1
|
de Miranda AS, Macedo DS, Sanders LLO, Monte AS, Soares MVR, Teixeira AL. Unraveling the role of the renin-angiotensin system in severe mental illnesses: An insight into psychopathology and cognitive deficits. Cell Signal 2024; 124:111429. [PMID: 39306262 DOI: 10.1016/j.cellsig.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Severe mental illnesses (SMI), especially schizophrenia and bipolar disorder (BD), are associated with significant distress to patients, reduced life expectancy and a higher cost of care. There is growing evidence that SMI may increase the risk of dementia in later life, posing an additional challenge in the management of these patients. SMI present a complex and highly heterogeneous pathophysiology, which has hampered the understanding of its underlying pathological mechanisms and limited the success of the available therapies. Despite the advances in therapeutic approaches in psychiatry over the past decades, treatment resistance is still a common problem in clinical practice, highlighting the urgent need for novel therapeutic targets for SMI. The discovery that renin-angiotensin system (RAS) components are expressed in the central nervous system opened new possibilities for investigating a potential role for this system in the neurobiology of SMI. The safety and efficacy of AT1 receptor blockers and angiotensin-converting enzyme inhibitors in cardiovascular and metabolic diseases, common medical comorbidities among SMI patients and well-known risk factors for dementia, suggest the potential scalability of these strategies for the management of SMI outcomes including the risk of subsequent dementia. This review aimed to discuss the available evidence from animal models and human studies of the potential involvement of RAS in the pathophysiology of SMI. We also provided a reflection on drawbacks and perspectives that can foster the development of new related therapeutic strategies.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Lia Lira O Sanders
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil; Centro Universitário Christus-Unichristus, Fortaleza, Brazil
| | - Aline S Monte
- Health Science Institute, University of International Integration of Afro-Brazilian Lusophony - UNILAB, Redenção, Brazil
| | - Michelle Verde Ramo Soares
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Gallardo-Ortíz IA, Oros-González A, Rodríguez-Manzo G, Garduño-Gutiérrez R, Aragón-Martínez A, Páez-Martínez N. Effect of exercise duration on toluene-induced locomotor sensitization in mice: a focus on the Renin Angiotensin System. Psychopharmacology (Berl) 2024; 241:2157-2170. [PMID: 38839630 DOI: 10.1007/s00213-024-06626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Exercise attenuates addictive behavior; however, little is known about the contribution of exercise duration to this positive effect. The Renin Angiotensin System (RAS) has been implicated both in addictive responses and in the beneficial effects of exercise; though, its role in the advantageous effects of exercise on toluene-induced addictive responses has not been explored. OBJECTIVES To evaluate the impact of different exercise regimens in mitigating the expression of toluene-induced locomotor sensitization and to analyze changes in RAS elements' expression at the mesocorticolimbic system after repeated toluene exposure and following voluntary wheel running in toluene-sensitized animals. METHODS Toluene-induced addictive-like response was evaluated with a locomotor sensitization model in mice. Toluene-sensitized animals had access to running wheels 1, 2, 4 or 24 h/day for 4 weeks; thereafter, locomotor sensitization expression was evaluated after a toluene challenge. RAS elements (ACE and ACE2 enzymes; AT1, AT2 and Mas receptors) expression was determined by Western blot in the VTA, NAc and PFCx of toluene-sensitized mice with and without exercise. RESULTS Individual differences in toluene-induced locomotor sensitization development were observed. Access to wheel running 1 and 2 h/day reduced but 4 and 24 h/day completely blocked locomotor sensitization expression. Repeated toluene exposure changed RAS elements' expression in the VTA, NAc and PFCx, while exercise mainly modified ACE and AT1 in air-exposed and toluene-sensitized mice. CONCLUSIONS Inhalant-exposed animals show different sensitization phenotypes. Exercise duration determined its efficacy to attenuate the addictive-like response. Toluene exposure and exercise each modified RAS, the latter also modifying toluene-induced changes.
Collapse
Affiliation(s)
- Itzell A Gallardo-Ortíz
- Unidad de Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Alain Oros-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Sede Sur, Ciudad de México, México
| | - René Garduño-Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Sede Sur, Ciudad de México, México
| | - Andrés Aragón-Martínez
- Unidad de Biomedicina, Carrera de Biología, Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Nayeli Páez-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.
