mice, exposure to rotenone induces GI and olfactory dysfunction involving immunological and neurotransmitter alterations, similar to early signs of PD. This provides further evidence for the involvement of the gut-brain axis in PD.
Collapse
|
15
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
16
|
Stress-induced precocious aging in PD-patient iPSC-derived NSCs may underlie the pathophysiology of Parkinson's disease. Cell Death Dis 2019; 10:105. [PMID: 30718471 PMCID: PMC6362163 DOI: 10.1038/s41419-019-1313-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease (PD) is an aging-related degenerative disorder arisen from the loss of dopaminergic neurons in substantia nigra. Although many genetic mutations have been implicated to be genetically linked to PD, the low incidence of familial PD carried with mutations suggests that there must be other factors such as oxidative stress, mitochondrial dysfunction, accumulation of misfolded proteins, and enhanced inflammation, which are contributable to the pathophysiology of PD. The major efforts of current research have been devoted to unravel the toxic effect of multiple factors, which directly cause the degeneration of dopaminergic neurons in adulthood. Until recently, several studies have demonstrated that NSCs had compromised proliferation and differentiation capacity in PD animal models or PD patient-derived iPS models, suggesting that the pathology of PD may be rooted in some cellular aberrations at early developmental stage but the mechanism remains to be elusive. Based on the early-onset PD patient-specific iPSCs, we found that PD-patient iPSC-derived NSCs were more susceptible to stress and became functionally compromised by radiation or oxidative insults. We further unraveled that stress-induced SIRT1 downregulation leading to autophagic dysfunction, which were responsible for these deficits in PD-NSCs. Mechanistically, we demonstrated that stress-induced activation of p38 MAPK suppressed SIRT1 expression, which in turn augmented the acetylation of multiple ATG proteins of autophagic complex and eventually led to autophagic deficits. Our studies suggest that early developmental deficits may, at least partially, contribute to the pathology of PD and provide a new avenue for developing better therapeutic interventions to PD.
Collapse
|
17
|
Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018; 12:144. [PMID: 29593485 PMCID: PMC5854681 DOI: 10.3389/fnins.2018.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
18
|
Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells. J Neurosci 2017; 38:814-825. [PMID: 29217686 DOI: 10.1523/jneurosci.2276-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Synaptic protein α-synuclein (α-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinson's disease. Here, we report that α-SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also show that premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking α-SYN resembles the effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic α-SYN. Interestingly, NSC loss in α-SYN-deficient mice can be prevented by viral delivery of human α-SYN into their sustantia nigra or by treatment with l-DOPA, suggesting that α-SYN regulates dopamine availability to NSCs. Our data indicate that α-SYN, present in dopaminergic nerve terminals supplying the subependymal zone, acts as a niche component to sustain the neurogenic potential of adult NSCs and identify α-SYN and DA as potential targets to ameliorate neurogenic defects in the aging and diseased brain.SIGNIFICANCE STATEMENT We report an essential role for the protein α-synuclein present in dopaminergic nigral afferents in the regulation of adult neural stem cell maintenance, identifying the first synaptic regulator with an implication in stem cell niche biology. Although the exact role of α-synuclein in neural transmission is not completely clear, our results indicate that it is required for stemness and the preservation of neurogenic potential in concert with dopamine.
Collapse
|
19
|
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Transl Neurodegener 2017; 6:28. [PMID: 29090092 PMCID: PMC5655877 DOI: 10.1186/s40035-017-0099-z] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Gradual degeneration and loss of dopaminergic neurons in the substantia nigra, pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease (PD). In addition, half of the PD patients also exhibit frontostriatal-mediated executive dysfunction, including deficits in attention, short-term working memory, speed of mental processing, and impulsivity. The most commonly used treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients. Because, these therapies neither restore the lost or degenerated dopaminergic neurons, nor prevent or delay the disease progression, the need for more effective therapeutics is critical. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways involved in PD, particularly within the context of how genetic and environmental factors contribute to the initiation and progression of this disease. The involvement of molecular chaperones, autophagy-lysosomal pathways, and proteasome systems in PD are also highlighted. In addition, emerging therapies, including pharmacological manipulations, surgical procedures, stem cell transplantation, gene therapy, as well as complementary, supportive and rehabilitation therapies to prevent or delay the progression of this complex disease are reviewed.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA.,Department of Biology, Saginaw Valley State University, Saginaw, MI 48604 USA
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38105 USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA
| |
Collapse
|
20
|
