1
|
Maleszka R. Reminiscences on the honeybee genome project and the rise of epigenetic concepts in insect science. INSECT MOLECULAR BIOLOGY 2024; 33:444-456. [PMID: 38196200 DOI: 10.1111/imb.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
The sequencing of the honeybee genome in 2006 was an important technological and logistic achievement experience. But what benefits have flown from the honeybee genome project? What does the annotated genomic assembly mean for the study of behavioural complexity and organismal function in honeybees? Here, I discuss several lines of research that have arisen from this project and highlight the rapidly expanding studies on insect epigenomics, emergent properties of royal jelly, the mechanism of nutritional control of development and the contribution of epigenomic regulation to the evolution of sociality. I also argue that the term 'insect epigenetics' needs to be carefully redefined to reflect the diversity of epigenomic toolkits in insects and the impact of lineage-specific innovations on organismal outcomes. The honeybee genome project helped pioneer advances in social insect molecular biology, and fuelled breakthrough research into the role of flexible epigenomic control systems in linking genotype to phenotype.
Collapse
Affiliation(s)
- Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Elarab SME, Alsafy MAM, El-Gendy SAA, El-Bakary NER, Elsayed Noreldin A, Rashwan AM. Investigating the role of Purkinje fibers and synaptic connectivity in balance regulation through comprehensive ultrastructural and immunohistochemical analysis of the donkey's (Equus asinus) cerebellum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:293-306. [PMID: 38229259 DOI: 10.1002/jez.2782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
The donkey's extraordinary capacity to endure substantial loads over long distances while maintaining equilibrium suggests a distinctive cerebellar architecture specialized in balance regulation. Consequently, our study aims to investigate the intricate histophysiology of the donkey's cerebellum using advanced ultrastructural and immunohistochemical methodologies to comprehend the mechanisms that govern this exceptional ability. This study represents the pioneering investigation to comprehensively describe the ultrastructure and immunohistochemistry within the donkey cerebellum. Five adult donkeys' cerebella were utilized for the study, employing stains such as hematoxylin, eosin, and toluidine blue to facilitate a comprehensive histological examination. For immunohistochemical investigation, synaptophysin (SP), calretinin, and glial fibrillary acidic protein were used and evaluated by the Image J software. Furthermore, a double immunofluorescence staining of SP and neuron-specific enolase (NSE) was performed to highlight the co-localization of these markers and explore their potential contribution to synaptic function within the donkey cerebellum. This investigation aims to understand their possible roles in regulating neuronal activity and synaptic connectivity. We observed co-expression of SP and NSE in the donkey cerebellum, which emphasizes the crucial role of efficient energy utilization for motor coordination and balance, highlighting the interdependence of synaptic function and energy metabolism. The Purkinje cells were situated in the intermediate zone of the cerebellum cortex, known as the Purkinje cell layer. Characteristically, the Purkinje cell's bodies exhibited a distinct pear-like shape. The cross-section area of the Purkinje cells was 107.7 ± 0.2 µm2 , and the Purkinje cell nucleus was 95.7 ± 0.1 µm2 . The length and diameter of the Purkinje cells were 36.4 × 23.4 µm. By scanning electron microscopy, the body of the Purkinje cell looked like a triangular or oval with a meandrous outer surface. The dendrites appeared to have small spines. The Purkinje cells' cytoplasm was rich with mitochondria, rough endoplasmic reticulum, ribosomes, Golgi apparatus, multivesicular bodies, and lysosomes. Purkinje cell dendrites were discovered in the molecular layer, resembling trees. This study sheds light on the anatomical and cellular characteristics underlying the donkey's exceptional balance-maintaining abilities.
Collapse
Affiliation(s)
- Samar M Ez Elarab
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A M Alsafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir A A El-Gendy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Neveen E R El-Bakary
- Department of Zoology, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ahmed Elsayed Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- Department of Life Science Frontiers, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Couto A, Marty S, Dawson EH, d'Ettorre P, Sandoz JC, Montgomery SH. Evolution of the neuronal substrate for kin recognition in social Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:2226-2242. [PMID: 37528574 DOI: 10.1111/brv.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Simon Marty
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Erika H Dawson
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
- Institut Universitaire de France (IUF), 103 Boulevard Saint-Michel, Paris, 75005, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
4
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
5
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
7
|
Pick T, Gamayun I, Tinschert R, Cavalié A. Kinetics of the thapsigargin-induced Ca2+ mobilisation: A quantitative analysis in the HEK-293 cell line. Front Physiol 2023; 14:1127545. [PMID: 37051019 PMCID: PMC10083721 DOI: 10.3389/fphys.2023.1127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Thapsigargin (TG) inhibits the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pump and, when applied acutely, it initiates a Ca2+ mobilisation that begins with the loss of Ca2+ from the endoplasmic reticulum (ER) and culminates with store-operated Ca2+ entry (SOCE) from the extracellular space. Using the popular model cell line HEK-293, we quantified TG-induced changes in cytosolic and ER Ca2+ levels using FURA-2 and the FRET-based ER Ca2+ sensor D1ER, respectively. Our analysis predicts an ER Ca2+ leak of 5–6 µM⋅s−1 for the typical basal ER Ca2+ level of 335–407 µM in HEK-293 cells. The resulting cytosolic Ca2+ transients reached peak amplitudes of 0.6–1.0 µM in the absence of external Ca2+ and were amplified by SOCE that amounted to 28–30 nM⋅s−1 in 1 mM external Ca2+. Additionally, cytosolic Ca2+ transients were shaped by a Ca2+ clearance of 10–13 nM⋅s−1. Using puromycin (PURO), which enhances the ER Ca2+ leak, we show that TG-induced cytosolic Ca2+ transients are directly related to ER Ca2+ levels and to the ER Ca2+ leak. A one-compartment model incorporating ER Ca2+ leak and cytosolic Ca2+ clearance accounted satisfactorily for the basic features of TG-induced Ca2+ transients and underpinned the rule that an increase in amplitude associated with shortening of TG-induced cytosolic Ca2+ transients most likely reflects an increase in ER Ca2+ leak.
Collapse
Affiliation(s)
- Tillman Pick
- *Correspondence: Tillman Pick, ; Adolfo Cavalié,
| | | | | | | |
Collapse
|
8
|
Bushart DD, Shakkottai VG. Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Front Syst Neurosci 2022; 16:908569. [PMID: 35757096 PMCID: PMC9219590 DOI: 10.3389/fnsys.2022.908569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- David D. Bushart
- Ohio State University College of Medicine, Columbus, OH, United States
| | - Vikram G. Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Vikram G. Shakkottai,
| |
Collapse
|
9
|
Aslam N, Alvi F. TRPC3 Channel Activity and Viability of Purkinje Neurons can be Regulated by a Local Signalosome. Front Mol Biosci 2022; 9:818682. [PMID: 35265671 PMCID: PMC8899209 DOI: 10.3389/fmolb.2022.818682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Canonical transient receptor potential channels (TRPC3) may play a pivotal role in the development and viability of dendritic arbor in Purkinje neurons. This is a novel postsynaptic channel for glutamatergic synaptic transmission. In the cerebellum, TRPC3 appears to regulate functions relating to motor coordination in a highly specific manner. Gain of TRPC3 function is linked to significant alterations in the density and connectivity of dendritic arbor in Purkinje neurons. TRPC3 signals downstream of class I metabotropic glutamate receptors (mGluR1). Moreover, diacylglycerol (DAG) can directly bind and activate TRPC3 molecules. Here, we investigate a key question: How can the activity of the TRPC3 channel be regulated in Purkinje neurons? We also explore how mGluR1 activation, Ca2+ influx, and DAG homeostasis in Purkinje neurons can be linked to TRPC3 activity modulation. Through systems biology approach, we show that TRPC3 activity can be modulated by a Purkinje cell (PC)–specific local signalosome. The assembly of this signalosome is coordinated by DAG generation after mGluR1 activation. Our results also suggest that purinergic receptor activation leads to the spatial and temporal organization of the TRPC3 signaling module and integration of its key effector molecules such as DAG, PKCγ, DGKγ, and Ca2+ into an organized local signalosome. This signaling machine can regulate the TRPC3 cycling between active, inactive, and desensitized states. Precise activity of the TRPC3 channel is essential for tightly regulating the Ca2+ entry into PCs and thus the balance of lipid and Ca2+ signaling in Purkinje neurons and hence their viability. Cell-type–specific understanding of mechanisms regulating TRPC3 channel activity could be key in identifying therapeutic targeting opportunities.
