1
|
Sareen B, Pudake RN, Sevanthi AM, Solanke AU. Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality. PLANTA 2024; 260:99. [PMID: 39294492 DOI: 10.1007/s00425-024-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
MAIN CONCLUSION The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ramesh Namdeo Pudake
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Amity University, Uttar Pradesh, Noida, India.
| | | | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
2
|
Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, Xu JM, Wu XD, Mao CZ, Ding WN, Benhamed M, Ding ZJ, Zheng SJ. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat Commun 2024; 15:5107. [PMID: 38877001 PMCID: PMC11178898 DOI: 10.1038/s41467-024-49102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Li Lin Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Chen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Miao Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Dan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, 315300, Ningbo, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China.
| |
Collapse
|
3
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
4
|
Alvarado-Ramos K, Bravo-Nunez Á, Halimi C, Maillot M, Icard-Vernière C, Forti C, Preite C, Ferrari L, Sala T, Losa A, Cominelli E, Sparvoli F, Camilli E, Lisciani S, Marconi S, Georgé S, Mouquet-Rivier C, Kunert K, Reboul E. Improving the antinutritional profiles of common beans (Phaseolus vulgaris L.) moderately impacts carotenoid bioaccessibility but not mineral solubility. Sci Rep 2024; 14:11908. [PMID: 38789472 PMCID: PMC11126681 DOI: 10.1038/s41598-024-61475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Common beans are a common staple food with valuable nutritional qualities, but their high contents in antinutritional factors (ANFs) can decrease the bioavailability of (i) fat-soluble micronutrients including carotenoids and (ii) minerals. Our objective was to select ANF-poor bean lines that would not interfere with carotenoid and mineral bioavailability. To achieve this objective, seeds of commercial and experimental Phaseolus vulgaris L. bean lines were produced for 2 years and the bean's content in ANFs (saponins, phytates, tannins, total polyphenols) was assessed. We then measured carotenoid bioaccessibility and mineral solubility (i.e. the fraction of carotenoid and mineral that transfer into the aqueous phase of the digesta and is therefore absorbable) from prepared beans using in vitro digestion. All beans contained at least 200 mg/100 g of saponins and 2.44 mg/100 g tannins. The low phytic acid (lpa) lines, lpa1 and lpa12 exhibited lower phytate levels (≈ - 80%, p = 0.007 and p = 0.02) than their control BAT-93. However, this decrease had no significant impact on mineral solubility. HP5/1 (lpa + phaseolin and lectin PHA-E free) bean line, induced an improvement in carotenoid bioaccessibility (i.e., + 38%, p = 0.02, and + 32%, p = 0.005, for phytofluene bioaccessibility in 2021 and 2022, respectively). We conclude that decrease in the phytate bean content should thus likely be associated to decreases in other ANFs such as tannins or polyphenols to lead to significant improvement of micronutrient bioaccessibility.
Collapse
Affiliation(s)
| | - Ángela Bravo-Nunez
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France
- University of Valladolid, Valladolid, Spain
| | - Charlotte Halimi
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France
| | | | - Christèle Icard-Vernière
- QualiSud, Université de Montpellier, Université d'Avignon, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Chiara Forti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Chiara Preite
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Luisa Ferrari
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stephane Georgé
- Centre Technique de Conservation des Produits Agricoles, Avignon, France
| | - Claire Mouquet-Rivier
- QualiSud, Université de Montpellier, Université d'Avignon, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Karl Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
5
|
Sahu A, Verma R, Gupta U, Kashyap S, Sanyal I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol Biotechnol 2024; 66:11-25. [PMID: 37061991 DOI: 10.1007/s12033-023-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 04/17/2023]
Abstract
Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.
Collapse
Affiliation(s)
- Anshu Sahu
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Rita Verma
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Uma Gupta
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Shashi Kashyap
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India.
| |
Collapse
|
6
|
Reyero-Saavedra R, Fuentes SI, Leija A, Jiménez-Nopala G, Peláez P, Ramírez M, Girard L, Porch TG, Hernández G. Identification and Characterization of Common Bean ( Phaseolus vulgaris) Non-Nodulating Mutants Altered in Rhizobial Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1310. [PMID: 36986997 PMCID: PMC10059843 DOI: 10.3390/plants12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
The symbiotic N2-fixation process in the legume-rhizobia interaction is relevant for sustainable agriculture. The characterization of symbiotic mutants, mainly in model legumes, has been instrumental for the discovery of symbiotic genes, but similar studies in crop legumes are scant. To isolate and characterize common bean (Phaseolus vulgaris) symbiotic mutants, an ethyl methanesulphonate-induced mutant population from the BAT 93 genotype was analyzed. Our initial screening of Rhizobium etli CE3-inoculated mutant plants revealed different alterations in nodulation. We proceeded with the characterization of three non-nodulating (nnod), apparently monogenic/recessive mutants: nnod(1895), nnod(2353) and nnod(2114). Their reduced growth in a symbiotic condition was restored when the nitrate was added. A similar nnod phenotype was observed upon inoculation with other efficient rhizobia species. A microscopic analysis revealed a different impairment for each mutant in an early symbiotic step. nnod(1895) formed decreased root hair curling but had increased non-effective root hair deformation and no rhizobia infection. nnod(2353) produced normal root hair curling and rhizobia entrapment to form infection chambers, but the development of the latter was blocked. nnod(2114) formed infection threads that did not elongate and thus did not reach the root cortex level; it occasionally formed non-infected pseudo-nodules. The current research is aimed at mapping the responsible mutated gene for a better understanding of SNF in this critical food crop.
Collapse
Affiliation(s)
- Rocío Reyero-Saavedra
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Sara Isabel Fuentes
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Gladys Jiménez-Nopala
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Pablo Peláez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Timothy G. Porch
- USDA-ARS, Tropical Agriculture Research Station, 2200 P.A. Campos Avenue, Suite 201, Mayaguez 00680, Puerto Rico;
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| |
Collapse
|
7
|
Jha R, Yadav HK, Raiya R, Singh RK, Jha UC, Sathee L, Singh P, Thudi M, Singh A, Chaturvedi SK, Tripathi S. Integrated breeding approaches to enhance the nutritional quality of food legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:984700. [PMID: 36161025 PMCID: PMC9490089 DOI: 10.3389/fpls.2022.984700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population. Anti-nutritional factors like phytates, raffinose (RFO's), oxalates, tannin, etc. have adverse effects on human health upon consumption. Reduction of the anti-nutritional factors or preventing their accumulation offers opportunity for enhancing the intake of legumes in diet besides increasing the bioavailability of micronutrients. Integrated breeding methods are routinely being used to exploit the available genetic variability for micronutrients through modern "omic" technologies such as genomics, transcriptomics, ionomics, and metabolomics for developing biofortified grain legumes. Molecular mechanism of Fe/Zn uptake, phytate, and raffinose family oligosaccharides (RFOs) biosynthesis pathways have been elucidated. Transgenic, microRNAs and genome editing tools hold great promise for designing nutrient-dense and anti-nutrient-free grain legumes. In this review, we present the recent efforts toward manipulation of genes/QTLs regulating biofortification and Anti-nutrient accumulation in legumes using genetics-, genomics-, microRNA-, and genome editing-based approaches. We also discuss the success stories in legumes enrichment and recent advances in development of low Anti-nutrient lines. We hope that these emerging tools and techniques will expedite the efforts to develop micronutrient dense legume crop varieties devoid of Anti-nutritional factors that will serve to address the challenges like malnutrition and hidden hunger.
Collapse
Affiliation(s)
- Rintu Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hemant Kumar Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Raiya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uday Chand Jha
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Shandong Academy of Agricultural Sciences, Jinan, China
- Center for Crop Health, University of Southern Queensland, Toowmba, QLD, Australia
| | - Anshuman Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar Chaturvedi
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Reddy BHR, Thankachan P, Hatakayama M, Hiremath N, Moretti D, Nanjareddy YA, Thumilan MB, Ravikumar RL, Phadnis S, Bose B, Poveda L, Kalaiah G, Zimmermann MB, Shimizu KK, Schlapbach R, Kurpad AV, Sreeman SM. A Natural Low Phytic Acid Finger Millet Accession Significantly Improves Iron Bioavailability in Indian Women. Front Nutr 2022; 8:791392. [PMID: 35402470 PMCID: PMC8988890 DOI: 10.3389/fnut.2021.791392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Iron deficiency and anemia are common in low- and middle-income countries. This is due to a poor dietary iron density and low iron absorption resulting from the high inhibitory phytic acid content in cereal and millet-based diets. Here, we report that a naturally occurring low phytic acid finger millet accession (571 mg 100 g−1), stable across three growing seasons with normal iron content (3.6 mg 100 g−1), increases iron absorption by 3-folds in normal Indian women. The accessions differing in grain phytic acid content, GE 2358 (low), and GE1004 (high) were selected from a core collection of 623 accessions. Whole genome re-sequencing of the accessions revealed significant single nucleotide variations segregating them into distinct clades. A non-synonymous mutation in the EcABCC phytic acid transporter gene between high and low accessions could affect gene function and result in phytic acid differences. The highly sensitive dual stable-isotope erythrocyte incorporation method was adopted to assess the fractional iron absorption. The low phytic acid accession resulted in a significantly higher iron absorption compared with the high phytic acid accession (3.7 vs. 1.3%, p < 0.05). The low phytic acid accession could be effective in preventing iron deficiency in regions where finger millet is habitually eaten. With its low water requirement, finger millet leaves low environmental footprints and hence would be an excellent sustainable strategy to mitigate iron deficiency.