Brandt MD, Krüger-Gerlach D, Hermann A, Meyer AK, Kim KS, Storch A. Early Postnatal but Not Late Adult Neurogenesis Is Impaired in the Pitx3-Mutant Animal Model of Parkinson's Disease. Front Neurosci 2017; 11:471. [PMID: 28883785 PMCID: PMC5573808 DOI: 10.3389/fnins.2017.00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/09/2017] [Indexed: 01/10/2023] Open
Abstract
The generation of new neurons in the adult dentate gyrus has functional implications for hippocampal formation. Reduced hippocampal neurogenesis has been described in various animal models of hippocampal dysfunction such as dementia and depression, which are both common non-motor-symptoms of Parkinson's disease (PD). As dopamine plays an important role in regulating precursor cell proliferation, the loss of dopaminergic neurons in the substantia nigra (SN) in PD may be related to the reduced neurogenesis observed in the neurogenic regions of the adult brain: subventricular zone (SVZ) and dentate gyrus (DG). Here we examined adult hippocampal neurogenesis in the Pitx3-mutant mouse model of PD (aphakia mice), which phenotypically shows a selective embryonic degeneration of dopamine neurons within the SN and to a smaller extent in the ventral tegmental area (VTA). Proliferating cells were labeled with BrdU in aphakia mice and healthy controls from 3 to 42 weeks of age. Three weeks old mutant mice showed an 18% reduction of proliferating cells in the DG and of 26% in the SVZ. Not only proliferation but also the number of new neurons was impaired in young aphakia mice resulting in 33% less newborn cells 4 weeks after BrdU-labeling. Remarkably, however, the decline in the number of proliferating cells in the neurogenic regions vanished in older animals (8–42 weeks) indicating that aging masks the effect of dopamine depletion on adult neurogenesis. Region specific reduction in precursor cells proliferation correlated with the extent of dopaminergic degeneration in mesencephalic subregions (VTA and SN), which supports the theory of age- and region-dependent regulatory effects of dopaminergic projections. Physiological stimulation of adult neurogenesis by physical activity (wheel running) almost doubled the number of proliferating cells in the dentate gyrus of 8 weeks old aphakia mice to a number comparable to that of wild-type mice, abolishing the slight reduction of baseline neurogenesis at this age. The described age-dependent susceptibility of adult neurogenesis to PD-like dopaminergic degeneration and its responsiveness to physical activity might have implications for the understanding of the pathophysiology and treatment of non-motor symptoms in PD.
Collapse
Affiliation(s)
- Moritz D Brandt
- Department of Neurology, Technische Universität DresdenDresden, Germany.,German Center for Neurodegenerative Diseases DresdenDresden, Germany
| | | | - Andreas Hermann
- Department of Neurology, Technische Universität DresdenDresden, Germany.,German Center for Neurodegenerative Diseases DresdenDresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Anne K Meyer
- Department of Neurology, Technische Universität DresdenDresden, Germany
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical SchoolBelmont, MA, United States
| | - Alexander Storch
- German Center for Neurodegenerative Diseases RostockRostock, Germany.,Department of Neurology, University of RostockRostock, Germany
| |
Collapse
|
21
|
Yang W, Yu S. Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 2017; 74:1485-1501. [PMID: 27826641 PMCID: PMC11107502 DOI: 10.1007/s00018-016-2411-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA) are three major synucleinopathies characterized by α-synuclein-containing inclusions in the brains of patients. Because the cell types and brain structures that are affected vary markedly between the disorders, the patients have different clinical manifestations in addition to some overlapping symptoms, which are the basis for differential diagnosis. Cognitive impairment and depression associated with hippocampal dysfunction are frequently observed in these disorders. While various α-synuclein-containing inclusions are found in the hippocampal formation, increasing evidence supports that small α-synuclein aggregates or oligomers may be the real culprit, causing deficits in neurotransmission and neurogenesis in the hippocampus and related brain regions, which constitute the major mechanism for the hippocampal dysfunctions and associated neuropsychiatric manifestations in synucleinopathies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
| |
Collapse
|
22
|
Marxreiter F, Storch A, Winkler J. [Cellular replacement strategies and adult neurogenesis in idiopathic Parkinson's disease]. DER NERVENARZT 2016; 87:805-13. [PMID: 27389601 DOI: 10.1007/s00115-016-0157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is the most common age-related movement disorder and characterized by slowly progressive neurodegeneration resulting in motor symptoms, such as bradykinesia, rigidity, tremor and postural instability. Moreover, non-motor symptoms, such as hyposmia, anxiety and depression reduce the quality of life in PD. Motor symptoms are associated with a distinct striatal dopaminergic deficit resulting from axonal dysfunction and neuronal loss in the substantia nigra (SN). Recent progress in stem cell technology allows the optimization of cellular transplantation strategies in order to alleviate the motor deficit, which potentially leads to a reactivation of this therapeutic strategy. Besides neurodegenerative processes impaired adult neurogenesis and consequentially reduced endogenous cellular plasticity may play an important role in PD. This article discusses the notion that non-motor symptoms in PD may partly be explained by reduced adult neurogenesis in the olfactory bulb and hippocampus.