- Laboratorio Integrativo para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, México.
| |
Collapse
|
3
|
Basmadjian OM, Occhieppo VB, Montemerlo AE, Rivas GA, Rubianes MD, Baiardi G, Bregonzio C. Angiotensin II involvement in the development and persistence of amphetamine-induced sensitization: Striatal dopamine reuptake implications. Eur J Neurosci 2024; 59:2450-2464. [PMID: 38480476 DOI: 10.1111/ejn.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María D Rubianes
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Labandeira-Garcia JL, Labandeira CM, Guerra MJ, Rodriguez-Perez AI. The role of the brain renin-angiotensin system in Parkinson´s disease. Transl Neurodegener 2024; 13:22. [PMID: 38622720 PMCID: PMC11017622 DOI: 10.1186/s40035-024-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.
Collapse
Affiliation(s)
- Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | | | - Maria J Guerra
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
6
|
The Angiotensin Antagonist Losartan Modulates Social Reward Motivation and Punishment Sensitivity via Modulating Midbrain-Striato-Frontal Circuits. J Neurosci 2023; 43:472-483. [PMID: 36639890 PMCID: PMC9864573 DOI: 10.1523/jneurosci.1114-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Social deficits and dysregulations in dopaminergic midbrain-striato-frontal circuits represent transdiagnostic symptoms across psychiatric disorders. Animal models suggest that interactions between the dopamine (DA) and renin-angiotensin system (RAS) may modulate learning and reward-related processes. The present study therefore examined the behavioral and neural effects of the Angiotensin II type 1 receptor (AT1R) antagonist losartan on social reward and punishment processing in humans. A preregistered randomized double-blind placebo-controlled between-subject pharmacological design was combined with a social incentive delay (SID) functional MRI (fMRI) paradigm during which subjects could avoid social punishment or gain social reward. Healthy volunteers received a single-dose of losartan (50 mg, n = 43, female = 17) or placebo (n = 44, female = 20). We evaluated reaction times (RTs) and emotional ratings as behavioral and activation and functional connectivity as neural outcomes. Relative to placebo, losartan modulated the reaction time and arousal differences between social punishment and social reward. On the neural level the losartan-enhanced motivational salience of social rewards was accompanied by stronger ventral striatum-prefrontal connectivity during reward anticipation. Losartan increased the reward-neutral difference in the ventral tegmental area (VTA) and attenuated VTA associated connectivity with the bilateral insula in response to punishment during the outcome phase. Thus, losartan modulated approach-avoidance motivation and emotional salience during social punishment versus social reward via modulating distinct core nodes of the midbrain-striato-frontal circuits. The findings document a modulatory role of the renin-angiotensin system in these circuits and associated social processes, suggesting a promising treatment target to alleviate social dysregulations.SIGNIFICANCE STATEMENT Social deficits and anhedonia characterize several mental disorders and have been linked to the midbrain-striato-frontal circuits of the brain. Based on initial findings from animal models we here combine the pharmacological blockade of the Angiotensin II type 1 receptor (AT1R) via losartan with functional MRI (fMRI) to demonstrate that AT1R blockade enhances the motivational salience of social rewards and attenuates the negative impact of social punishment via modulating the communication in the midbrain-striato-frontal circuits in humans. The findings demonstrate for the first time an important role of the AT1R in social reward processing in humans and render the AT1R as promising novel treatment target for social and motivational deficits in mental disorders.
Collapse
|
7
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
8
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
9
|
Schizophrenia-like endurable behavioral and neuroadaptive changes induced by ketamine administration involve Angiotensin II AT 1 receptor. Behav Brain Res 2022; 425:113809. [PMID: 35218792 DOI: 10.1016/j.bbr.2022.113809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a chronic disease affecting 1% worldwide population, of which 30% are refractory to the available treatments: thus, searching for new pharmacological targets is imperative. The acute and repeated ketamine administration are validated preclinical models that recreate the behavioral and neurochemical features of this pathology, including the parvalbumin-expressing interneurons dysfunction. Angiotensin II, through AT1 receptors (AT1-R), modulates the dopaminergic and GABAergic neurotransmission. We evaluated the AT1-R role in the long-term neuronal activation and behavioral alterations induced by repeated ketamine administration. Adult male Wistar rats received AT1-R antagonist candesartan/vehicle (days 1-10) and ketamine/saline (days 6-10). After 14 days of drug-free, neuronal activation and behavioral analysis were performed. Locomotor activity, social interaction and novel object recognition tests were assessed at basal conditions or after ketamine challenge. Immunostaining for c-Fos, GAD67 and parvalbumin were assessed after ketamine challenge in cingulate, insular, piriform, perirhinal, and entorhinal cortices, striatum, and hippocampus. Additionally, to evaluate the AT1-R involvement in acute ketamine psychotomimetic effects, the same behavioral tests were performed after 6 days of daily-candesartan and a single-ketamine administration. We found that ketamine-induced long-lasting schizophrenia-like behavioral alterations, and regional-dependent neuronal activation changes, involving the GABAergic neurotransmission system and the parvalbumin-expressing interneurons, were AT1-R-dependent. The AT1-R were not involved in the acute ketamine psychotomimetic effects. These results add new evidence to the wide spectrum of action of ketamine and strengthen the AT1-R involvement in endurable alterations induced by psychostimulants administration, previously proposed by our group, as well as their preponderant role in the development of psychiatric pathologies.