Collapse
Affiliation(s)
- Bellam H. Rajashekar Reddy
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Prashanth Thankachan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Masoami Hatakayama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Netravati Hiremath
- All India Coordinated Research Project (Foods and Nutrition), University of Agricultural Sciences, Bengaluru, India
| | - Diego Moretti
- Laboratory for Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yellodu A. Nanjareddy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Mathi B. Thumilan
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | - Shamprasad Phadnis
- Department of Biotechnology, University of Agricultural Sciences, Bengaluru, India
| | - Beena Bose
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Lucy Poveda
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Geetha Kalaiah
- All India Coordinated Research Project (Foods and Nutrition), University of Agricultural Sciences, Bengaluru, India
| | - Michael B. Zimmermann
- Laboratory for Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Anura V. Kurpad
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, India
- Department of Physiology, St. John's Medical College, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Sheshshayee M. Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- *Correspondence: Sheshshayee M. Sreeman
| |
Collapse
|
9
|
Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3375-3390. [PMID: 35275483 DOI: 10.1021/acs.jafc.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breeding low phytic acid (lpa) crops is a strategy that has potential to both improve the nutritional quality of food and feed and contribute to the sustainability of agriculture. Here, we review the lipid-independent and -dependent pathways of phytate synthesis and their regulatory mechanisms in plants. We compare the genetic variation of the phytate concentration and distribution in seeds between dicot and monocot species as well as the associated temporal and spatial expression patterns of the genes involved in phytate synthesis and transport. Quantitative trait loci or significant single nucleotide polymorphisms for the seed phytate concentration have been identified in different plant species by linkage and association mapping, and some genes have been cloned from lpa mutants. We summarize the effects of various lpa mutations on important agronomic traits in crop plants and propose SULTR3;3 and SULTR3;4 as optimal target genes for lpa crop breeding.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Philip White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
10
|
Ibrahim S, Saleem B, Rehman N, Zafar SA, Naeem MK, Khan MR. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 ( TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J Adv Res 2022; 37:33-41. [PMID: 35499048 PMCID: PMC9039650 DOI: 10.1016/j.jare.2021.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Phytic acid (PA) is an important antinutrient agent present in cereal grains which reduces the bioavailability of iron and zinc in human body, causing malnutrition. Inositol pentakisphosphate 2- kinase 1 (IPK1) gene has been reported to be an important gene for PA biosynthesis. Objective A recent genome editing tool CRISPR/Cas9 has been successfully applied to develop biofortified rice by disrupting IPK1 gene, however, it remained a challenge in wheat. The aim of this study was to biofortify wheat using CRISPR/Cas9. Methods In this study, we isolated 3 TaIPK1 homeologs in wheat designated as TaIPK1.A, TaIPK1.B and TaIPK1.D and found that the expression abundance of TaIPK1.A was stronger in early stages of grain filling. Using CRISPR/Cas9, we have disrupted TaIPK1.A gene in cv. Borlaug-2016 with two guide RNAs targeting the 1st and 2nd exons. Results We got several genome-edited lines in the T0 generation at frequencies of 12.7% and 10.8%. Sequencing analysis revealed deletion of 1-23 nucleotides and even an addition of 1 nucleotide in various lines. Analysis of the genome-edited lines revealed a significant decrease in the PA content and an increase in iron and zinc accumulation in grains compared with control plants. Conclusion Our study demonstrates the potential application of CRISPR/Cas9 technique for the rapid generation of biofortified wheat cultivars.
Collapse
Affiliation(s)
- Saira Ibrahim
- Genome Editing and Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Bilal Saleem
- Genome Editing and Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Nazia Rehman
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Syed Adeel Zafar
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Muhammad Ramzan Khan
- Genome Editing and Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| |
Collapse
|
11
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
12
|
Liu H, Li X, Zhang Q, Yuan P, Liu L, King GJ, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Integrating a genome-wide association study with transcriptomic data to predict candidate genes and favourable haplotypes influencing Brassica napus seed phytate. DNA Res 2021; 28:6369200. [PMID: 34514497 PMCID: PMC8435555 DOI: 10.1093/dnares/dsab011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Phytate is the storage form of phosphorus in angiosperm seeds and plays vitally important roles during seed development. However, in crop plants phytate decreases bioavailability of seed-sourced mineral elements for humans, livestock and poultry, and contributes to phosphate-related water pollution. However, there is little knowledge about this trait in oilseed rape (Brassica napus). Here, a panel of 505 diverse B. napus accessions was screened in a genome-wide association study (GWAS) using 3.28 × 106 single-nucleotide polymorphisms (SNPs). This identified 119 SNPs significantly associated with phytate concentration (PA_Conc) and phytate content (PA_Cont) and six candidate genes were identified. Of these, BnaA9.MRP5 represented the candidate gene for the significant SNP chrA09_5198034 (27 kb) for both PA_Cont and PA_Conc. Transcription of BnaA9.MRP5 in a low-phytate variety (LPA20) was significantly elevated compared with a high-phytate variety (HPA972). Association and haplotype analysis indicated that inbred lines carrying specific SNP haplotypes within BnaA9.MRP5 were associated with high- and low-phytate phenotypes. No significant differences in seed germination and seed yield were detected between low and high phytate cultivars examined. Candidate genes, favourable haplotypes and the low phytate varieties identified in this study will be useful for low-phytate breeding of B. napus.
Collapse
Affiliation(s)
- Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Li
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianwen Zhang
- School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Pan Yuan
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Guangda Ding
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongmei Cai
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Wang
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
DeMers LC, Raboy V, Li S, Saghai Maroof MA. Network Inference of Transcriptional Regulation in Germinating Low Phytic Acid Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2021; 12:708286. [PMID: 34531883 PMCID: PMC8438133 DOI: 10.3389/fpls.2021.708286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 05/14/2023]
Abstract
The low phytic acid (lpa) trait in soybeans can be conferred by loss-of-function mutations in genes encoding myo-inositol phosphate synthase and two epistatically interacting genes encoding multidrug-resistance protein ATP-binding cassette (ABC) transporters. However, perturbations in phytic acid biosynthesis are associated with poor seed vigor. Since the benefits of the lpa trait, in terms of end-use quality and sustainability, far outweigh the negatives associated with poor seed performance, a fuller understanding of the molecular basis behind the negatives will assist crop breeders and engineers in producing variates with lpa and better germination rate. The gene regulatory network (GRN) for developing low and normal phytic acid soybean seeds was previously constructed, with genes modulating a variety of processes pertinent to phytic acid metabolism and seed viability being identified. In this study, a comparative time series analysis of low and normal phytic acid soybeans was carried out to investigate the transcriptional regulatory elements governing the transitional dynamics from dry seed to germinated seed. GRNs were reverse engineered from time series transcriptomic data of three distinct genotypic subsets composed of lpa soybean lines and their normal phytic acid sibling lines. Using a robust unsupervised network inference scheme, putative regulatory interactions were inferred for each subset of genotypes. These interactions were further validated by published regulatory interactions found in Arabidopsis thaliana and motif sequence analysis. Results indicate that lpa seeds have increased sensitivity to stress, which could be due to changes in phytic acid levels, disrupted inositol phosphate signaling, disrupted phosphate ion (Pi) homeostasis, and altered myo-inositol metabolism. Putative regulatory interactions were identified for the latter two processes. Changes in abscisic acid (ABA) signaling candidate transcription factors (TFs) putatively regulating genes in this process were identified as well. Analysis of the GRNs reveal altered regulation in processes that may be affecting the germination of lpa soybean seeds. Therefore, this work contributes to the ongoing effort to elucidate molecular mechanisms underlying altered seed viability, germination and field emergence of lpa crops, understanding of which is necessary in order to mitigate these problems.