Collapse
Affiliation(s)
- F Marxreiter
- Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland
| | - A Storch
- Klinik und Poliklinik für Neurologie, Universität Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland
| | - J Winkler
- Abteilung für Molekulare Neurologie, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Deutschland.
| |
Collapse
|
23
|
Eyre HA, Eskin A, Nelson SF, St. Cyr NM, Siddarth P, Baune BT, Lavretsky H. Genomic predictors of remission to antidepressant treatment in geriatric depression using genome-wide expression analyses: a pilot study. Int J Geriatr Psychiatry 2016; 31:510-7. [PMID: 26471432 PMCID: PMC5567872 DOI: 10.1002/gps.4356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/21/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This first pilot study of genome-wide expression as predictor of antidepressant response in late-life depression examined genome-wide transcriptional profiles in a randomized placebo-controlled trial of combined methylphenidate and citalopram. METHODS Genome-wide transcriptional profiles were examined in peripheral blood leukocytes sampled at baseline and 16 weeks from 35 older adults with major depression, who were randomized to methylphenidate + citalopram, citalopram + placebo, or methylphenidate + placebo. Methylphenidate doses ranged between 10 and 40 mg/day, and citalopram doses ranged between 20 and 60 mg/day. Remission was defined as Hamilton Depression Rating Scale score of 6 or below. Early remission was achieved in the first 4 weeks of treatment. We hypothesized that differential gene expression at baseline can predict antidepressant response. RESULTS We analyzed gene expression in 24 remitters and 11 non-remitters. At baseline, we found three genes showing higher expression in all remitters versus non-remitters that satisfied the established level of significance: a fold change of 2 and p-value of 0.05 that included HLA-DRB5, SELENBP1, and LOC388588. Two gene transcripts showed higher expression in early remitters at baseline compared with non-remitters. The first gene was CA1 carbonic anhydrase gene, on chromosome 8 involved in respiratory function (fold change 2.54; p = 0.03). The second gene was the SNCA-α-synuclein gene, implicated, which binds to dopamine transporter (fold change 2.1; p = 0.03). CONCLUSIONS Remission to antidepressants in geriatric depression may be associated with a particular gene expression profile in monoaminergic and metabolic pathways and needs to be replicated in a larger sample.
Collapse
Affiliation(s)
- Harris A. Eyre
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia,UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Ascia Eskin
- Department of Human Genetics, UCLA, Los Angeles, CA, USA
| | | | - Natalie M. St. Cyr
- UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Prabha Siddarth
- UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Bernhard T. Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Lavretsky
- UCLA Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Zhu M, Li M, Ye D, Jiang W, Lei T, Shu K. Sensory symptoms in Parkinson's disease: Clinical features, pathophysiology, and treatment. J Neurosci Res 2016; 94:685-92. [PMID: 26948282 DOI: 10.1002/jnr.23729] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/30/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Mingxin Zhu
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Man Li
- Department of Anesthesiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Dawei Ye
- Department of Neoplasm; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Wei Jiang
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Ting Lei
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Kai Shu
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
25
|
Albright JE, Stojkovska I, Rahman AA, Brown CJ, Morrison BE. Nestin-positive/SOX2-negative cells mediate adult neurogenesis of nigral dopaminergic neurons in mice. Neurosci Lett 2016; 615:50-4. [PMID: 26806039 DOI: 10.1016/j.neulet.2016.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/23/2023]
Abstract
The primary clinical motor symptoms of Parkinson's disease (PD) result from loss of dopaminergic (DA) neurons in the substantia nigra (SN). Consequently, neurogenesis of this group of neurons in the adult brain has drawn considerable interest for the purpose of harnessing endogenous neurogenerative potential as well as devising better strategies for stem cell therapy for PD. However, the existence of adult neurogenesis for DA neurons within the SN remains controversial. To overcome technical and design limitations associated with previous studies, our group has developed a novel genetic mouse model for assessing adult nigral DA neurogenesis. This system utilizes transgenic mice that express a tamoxifen-activatable Cre recombinase (Cre(ERT2)) under the control of the neuronal progenitor cell promoters nestin or Sox2 leading to suppression of the DA neuron marker tyrosine hydroxylase (TH) via excision of exon 1 by flanking loxP sites in adult animals. This study reports that six months following initiation of a six week treatment with tamoxifen mice with nestin-mediated Th excision displayed a significant reduction in TH+ neurons in the SN. This finding indicates that nestin-expressing cells regenerate DA neurons within the SN of adult animals. Interestingly, no reduction was observed in TH+ cells following Sox2-mediated Th excision suggesting that a nestin+/SOX2- precursor cell population drives DA neurogenesis in the adult SN. This information represents a substantial leap in current knowledge of adult DA neurogenesis, will enable improved in vitro and in vivo modeling, as well as facilitate the harnessing of this process for therapeutic intervention for PD.
Collapse
Affiliation(s)
- Joshua E Albright
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Iva Stojkovska
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Abir A Rahman
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Ph.D. program, Boise State University, Boise, ID 83725, USA
| | - Connor J Brown
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Brad E Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Ph.D. program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
26
|
Schreglmann SR, Regensburger M, Rockenstein E, Masliah E, Xiang W, Winkler J, Winner B. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS One 2015; 10:e0126261. [PMID: 25961568 PMCID: PMC4427489 DOI: 10.1371/journal.pone.0126261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
Background Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS) under the murine Thy1 (mThy1) promoter, a model known to have a particularly high tg expression associated with impaired olfaction. Results Survival of newly generated neurons (NeuN-positive) in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF) promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex. Conclusions The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.