Collapse
Affiliation(s)
- Naveed Aslam
- BioSystOmics, Houston, TX, United States
- *Correspondence: Naveed Aslam,
| | - Farah Alvi
- BioSystOmics, Houston, TX, United States
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Pakistan
| |
Collapse
|
10
|
Iyer R, Franzini-Armstrong C. The location of InsP3 receptors in Purkinje cells of murine cerebellum does not supports a direct interaction in the transfer of calcium ions between ER and mitochondria. Eur J Transl Myol 2021; 31. [PMID: 34498451 PMCID: PMC8495361 DOI: 10.4081/ejtm.2021.9935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
The inositol-3-phosphate receptors (IP3Rs) of cerebellar Purkinje cells are located in abundant, large stacks of endoplasmic reticulum (ER) cisternae. Using thin section electron microscopy, we identify very frequent associations of the ER stacks with mitochondria. The associations have two components: a single, close ER-mitochondria contact on one side to the stack, and multiple layers of ER cisternae decorated by IP3Rs receptors on the side away from the mitochondria. Due to their location in the stacks, IP3Rs are never in contact with the mitochondria, although they are in their vicinity. We conclude that transfer of Ca2+ between ER and mitochondria is not directly mediated by IP3Rs, but is based on mitochondrial Ca2+ uptake from the local cytoplasmic spikes during IP3Rs’ activity.
Collapse
Affiliation(s)
- Ramesh Iyer
- Division of Cardiology, Children Hospital of Philadelphia, Philadelphia, PA.
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
11
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
12
|
Roome CJ, Empson RM. Survival strategies for mouse cerebellar Purkinje neurons lacking PMCA2. Neurosci Lett 2018; 663:25-28. [PMID: 29452612 DOI: 10.1016/j.neulet.2017.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022]
Abstract
Expression of the fast calcium extrusion protein, PMCA2, in the cerebellum is amongst the highest found throughout the central nervous system, and unsurprisingly PMCA2 knockout mice exhibit cerebellar ataxia or loss of controlled movement. The sole output neurons of the cerebellar cortex, Purkinje neurons, are functionally compromised in these knockout mice, yet remarkably these neurons survive. In this mini-review we review and speculate on the importance of multiple PMCA2 dependent actions at cellular and synaptic sites within the cerebellar Purkinje neuron network. We also explore how loss of PMCA2-/- can lead to the ataxic phenotype, but can paradoxically also minimise calcium rises in cerebellar Purkinje neurons, thereby ensuring their resilience and survival.
Collapse
Affiliation(s)
- Christopher J Roome
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Ruth M Empson
- Department of Physiology, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
13
|
Zylbertal A, Yarom Y, Wagner S. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study. Front Comput Neurosci 2017; 11:85. [PMID: 28970791 PMCID: PMC5609115 DOI: 10.3389/fncom.2017.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 12/02/2022] Open
Abstract
Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of HaifaHaifa, Israel
| |
Collapse
|
14
|
Sherkhane P, Kapfhammer JP. Chronic pharmacological blockade of the Na + /Ca 2+ exchanger modulates the growth and development of the Purkinje cell dendritic arbor in mouse cerebellar slice cultures. Eur J Neurosci 2017; 46:2108-2120. [PMID: 28715135 DOI: 10.1111/ejn.13649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
Abstract
The Na+ /Ca2+ exchanger (NCX) is a bidirectional plasma membrane antiporter involved in Ca2+ homeostasis in eukaryotes. NCX has three isoforms, NCX1-3, and all of them are expressed in the cerebellum. Immunostaining on cerebellar slice cultures indicates that NCX is widely expressed in the cerebellum, including expression in Purkinje cells. The pharmacological blockade of the forward mode of NCX (Ca2+ efflux mode) by bepridil moderately inhibited growth and development of Purkinje cell dendritic arbor in cerebellar slice cultures. However, the blockade of the reverse mode (Ca2+ influx mode) by KB-R7943 severely reduced the dendritic arbor and induced a morphological change with thickened distal dendrites. The effect of KB-R7943 on dendritic growth was unrelated to the activity of voltage-gated calcium channels and was also apparent in the absence of bioelectrical activity indicating that it was mediated by NCX expressed in Purkinje cells. We have used additional NCX inhibitors including CB-DMB, ORM-10103, SEA0400, YM-244769, and SN-6 which have higher specificity for NCX isoforms and target either the forward, reverse, or both modes. These inhibitors caused a strong dendritic reduction similar to that seen with KB-R7943, but did not elicit thickening of distal dendrites. Our findings indicate that disturbance of the NCX-dependent calcium transport in Purkinje cells induces a reduction of dendritic arbor, which is presumably caused by changes in the calcium handling, and underline the importance of the calcium equilibrium for the dendritic development in cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Pradeep Sherkhane
- Department of Biomedicine, Anatomical Institute, University of Basel, Pestalozzistrasse 20, CH-4056, Basel, Switzerland
| | - Josef P Kapfhammer
- Department of Biomedicine, Anatomical Institute, University of Basel, Pestalozzistrasse 20, CH-4056, Basel, Switzerland
| |
Collapse
|
15
|
STIM1 Regulates Somatic Ca 2+ Signals and Intrinsic Firing Properties of Cerebellar Purkinje Neurons. J Neurosci 2017; 37:8876-8894. [PMID: 28821659 DOI: 10.1523/jneurosci.3973-16.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022] Open
Abstract
Control of Ca2+ flux between the cytosol and intracellular Ca2+ stores is essential for maintaining normal cellular function. It has been well established in both neuronal and non-neuronal cells that stromal interaction molecule 1 (STIM1) initiates and regulates refilling Ca2+ into the ER. Here, we describe a novel, additional role for STIM1, the regulation of free cytosolic Ca2+, and the consequent control of spike firing in neurons. Among central neurons, cerebellar Purkinje neurons express the highest level of STIM1, and they fire continuously in the absence of stimulation, making somatic Ca2+ homeostasis of particular importance. By using Purkinje neuron-specific STIM1 knock-out (STIM1PKO) male mice, we found that the deletion of STIM1 delayed clearance of cytosolic Ca2+ in the soma during ongoing neuronal firing. Deletion of STIM1 also reduced the Purkinje neuronal excitability and impaired intrinsic plasticity without affecting long-term synaptic plasticity. In vestibulo-ocular reflex learning, STIM1PKO male mice showed severe deficits in memory consolidation, whereas they were normal in memory acquisition. Our results suggest that STIM1 is critically involved in the regulation of the neuronal excitability and the intrinsic plasticity of the Purkinje neurons as well as cerebellar memory consolidation.SIGNIFICANCE STATEMENT Stromal interaction molecule 1 (STIM1), which regulates the refilling of ER Ca2+, has been investigated in several systems including the CNS. In addition to a previous study showing that STIM1 regulates dendritic ER Ca2+ refilling and mGluR1-mediated synaptic transmission, we provide compelling evidence describing a novel role of STIM1 in spike firing Purkinje neurons. We found that STIM1 regulates cytosolic Ca2+ clearance of the soma during spike firing, and the interruption of this cytosolic Ca2+ clearing disrupts neuronal excitability and cerebellar memory consolidation. Our results provide new insights into neuronal functions of STIM1 from single neuronal Ca2+ dynamics to behavior level.