Collapse
Affiliation(s)
- Lindsay C. DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Victor Raboy
- National Small Grains Germplasm Research Center, Agricultural Research Service (USDA), Aberdeen, ID, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Metabolite profiling reveals the metabolic features of the progenies resulting from the low phytic acid rice (Oryza sativa L.) mutant. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Silva VM, Putti FF, White PJ, Reis ARD. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:132-146. [PMID: 33991859 DOI: 10.1016/j.plaphy.2021.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Phytate or phytic acid (PA), is a phosphorus (P) containing compound generated by the stepwise phosphorylation of myo-inositol. It forms complexes with some nutrient cations, such as Ca, Fe and Zn, compromising their absorption and thus acting as an anti-nutrient in the digestive tract of humans and monogastric animals. Conversely, PAs are an important form of P storage in seeds, making up to 90% of total seed P. Phytates also play a role in germination and are related to the synthesis of abscisic acid and gibberellins, the hormones involved in seed germination. Decreasing PA content in plants is desirable for human dietary. Therefore, low phytic acid (lpa) mutants might present some negative pleiotropic effects, which could impair germination and seed viability. In the present study, we review current knowledge of the genes encoding enzymes that function in different stages of PA synthesis, from the first phosphorylation of myo-inositol to PA transport into seed reserve tissues, and the application of this knowledge to reduce PA concentrations in edible crops to enhance human diet. Finally, phylogenetic data for PA concentrations in different plant families and distributed across several countries under different environmental conditions are compiled. The results of the present study help explain the importance of PA accumulation in different plant families and the distribution of PA accumulation in different foods.
Collapse
Affiliation(s)
| | | | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | |
Collapse
|
16
|
Yang YH, Wang CJ, Li RF, Yi YJ, Zeng L, Yang H, Zhang CF, Song KY, Guo SJ. Transcriptome-based identification and expression characterization of RgABCC transporters in Rehmannia glutinosa. PLoS One 2021; 16:e0253188. [PMID: 34170906 PMCID: PMC8232422 DOI: 10.1371/journal.pone.0253188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
ABCC multidrug resistance-associated proteins (ABCCs/MRPs), a subfamily of ABC transporters, are involved in multiple physiological processes. Although these proteins have been characterized in some plants, limited efforts have been made to address their possible roles in Rehmannia glutinosa, a medicinal plant. Here, we scanned R. glutinosa transcriptome sequences and identified 18 RgABCC genes by in silico analysis. Sequence alignment revealed that the RgABCCs were closely phylogenetically related and highly conserved with other plant ABCCs/MRPs. Subcellular localization revealed that most of the RgABCCs were deposited in vacuoles and a few in plasma membranes. Tissue-specific expression of the RgABCCs indicated significant specific accumulation patterns, implicating their roles in the respective tissues. Differential temporal expression patterns of the RgABCCs exhibited their potential roles during root development. Various abiotic stress and hormone treatment experiments indicated that some RgABCCs could be transcriptionally regulated in roots. Furthermore, the transcription of several RgABCCs in roots was strongly activated by cadmium (Cd), suggesting possible roles under heavy metal stresses. Functional analysis of RgABCC1 heterologous expression revealed that it may increase the tolerance to Cd in yeast, implying its Cd transport activity. Our study provides a detailed inventory and molecular characterization of the RgABCCs and valuable information for exploring their functions in R. glutinosa.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
- * E-mail:
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Chang Fu Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Kai Yi Song
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Si Jiao Guo
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| |
Collapse
|
17
|
RNAi-mediated down-regulation of ITPK-2 enhanced inorganic phosphorus and minerals in the transgenic rice. J Biosci 2021. [DOI: 10.1007/s12038-021-00154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 2021; 142:110193. [PMID: 33773669 DOI: 10.1016/j.foodres.2021.110193] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR- National Rice Research Institute (ICAR-NRRI), Cuttack-753006, Odisha, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Pinky Raigond
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Chandrasekhar Sahu
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Udit Nandan Mishra
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Srigopal Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
19
|
Roorkiwal M, Pandey S, Thavarajah D, Hemalatha R, Varshney RK. Molecular Mechanisms and Biochemical Pathways for Micronutrient Acquisition and Storage in Legumes to Support Biofortification for Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:682842. [PMID: 34163513 PMCID: PMC8215609 DOI: 10.3389/fpls.2021.682842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 05/10/2023]
Abstract
The world faces a grave situation of nutrient deficiency as a consequence of increased uptake of calorie-rich food that threaten nutritional security. More than half the world's population is affected by different forms of malnutrition. Unhealthy diets associated with poor nutrition carry a significant risk of developing non-communicable diseases, leading to a high mortality rate. Although considerable efforts have been made in agriculture to increase nutrient content in cereals, the successes are insufficient. The number of people affected by different forms of malnutrition has not decreased much in the recent past. While legumes are an integral part of the food system and widely grown in sub-Saharan Africa and South Asia, only limited efforts have been made to increase their nutrient content in these regions. Genetic variation for a majority of nutritional traits that ensure nutritional security in adverse conditions exists in the germplasm pool of legume crops. This diversity can be utilized by selective breeding for increased nutrients in seeds. The targeted identification of precise factors related to nutritional traits and their utilization in a breeding program can help mitigate malnutrition. The principal objective of this review is to present the molecular mechanisms of nutrient acquisition, transport and metabolism to support a biofortification strategy in legume crops to contribute to addressing malnutrition.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Sarita Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dil Thavarajah
- Plant and Environmental Sciences, Poole Agricultural Center, Clemson University, Clemson, SC, United States
| | - R. Hemalatha
- ICMR-National Institute of Nutrition (NIN), Hyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Rajeev K. Varshney, ;
| |
Collapse
|
20
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
21
|
Diaz S, Ariza-Suarez D, Izquierdo P, Lobaton JD, de la Hoz JF, Acevedo F, Duitama J, Guerrero AF, Cajiao C, Mayor V, Beebe SE, Raatz B. Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 2020; 21:799. [PMID: 33198642 PMCID: PMC7670608 DOI: 10.1186/s12864-020-07213-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Common bean is an important staple crop in the tropics of Africa, Asia and the Americas. Particularly smallholder farmers rely on bean as a source for calories, protein and micronutrients. Drought is a major production constraint for common bean, a situation that will be aggravated with current climate change scenarios. In this context, new tools designed to understand the genetic basis governing the phenotypic responses to abiotic stress are required to improve transfer of desirable traits into cultivated beans. RESULTS A multiparent advanced generation intercross (MAGIC) population of common bean was generated from eight Mesoamerican breeding lines representing the phenotypic and genotypic diversity of the CIAT Mesoamerican breeding program. This population was assessed under drought conditions in two field trials for yield, 100 seed weight, iron and zinc accumulation, phenology and pod harvest index. Transgressive segregation was observed for most of these traits. Yield was positively correlated with yield components and pod harvest index (PHI), and negative correlations were found with phenology traits and micromineral contents. Founder haplotypes in the population were identified using Genotyping by Sequencing (GBS). No major population structure was observed in the population. Whole Genome Sequencing (WGS) data from the founder lines was used to impute genotyping data for GWAS. Genetic mapping was carried out with two methods, using association mapping with GWAS, and linkage mapping with haplotype-based interval screening. Thirteen high confidence QTL were identified using both methods and several QTL hotspots were found controlling multiple traits. A major QTL hotspot located on chromosome Pv01 for phenology traits and yield was identified. Further hotspots affecting several traits were observed on chromosomes Pv03 and Pv08. A major QTL for seed Fe content was contributed by MIB778, the founder line with highest micromineral accumulation. Based on imputed WGS data, candidate genes are reported for the identified major QTL, and sequence changes were identified that could cause the phenotypic variation. CONCLUSIONS This work demonstrates the importance of this common bean MAGIC population for genetic mapping of agronomic traits, to identify trait associations for molecular breeding tool design and as a new genetic resource for the bean research community.