Collapse
Affiliation(s)
| | - Martin Regensburger
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, FAU Erlangen-Nürnberg, Nikolaus-Fiebiger Center for Molecular Medicine, Erlangen, Germany
- Department of Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, CA, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, CA, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, CA, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, CA, United States of America
| | - Wei Xiang
- Institute of Biochemistry, Emil-Fischer-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, FAU Erlangen-Nürnberg, Nikolaus-Fiebiger Center for Molecular Medicine, Erlangen, Germany
- * E-mail:
| |
Collapse
|
27
|
Zhang S, Xiao Q, Le W. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein. PLoS One 2015; 10:e0119928. [PMID: 25799501 PMCID: PMC4370499 DOI: 10.1371/journal.pone.0119928] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/17/2015] [Indexed: 12/26/2022] Open
Abstract
Parkinson disease is a multi-system neurodegenerative disease characterized by both motor and non-motor symptoms. Hyposmia is one of the early non-motor symptoms occurring in more than 90% of Parkinson disease cases, which can precede motor symptoms even several years. Up to now, the relationship between hyposmia and Parkinson disease remains elusive. Lack of proper animal models of hyposmia restricts the investigation. In this study we assessed olfactory function in Prp-A53T-α-synuclein transgenic (αSynA53T) mice which had been reported to show age-dependent motor impairments and intracytoplasmic inclusions. We also examined cholinergic and dopaminergic systems in olfactory bulb of αSynA53T mice by immunofluorescent staining, enzyme linked immunosorbent assay and western blot. We found that compared to wild type littermates, αSynA53T mice at 6 months or older displayed a deficit of odor discrimination and odor detection. No significant changes were found in olfactory memory and odor habituation. Furthermore compared to wildtype littermates, in olfactory bulb of αSynA53T mice at 10 months old we detected a marked decrease of cholinergic neurons in mitral cell layer and a decrease of acetylcholinesterase activity, while dopaminergic neurons were found increased in glomerular layer, accompanied with an increase of tyrosine hydroxylase protein. Our studies indicate that αSynA53T mice have olfactory dysfunction before motor deficits occur, and the cholinergic and dopaminergic disturbance might be responsible for the Parkinson disease-related olfactory dysfunction.
Collapse
Affiliation(s)
- Sufang Zhang
- Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Xiao
- Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
28
|
Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC. Neural stem cells in Parkinson's disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 2015; 72:773-97. [PMID: 25403878 PMCID: PMC11113294 DOI: 10.1007/s00018-014-1774-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.
Collapse
Affiliation(s)
- Jaclyn Nicole Le Grand
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maria Angeliki Pavlou
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
29
|
Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity. Neural Plast 2014; 2014:454696. [PMID: 25110593 PMCID: PMC4106176 DOI: 10.1155/2014/454696] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022] Open
Abstract
In Parkinson's disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.
Collapse
|
30
|
He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, Fainberg N, Wyss-Coray T. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci 2014; 17:943-52. [PMID: 24859199 PMCID: PMC4096284 DOI: 10.1038/nn.3732] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/30/2014] [Indexed: 01/19/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves critical functions in CNS development, but, apart from its proposed neuroprotective actions, its physiological role in the adult brain is unclear. We observed a prominent activation of TGF-β signaling in the adult dentate gyrus and expression of downstream Smad proteins in this neurogenic zone. Consistent with a function of TGF-β signaling in adult neurogenesis, genetic deletion of the TGF-β receptor ALK5 reduced the number, migration and dendritic arborization of newborn neurons. Conversely, constitutive activation of neuronal ALK5 in forebrain caused a marked increase in these aspects of neurogenesis and was associated with higher expression of c-Fos in newborn neurons and with stronger memory function. Our findings describe an unexpected role for ALK5-dependent TGF-β signaling as a regulator of the late stages of adult hippocampal neurogenesis, which may have implications for changes in neurogenesis during aging and disease.
Collapse
Affiliation(s)
- Yingbo He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrea Yung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Saul A Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp A Jaeger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oluwatobi Olayiwola
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nina Fainberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Tissue Regeneration, Repair and Rehabilitation, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
31
|
Chen AY, Xia S, Wilburn P, Tully T. Olfactory deficits in an alpha-synuclein fly model of Parkinson's disease. PLoS One 2014; 9:e97758. [PMID: 24879013 PMCID: PMC4039441 DOI: 10.1371/journal.pone.0097758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/23/2014] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the most common motor neurodegenerative disorder. Olfactory dysfunction is a prevalent feature of PD. It often precedes motor symptoms by several years and is used in assisting PD diagnosis. However, the cellular and molecular bases of olfactory dysfunction in PD are not known. The fruit fly Drosophila melanogaster, expressing human alpha-synuclein protein or its mutant, A30P, captures several hallmarks of PD and has been successfully used to model PD in numerous studies. First, we report olfactory deficits in fly expressing A30P (A30P), showing deficits in two out of three olfactory modalities, tested – olfactory acuity and odor discrimination. The remaining third modality is odor identification/naming. Second, oxidative stress is an important environmental risk factor of PD. We show that oxidative stress exacerbated the two affected olfactory modalities in younger A30P flies. Third, different olfactory receptor neurons are activated differentially by different odors in flies. In a separate experiment, we show that the odor discrimination deficit in A30P flies is general and not restricted to a specific class of chemical structure. Lastly, by restricting A30P expression to dopamine, serotonin or olfactory receptor neurons, we show that A30P expression in dopamine neurons is necessary for development of both acuity and discrimination deficits, while serotonin and olfactory receptor neurons appeared not involved. Our data demonstrate olfactory deficits in a synuclein fly PD model for exploring olfactory pathology and physiology, and for monitoring PD progression and treatment.