Collapse
|
16
|
Lee SH, Lutz D, Mossalam M, Bolshakov VY, Frotscher M, Shen J. Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway. Mol Neurodegener 2017; 12:48. [PMID: 28619096 PMCID: PMC5472971 DOI: 10.1186/s13024-017-0189-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background Presenilins play a major role in the pathogenesis of Alzheimer’s disease, in which the hippocampus is particularly vulnerable. Previous studies of Presenilin function in the synapse, however, focused exclusively on the hippocampal Schaffer collateral (SC) pathway. Whether Presenilins play similar or distinct roles in other hippocampal synapses is unknown. Methods To investigate the role of Presenilins at mossy fiber (MF) synapses we performed field and whole-cell electrophysiological recordings and Ca2+ imaging using acute hippocampal slices of postnatal forebrain-restricted Presenilin conditional double knockout (PS cDKO) and control mice at 2 months of age. We also performed quantitative electron microscopy (EM) analysis to determine whether mitochondrial content is affected at presynaptic MF boutons of PS cDKO mice. We further conducted behavioral analysis to assess spatial learning and memory of PS cDKO and control mice at 2 months in the Morris water maze. Results We found that long-term potentiation and short-term plasticity, such as paired-pulse and frequency facilitation, are impaired at MF synapses of PS cDKO mice. Moreover, post-tetanic potentiation (PTP), another form of short-term plasticity, is also impaired at MF synapses of PS cDKO mice. Furthermore, blockade of mitochondrial Ca2+ efflux mimics and occludes the PTP deficits at MF synapses of PS cDKO mice, suggesting that mitochondrial Ca2+ homeostasis is impaired in the absence of PS. Quantitative EM analysis showed normal number and area of mitochondria at presynaptic MF boutons of PS cDKO mice, indicating unchanged mitochondrial content. Ca2+ imaging of dentate gyrus granule neurons further revealed that cytosolic Ca2+ increases induced by tetanic stimulation are reduced in PS cDKO granule neurons in acute hippocampal slices, and that inhibition of mitochondrial Ca2+ release during high frequency stimulation mimics and occludes the Ca2+ defects observed in PS cDKO neurons. Consistent with synaptic plasticity impairment observed at MF and SC synapses in acute PS cDKO hippocampal slices, PS cDKO mice exhibit profound spatial learning and memory deficits in the Morris water maze. Conclusions Our findings demonstrate the importance of PS in the regulation of synaptic plasticity and mitochondrial Ca2+ homeostasis in the hippocampal MF pathway.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Lutz
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Mohanad Mossalam
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Harun R, Grassi CM, Munoz MJ, Wagner AK. Modeling Fast-scan Cyclic Voltammetry Data from Electrically Stimulated Dopamine Neurotransmission Data Using QNsim1.0. J Vis Exp 2017. [PMID: 28605373 DOI: 10.3791/55595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest. In vivo fast-scan cyclic voltammetry (FSCV) is a method that allows for selectively monitoring DA concentration changes with fine temporal and spatial resolution. This technique is commonly used in conjunction with electrical stimulations of ascending DAergic pathways to control the impulse flow of dopamine neurotransmission. Although the stimulated DA neurotransmission paradigm can produce robust DA responses with clear morphologies, making them amenable for kinetic analysis, there is still much debate on how to interpret the responses in terms of their DA release and clearance components. To address this concern, a quantitative neurobiological (QN) framework of stimulated DA neurotransmission was recently developed to realistically model the dynamics of DA release and reuptake over the course of a stimulated DA response. The foundations of this model are based on experimental data from stimulated DA neurotransmission and on principles of neurotransmission adopted from various lines of research. The QN model implements 12 parameters related to stimulated DA release and reuptake dynamics to model DA responses. This work describes how to simulate DA responses using QNsim1.0 and also details principles that have been implemented to systematically discern alterations in the stimulated dopamine release and reuptake dynamics.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Safar Center for Resuscitation Research, University of Pittsburgh;
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Safar Center for Resuscitation Research, University of Pittsburgh
| |
Collapse
|
18
|
Visualization of Ca2+ Filling Mechanisms upon Synaptic Inputs in the Endoplasmic Reticulum of Cerebellar Purkinje Cells. J Neurosci 2016; 35:15837-46. [PMID: 26631466 DOI: 10.1523/jneurosci.3487-15.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) plays crucial roles in intracellular Ca(2+) signaling, serving as both a source and sink of Ca(2+), and regulating a variety of physiological and pathophysiological events in neurons in the brain. However, spatiotemporal Ca(2+) dynamics within the ER in central neurons remain to be characterized. In this study, we visualized synaptic activity-dependent ER Ca(2+) dynamics in mouse cerebellar Purkinje cells (PCs) using an ER-targeted genetically encoded Ca(2+) indicator, G-CEPIA1er. We used brief parallel fiber stimulation to induce a local decrease in the ER luminal Ca(2+) concentration ([Ca(2+)]ER) in dendrites and spines. In this experimental system, the recovery of [Ca(2+)]ER takes several seconds, and recovery half-time depends on the extent of ER Ca(2+) depletion. By combining imaging analysis and numerical simulation, we show that the intraluminal diffusion of Ca(2+), rather than Ca(2+) reuptake, is the dominant mechanism for the replenishment of the local [Ca(2+)]ER depletion immediately following the stimulation. In spines, the ER filled almost simultaneously with parent dendrites, suggesting that the ER within the spine neck does not represent a significant barrier to Ca(2+) diffusion. Furthermore, we found that repetitive climbing fiber stimulation, which induces cytosolic Ca(2+) spikes in PCs, cumulatively increased [Ca(2+)]ER. These results indicate that the neuronal ER functions both as an intracellular tunnel to redistribute stored Ca(2+) within the neurons, and as a leaky integrator of Ca(2+) spike-inducing synaptic inputs.