Collapse
Affiliation(s)
- Santiago Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paulo Izquierdo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Juan David Lobaton
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: School of Environmental and Rural Sciences, University of New England, Armidale, SA, Australia
| | - Juan Fernando de la Hoz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Acevedo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Alberto F Guerrero
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cesar Cajiao
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victor Mayor
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Progeny Breeding, Madrid, Colombia
| | - Stephen E Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
| |
Collapse
|
22
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Crit Rev Food Sci Nutr 2020; 62:1696-1712. [PMID: 33190514 DOI: 10.1080/10408398.2020.1846014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myo-Inositol hexakisphosphate or phytic acid concentration is a prominent factor known to impede divalent element bioavailability in vegetal foods including legumes. Both in vivo and in vitro studies have suggested that phytic acid and other plant-based constituents may synergistically form insoluble complexes affecting bioavailability of essential elements. This review provides an overview of existing investigations on the role of phytic acid in the binding, solubility and bioavailability of iron, zinc and calcium with a focus on legumes. Given the presence of various interference factors within legume matrices, current findings suggest that the commonly adapted approach of using phytic acid-element molar ratios as a bioavailability predictor may only be valid in limited circumstances. In particular, differences between protein properties and molar concentrations of other interacting ions are likely responsible for the observed poor correlations. The role of phytate degradation in element bioavailability has been previously examined, and in this review we re-emphasize its importance as a tool to enhance mineral bioavailability of mineral fortified legume crops. Food processing strategies to achieve phytate reduction were identified as promising tools to increase mineral bioavailability and included germination and fermentation, particularly when other bioavailability promoters (e.g. NaCl) are simultaneously added.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.,CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | | | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Madsen CK, Brinch-Pedersen H. Globoids and Phytase: The Mineral Storage and Release System in Seeds. Int J Mol Sci 2020; 21:ijms21207519. [PMID: 33053867 PMCID: PMC7589363 DOI: 10.3390/ijms21207519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
Phytate and phytases in seeds are the subjects of numerous studies, dating back as far as the early 20th century. Most of these studies concern the anti-nutritional properties of phytate, and the prospect of alleviating the effects of phytate with phytase. As reasonable as this may be, it has led to a fragmentation of knowledge, which hampers the appreciation of the physiological system at hand. In this review, we integrate the existing knowledge on the chemistry and biosynthesis of phytate, the globoid cellular structure, and recent advances on plant phytases. We highlight that these components make up a system that serves to store and-in due time-release the seed's reserves of the mineral nutrients phosphorous, potassium, magnesium, and others, as well as inositol and protein. The central component of the system, the phytate anion, is inherently rich in phosphorous and inositol. The chemical properties of phytate enable it to sequester additional cationic nutrients. Compartmentalization and membrane transport processes regulate the buildup of phytate and its associated nutrients, resulting in globoid storage structures. We suggest, based on the current evidence, that the degradation of the globoid and the mobilization of the nutrients also depend on membrane transport processes, as well as the enzymatic action of phytase.
Collapse
|
24
|
|
25
|
Redekar NR, Glover NM, Biyashev RM, Ha BK, Raboy V, Maroof MAS. Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.). PLoS One 2020; 15:e0235120. [PMID: 32584851 PMCID: PMC7316244 DOI: 10.1371/journal.pone.0235120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint. A recombinant inbred population derived from the cross CX1834 x V99-5089 provides an opportunity to study the effect of different combinations of these three mutations on soybean phytate and oligosaccharides levels. Of the 173 recombinant inbred lines tested, 163 lines were homozygous for various combinations of MIPS and two MRP loci alleles. These individuals were grouped into eight genotypic classes based on the combination of SNP alleles at the three mutant loci. The two genotypic classes that were homozygous mrp-l/mrp-n and either homozygous wild-type or mutant at the mips locus (MIPS/mrp-l/mrp-n or mips/mrp-l/mrp-n) displayed relatively similar ~55% reductions in seed phytate, 6.94 mg g -1 and 6.70 mg g-1 respectively, as compared with 15.2 mg g-1 in the wild-type MIPS/MRP-L/MRP-N seed. Therefore, in the presence of the double mutant mrp-l/mrp-n, the mips mutation did not cause a substantially greater decrease in seed phytate level. However, the nutritionally-desirable high-sucrose/low-stachyose/low-raffinose seed phenotype originally observed in soybeans homozygous for the mips allele was reversed in the presence of mrp-l/mrp-n mutations: homozygous mips/mrp-l/mrp-n seed displayed low-sucrose (7.70%), high-stachyose (4.18%), and the highest observed raffinose (0.94%) contents per gram of dry seed. Perhaps the block in phytic acid transport from its cytoplasmic synthesis site to its storage site, conditioned by mrp-l/mrp-n, alters myo-inositol flux in mips seeds in a way that restores to wild-type levels the mips conditioned reductions in raffinosaccharides. Overall this study determined the combinatorial effects of three low phytic acid causing mutations on regulation of seed phytate and oligosaccharides in soybean.
Collapse
Affiliation(s)
- Neelam R. Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Natasha M. Glover
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ruslan M. Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bo-Keun Ha
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Victor Raboy
- National Small Grains Germplasm Center, USDA-ARS, Aberdeen, Idaho, United States of America
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
26
|
Cominelli E, Galimberti M, Pongrac P, Landoni M, Losa A, Paolo D, Daminati MG, Bollini R, Cichy KA, Vogel-Mikuš K, Sparvoli F. Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds. Food Chem 2020; 321:126680. [PMID: 32247181 DOI: 10.1016/j.foodchem.2020.126680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/27/2022]
Abstract
Seed phytic acid reduces mineral bioavailability by chelating minerals. Consumption of common bean seeds with the low phytic acid 1 (lpa1) mutation improved iron status in human trials but caused adverse gastrointestinal effects, presumably due to increased stability of lectin phytohemagglutinin L (PHA-L) compared to the wild type (wt). A hard-to-cook (HTC) defect observed in lpa1 seeds intensified this problem. We quantified the HTC phenotype of lpa1 common beans with three genetic backgrounds. The HTC phenotype in the lpa1 black bean line correlated with the redistribution of calcium particularly in the cell walls, providing support for the "phytase-phytate-pectin" theory of the HTC mechanism. Furthermore, the excess of free cations in the lpa1 mutation in combination with different PHA alleles affected the stability of PHA-L lectin.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Michela Galimberti
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy
| | - Paula Pongrac
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Michela Landoni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Alessia Losa
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Maria Gloria Daminati
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Roberto Bollini
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Karen A Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, US Department of Agriculture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, United States.
| | - Katarina Vogel-Mikuš
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
27
|
Vlcko T, Ohnoutkova L. Allelic Variants of CRISPR/Cas9 Induced Mutation in an Inositol Trisphosphate 5/6 Kinase Gene Manifest Different Phenotypes in Barley. PLANTS (BASEL, SWITZERLAND) 2020; 9:E195. [PMID: 32033421 PMCID: PMC7076722 DOI: 10.3390/plants9020195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 02/04/2023]
Abstract
Inositol trisphosphate 5/6 kinases (ITPK) constitute a small group of enzymes participating in the sequential phosphorylation of inositol phosphate to inositol hexakisphosphate (IP6), which is a major storage form of phosphate in cereal grains. The development of lines with reduced IP6 content could enhance phosphate and mineral bioavailability. Moreover, plant ITPKs participate in abiotic stress signaling. To elucidate the role of HvITPK1 in IP6 synthesis and stress signaling, a barley itpk1 mutant was created using programmable nuclease Cas9. Homozygous single bp insertion and deletion mutant lines were obtained. The mutants contained altered levels of phosphate in the mature grains, ranging from 65% to 174% of the wild type (WT) content. Homozygous mutant lines were tested for their response to salinity during germination. Interestingly, insertion mutant lines revealed a higher tolerance to salinity stress than deletion mutants. Mature embryos of an insertion mutant itpk1-2 and deletion mutant itpk1-33 were cultivated in vitro on MS medium supplemented with NaCl at 50, 100, and 200 mM. While both mutants grew less well than WT on no or low salt concentrations, the itpk1-2 mutant was affected less than the WT and itpk33 when grown on the highest NaCl concentration. The expression of all ITPKs was induced in roots in response to salt stress. In shoots, the differential effect of high salt on IPTK expression in the two iptk1 mutants was consistent with their different sensitivities to salt stress. The results extend the evidence for the involvement of ITPK genes in phosphate storage and abiotic stress signaling.
Collapse
Affiliation(s)
| | - Ludmila Ohnoutkova
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 241/27, Olomouc 78371, Czech Republic;
| |
Collapse
|
28
|
Jha AB, Warkentin TD. Biofortification of Pulse Crops: Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2020; 9:E73. [PMID: 31935879 PMCID: PMC7020478 DOI: 10.3390/plants9010073] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/08/2023]
Abstract
Biofortification through plant breeding is a sustainable approach to improve the nutritional profile of food crops. The majority of the world's population depends on staple food crops; however, most are low in key micronutrients. Biofortification to improve the nutritional profile of pulse crops has increased importance in many breeding programs in the past decade. The key micronutrients targeted have been iron, zinc, selenium, iodine, carotenoids, and folates. In recent years, several biofortified pulse crops including common beans and lentils have been released by HarvestPlus with global partners in developing countries, which has helped in overcoming micronutrient deficiency in the target population. This review will focus on recent research advances and future strategies for the biofortification of pulse crops.