Collapse
Affiliation(s)
- Alex Y. Chen
- Dart Neuroscience LLC, San Diego, California, United States of America
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, New York, United States of America
- * E-mail:
| | - Shouzhen Xia
- Dart Neuroscience LLC, San Diego, California, United States of America
| | - Paul Wilburn
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
| | - Tim Tully
- Dart Neuroscience LLC, San Diego, California, United States of America
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
32
|
Neuner J, Ovsepian SV, Dorostkar M, Filser S, Gupta A, Michalakis S, Biel M, Herms J. Pathological α-synuclein impairs adult-born granule cell development and functional integration in the olfactory bulb. Nat Commun 2014; 5:3915. [PMID: 24867427 PMCID: PMC4050256 DOI: 10.1038/ncomms4915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/18/2014] [Indexed: 12/21/2022] Open
Abstract
Although the role of noxious α-synuclein (α-SYN) in the degeneration of midbrain dopaminergic
neurons and associated motor deficits of Parkinson’s disease is
recognized, its impact on non-motor brain circuits and related symptoms remains
elusive. Through combining in vivo two-photon imaging with time-coded
labelling of neurons in the olfactory bulb of A30P α-SYN transgenic mice, we show impaired growth and
branching of dendrites of adult-born granule cells (GCs), with reduced gain and
plasticity of dendritic spines. The spine impairments are especially pronounced
during the critical phase of integration of new neurons into existing circuits.
Functionally, retarded dendritic expansion translates into reduced electrical
capacitance with enhanced intrinsic excitability and responsiveness of GCs to
depolarizing inputs, while the spine loss correlates with decreased frequency of
AMPA-mediated miniature EPSCs.
Changes described here are expected to interfere with the functional integration and
survival of new GCs into bulbar networks, contributing towards olfactory deficits
and related behavioural impairments. Aggregation-prone forms of α-synuclein lead to
degeneration of midbrain dopaminergic neurons, as seen in Parkinson’s
disease, but less is known about the effects that the noxious protein has in other brain
regions. Here, the authors investigate the effect of a pathological form of
α-synuclein on the functional integration of new neurons into the olfactory
bulb of adult mice.
Collapse
Affiliation(s)
- Johanna Neuner
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Saak V Ovsepian
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Mario Dorostkar
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Severin Filser
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Aayush Gupta
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jochen Herms
- 1] German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany [2] Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| |
Collapse
|
33
|
Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, Michaud M, Lemesre V, Patassini S, De La Rosa K, Mulligan CK, Sioshansi PC, Zhu C, Coppola G, Bordet T, Pruss RM, Chesselet MF. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014; 69:263-75. [PMID: 24844147 DOI: 10.1016/j.nbd.2014.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022] Open
Abstract
Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Vera Medvedeva
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Patrick Lee
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Nicholas Bove
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Sheila M Fleming
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Magali Michaud
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Vincent Lemesre
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Stefano Patassini
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Krystal De La Rosa
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Caitlin K Mulligan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Pedrom C Sioshansi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Chunni Zhu
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Giovanni Coppola
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Thierry Bordet
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Marie-Françoise Chesselet
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|
34
|
Deng H, Yuan L. Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res Rev 2014; 15:161-76. [PMID: 24768741 DOI: 10.1016/j.arr.2014.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD; MIM 168600) is the second most common progressive neurodegenerative disorder characterized by a variety of motor and non-motor features. To date, at least 20 loci and 15 disease-causing genes for parkinsonism have been identified. Among them, the α-synuclein (SNCA) gene was associated with PARK1/PARK4. Point mutations, duplications and triplications in the SNCA gene cause a rare dominant form of PD in familial and sporadic PD cases. The α-synuclein protein, a member of the synuclein family, is abundantly expressed in the brain. The protein is the major component of Lewy bodies and Lewy neurites in dopaminergic neurons in PD. Further understanding of its role in the pathogenesis of PD through various genetic techniques and animal models will likely provide new insights into our understanding, therapy and prevention of PD.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, PR China.