Collapse
|
19
|
Harun R, Hare KM, Brough EM, Munoz MJ, Grassi CM, Torres GE, Grace AA, Wagner AK. Fast-scan cyclic voltammetry demonstrates that L-DOPA produces dose-dependent, regionally selective bimodal effects on striatal dopamine kinetics in vivo. J Neurochem 2016; 136:1270-1283. [PMID: 26611352 PMCID: PMC4884169 DOI: 10.1111/jnc.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. L-DOPA was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-DOPA to augment striatal DA production are well known, little is actually known about how L-DOPA alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-DOPA administration (50 mg/kg carbidopa + 0, 100, and 250 mg/kg L-DOPA) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry in anesthetized rats. We demonstrate that L-DOPA enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR. In both regions, L-DOPA progressively attenuated reuptake kinetics, predominantly through a decrease in Vmax . These findings have important implications on understanding the pharmacodynamics of L-DOPA, which may be informative for understanding its therapeutic effects and also common side effects like L-DOPA-induced dyskinesias (LID). L-DOPA is commonly used to treat Parkinsonian symptoms, but little is known about how it affects presynaptic DA neurotransmission. Using in vivo fast-scan cyclic voltammetry, we show L-DOPA inhibits DA reuptake in a region-specific and dose-dependent manner, and L-DOPA has paradoxical effects on release. These findings may be important when considering mechanisms for L-DOPA's therapeutic benefits and adverse side-effects.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Kristin M Hare
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Brough
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biological Sciences, Carnegie Mellon University, Mellon College of Science, Pittsburgh, Pennsylvania, USA
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gonzalo E Torres
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Groten CJ, Rebane JT, Hodgson HM, Chauhan AK, Blohm G, Magoski NS. Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells. J Neurophysiol 2016; 115:2615-34. [PMID: 26864756 DOI: 10.1152/jn.00494.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/04/2016] [Indexed: 01/05/2023] Open
Abstract
After Ca(2+) influx, mitochondria can sequester Ca(2+) and subsequently release it back into the cytosol. This form of Ca(2+)-induced Ca(2+) release (CICR) prolongs Ca(2+) signaling and can potentially mediate activity-dependent plasticity. As Ca(2+) is required for its subsequent release, Ca(2+) removal systems, like the plasma membrane Ca(2+)-ATPase (PMCA), could impact CICR. Here we examine such a role for the PMCA in the bag cell neurons of Aplysia californica CICR is triggered in these neurons during an afterdischarge and is implicated in sustaining membrane excitability and peptide secretion. Somatic Ca(2+) was measured from fura-PE3-loaded cultured bag cell neurons recorded under whole cell voltage clamp. Voltage-gated Ca(2+) influx was elicited with a 5-Hz, 1-min train, which mimics the fast phase of the afterdischarge. PMCA inhibition with carboxyeosin or extracellular alkalization augmented the effectiveness of Ca(2+) influx in eliciting mitochondrial CICR. A Ca(2+) compartment model recapitulated these findings and indicated that disrupting PMCA-dependent Ca(2+) removal increases CICR by enhancing mitochondrial Ca(2+) loading. Indeed, carboxyeosin augmented train-evoked mitochondrial Ca(2+) uptake. Consistent with their role on Ca(2+) dynamics, cell labeling revealed that the PMCA and mitochondria overlap with Ca(2+) entry sites. Finally, PMCA-dependent Ca(2+) extrusion did not impact endoplasmic reticulum-dependent Ca(2+) removal or release, despite the organelle residing near Ca(2+) entry sites. Our results demonstrate that Ca(2+) removal by the PMCA influences the propensity for stimulus-evoked CICR by adjusting the amount of Ca(2+) available for mitochondrial Ca(2+) uptake. This study highlights a mechanism by which the PMCA could impact activity-dependent plasticity in the bag cell neurons.
Collapse
Affiliation(s)
- Christopher J Groten
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Jonathan T Rebane
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Heather M Hodgson
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Alamjeet K Chauhan
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Gunnar Blohm
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
21
|
Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS Biol 2015; 13:e1002319. [PMID: 26674618 PMCID: PMC4684409 DOI: 10.1371/journal.pbio.1002319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. An experimental and computational study reveals a novel mechanism for persistent activity of neurons in response to transient stimulation. Instead of involving feedback mechanisms, it relies on slow changes in intracellular sodium ion concentration, leading to prolonged calcium-dependent inward current. The accessory olfactory system is essential for chemical communication in animals during social interactions. During this process, the principle cells of the accessory olfactory bulb (AOB) may respond to transient stimulation with prolonged activity, sometimes lasting for minutes—a property known as persistent activity. This property, which has been observed in other brain areas, is usually attributed to positive feedback mechanisms either at the cellular or the network level. Here, we show how persistent activity can emerge without feedback, relying on slow changes in internal ionic concentrations, which keep a record of past neuronal activity for long periods of time. We used a combined computational and experimental approach to show that the complex interaction between various ions, their extrusion mechanisms, and the membrane potential leads to stimulus-dependent persistent activity in the AOB. The same mechanism may apply to other neuronal types in various brain regions.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, Hebrew University and the Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- * E-mail:
| | - Anat Kahan
- School of Medicine, Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, Hebrew University and the Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
22
|
Kortus S, Dayanithi G, Zapotocky M. Computational estimation of calcium fluxes in isolated magnocellular neurons. BMC Neurosci 2015. [PMCID: PMC4699191 DOI: 10.1186/1471-2202-16-s1-p299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data. Brain Res 2014; 1599:67-84. [PMID: 25527399 DOI: 10.1016/j.brainres.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/22/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology.
Collapse
|
24
|
Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol 2014; 128:835-52. [PMID: 25341622 PMCID: PMC4231287 DOI: 10.1007/s00401-014-1351-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Paraneoplastic cerebellar degeneration (PCD) is characterized by loss of Purkinje cells (PCs) associated with progressive pancerebellar dysfunction in the presence of onconeural Yo antibodies. These antibodies recognize the cerebellar degeneration-related antigens CDR2 and CDR2L. Response to PCD therapy is disappointing due to limited understanding of the neuropathological mechanisms. Here, we report the pathological role of CDR antibodies on the calcium homeostasis in PCs. We developed an antibody-mediated PCD model based on co-incubation of cerebellar organotypic slice culture with human patient serum or rabbit CDR2 and CDR2L antibodies. The CDR antibody-induced pathology was investigated by high-resolution multiphoton imaging and biochemical analysis. Both human and rabbit CDR antibodies were rapidly internalized by PCs and led to reduced immunoreactivity of calbindin D28K (CB) and L7/Pcp-2 as well as reduced dendritic arborizations in the remaining PCs. Washout of the CDR antibodies partially recovered CB immunoreactivity, suggesting a transient structural change in CB calcium-binding site. We discovered that CDR2 and CB co-immunoprecipitate. Furthermore, the expression levels of voltage-gated calcium channel Cav2.1, protein kinase C gamma and calcium-dependent protease, calpain-2, were increased after CDR antibody internalization. Inhibition of these signaling pathways prevented or attenuated CDR antibody-induced CB and L7/Pcp-2 immunoreactivity loss, morphological changes and increased protein expression. These results signify that CDR antibody internalization causes dysregulation of cell calcium homeostasis. Hence, drugs that modulate these events may represent novel neuroprotective therapies that limit the damaging effects of CDR antibodies and prevent PC neurodegeneration.
Collapse
|
25
|
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 2014; 71:2787-814. [PMID: 24442513 PMCID: PMC11113927 DOI: 10.1007/s00018-013-1550-7] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/15/2013] [Accepted: 12/30/2013] [Indexed: 01/07/2023]
Abstract
Calcium (Ca(2+)) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca(2+) signaling pathways to couple the Ca(2+) signal to their biochemical machinery. Ca(2+) influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca(2+) from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca(2+). Inside the cell, Ca(2+) is controlled by the buffering action of cytosolic Ca(2+)-binding proteins and by its uptake and release by mitochondria. The uptake of Ca(2+) in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca(2+) from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na(+)/Ca(2+) exchanger in the plasma membrane also participates in the control of neuronal Ca(2+). The impaired ability of neurons to maintain an adequate energy level may impact Ca(2+) signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca(2+) signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca(2+) signaling in the most important neurological disorders will then be considered.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Tito Calì
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Denis Ottolini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Ernesto Carafoli
- Venetian Institute for Molecular Medicine (VIMM), Via G.Orus, 2, 35129 Padua, Italy
| |
Collapse
|
26
|
Wolf A, Wennemuth G. Ca2+ clearance mechanisms in cancer cell lines and stromal cells of the prostate. Prostate 2014; 74:29-40. [PMID: 24037789 DOI: 10.1002/pros.22724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/08/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Three prostatic cell lines, PC3, LNCaP, and DU 145, are used as established models to study cell signaling in prostate cancer. Recently, stromal cell lines of the prostate, such as P21, were also introduced. Here we investigate a basic and important mechanism of living cells: Ca(2+) homeostasis in PC3, DU 145, and P21. METHODS We examined Ca(2+) clearance mechanisms by monitoring the kinetics of recovery from histamine stimulation under conditions which inhibit prospect mechanisms for storing or extrusion of Ca(2+) from the cytosol by photometry. RESULTS Despite the fact that in all three cell lines the Ca(2+) ATPase of the plasma membrane and the SERCA are most important for Ca(2+) homeostasis, inhibition of PMCA in epithelial cells has a greater effect than in stromal cells. Furthermore, the proportion of PMCA and SERCA differs in PC3 and DU145 cells. PMCA is most effective at reaching resting [Ca(2+) ]i in the final recovery stage. In contrast to DU 145 and P21 cells, PC3 are the only cells substantially affected by the inhibition of the mitochondrial uniporter. In all cell lines the role of the sodium calcium exchanger is marginal. CONCLUSION These results demonstrate that not only cancer and stromal cell lines show significant differences in the modes and extent of their use of Ca(2+) clearance mechanisms, but also the cancer cell lines themselves.