Collapse
|
10
|
Tezcan K, Yananli HR, Demirkapu MJ, Gören MZ, Sakalli HE, Colombo G, Gülhan R. The effect of telmisartan, an angiotensin receptor blocker, on alcohol consumption and alcohol-induced dopamine release in the nucleus accumbens. Alcohol 2021; 96:73-81. [PMID: 34419631 DOI: 10.1016/j.alcohol.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Alcohol use disorder remains a major health problem. The mesocorticolimbic dopaminergic system, including the nucleus accumbens region and multiple neural circuits, is involved in its complex underlying mechanism. For instance, alcohol intake stimulates the central and peripheral renin-angiotensin system and increases angiotensin II levels, which predominantly affect angiotensin 1 receptors both in the periphery and in the brain. In this study, we aimed to investigate the effects of the intracerebroventricularly-administered angiotensin 1 receptor blocker telmisartan on the alcohol consumption of male Sardinian alcohol-preferring (sP) rats and on the alcohol-induced dopamine levels in the nucleus accumbens region in Wistar rats. Acute intracerebroventricular administration of telmisartan (100 nM) reduced the alcohol intake for 24 hours without affecting food and water consumption in sP rats. Acute intracerebroventricular injection of the opioid receptor antagonist naloxone (75 nM), tested as a reference compound, also reduced the alcohol consumption in sP rats; however, naloxone's effect lasted only for 30 minutes. In microdialysis experiments, telmisartan administered intracerebroventricularly did not change dopamine levels in the nucleus accumbens that had been induced by acute intraperitoneal alcohol administration in Wistar rats. According to these results, further studies are needed to elucidate the role of the renin-angiotensin system on alcohol use disorder pathophysiology.
Collapse
|
11
|
Oros-González A, Gallardo-Ortíz IA, Montes S, Del Valle-Mondragón L, Páez-Martínez N. Captopril and losartan attenuate behavioural sensitization in mice chronically exposed to toluene. Behav Brain Res 2021; 418:113640. [PMID: 34757000 DOI: 10.1016/j.bbr.2021.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inhalants are consumed worldwide for recreational purposes. The main component found in many inhalants is toluene. One of the most deleterious behavioural effects caused by chronic exposure to inhalants is addiction. This response has been associated with activation of the mesolimbic dopaminergic pathway, and it is known that the renin angiotensin system plays a role in the modulation of this dopaminergic system. In the present work, we hypothesize that blockade of the RAS with angiotensin converting enzyme inhibitors or angiotensin II type 1 receptor blockers is able to attenuate the addictive response induced by toluene. We exposed mice to toluene for four weeks to induce locomotor sensitization. In the second phase of the work, captopril or losartan were administered for 20 days. Subsequently, the expression of behavioural sensitization was evaluated with a toluene challenge. To exclude false associations between the observed responses and treatments, motor coordination and blood pressure were analysed in animals treated with captopril or losartan. At the end of the behavioural studies, animal brains were harvested and Ang II/Ang-(1-7) and Ang-(1-7)/Ang II ratios were analysed in the nucleus accumbens (NAc) and prefrontal cortex (PFCx). The results showed that toluene induced behavioural sensitization, while captopril or losartan treatment attenuated the expression of this response. No significant differences were observed in motor coordination or blood pressure. Repeated toluene administration decreased Ang-(1-7)/Ang II ratio in the PFCx. On the other hand, treatment with captopril or losartan decreased the Ang II/Ang-(1-7) ratio and enhanced the Ang-(1-7)/Ang II ratio in the NAc. This work suggests that blockade of RAS attenuates the toluene-induced behavioural sensitization.