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, PR China
| |
Collapse
|
35
|
Nuber S, Tadros D, Fields J, Overk CR, Ettle B, Kosberg K, Mante M, Rockenstein E, Trejo M, Masliah E. Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol 2014; 127:477-94. [PMID: 24509835 DOI: 10.1007/s00401-014-1255-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/17/2022]
Abstract
The olfactory bulb (OB) is one of the first brain regions in Parkinson's disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MTF 344, La Jolla, CA, 92093-0624, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 2014; 127:459-75. [PMID: 24554308 DOI: 10.1007/s00401-014-1261-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 12/24/2022]
Abstract
Olfactory dysfunction is a common and early symptom of many neurodegenerative diseases, particularly of Parkinson's disease and other synucleinopathies, Alzheimer's disease (AD), and mild cognitive impairment heralding its progression to dementia. The neuropathologic changes of olfactory dysfunction in neurodegenerative diseases may involve the olfactory epithelium, olfactory bulb/tract, primary olfactory cortices, and their secondary targets. Olfactory dysfunction is related to deposition of pathological proteins, α-synuclein, hyperphosphorylated tau protein, and neurofilament protein in these areas, featured by neurofibrillary tangles, Lewy bodies and neurites inducing a complex cascade of molecular processes including oxidative damage, neuroinflammation, and cytosolic disruption of cellular processes leading to cell death. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with severe anosmia. Recent studies of olfactory dysfunction have focused its potential as an early biomarker for the diagnosis of neurodegenerative disorders and their disease progression. Here, we summarize the current knowledge on neuropathological and pathophysiological changes of the olfactory system in the most frequent neurodegenerative diseases, in particular AD and synucleinopathies. We also present neuropathological findings in the olfactory bulb and tract in a large autopsy cohort (n = 536, 57.8 % female, mean age 81.3 years). The severity of olfactory bulb HPτ, Aβ, and αSyn pathology correlated and increased significantly (P < 0.001) with increasing neuritic Braak stages, Thal Aβ phases, and cerebral Lewy body pathology, respectively. Hence, further studies are warranted to investigate the potential role of olfactory biopsies (possibly restricted to the olfactory epithelium) in the diagnostic process of neurodegenerative diseases in particular in clinical drug trials to identify subjects showing early, preclinical stages of neurodegeneration and to stratify clinically impaired cohorts according to the underlying cerebral neuropathology.
Collapse
Affiliation(s)
- Johannes Attems
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
37
|
Neuner J, Filser S, Michalakis S, Biel M, Herms J. A30P α-Synuclein interferes with the stable integration of adult-born neurons into the olfactory network. Sci Rep 2014; 4:3931. [PMID: 24488133 PMCID: PMC3909899 DOI: 10.1038/srep03931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022] Open
Abstract
Impaired olfaction is an early symptom in Parkinson disease (PD), although the exact cause is as yet unknown. Here, we investigated the link between PD-related mutant α-Synuclein (α-SYN) pathology and olfactory deficit, by examining the integration of adult-born neurons in the olfactory bulb (OB) of A30P α-SYN overexpressing mice. To this end, we chose to label one well-known vulnerable subpopulation of adult-born cells, the dopaminergic neurons. Using in vivo two-photon imaging, we followed the dynamic process of neuronal turnover in transgenic A30P α-SYN and wild-type mice over a period of 2.5 months. Our results reveal no difference in the number of cells that reach, and possibly integrate into, the glomerular layer in the OB. However, in mutant transgenic mice these new neurons have a significantly shortened survival, resulting in an overall reduction in the addition of neurons to the glomerular layer over time. We therefore propose unstable integration and impaired homeostasis of functional new neurons as a likely contributor to odour discrimination deficits in mutant α-SYN mice.
Collapse
Affiliation(s)
- Johanna Neuner
- Center for Neuropathology and Prion Research, Ludwig Maximilian University Munich, Feodor-Lynen-Straße 23, 81377 Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Munich, Schillerstraße 44, 80336 Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich, CIPSM and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, CIPSM and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Schillerstraße 44, 80336 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Schillerstraße 44, 80336 Munich, Germany
| |
Collapse
|
38
|
Marxreiter F, Ettle B, May VE, Esmer H, Patrick C, Kragh CL, Klucken J, Winner B, Riess O, Winkler J, Masliah E, Nuber S. Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice. Neurobiol Dis 2013; 59:38-51. [PMID: 23867236 PMCID: PMC4324756 DOI: 10.1016/j.nbd.2013.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/23/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Abstract
In Parkinson's disease (PD) patients, alpha-synuclein (α-syn) pathology advances in form of Lewy bodies and Lewy neurites throughout the brain. Clinically, PD is defined by motor symptoms that are predominantly attributed to the dopaminergic cell loss in the substantia nigra. However, motor deficits are frequently preceded by smell deficiency or neuropsychological symptoms, including increased anxiety and cognitive dysfunction. Accumulating evidence indicates that aggregation of α-syn impairs synaptic function and neurogenic capacity that may be associated with deficits in memory, learning and mood. Whether and how α-syn accumulation contributes to neuropathological events defining these earliest signs of PD is presently poorly understood. We used a tetracycline-suppressive (tet-off) transgenic mouse model that restricts overexpression of human A30P α-syn to neurons owing to usage of the neuron-specific CaMKIIα promoter. Abnormal accumulation of A30P correlated with a decreased survival of newly generated neurons in the hippocampus and olfactory bulb. Furthermore, when A30P α-syn expression was suppressed, we observed reduction of the human protein in neuronal soma. However, residual dox resistant A30P α-syn was detected in glial cells within the hippocampal neurogenic niche, concomitant with the failure to fully restore hippocampal neurogenesis. This finding is indicative to a potential spread of pathology from neuron to glia. In addition, mice expressing A30P α-syn show increased anxiety-related behavior that was reversed after dox treatment. This implies that glial A30P α-synucleinopathy within the dentate gyrus is part of a process leading to impaired hippocampal neuroplasticity, which is, however, not a sole critical event for circuits implicated in anxiety-related behavior.