Collapse
Affiliation(s)
- Anne Wolf
- Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | | |
Collapse
|
27
|
Separate Ca2+ sources are buffered by distinct Ca2+ handling systems in aplysia neuroendocrine cells. J Neurosci 2013; 33:6476-91. [PMID: 23575846 DOI: 10.1523/jneurosci.6384-11.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although the contribution of Ca(2+) buffering systems can vary between neuronal types and cellular compartments, it is unknown whether distinct Ca(2+) sources within a neuron have different buffers. As individual Ca(2+) sources can have separate functions, we propose that each is handled by unique systems. Using Aplysia californica bag cell neurons, which initiate reproduction through an afterdischarge involving multiple Ca(2+)-dependent processes, we investigated the role of endoplasmic reticulum (ER) and mitochondrial sequestration, as well as extrusion via the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, to the clearance of voltage-gated Ca(2+) influx, Ca(2+)-induced Ca(2+)-release (CICR), and store-operated Ca(2+) influx. Cultured bag cell neurons were filled with the Ca(2+) indicator, fura-PE3, to image Ca(2+) under whole-cell voltage clamp. A 5 Hz, 1 min train of depolarizing voltage steps elicited voltage-gated Ca(2+) influx followed by EGTA-sensitive CICR from the mitochondria. A compartment model of Ca(2+) indicated the effect of EGTA on CICR was due to buffering of released mitochondrial Ca(2+) rather than uptake competition. Removal of voltage-gated Ca(2+) influx was dominated by the mitochondria and PMCA, with no contribution from the Na(+)/Ca(2+) exchanger or sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA). In contrast, CICR recovery was slowed by eliminating the Na(+)/Ca(2+) exchanger and PMCA. Last, store-operated influx, evoked by ER depletion, was removed by the SERCA and depended on the mitochondrial membrane potential. Our results demonstrate that distinct buffering systems are dedicated to particular Ca(2+) sources. In general, this may represent a means to differentially regulate Ca(2+)-dependent processes, and for Aplysia, influence how reproductive behavior is triggered.
Collapse
|
28
|
Enhanced Synaptic Inhibition in the Cerebellar Cortex of the Ataxic PMCA2−/− Knockout Mouse. THE CEREBELLUM 2013; 12:667-75. [DOI: 10.1007/s12311-013-0472-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
The Contribution of the Sodium-Calcium Exchanger (NCX) and Plasma Membrane Ca2+ ATPase (PMCA) to Cerebellar Synapse Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:251-63. [DOI: 10.1007/978-1-4614-4756-6_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
30
|
Forrest MD, Wall MJ, Press DA, Feng J. The sodium-potassium pump controls the intrinsic firing of the cerebellar Purkinje neuron. PLoS One 2012; 7:e51169. [PMID: 23284664 PMCID: PMC3527461 DOI: 10.1371/journal.pone.0051169] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na(+)/K(+) pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na(+)/K(+) pump. The model can replicate these recordings. We propose that Na(+)/K(+) pump activity controls the intrinsic firing mode of cerbellar Purkinje cells.
Collapse
Affiliation(s)
- Michael D Forrest
- Department of Computer Science, University of Warwick, Coventry, West Midlands, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Abstract
Cerebellar Purkinje neurons receive synaptic inputs from three different sources: the excitatory parallel fibre and climbing fibre synapses as well as the inhibitory synapses from molecular layer stellate and basket cells. These three synaptic systems use distinct mechanisms in order to generate Ca(2+) signals that are specialized for specific modes of neurotransmitter release and post-synaptic signal integration. In this review, we first describe the repertoire of Ca(2+) regulatory mechanisms that generate and regulate the amplitude and timing of Ca(2+) fluxes during synaptic transmission and then explore how these mechanisms interact to generate the unique functional properties of each of the Purkinje neuron synapses.
Collapse
|
32
|
Enhanced synaptic inhibition disrupts the efferent code of cerebellar Purkinje neurons in leaner Cav2.1 Ca 2+ channel mutant mice. THE CEREBELLUM 2012; 11:666-80. [PMID: 20845003 DOI: 10.1007/s12311-010-0210-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cerebellar Purkinje cells (PCs) encode afferent information in the rate and temporal structure of their spike trains. Both spontaneous firing in these neurons and its modulation by synaptic inputs depend on Ca(2+) current carried by Ca(v)2.1 (P/Q) type channels. Previous studies have described how loss-of-function Ca(v)2.1 mutations affect intrinsic excitability and excitatory transmission in PCs. This study examines the effects of the leaner mutation on fast GABAergic transmission and its modulation of spontaneous firing in PCs. The leaner mutation enhances spontaneous synaptic inhibition of PCs, leading to transitory reductions in PC firing rate and increased spike rate variability. Enhanced inhibition is paralleled by an increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) measured under voltage clamp. These differences are abolished by tetrodotoxin, implicating effects of the mutation on spike-induced GABA release. Elevated sIPSC frequency in leaner PCs is not accompanied by increased mean firing rate in molecular layer interneurons, but IPSCs evoked in PCs by direct stimulation of these neurons exhibit larger amplitude, slower decay rate, and a higher burst probability compared to wild-type PCs. Ca(2+) release from internal stores appears to be required for enhanced inhibition since differences in sIPSC frequency and amplitude in leaner and wild-type PCs are abolished by thapsigargin, an ER Ca(2+) pump inhibitor. These findings represent the first account of the functional consequences of a loss-of-function P/Q channel mutation on PC firing properties through altered GABAergic transmission. Gain in synaptic inhibition shown here would compromise the fidelity of information coding in these neurons and may contribute to impaired cerebellar function resulting from loss-of function mutations in the Ca(V)2.1 channel gene.
Collapse
|
33
|
Diffusion and extrusion shape standing calcium gradients during ongoing parallel fiber activity in dendrites of Purkinje neurons. THE CEREBELLUM 2012; 11:694-705. [PMID: 21298581 DOI: 10.1007/s12311-010-0246-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Synaptically induced calcium transients in dendrites of Purkinje neurons (PNs) play a key role in the induction of plasticity in the cerebellar cortex (Ito, Physiol Rev 81:1143-1195, 2001). Long-term depression at parallel fiber-PN synapses can be induced by stimulation paradigms that are associated with long-lasting (>1 min) calcium signals. These signals remain strictly localized (Eilers et al., Learn Mem 3:159-168, 1997), an observation that was rather unexpected, given the high concentration of the mobile endogenous calcium-binding proteins parvalbumin and calbindin in PNs (Fierro and Llano, J Physiol (Lond) 496:617-625, 1996; Kosaka et al., Exp Brain Res 93:483-491, 1993). By combining two-photon calcium imaging experiments in acute slices with numerical computer simulations, we found that significant calcium diffusion out of active branches indeed takes places. It is outweighed, however, by rapid and powerful calcium extrusion along the dendritic shaft. The close interplay of diffusion and extrusion defines the spread of calcium between active and inactive dendritic branches, forming a steep gradient in calcium with drop ranges of ~13 μm (interquartile range, 10-18 μm).