Collapse
Affiliation(s)
| | - Thomas D. Warkentin
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
29
|
Cominelli E, Pilu R, Sparvoli F. Phytic Acid and Transporters: What Can We Learn from low phytic acid Mutants. PLANTS 2020; 9:plants9010069. [PMID: 31948109 PMCID: PMC7020491 DOI: 10.3390/plants9010069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023]
Abstract
Phytic acid has two main roles in plant tissues: Storage of phosphorus and regulation of different cellular processes. From a nutritional point of view, it is considered an antinutritional compound because, being a cation chelator, its presence reduces mineral bioavailability from the diet. In recent decades, the development of low phytic acid (lpa) mutants has been an important goal for nutritional seed quality improvement, mainly in cereals and legumes. Different lpa mutations affect phytic acid biosynthetic genes. However, other lpa mutations isolated so far, affect genes coding for three classes of transporters: A specific group of ABCC type vacuolar transporters, putative sulfate transporters, and phosphate transporters. In the present review, we summarize advances in the characterization of these transporters in cereals and legumes. Particularly, we describe genes, proteins, and mutants for these different transporters, and we report data of in silico analysis aimed at identifying the putative orthologs in some other cereal and legume species. Finally, we comment on the advantage of using such types of mutants for crop biofortification and on their possible utility to unravel links between phosphorus and sulfur metabolism (phosphate and sulfate homeostasis crosstalk).
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-022-369-9421
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy;
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| |
Collapse
|
30
|
Colombo F, Paolo D, Cominelli E, Sparvoli F, Nielsen E, Pilu R. MRP Transporters and Low Phytic Acid Mutants in Major Crops: Main Pleiotropic Effects and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1301. [PMID: 32973854 PMCID: PMC7481554 DOI: 10.3389/fpls.2020.01301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Phytic acid (PA) represents the major storage form of seed phosphate (P). During seed maturation, it accumulates as phytate salts chelating various mineral cations, therefore reducing their bioavailability. During germination, phytase dephosphorylates PA releasing both P and cations which in turn can be used for the nutrition of the growing seedling. Animals do not possess phytase, thus monogastric animals assimilate only 10% of the phytate ingested with feed, whilst 90% is excreted and may contribute to cause P pollution of the environment. To overcome this double problem, nutritional and environmental, in the last four decades, many low phytic acid (lpa) mutants (most of which affect the PA-MRP transporters) have been isolated and characterized in all major crops, showing that the lpa trait can increase the nutritional quality of foods and feeds and improve P management in agriculture. Nevertheless, these mutations are frequently accompanied by negative pleiotropic effects leading to agronomic defects which may affect either seed viability and germination or plant development or in some cases even increase the resistance to cooking, thus limiting the interest of breeders. Therefore, although some significant results have been reached, the isolation of lpa mutants improved for their nutritional quality and with a good field performance remains a goal so far not fully achieved for many crops. Here, we will summarize the main pleiotropic effects that have been reported to date in lpa mutants affected in PA-MRP transporters in five productive agronomic species, as well as addressing some of the possible challenges to overcome these hurdles and improve the breeding efforts for lpa mutants.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Roberto Pilu,
| |
Collapse
|
31
|
Sashidhar N, Harloff HJ, Jung C. Knockout of MULTI-DRUG RESISTANT PROTEIN 5 Genes Lead to Low Phytic Acid Contents in Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2020; 11:603. [PMID: 32528494 PMCID: PMC7264376 DOI: 10.3389/fpls.2020.00603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 05/08/2023]
Abstract
Understanding phosphate uptake and storage is interesting to optimize the plant performance to phosphorus fluctuations. Phytic acid (PA) is the major source of inorganic phosphorus (Pi) in plants. Genetic analyses of PA pathway transporter genes (BnMRP5) and their functional characterization might provide clues in better utilizing the available phosphate resources. Furthermore, the failure to assimilate PA by monogastric animals results in its excess accumulation in manure, which ultimately causes groundwater eutrophication. As a first step toward breeding low PA mutants in oilseed rape (Brassica napus L.), we identified knockout mutants in PA biosynthesis and transporter genes. The obtained M3 single mutants of Bn.MRP5.A10 and Bn.MRP5.C09 were combined by crossing to produce double mutants. Simultaneously, crosses were performed with the non-mutagenized EMS donor genotype to reduce the background mutation load. Double mutants identified from the F2 progeny of direct M3 crosses and BC1 plants showed 15% reduction in PA contents with no significant differences in Pi. We are discussing the function of BnMRP5 paralogs and the benefits for breeding Bnmrp5 mutants in respect to low PA, yield, and stress tolerances.
Collapse
|
32
|
Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM, Kindt R, Hoad S, Hale I, Jamnadass R. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. THE NEW PHYTOLOGIST 2019; 224:37-54. [PMID: 31063598 DOI: 10.1111/nph.15895] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 05/27/2023]
Abstract
Especially in low-income nations, new and orphan crops provide important opportunities to improve diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into multiple niches in production systems, and relatively adapted to low-input conditions. The evolving space for these crops in production systems presents particular genetic improvement requirements that extensive gene pools are able to accommodate. Particular needs for genetic development identified in part with plant breeders relate to three areas of fundamental importance for addressing food production and human demographic trends and associated challenges, namely: facilitating integration into production systems; improving the processability of crop products; and reducing farm labour requirements. Here, we relate diverse involved target genes and crop development techniques. These techniques include transgressive methods that involve defining exemplar crop models for effective new and orphan crop improvement pathways. Research on new and orphan crops not only supports the genetic improvement of these crops, but they serve as important models for understanding crop evolutionary processes more broadly, guiding further major crop evolution. The bridging position of orphan crops between new and major crops provides unique opportunities for investigating genetic approaches for de novo domestications and major crop 'rewildings'.
Collapse
Affiliation(s)
- Ian K Dawson
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Prasad Hendre
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Jon Bančič
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Roeland Kindt
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Steve Hoad
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Iago Hale
- University of New Hampshire, Durham, NH,, 03824, USA
| | - Ramni Jamnadass
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| |
Collapse
|
33
|
Borlini G, Rovera C, Landoni M, Cassani E, Pilu R. lpa1-5525: A New lpa1 Mutant Isolated in a Mutagenized Population by a Novel Non-Disrupting Screening Method. PLANTS 2019; 8:plants8070209. [PMID: 31284582 PMCID: PMC6681281 DOI: 10.3390/plants8070209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
Phytic acid, or myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the main storage form of phosphorus in plants. It is localized in seeds, deposited as mixed salts of mineral cations in protein storage vacuoles; during germination, it is hydrolyzed by phytases to make available P together with all the other cations needed for seed germination. When seeds are used as food or feed, phytic acid and the bound cations are poorly bioavailable for human and monogastric livestock due to their lack of phytase activity. Therefore, reducing the amount of phytic acid is one strategy in breeding programs aimed to improve the nutritional properties of major crops. In this work, we present data on the isolation of a new maize (Zea mays L.) low phytic acid 1 (lpa1) mutant allele obtained by transposon tagging mutagenesis with the Ac element. We describe the generation of the mutagenized population and the screening to isolate new lpa1 mutants. In particular, we developed a fast, cheap and non-disrupting screening method based on the different density of lpa1 seed compared to the wild type. This assay allowed the isolation of the lpa1-5525 mutant characterized by a new mutation in the lpa1 locus associated with a lower amount of phytic phosphorus in the seeds in comparison with the wild type.