Collapse
Affiliation(s)
- Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Verena E.L. May
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Hakan Esmer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | - Christine Lund Kragh
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624, USA
| | - Silke Nuber
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| |
Collapse
|
39
|
Eschbach J, Danzer KM. α-Synuclein in Parkinson's disease: pathogenic function and translation into animal models. NEURODEGENER DIS 2013; 14:1-17. [PMID: 24080741 DOI: 10.1159/000354615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of α-synuclein aggregates found in Lewy bodies throughout the brain. Several α-synuclein transgenic mouse models have been generated, as well as viral-mediated overexpression of wild-type and mutated α-synuclein to mimic the disease and to delineate the pathogenic pathway of α-synuclein-mediated toxicity and neurodegeneration. In this review, we will recapitulate what we have learned about the function of α-synuclein and α-synuclein-mediated toxicity through studies of transgenic animal models, inducible animal models and viral-based models.
Collapse
|
40
|
van den Berge SA, van Strien ME, Hol EM. Resident adult neural stem cells in Parkinson's disease--the brain's own repair system? Eur J Pharmacol 2013; 719:117-127. [PMID: 23872414 DOI: 10.1016/j.ejphar.2013.04.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 01/19/2023]
Abstract
One important pathological process in the brain of Parkinson disease (PD) patients is the degeneration of the dopaminergic neurons in the substantia nigra, which leads to a decline in striatal dopamine levels and motor dysfunction. A major clinical problem is that this degenerative process currently cannot be stopped or reversed. Expectations from the restorative capacity of neural stem cells (NSCs) are high, as these cells can potentially replace the degenerating neurons. The discovery of the presence of NSCs in the adult human brain has instigated research into the potential of these cells as a resource to promote brain repair in neurodegenerative diseases. Neural stem and progenitor cells reside in the subventricular zone (SVZ), which is closely situated to the striatum, which is affected in PD. Therefore, restoring the dopamine levels in the striatum of PD patients through stimulating endogenous NSCs in the nearby SVZ to migrate into the striatum and differentiate into dopaminergic neurons might thus be an attractive future therapeutic approach. We will review the reported changes in NSCs in the SVZ of PD animal models and PD patients, which are due to a lack of striatal dopamine. Furthermore, we will summarise the reports that describe efforts to stimulate NSCs to replace dopaminergic cells in the SN and restore striatal dopamine levels. In our opinion, mobilizing the endogenous SVZ NSCs to replenish striatal dopamine is an attractive approach to alleviate the motor symptoms in PD patients, without the ethical and immunological challenges of transplantation of NSCs and foetal brain tissue.
Collapse
Affiliation(s)
- Simone A van den Berge
- Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Miriam E van Strien
- Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Elly M Hol
- Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Nuber S, Harmuth F, Kohl Z, Adame A, Trejo M, Schönig K, Zimmermann F, Bauer C, Casadei N, Giel C, Calaminus C, Pichler BJ, Jensen PH, Müller CP, Amato D, Kornhuber J, Teismann P, Yamakado H, Takahashi R, Winkler J, Masliah E, Riess O. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats. ACTA ACUST UNITED AC 2013; 136:412-32. [PMID: 23413261 DOI: 10.1093/brain/aws358] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California, San Diego, Medical Teaching Facility, Room 346, 9500 Gilman Drive, MC 0624, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Petit GH, Berkovich E, Hickery M, Kallunki P, Fog K, Fitzer-Attas C, Brundin P. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease. PLoS One 2013; 8:e60691. [PMID: 23573275 PMCID: PMC3616111 DOI: 10.1371/journal.pone.0060691] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 03/03/2013] [Indexed: 12/23/2022] Open
Abstract
Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.
Collapse
Affiliation(s)
- Géraldine H Petit
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC B11, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
43
|
Marxreiter F, Regensburger M, Winkler J. Adult neurogenesis in Parkinson's disease. Cell Mol Life Sci 2013; 70:459-73. [PMID: 22766974 PMCID: PMC11113680 DOI: 10.1007/s00018-012-1062-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, affects 1-2 % of humans aged 60 years and older. The diagnosis of PD is based on motor symptoms such as bradykinesia, rigidity, tremor, and postural instability associated with the striatal dopaminergic deficit that is linked to neurodegenerative processes in the substantia nigra (SN). In the past, cellular replacement strategies have been evaluated for their potential to alleviate these symptoms. Adult neurogenesis, the generation of new neurons within two proliferative niches in the adult brain, is being intensively studied as one potential mode for cell-based therapies. The subventricular zone provides new neurons for the olfactory bulb functionally contributing to olfaction. The subgranular zone of the hippocampus produces new granule neurons for the dentate gyrus, required for memory formation and proper processing of anxiety provoking stimuli. Recent years have revealed that PD is associated with non-motor symptoms such as hyposmia, anhedonia, lack of novelty seeking behavior, depression, and anxiety that are not directly associated with neurodegenerative processes in the SN. This broad spectrum of non-motor symptoms may partly rely on proper olfactorial processing and hippocampal function. Therefore, it is conceivable that some non-motor deficits in PD are related to defective adult neurogenesis. Accordingly, in animal models and postmortem studies of PD, adult neurogenesis is severely affected, although the exact mechanisms and effects of these changes are not yet fully understood or are under debate due to conflicting results. Here, we review the current concepts related to the dynamic interplay between endogenous cellular plasticity and PD-associated pathology.