Collapse
|
34
|
Duncan C, Mueller S, Simon E, Renger JJ, Uebele VN, Hogan QH, Wu HE. Painful nerve injury decreases sarco-endoplasmic reticulum Ca²⁺-ATPase activity in axotomized sensory neurons. Neuroscience 2012; 231:247-57. [PMID: 23219911 DOI: 10.1016/j.neuroscience.2012.11.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/15/2022]
Abstract
The sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a critical pathway by which sensory neurons sequester cytosolic Ca(2+) and thereby maintain intracellular Ca(2+) homeostasis. We have previously demonstrated decreased intraluminal endoplasmic reticulum Ca(2+) concentration in traumatized sensory neurons. Here we examine SERCA function in dissociated sensory neurons using Fura-2 fluorometry. Blocking SERCA with thapsigargin (1 μM) increased resting [Ca(2+)](c) and prolonged recovery (τ) from transients induced by neuronal activation (elevated bath K(+)), demonstrating SERCA contributes to control of resting [Ca(2+)](c) and recovery from transient [Ca(2+)](c) elevation. To evaluate SERCA in isolation, plasma membrane Ca(2+) ATPase was blocked with pH 8.8 bath solution and mitochondrial buffering was avoided by keeping transients small (≤ 400 nM). Neurons axotomized by spinal nerve ligation (SNL) showed a slowed rate of transient recovery compared to control neurons, representing diminished SERCA function, whereas neighboring non-axotomized neurons from SNL animals were unaffected. Injury did not affect SERCA function in large neurons. Repeated depolarization prolonged transient recovery, showing that neuronal activation inhibits SERCA function. These findings suggest that injury-induced loss of SERCA function in small sensory neurons may contribute to the generation of pain following peripheral nerve injury.
Collapse
Affiliation(s)
- C Duncan
- Medical College of Wisconsin, Department of Anesthesiology, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Intracellular calcium dynamics is critical for many functions of cerebellar granule cells (GrCs) including membrane excitability, synaptic plasticity, apoptosis, and regulation of gene transcription. Recent measurements of calcium responses in GrCs to depolarization and synaptic stimulation reveal spatial compartmentalization and heterogeneity within dendrites of these cells. However, the main determinants of local calcium dynamics in GrCs are still poorly understood. One reason is that there have been few published studies of calcium dynamics in intact GrCs in their native environment. In the absence of complete information, biophysically realistic models are useful for testing whether specific Ca(2+) handling mechanisms may account for existing experimental observations. Simulation results can be used to identify critical measurements that would discriminate between different models. In this review, we briefly describe experimental studies and phenomenological models of Ca(2+) signaling in GrC, and then discuss a particular biophysical model, with a special emphasis on an approach for obtaining information regarding the distribution of Ca(2+) handling systems under conditions of incomplete experimental data. Use of this approach suggests that Ca(2+) channels and fixed endogenous Ca(2+) buffers are highly heterogeneously distributed in GrCs. Research avenues for investigating calcium dynamics in GrCs by a combination of experimental and modeling studies are proposed.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| |
Collapse
|
36
|
Dendritic calcium signaling in cerebellar Purkinje cell. Neural Netw 2012; 47:11-7. [PMID: 22985934 DOI: 10.1016/j.neunet.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/30/2012] [Accepted: 08/09/2012] [Indexed: 11/24/2022]
Abstract
The Purkinje cells in the cerebellum are unique neurons that generate local and global Ca(2+) signals in response to two types of excitatory inputs, parallel fiber and climbing fiber, respectively. The spatiotemporal distribution and interaction of these synaptic inputs produce complex patterns of Ca(2+) dynamics in the Purkinje cell dendrites. The Ca(2+) signals originate from Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from intracellular stores that are mediated by the metabotropic glutamate receptor signaling pathway. These Ca(2+) signals are essential for the induction of various forms of synaptic plasticity and for controlling the input-output relationship of Purkinje cells. In this article we review Ca(2+) signaling in Purkinje cell dendrites.
Collapse
|
37
|
The Regulation of a Cell’s Ca2+ Signaling Toolkit: The Ca2+ Homeostasome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1-25. [DOI: 10.1007/978-94-007-2888-2_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Jacoby J, Kreitzer MA, Alford S, Qian H, Tchernookova BK, Naylor ER, Malchow RP. Extracellular pH dynamics of retinal horizontal cells examined using electrochemical and fluorometric methods. J Neurophysiol 2011; 107:868-79. [PMID: 22090459 DOI: 10.1152/jn.00878.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular H(+) has been hypothesized to mediate feedback inhibition from horizontal cells onto vertebrate photoreceptors. According to this hypothesis, depolarization of horizontal cells should induce extracellular acidification adjacent to the cell membrane. Experiments testing this hypothesis have produced conflicting results. Studies examining carp and goldfish horizontal cells loaded with the pH-sensitive dye 5-hexadecanoylaminofluorescein (HAF) reported an extracellular acidification on depolarization by glutamate or potassium. However, investigations using H(+)-selective microelectrodes report an extracellular alkalinization on depolarization of skate and catfish horizontal cells. These studies differed in the species and extracellular pH buffer used and the presence or absence of cobalt. We used both techniques to examine H(+) changes from isolated catfish horizontal cells under identical experimental conditions (1 mM HEPES, no cobalt). HAF fluorescence indicated an acidification response to high extracellular potassium or glutamate. However, a clear extracellular alkalinization was found using H(+)-selective microelectrodes under the same conditions. Confocal microscopy revealed that HAF was not localized exclusively to the extracellular surface, but rather was detected throughout the intracellular compartment. A high degree of colocalization between HAF and the mitochondrion-specific dye MitoTracker was observed. When HAF fluorescence was monitored from optical sections from the center of a cell, glutamate produced an intracellular acidification. These results are consistent with a model in which depolarization allows calcium influx, followed by activation of a Ca(2+)/H(+) plasma membrane ATPase. Our results suggest that HAF is reporting intracellular pH changes and that depolarization of horizontal cells induces an extracellular alkalinization, which may relieve H(+)-mediated inhibition of photoreceptor synaptic transmission.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Franconville R, Revet G, Astorga G, Schwaller B, Llano I. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo. J Neurophysiol 2011; 106:1793-805. [PMID: 21734102 DOI: 10.1152/jn.00133.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the relationship between somatic Ca²⁺ signals and spiking activity of cerebellar molecular layer interneurons (MLIs) in adult mice. Using two-photon microscopy in conjunction with cell-attached recordings in slices, we show that in tonically firing MLIs loaded with high-affinity Ca²⁺ probes, Ca²⁺-dependent fluorescence transients are absent. Spike-triggered averages of fluorescence traces for MLIs spiking at low rates revealed that the fluorescence change associated with an action potential is small (1% of the basal fluorescence). To uncover the relationship between intracellular Ca²⁺ concentration ([Ca²⁺](i)) and firing rates, spikes were transiently silenced with puffs of the GABA(A) receptor agonist muscimol. [Ca²⁺](i) relaxed toward basal levels following a single exponential whose amplitude correlated to the preceding spike frequency. The relaxation time constant was slow (2.5 s) and independent of the probe concentration. Data from parvalbumin (PV)-/- animals indicate that PV controls the amplitude and decay time of spike-triggered averages as well as the time course of [Ca²⁺](i) relaxations following spike silencing. The [Ca²⁺](i) signals were sensitive to the L-type Ca²⁺ channel blocker nimodipine and insensitive to ryanodine. In anesthetized mice, as in slices, fluorescence traces from most MLIs did not show spontaneous transients. They nonetheless responded to muscimol iontophoresis with relaxations similar to those obtained in vitro, suggesting a state of tonic firing with estimated spiking rates ranging from 2 to 30 Hz. Altogether, the [Ca²⁺](i) signal appears to reflect the integral of the spiking activity in MLIs. We propose that the muscimol silencing strategy can be extended to other tonically spiking neurons with similar [Ca²⁺](i) homeostasis.