Collapse
Affiliation(s)
- Giulia Borlini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Cesare Rovera
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michela Landoni
- Department of Biosciences-Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elena Cassani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
34
|
Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. PLANTS 2019; 8:plants8050119. [PMID: 31071932 PMCID: PMC6572685 DOI: 10.3390/plants8050119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022]
Abstract
Crop seed phosphorus (P) is primarily stored in the form of phytate, which is generally indigestible by monogastric animals. Low-phytate soybean lines have been developed to solve various problems related to seed phytate. There is little information available on the effects of P fertilization on productivity, physiological characteristics, and seed yield and quality in low-phytate soybeans. To address this knowledge gap, studies were conducted with a low-phytate line and two normal-phytate cultivars from western Japan when grown under high- and low-P fertilization. The whole plant dry weight, leaf photosynthesis, dinitrogen fixation, and nodule dry weight at the flowering stage were higher in the higher P application level, but were not different between the low-phytate line and normal-phytate cultivars. As expected, seed yield was higher in the higher level of P application for all lines. Notably, it was higher in the low-phytate line as compared with the normal-phytate cultivars at both levels of fertilizer P. The total P concentration in the seeds of the low-phytate line was the same as that of the normal-phytate cultivars, but the phytate P concentration in the low-phytate line was about 50% less than that of the normal-phytate cultivars. As a result the molar ratio of phytic acid to Zn, Fe, Mn, and Cu in seed were also significantly lower in the low-phytate line. From these results, it can be concluded that growth after germination, leaf photosynthesis, nitrogen fixation, yield and seed quality were not less in the low-phytate soybean line as compared with two unrelated normal-phytate cultivars currently grown in Japan, and that low-phytate soybeans may improve the bioavailability of microelements.
Collapse
|
35
|
Kishor DS, Lee C, Lee D, Venkatesh J, Seo J, Chin JH, Jin Z, Hong SK, Ham JK, Koh HJ. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). PLoS One 2019; 14:e0209636. [PMID: 30870429 PMCID: PMC6417671 DOI: 10.1371/journal.pone.0209636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid (PA), is a major component of organic phosphorus (P), and accounts for up to 85% of the total P in seeds. In rice (Oryza sativa L.), PA mainly accumulates in rice bran, and chelates mineral cations, resulting in mineral deficiencies among brown rice consumers. Therefore, considerable efforts have been focused on the development of low PA (LPA) rice cultivars. In this study, we performed genetic and molecular analyses of OsLpa1, a major PA biosynthesis gene, in Sanggol, a low PA mutant variety developed via chemical mutagenesis of Ilpum rice cultivar. Genetic segregation and sequencing analyses revealed that a recessive allele, lpa1-3, at the OsLpa1 locus (Os02g0819400) was responsible for a significant reduction in seed PA content in Sanggol. The lpa1-3 gene harboured a point mutation (C623T) in the fourth exon of the predicted coding region, resulting in threonine (Thr) to isoleucine (Ile) amino acidsubstitution at position 208 (Thr208Ile). Three-dimensional analysis of Lpa1 protein structure indicated that myo-inositol 3-monophosphate [Ins(3)P1] could bind to the active site of Lpa1, with ATP as a cofactor for catalysis. Furthermore, the presence of Thr208 in the loop adjacent to the entry site of the binding pocket suggests that Thr208Ile substitution is involved in regulating enzyme activity via phosphorylation. Therefore, we propose that Thr208Ile substitution in lpa1-3 reduces Lpa1 enzyme activity in Sanggol, resulting in reduced PA biosynthesis.
Collapse
Affiliation(s)
- D. S. Kishor
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Choonseok Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Joong Hyoun Chin
- Graduate School of Integrated Bioindustry, Sejong University, Seoul, Republic of Korea
| | - Zhuo Jin
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Soon-Kwan Hong
- Division of Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Kwan Ham
- Gangwon provincial Agricultural Research & Extension Services, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Kopriva S, Chu C. Are we ready to improve phosphorus homeostasis in rice? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3515-3522. [PMID: 29788117 DOI: 10.1093/jxb/ery163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/24/2018] [Indexed: 05/21/2023]
Abstract
Phosphorus (P) is an essential macronutrient which often limits plant growth, but the phosphate rock used for fertilizer production is a finite resource. On the other hand, large amounts of P compounds are entering surface waters, leading to eutrophication. Therefore, improvement of phosphate use efficiency of crop plants is a major task for plant science. Rice as a staple crop has recently been a focus of such efforts with several major discoveries. New transporters controlling phosphate homeostasis in rice have been discovered. Manipulation of expression of the corresponding genes improves different components of phosphate use efficiency, such as delivery of phosphate to the developing seeds and synthesis of phytic acid. Here these new findings are discussed in the context of general P nutrition and with the aim of finding out how far we can optimize P homeostasis in rice.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, Cologne, Germany
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Boncompagni E, Orozco-Arroyo G, Cominelli E, Gangashetty PI, Grando S, Kwaku Zu TT, Daminati MG, Nielsen E, Sparvoli F. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 2018; 13:e0198394. [PMID: 29856884 PMCID: PMC5983567 DOI: 10.1371/journal.pone.0198394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/22/2018] [Indexed: 02/02/2023] Open
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important "orphan" cereal and the most widely grown of all the millet species worldwide. It is also the sixth most important cereal in the world after wheat, rice, maize, barley, and sorghum, being largely grown and used in West Africa as well as in India and Pakistan. The present study was carried out in the frame of a program designed to increase benefits and reduce potential health problems deriving from the consumption of pearl millet. The specific goal was to provide a database of information on the variability existing in pearl millet germplasm as to the amounts of phytate, the most relevant antinutrient compound, and the goitrogenic compounds C-glycosylflavones (C-GFs) accumulated in the grain.Results we obtained clearly show that, as indicated by the range in values, a substantial variability subsists across the investigated pearl millet inbred lines as regards the grain level of phytic acid phosphate, while the amount of C-GFs shows a very high variation. Suitable potential parents to be used in breeding programs can be therefore chosen from the surveyed material in order to create new germplasm with increased nutritional quality and food safety. Moreover, we report novel molecular data showing which genes are more relevant for phytic acid biosynthesis in the seeds as well as a preliminary analysis of a pearl millet orthologous gene for C-GFs biosynthesis. These results open the way to dissect the genetic determinants controlling key seed nutritional phenotypes and to the characterization of their impact on grain nutritional value in pearl millet.
Collapse
Affiliation(s)
| | | | | | - Prakash Irappa Gangashetty
- ICRISAT Sahelian Center, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - Stefania Grando
- ICRISAT Patancheru, International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India
| | | | | | - Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
38
|
Cominelli E, Confalonieri M, Carlessi M, Cortinovis G, Daminati MG, Porch TG, Losa A, Sparvoli F. Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:1-12. [PMID: 29576062 DOI: 10.1016/j.plantsci.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 05/24/2023]
Abstract
Phytic acid (InsP6) is the main storage form of phosphate in seeds. In the plant it plays an important role in response to environmental stress and hormonal changes. InsP6 is a strong chelator of cations, reducing the bioavailability of essential minerals in the diet. Only a common bean low phytic acid (lpa1) mutant, affected in the PvMRP1 gene, coding for a putative tonoplastic phytic acid transporter, was described so far. This mutant is devoid of negative pleiotropic effects normally characterising lpa mutants. With the aim of isolating new common bean lpa mutants, an ethyl methane sulfonate mutagenized population was screened, resulting in the identification of an additional lpa1 allele. Other putative lpa lines were also isolated. The PvMRP2 gene is probably able to complement the phenotype of mutants affected in the PvMRP1 gene in tissues other than the seed. Only the PvMRP1 gene is expressed at appreciable levels in cotyledons. Arabidopsis thaliana and Medicago truncatula transgenic plants harbouring 1.5 kb portions of the intergenic 5' sequences of both PvMRP genes, fused upstream of the GUS reporter, were generated. GUS activity in different organs suggests a refined, species-specific mechanisms of regulation of gene expression for these two PvMRP genes.
Collapse
Affiliation(s)
- Eleonora Cominelli
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Massimo Confalonieri
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, 26900, Lodi, Italy.
| | - Martina Carlessi
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy; Present address: Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Guidiccioni, 8-10, 56010 Ghezzano (Pisa), Italy.
| | - Gaia Cortinovis
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Maria Gloria Daminati
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Timothy G Porch
- USDA-ARS, Tropical Agriculture Research Station, 2200 P.A. Campos Avenue, Suite 201, Mayaguez, 00680, Puerto Rico.
| | - Alessia Losa
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy; CREA Research Centre for Genomics and Bioinformatics (CREA-GB), Via Paullese 28, 26836 Montanaso Lombardo, Lodi, Italy.