Collapse
Affiliation(s)
- Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neurosciences, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0662 USA
| |
Collapse
|
44
|
Trueman RC, Klein A, Lindgren HS, Lelos MJ, Dunnett SB. Repair of the CNS using endogenous and transplanted neural stem cells. Curr Top Behav Neurosci 2013; 15:357-98. [PMID: 22907556 DOI: 10.1007/7854_2012_223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Restoration of the damaged central nervous system is a vast challenge. However, there is a great need for research into this topic, due to the prevalence of central nervous system disorders and the devastating impact they have on people's lives. A number of strategies are being examined to achieve this goal, including cell replacement therapy, enhancement of endogenous plasticity and the recruitment of endogenous neurogenesis. The current chapter reviews this topic within the context of Parkinson's disease, Huntington's disease and stroke. For each disease exogenous cell therapies are discussed including primary (foetal) cell transplants, neural stem cells, induced pluripotent stem cells and marrow stromal cells. This chapter highlights the different mechanistic approaches of cell replacement therapy versus cells that deliver neurotropic factors, or enhance the endogenous production of these factors. Evidence of exogenously transplanted cells functionally integrating into the host brain, replacing cells, and having a behavioural benefit are discussed, along with the ability of some cell sources to stimulate endogenous neuroprotective and restorative events. Alongside exogenous cell therapy, the role of endogenous neurogenesis in each of the three diseases is outlined and methods to enhance this phenomenon are discussed.
Collapse
Affiliation(s)
- R C Trueman
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
45
|
May V, Nuber S, Marxreiter F, Riess O, Winner B, Winkler J. Impaired olfactory bulb neurogenesis depends on the presence of human wild-type alpha-synuclein. Neuroscience 2012; 222:343-55. [DOI: 10.1016/j.neuroscience.2012.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 01/26/2023]
|
46
|
van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, Vescovi AL, Verhaagen J, van de Berg WDJ, Hol EM. Reply: Quantitative evaluation of the human subventricular zone. Brain 2012. [DOI: 10.1093/brain/aws088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR. A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics 2012; 9:297-314. [PMID: 22350713 PMCID: PMC3337020 DOI: 10.1007/s13311-012-0104-2] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Identification of mutations that cause rare familial forms of Parkinson's disease (PD) and subsequent studies of genetic risk factors for sporadic PD have led to an improved understanding of the pathological mechanisms that may cause nonfamilial PD. In particular, genetic and pathological studies strongly suggest that alpha-synuclein, albeit very rarely mutated in PD patients, plays a critical role in the vast majority of individuals with the sporadic form of the disease. We have extensively characterized a mouse model over-expressing full-length, human, wild-type alpha-synuclein under the Thy-1 promoter. We have also shown that this model reproduces many features of sporadic PD, including progressive changes in dopamine release and striatal content, alpha-synuclein pathology, deficits in motor and nonmotor functions that are affected in pre-manifest and manifest phases of PD, inflammation, and biochemical and molecular changes similar to those observed in PD. Preclinical studies have already demonstrated improvement with promising new drugs in this model, which provides an opportunity to test novel neuroprotective strategies during different phases of the disorder using endpoint measures with high power to detect drug effects.
Collapse
|
48
|
Ubhi K, Inglis C, Mante M, Patrick C, Adame A, Spencer B, Rockenstein E, May V, Winkler J, Masliah E. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy. Exp Neurol 2012; 234:405-16. [PMID: 22281106 PMCID: PMC3897235 DOI: 10.1016/j.expneurol.2012.01.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 12/22/2022]
Abstract
The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA. Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA. Fluoxetine administration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine administration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine administration on myelin and serotonin markers were also examined. Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Chandra Inglis
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Verena May
- Division of Molecular Neurology, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Juergen Winkler
- Department of Neurosciences, University of California, San Diego, CA, USA
- Division of Molecular Neurology, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
49
|
van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, Vescovi AL, Verhaagen J, van de Berg WDJ, Hol EM. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 2011; 134:3249-63. [DOI: 10.1093/brain/awr256] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
50
|
Olfactory neuron-specific expression of A30P alpha-synuclein exacerbates dopamine deficiency and hyperactivity in a novel conditional model of early Parkinson's disease stages. Neurobiol Dis 2011; 44:192-204. [DOI: 10.1016/j.nbd.2011.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/05/2011] [Accepted: 06/26/2011] [Indexed: 11/19/2022] Open
|