Collapse
Affiliation(s)
- Romain Franconville
- Centre National de la Recherche Scientifique, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Antolin S, Reisert J, Matthews HR. Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia. ACTA ACUST UNITED AC 2010; 135:367-78. [PMID: 20351061 PMCID: PMC2847921 DOI: 10.1085/jgp.200910337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide–gated channels in the ciliary membrane enabling Ca2+ influx. The ensuing elevation of the intraciliary Ca2+ concentration opens Ca2+-activated Cl− channels, which mediate an excitatory Cl− efflux from the cilia. In order for the response to terminate, the Cl− channel must close, which requires that the intraciliary Ca2+ concentration return to basal levels. Hitherto, the extrusion of Ca2+ from the cilia has been thought to depend principally on a Na+–Ca2+ exchanger. In this study, we show using simultaneous suction pipette recording and Ca2+-sensitive dye fluorescence measurements that in fire salamander ORNs, withdrawal of external Na+ from the solution bathing the cilia, which incapacitates Na+–Ca2+exchange, has only a modest effect on the recovery of the electrical response and the accompanying decay of intraciliary Ca2+ concentration. In contrast, exposure of the cilia to vanadate or carboxyeosin, a manipulation designed to block Ca2+-ATPase, has a substantial effect on response recovery kinetics. Therefore, we conclude that Ca2+-ATPase contributes to Ca2+ extrusion in ORNs, and that Na+–Ca2+exchange makes only a modest contribution to Ca2+ homeostasis in this species.
Collapse
Affiliation(s)
- Salome Antolin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, England, UK
| | | | | |
Collapse
|
41
|
Huang H, Nagaraja RY, Garside ML, Akemann W, Knöpfel T, Empson RM. Contribution of plasma membrane Ca 2+ ATPase to cerebellar synapse function. World J Biol Chem 2010; 1:95-102. [PMID: 21540995 PMCID: PMC3083959 DOI: 10.4331/wjbc.v1.i5.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 02/05/2023] Open
Abstract
The cerebellum expresses one of the highest levels of the plasma membrane Ca2+ ATPase, isoform 2 in the mammalian brain. This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex; i.e. the Purkinje neurons (PNs). Here we review recent evidence, including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2 (PMCA2) knockout mouse, to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour. These studies have also revealed that deletion of PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development, they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.
Collapse
Affiliation(s)
- Helena Huang
- Helena Huang, Raghavendra Y Nagaraja, Ruth M Empson, Department of Physiology, Brain Health and Repair Research Centre, University of Otago, Dunedin, 9001, New Zealand
| | | | | | | | | | | |
Collapse
|
42
|
Gruol DL, Netzeband JG, Nelson TE. Somatic Ca2+ signaling in cerebellar Purkinje neurons. J Neurosci Res 2010; 88:275-89. [PMID: 19681168 DOI: 10.1002/jnr.22204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activity-driven Ca(2+) signaling plays an important role in a number of neuronal functions, including neuronal growth, differentiation, and plasticity. Both cytosolic and nuclear Ca(2+) has been implicated in these functions. In the current study, we investigated membrane-to-nucleus Ca(2+) signaling in cerebellar Purkinje neurons in culture to gain insight into the pathways and mechanisms that can initiate nuclear Ca(2+) signaling in this neuronal type. Purkinje neurons are known to express an abundance of Ca(2+) signaling molecules such as voltage-gated Ca(2+) channels, ryanodine receptors, and IP3 receptors. Results show that membrane depolarization evoked by brief stimulation with K(+) saline elicits a prominent Ca(2+) signal in the cytosol and nucleus of the Purkinje neurons. Ca(2+) influx through P/Q- and L-type voltage-gated Ca(2+) channels and Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores contributed to the Ca(2+) signal, which spread from the plasma membrane to the nucleus. At strong K(+) stimulations, the amplitude of the nuclear Ca(2+) signal exceeded that of the cytosolic Ca(2+) signal, suggesting the involvement of a nuclear amplification mechanism and/or differences in Ca(2+) buffering in these two cellular compartments. An enhanced nuclear Ca(2+) signal was more prominent for Ca(2+) signals elicited by membrane depolarization than for Ca(2+) signals elicited by activation of the metabotropic glutamate receptor pathway (mGluR1), which is linked to Ca(2+) release from intracellular stores controlled by the IP3 receptor.
Collapse
Affiliation(s)
- D L Gruol
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
43
|
Trevelyan AJ, Kirby DM, Smulders-Srinivasan TK, Nooteboom M, Acin-Perez R, Enriquez JA, Whittington MA, Lightowlers RN, Turnbull DM. Mitochondrial DNA mutations affect calcium handling in differentiated neurons. ACTA ACUST UNITED AC 2010; 133:787-96. [PMID: 20207702 PMCID: PMC2842518 DOI: 10.1093/brain/awq023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in the mitochondrial genome are associated with a wide range of neurological symptoms, but many aspects of the basic neuronal pathology are not understood. One candidate mechanism, given the well-established role of mitochondria in calcium buffering, is a deficit in neuronal calcium homoeostasis. We therefore examined calcium responses in the neurons derived from various ‘cybrid’ embryonic stem cell lines carrying different mitochondrial DNA mutations. Brief (∼50 ms), focal glutamatergic stimuli induced a transient rise in intracellular calcium concentration, which was visualized by bulk loading the cells with the calcium dye, Oregon Green BAPTA-1. Calcium entered the neurons through N-methyl-d-aspartic acid and voltage-gated calcium channels, as has been described in many other neuronal classes. Intriguingly, while mitochondrial mutations did not affect the calcium transient in response to single glutamatergic stimuli, they did alter the responses to repeated stimuli, with each successive calcium transient decaying ever more slowly in mitochondrial mutant cell lines. A train of stimuli thus caused intracellular calcium in these cells to be significantly elevated for many tens of seconds. These results suggest that calcium-handling deficits are likely to contribute to the pathological phenotype seen in patients with mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Andrew J Trevelyan
- Mitochondrial Research Group, Institute for Ageing and Health Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, England.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Scullin CS, Partridge LD. Contributions of SERCA pump and ryanodine-sensitive stores to presynaptic residual Ca2+. Cell Calcium 2010; 47:326-38. [PMID: 20153896 DOI: 10.1016/j.ceca.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/31/2009] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
The presynaptic Ca2+ signal, which triggers vesicle release, disperses to a broadly distributed residual [Ca2+] ([Ca2+](res)) that plays an important role in synaptic plasticity. We have previously reported a slowing in the decay timecourse of [Ca2+](res) during the second of paired pulses. In this study, we investigated the contributions of organelle and plasma membrane Ca2+ flux pathways to the reduction of effectiveness of [Ca2+](res) clearance during short-term plasticity in Schaffer collateral terminals in the CA1 field of the hippocampus. We show that the slowed decay timecourse is mainly the result of a transport-dependent Ca2+ clearance process; that presynaptic caffeine-sensitive Ca2+ stores are not functionally loaded in the unstimulated terminal, but that these stores can effectively take up Ca2+ even during high frequency trains of stimuli; and that a rate limiting step of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) kinetics following the first pulse is responsible for a large portion of the observed slowing of [Ca2+](res) clearance during the second pulse. We were able to accurately fit our [Ca2+](res) data with a kinetic model based on these observations and this model predicted a reduction in availability of unbound SERCA during paired pulses, but no saturation of Ca2+ buffer in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Chessa S Scullin
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
45
|
Empson RM, Turner PR, Nagaraja RY, Beesley PW, Knöpfel T. Reduced expression of the Ca(2+) transporter protein PMCA2 slows Ca(2+) dynamics in mouse cerebellar Purkinje neurones and alters the precision of motor coordination. J Physiol 2010; 588:907-22. [PMID: 20083513 DOI: 10.1113/jphysiol.2009.182196] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebellar Purkinje neurones (PNs) express high levels of the plasma membrane calcium ATPase, PMCA2, a transporter protein critical for the clearance of calcium from excitable cells. Genetic deletion of one PMCA2 encoding gene in heterozygous PMCA2 knock-out (PMCA2(+/-) mice enabled us to determine how PMCA2 influences PN calcium regulation without the complication of the severe morphological changes associated with complete PMCA2 knock-out (PMCA2(-/-) in these cells. The PMCA2(+/-) cerebellum expressed half the normal levels of PMCA2 and this nearly doubled the time taken for PN dendritic calcium transients to recover (mean fast and slow recovery times increased from 70 ms to 110 ms and from 600 ms to 1100 ms). The slower calcium recovery had distinct consequences for PMCA2(+/-) PN physiology. The PNs exhibited weaker climbing fibre responses, prolonged outward Ca(2+)-dependent K(+) current (mean fast and slow recovery times increased from 136 ms to 192 ms and from 595 ms to 1423 ms) and a slower mean frequency of action potential firing (7.4 Hz compared with 15.8 Hz). Our findings were consistent with prolonged calcium accumulation in the cytosol of PMCA2(+/-) Purkinje neurones. Although PMCA2(+/-) mice exhibited outwardly normal behaviour and little change in their gait pattern, when challenged to run on a narrow beam they exhibited clear deficits in hindlimb coordination. Training improved the motor performance of both PMCA2(+/-) and wild-type mice, although PMCA2(+/-) mice were always impaired. We conclude that reduced calcium clearance perturbs calcium dynamics in PN dendrites and that this is sufficient to disrupt the accuracy of cerebellar processing and motor coordination.