| | - Francesca Sparvoli
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| |
Collapse
|
39
|
Zhu Y, Chu SJ, Luo YL, Fu JY, Tang CY, Lu GH, Pang YJ, Wang XM, Yang RW, Qi JL, Yang YH. Involvement of LeMRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:365-373. [PMID: 29139179 DOI: 10.1111/plb.12666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown. In this study, we isolated a cDNA encoding LeMRP, an ATP-binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real-time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes. Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real-time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up-regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down-regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots. Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
Collapse
Affiliation(s)
- Y Zhu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - S-J Chu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Y-L Luo
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - J-Y Fu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - C-Y Tang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - G-H Lu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Y-J Pang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - X-M Wang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - R-W Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - J-L Qi
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Y-H Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
40
|
Chiozzotto R, Ramírez M, Talbi C, Cominelli E, Girard L, Sparvoli F, Hernández G. Characterization of the Symbiotic Nitrogen-Fixing Common Bean Low Phytic Acid (lpa1) Mutant Response to Water Stress. Genes (Basel) 2018; 9:E99. [PMID: 29462877 PMCID: PMC5852595 DOI: 10.3390/genes9020099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) low phytic acid (lpa1) biofortified genotype produces seeds with improved nutritional characteristics and does not display negative pleiotropic effects. Here we demonstrated that lpa1 plants establish an efficient nitrogen-fixing symbiosis with Rhizobium etli CE3. The lpa1 nodules showed a higher expression of nodule-function related genes than the nodules of the parental wild type genotype (BAT 93). We analyzed the response to water stress of lpa1 vs. BAT 93 plants grown under fertilized or under symbiotic N₂-fixation conditions. Water stress was induced by water withholding (up to 14% soil moisture) to fertilized or R. etli nodulated plants previously grown with normal irrigation. The fertilized lpa1 plants showed milder water stress symptoms during the water deployment period and after the rehydration recovery period when lpa1 plants showed less biomass reduction. The symbiotic water-stressed lpa1 plants showed decreased nitrogenase activity that coincides with decreased sucrose synthase gene expression in nodules; lower turgor weight to dry weight (DW) ratio, which has been associated with higher drought resistance index; downregulation of carbon/nitrogen (C/N)-related and upregulation of stress-related genes. Higher expression of stress-related genes was also observed in bacteroids of stressed lpa1 plants that also displayed very high expression of the symbiotic cbb₃ oxidase (fixNd).
Collapse
Affiliation(s)
- Remo Chiozzotto
- Center for Genomic Sciences, National Autonomous University of Mexico, Av, Universidad 1001, Cuernavaca 62210, Mor., Mexico.
| | - Mario Ramírez
- Center for Genomic Sciences, National Autonomous University of Mexico, Av, Universidad 1001, Cuernavaca 62210, Mor., Mexico.
| | - Chouhra Talbi
- Center for Genomic Sciences, National Autonomous University of Mexico, Av, Universidad 1001, Cuernavaca 62210, Mor., Mexico.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, National Research Council, IBBA-CNR, Via Edoardo Bassini 15, 20133 Milano, Italy.
| | - Lourdes Girard
- Center for Genomic Sciences, National Autonomous University of Mexico, Av, Universidad 1001, Cuernavaca 62210, Mor., Mexico.
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research Council, IBBA-CNR, Via Edoardo Bassini 15, 20133 Milano, Italy.
| | - Georgina Hernández
- Center for Genomic Sciences, National Autonomous University of Mexico, Av, Universidad 1001, Cuernavaca 62210, Mor., Mexico.
| |
Collapse
|
41
|
Yang Q, Sang S, Chen Y, Wei Z, Wang P. The Role of Arabidopsis Inositol Polyphosphate Kinase AtIPK2β in Glucose Suppression of Seed Germination and Seedling Development. PLANT & CELL PHYSIOLOGY 2018; 59:343-354. [PMID: 29216370 DOI: 10.1093/pcp/pcx186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Seed germination and subsequent seedling development are critical phases in plants. These processes are regulated by a complex molecular network in which sugar has been reported to play an essential role. However, factors affecting sugar responses remain to be fully elucidated. In this study, we demonstrate that AtIPK2β, known to participate in the synthesis of myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6, phytate), affects Arabidopsis responses to glucose during seed germination. The loss-of-function mutant atipk2β showed increased sensitivity to 6% glucose and paclobutrazol (PAC). Yeast two-hybrid assay showed that AtIPK2β interacts with sucrose non-fermenting-1-related protein kinase (SnRK1.1), and bimolecular fluorescence complementation (BiFC) and pull-down assay further confirmed this interaction. Moreover, AtIPK2β was phosphorylated by SnRK1.1 in vitro, and the effect of restoring AtIPK2β to yeast cells lacking IPK2 (Δipk2) was abolished by catalytically active SnRK1.1. Further analysis indicated that IP6 reduces the suppression of seed germination caused by glucose, accompanied by altered expression levels of glucose-/hormone-responsive genes. Collectively, these findings indicate that AtIPK2β and IP6 are involved in glucose suppression of seed germination and that AtIPK2β enzyme activity is likely to be regulated by SnRK1.1.
Collapse
Affiliation(s)
- Qiaofeng Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sihong Sang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyun Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Belgaroui N, Lacombe B, Rouached H, Hanin M. Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency. Sci Rep 2018; 8:1137. [PMID: 29348608 PMCID: PMC5773496 DOI: 10.1038/s41598-018-19493-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 12/28/2022] Open
Abstract
Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.
Collapse
Affiliation(s)
- Nibras Belgaroui
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia
| | - Benoit Lacombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Hatem Rouached
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia. .,Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
43
|
Pandey V, Krishnan V, Basak N, Marathe A, Thimmegowda V, Dahuja A, Jolly M, Sachdev A. Molecular modeling and in silico characterization of GmABCC5: a phytate transporter and potential target for low-phytate crops. 3 Biotech 2018; 8:54. [PMID: 29354365 DOI: 10.1007/s13205-017-1053-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023] Open
Abstract
Designing low-phytate crops without affecting the developmental process in plants had led to the identification of ABCC5 gene in soybean. The GmABCC5 gene was identified and a partial gene sequence was cloned from popular Indian soybean genotype Pusa16. Conserved domains and motifs unique to ABC transporters were identified in the 30 homologous sequences retrieved by BLASTP analysis. The homologs were analyzed for their evolutionary relationship and physiochemical properties. Conserved domains, transmembrane architecture and secondary structure of GmABCC5 were predicted with the aid of computational tools. Analysis identified 53 alpha helices and 31 beta strands, predicting 60% residues in alpha conformation. A three-dimensional (3D) model for GmABCC5 was developed based on 5twv.1.B (Homo sapiens) template homology to gain better insight into its molecular mechanism of transport and sequestration. Spatio-temporal real-time PCR analysis identified mid-to-late seed developmental stages as the time window for the maximum GmABCC5 gene expression, a potential target stage for phytate reduction. Results of this study provide valuable insights into the structural and functional characteristics of GmABCC5, which may be further utilized for the development of nutritionally enriched low-phytate soybean with improved mineral bioavailability.
Collapse
Affiliation(s)
- Vanita Pandey
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, New Delhi 132 001 India
| | - Veda Krishnan
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Nabaneeta Basak
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Ashish Marathe
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vinutha Thimmegowda
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Anil Dahuja
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Monica Jolly
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Archana Sachdev
- 1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
44
|
Cominelli E, Orozco-Arroyo G, Sparvoli F. Phytic Acid Biosynthesis and Transport in Phaseolus vulgaris: Exploitation of New Genomic Resources. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-63526-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
45
|
Tong C, Chen Y, Tan Y, Liu L, Waters DLE, Rose TJ, Shu Q, Bao J. Analysis of Lysophospholipid Content in Low Phytate Rice Mutants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5435-5441. [PMID: 28603982 DOI: 10.1021/acs.jafc.7b01576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a fundamental component of nucleic acids, phospholipids, and adenosine triphosphate, phosphorus (P) is critical to all life forms, however, the molecular mechanism of P translocation and distribution in rice grains are still not understood. Here, with the use of five different low phytic acid (lpa) rice mutants, the redistribution in the main P-containing compounds in rice grain, phytic acid (PA), lysophospholipid (LPL), and inorganic P (Pi), was investigated. The lpa mutants showed a significant decrease in PA and phytate-phosphorus (PA-P) concentration with a concomitant increase in Pi concentration. Moreover, defects in the OsST and OsMIK genes result in a great reduction of specific LPL components and LPL-phosphorus (LPL-P) contents in rice grain. In contrast, defective OsMRP5 and Os2-PGK genes led to a significant increase in individual LPL components. The effect of the Os2-PGK gene on the LPL accumulation was validated using breeding lines derived from a cross between KBNT-lpa (Os2-PGK mutation) and Jiahe218. This study demonstrates that these rice lpa mutants lead to the redistribution of Pi in endosperm and modify LPL biosynthesis. Increase LPLs in the endosperm in the lpa mutants may have practical applications in rice breeding to produce "healthier" rice.
Collapse
Affiliation(s)
- Chuan Tong
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou, 310029, China
- Southern Cross Plant Science, Southern Cross University , Lismore, New South Wales 2480, Australia
| | - Yaling Chen
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou, 310029, China
| | - Yuanyuan Tan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, 310029, China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University , Lismore, New South Wales 2480, Australia
| | - Daniel L E Waters
- Southern Cross Plant Science, Southern Cross University , Lismore, New South Wales 2480, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross University , Lismore, New South Wales 2480, Australia
- Southern Cross Geoscience, Southern Cross University , Lismore, New South Wales 2480, Australia
| | - Qingyao Shu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, 310029, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou, 310029, China
| |
Collapse
|
46
|
Fu JW, Liu X, Han YH, Mei H, Cao Y, de Oliveira LM, Liu Y, Rathinasabapathi B, Chen Y, Ma LQ. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:68-75. [PMID: 28212511 DOI: 10.1016/j.jhazmat.2017.01.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Phosphorus (P) is one of the most important nutrients for phytoremediation of arsenic (As)-contaminated soils. In this study, we demonstrated that As-hyperaccumulator Pteris vittata was efficient in acquiring P from insoluble phosphate rock (PR). When supplemented with PR as the sole P source in hydroponic systems, P. vittata accumulated 49% and 28% higher P in the roots and fronds than the -P treatment. In contrast, non-hyperaccumulator Pteris ensiformis was unable to solubilize P from PR. To gain insights into PR solubilization by plants, organic acids in plant root exudates were analyzed by HPLC. The results showed that phytic acid was the predominant (>90%) organic acid in P. vittata root exudates whereas only oxalic acid was detected in P. ensiformis. Moreover, P. vittata secreted more phytic acid in -P and PR treatments. Compared to oxalic acid, phytic acid was more effective in solubilizing PR, suggesting that phytic acid was critical for PR utilization. Besides, secretion of phytic acid by P. vittata was not inhibited by arsenate. Our data indicated that phytic acid played an important role in efficient use of insoluble PR by P. vittata, shedding light on using insoluble PR to enhance phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Jing-Wei Fu
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xue Liu
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yong-He Han
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Hanyi Mei
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Faculty of Environmental Science and Engineering, South West Forestry University, Yunnan 650224, China
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Letuzia M de Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Yungen Liu
- Faculty of Environmental Science and Engineering, South West Forestry University, Yunnan 650224, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, United States
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
47
|
Sperotto RA, Ricachenevsky FK. Common Bean Fe Biofortification Using Model Species' Lessons. FRONTIERS IN PLANT SCIENCE 2017; 8:2187. [PMID: 29312418 PMCID: PMC5743649 DOI: 10.3389/fpls.2017.02187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Affiliation(s)
- Raul A. Sperotto
- Biological Sciences and Health Center, Graduate Program in Biotechnology, University of Taquari Valley - UNIVATES, Lajeado, Brazil
- *Correspondence: Raul A. Sperotto
| | - Felipe K. Ricachenevsky
- Graduate Program in Agrobiology, Biology Department, Federal University of Santa Maria, Santa Maria, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Felipe K. Ricachenevsky
| |
Collapse
|
48
|
Bhati KK, Alok A, Kumar A, Kaur J, Tiwari S, Pandey AK. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4379-89. [PMID: 27342224 PMCID: PMC5301939 DOI: 10.1093/jxb/erw224] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Anshu Alok
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, Punjab, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| |
Collapse
|
49
|
Petry N, Rohner F, Gahutu JB, Campion B, Boy E, Tugirimana PL, Zimmerman MB, Zwahlen C, Wirth JP, Moretti D. In Rwandese Women with Low Iron Status, Iron Absorption from Low-Phytic Acid Beans and Biofortified Beans Is Comparable, but Low-Phytic Acid Beans Cause Adverse Gastrointestinal Symptoms. J Nutr 2016; 146:970-5. [PMID: 27029940 DOI: 10.3945/jn.115.223693] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/19/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phytic acid (PA) is a major inhibitor of iron bioavailability from beans, and high PA concentrations might limit the positive effect of biofortified beans (BBs) on iron status. Low-phytic acid (lpa) bean varieties could increase iron bioavailability. OBJECTIVE We set out to test whether lpa beans provide more bioavailable iron than a BB variety when served as part of a composite meal in a bean-consuming population with low iron status. METHODS Dietary iron absorption from lpa, iron-biofortified, and control beans (CBs) (regular iron and PA concentrations) was compared in 25 nonpregnant young women with low iron status with the use of a multiple-meal crossover design. Iron absorption was measured with stable iron isotopes. RESULTS PA concentration in lpa beans was ∼10% of BBs and CBs, and iron concentration in BBs was ∼2- and 1.5-fold compared with CBs and lpa beans, respectively. Fractional iron absorption from lpa beans [8.6% (95% CI: 4.8%, 15.5%)], BBs [7.3% (95% CI: 4.0%, 13.4%)], and CBs [8.0% (95% CI: 4.4%, 14.6%)] did not significantly differ. The total amount of iron absorbed from lpa beans and BBs was 421 μg (95% CI: 234, 756 μg) and 431 μg (95% CI: 237, 786 μg), respectively, and did not significantly differ, but was >50% higher (P < 0.005) than from CBs (278 μg; 95% CI: 150, 499 μg). In our trial, the lpa beans were hard to cook, and their consumption caused transient adverse digestive side effects in ∼95% of participants. Gel electrophoresis analysis showed phytohemagglutinin L (PHA-L) residues in cooked lpa beans. CONCLUSION BBs and lpa beans provided more bioavailable iron than control beans and could reduce dietary iron deficiency. Digestive side effects of lpa beans were likely caused by PHA-L, but it is unclear to what extent the associated digestive problems reduced iron bioavailability. This trial was registered at clinicaltrials.gov as NCT02215278.
Collapse
Affiliation(s)
| | | | - Jean Bosco Gahutu
- Department of Medical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Bruno Campion
- Council for Agricultural Research and Analysis of Agricultural Economics, Montanaso Lombardo, Italy
| | - Erick Boy
- International Food Policy Research Institute, Washington, DC; and
| | - Pierrot L Tugirimana
- Department of Medical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | | | | | | | - Diego Moretti
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Y, Zhang C, Fan Y, Chen R. Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genomics 2016; 17:129. [PMID: 26911482 PMCID: PMC4765147 DOI: 10.1186/s12864-016-2476-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND D-myo-inositol phosphates (IPs) are a series of phosphate esters. Myo-inositol hexakisphosphate (phytic acid, IP6) is the most abundant IP and has negative effects on animal and human nutrition. IPs play important roles in plant development, stress responses, and signal transduction. However, the metabolic pathways and possible regulatory mechanisms of IPs in maize are unclear. In this study, the B73 (high in phytic acid) and Qi319 (low in phytic acid) lines were selected for RNA-Seq analysis from 427 inbred lines based on a screening of IP levels. By integrating the metabolite data with the RNA-Seq data at three different kernel developmental stages (12, 21 and 30 days after pollination), co-regulatory networks were constructed to explore IP metabolism and its interactions with other pathways. RESULTS Differentially expressed gene analyses showed that the expression of MIPS and ITPK was related to differences in IP metabolism in Qi319 and B73. Moreover, WRKY and ethylene-responsive transcription factors (TFs) were common among the differentially expressed TFs, and are likely to be involved in the regulation of IP metabolism. Six co-regulatory networks were constructed, and three were chosen for further analysis. Based on network analyses, we proposed that the GA pathway interacts with the IP pathway through the ubiquitination pathway, and that Ca(2+) signaling functions as a bridge between IPs and other pathways. IP pools were found to be transported by specific ATP-binding cassette (ABC) transporters. Finally, three candidate genes (Mf3, DH2 and CB5) were identified and validated using Arabidopsis lines with mutations in orthologous genes or RNA interference (RNAi)-transgenic maize lines. Some mutant or RNAi lines exhibited seeds with a low-phytic-acid phenotype, indicating perturbation of IP metabolism. Mf3 likely encodes an enzyme involved in IP synthesis, DH2 encodes a transporter responsible for IP transport across organs and CB5 encodes a transporter involved in IP co-transport into vesicles. CONCLUSIONS This study provides new insights into IP metabolism and regulation, and facilitates our development of a better understanding of the functions of IPs and how they interact with other pathways involved in plant development and stress responses. Three new genes were discovered and preliminarily validated, thereby increasing our knowledge of IP metabolism.
Collapse
Affiliation(s)
- Shaojun Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Wenzhu Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Qianqian Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Xiaojin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Shuai Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Ye Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Rumei Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| |
Collapse
|