Collapse
Affiliation(s)
- Ruth M Empson
- University of Otago, Physiology, 270 Great King Street, Dunedin 9001, New Zealand.
| | | | | | | | | |
Collapse
|
46
|
Joucla S, Pippow A, Kloppenburg P, Pouzat C. Quantitative estimation of calcium dynamics from ratiometric measurements: a direct, nonratioing method. J Neurophysiol 2009; 103:1130-44. [PMID: 19955286 DOI: 10.1152/jn.00414.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Measuring variations of intracellular free calcium concentration through the changes in fluorescence of a calcium-sensitive dye is a ubiquitous technique in neuroscience. Despite its popularity, confidence intervals (CIs) on the estimated parameters of calcium dynamics models are seldom given. To address this issue, we have developed a two-stage model for ratiometric measurements obtained with a charge-coupled device (CCD) camera. Its first element embeds a parametric calcium dynamics model into a fluorescence intensity model and its second element probabilistically describes the fluorescence measurements by a CCD camera. Using Monte Carlo simulations, we first show that the classical ratiometric transformation gives reliable CIs for time constants only and not baseline calcium concentration nor influx. We then introduce a direct method, which consists of fitting directly and simultaneously the fluorescence transients at both wavelengths, without any data ratioing. This approach uses a probabilistic description of the camera, leading to the construction of meaningful CIs for the calcium parameters. Moreover, using approaches inspired by constrained linear regression, we can take into account the finite precision on calibrated parameters (such as the dye dissociation constant in the cell). These key features are illustrated on simulated data using Monte Carlo simulations. Moreover, we illustrate the strength of the direct method on experimental recordings from insect olfactory interneurons. In particular, we show how to handle a time-dependent buffer concentration, thereby considerably improving our goodness of fit. The direct method was implemented in the open-source software R and is freely distributed in the CalciOMatic package.
Collapse
Affiliation(s)
- Sébastien Joucla
- Cerebral Physiology Laboratory, Université Paris-Descartes, Unité Mixte de Recherche 8118 du Centre National de la Recherche Scientifique, 75006 Paris, France
| | | | | | | |
Collapse
|
47
|
Kreiner L, Christel CJ, Benveniste M, Schwaller B, Lee A. Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k. J Neurophysiol 2009; 103:371-81. [PMID: 19906882 DOI: 10.1152/jn.00635.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(v)2.1 channels regulate Ca(2+) signaling and excitability of cerebellar Purkinje neurons. These channels undergo a dual feedback regulation by incoming Ca(2+) ions, Ca(2+)-dependent facilitation and inactivation. Endogenous Ca(2+)-buffering proteins, such as parvalbumin (PV) and calbindin D-28k (CB), are highly expressed in Purkinje neurons and therefore may influence Ca(v)2.1 regulation by Ca(2+). To test this, we compared Ca(v)2.1 properties in dissociated Purkinje neurons from wild-type (WT) mice and those lacking both PV and CB (PV/CB(-/-)). Unexpectedly, P-type currents in WT and PV/CB(-/-) neurons differed in a way that was inconsistent with a role of PV and CB in acute modulation of Ca(2+) feedback to Ca(v)2.1. Ca(v)2.1 currents in PV/CB(-/-) neurons exhibited increased voltage-dependent inactivation, which could be traced to decreased expression of the auxiliary Ca(v)beta(2a) subunit compared with WT neurons. Although Ca(v)2.1 channels are required for normal pacemaking of Purkinje neurons, spontaneous action potentials were not different in WT and PV/CB(-/-) neurons. Increased inactivation due to molecular switching of Ca(v)2.1 beta-subunits may preserve normal activity-dependent Ca(2+) signals in the absence of Ca(2+)-buffering proteins in PV/CB(-/-) Purkinje neurons.
Collapse
Affiliation(s)
- Lisa Kreiner
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Maetzler W, Stünitz H, Bendfeldt K, Vollenweider F, Schwaller B, Nitsch C. Microcalcification after excitotoxicity is enhanced in transgenic mice expressing parvalbumin in all neurones, may commence in neuronal mitochondria and undergoes structural modifications over time. Neuropathol Appl Neurobiol 2009; 35:165-77. [DOI: 10.1111/j.1365-2990.2008.00970.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Kwon HJ, Koo JH, Zufall F, Leinders-Zufall T, Margolis FL. Ca extrusion by NCX is compromised in olfactory sensory neurons of OMP mice. PLoS One 2009; 4:e4260. [PMID: 19165324 PMCID: PMC2621343 DOI: 10.1371/journal.pone.0004260] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown. PRINCIPAL FINDINGS We used intact olfactory epithelium obtained from WT and OMP(-/-) mice to monitor the Ca(2+) dynamics induced by the activation of cyclic nucleotide-gated channels, voltage-operated Ca(2+) channels, or Ca(2+) stores in single dendritic knobs of OSNs. Our data suggested that OMP could act to modulate the Ca(2+)-homeostasis in these neurons by influencing the activity of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX). Immunohistochemistry verifies colocalization of NCX1 and OMP in the cilia and knobs of OSNs. To test the role of NCX activity, we compared the kinetics of Ca(2+) elevation by stimulating the reverse mode of NCX in both WT and OMP(-/-) mice. The resulting Ca(2+) responses indicate that OMP facilitates NCX activity and allows rapid Ca(2+) extrusion from OSN knobs. To address the mechanism by which OMP influences NCX activity in OSNs we studied protein-peptide interactions in real-time using surface plasmon resonance technology. We demonstrate the direct interaction of the XIP regulatory-peptide of NCX with calmodulin (CaM). CONCLUSIONS Since CaM also binds to the Bex protein, an interacting protein partner of OMP, these observations strongly suggest that OMP can influence CaM efficacy and thus alters NCX activity by a series of protein-protein interactions.
Collapse
Affiliation(s)
- Hyun J. Kwon
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Engineering and Computer Science, Andrews University, Berrien Springs, Michigan, United States of America
| | - Jae Hyung Koo
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Frank Zufall
- Department of Physiology, University of Saarland, Homburg, Germany
| | | | - Frank L. Margolis
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|