Collapse
Affiliation(s)
- Alain Oros-González
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Itzell Alejandrina Gallardo-Ortíz
- Unidad de Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México
| | | | - Nayeli Páez-Martínez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México; Laboratorio Integrativo para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, México.
| |
Collapse
|
12
|
Zhao W, Zhao YL, Liu M, Liu L, Wang Y. Possible repair mechanisms of renin-angiotensin system inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones on methamphetamine-induced neurotoxicity. Mol Biol Rep 2021; 48:7509-7516. [PMID: 34623593 DOI: 10.1007/s11033-021-06741-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine is a highly addictive central stimulant with extensive and strong neurotoxicity. The neurotoxicity of methamphetamine is closely related to the imbalance of dopamine levels and the destruction of the blood-brain barrier. An increase in dopamine may induce adverse effects such as behavioral sensitization and excessive locomotion. Damage to the blood-brain barrier can cause toxic or harmful substances to leak to the central nervous system, leading to neurotoxicity. The renin-angiotensin system is essential for the regulation of dopamine levels in the brain. Matrix metalloproteinase-9 causes reward effects and behavioral sensitization by inducing dopamine release. Prolactin has been shown to be involved in the regulation of tight junction proteins and the integrity of the blood-brain barrier. At present, the treatment of methamphetamine detoxification is still based on psychotherapy, and there is no specific medicine. With the rapid increase in global seizures of methamphetamine, the treatment of its toxicity has attracted more and more attention. This review intends to summarize the therapeutic mechanisms of renin-angiotensin inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones (prolactin) on methamphetamine neurotoxicity. The repair effects of these three on methamphetamine may be related to the maintenance of brain dopamine balance and the integrity of the blood-brain barrier. This review is expected to provide the new therapeutic strategy of methamphetamine toxicity.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China.,Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
13
|
Hernández VS, Zetter MA, Guerra EC, Hernández-Araiza I, Karuzin N, Hernández-Pérez OR, Eiden LE, Zhang L. ACE2 expression in rat brain: Implications for COVID-19 associated neurological manifestations. Exp Neurol 2021; 345:113837. [PMID: 34400158 PMCID: PMC8361001 DOI: 10.1016/j.expneurol.2021.113837] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
We examined cell type-specific expression and distribution of rat brain angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, in the rodent brain. ACE2 is ubiquitously present in brain vasculature, with the highest density of ACE2 expressing capillaries found in the olfactory bulb, the hypothalamic paraventricular, supraoptic, and mammillary nuclei, the midbrain substantia nigra and ventral tegmental area, and the hindbrain pontine nucleus, the pre-Bötzinger complex, and nucleus of tractus solitarius. ACE2 was expressed in astrocytes and astrocytic foot processes, pericytes and endothelial cells, key components of the blood-brain barrier. We found discrete neuronal groups immunopositive for ACE2 in brainstem respiratory rhythm generating centers, including the pontine nucleus, the parafascicular/retrotrapezoid nucleus, the parabrachial nucleus, the Bötzinger, and pre-Bötzinger complexes and the nucleus of tractus solitarius; in the arousal-related pontine reticular nucleus and gigantocellular reticular nuclei; in brainstem aminergic nuclei, including substantia nigra, ventral tegmental area, dorsal raphe, and locus coeruleus; in the epithalamic habenula, hypothalamic paraventricular and supramammillary nuclei; and in the hippocampus. Identification of ACE2-expressing neurons in rat brain within well-established functional circuits facilitates prediction of possible neurological manifestations of brain ACE2 dysregulation during and after COVID-19 infection.
Collapse
Affiliation(s)
- Vito S Hernández
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Mario A Zetter
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Enrique C Guerra
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Ileana Hernández-Araiza
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico); School of Medicine University of Maryland, Baltimore, MD, USA
| | - Nikita Karuzin
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico); School of Medicine, Pan-American University, Mexico City, Mexico
| | - Oscar R Hernández-Pérez
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico)
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, NIH, Bethesda, MD, USA
| | - Limei Zhang
- Dept. Physiology, Laboratory of Systems Neuroscience, School of Medicine, National Autonomous University of Mexico (UNAM, Mexico City, Mexico).
| |
Collapse
|
14
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
15
|
Basmadjian OM, Occhieppo VB, Marchese NA, Silvero C MJ, Becerra MC, Baiardi G, Bregonzio C. Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT 1-R. Front Pharmacol 2021; 12:647747. [PMID: 34012397 PMCID: PMC8126693 DOI: 10.3389/fphar.2021.647747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Amphetamine (AMPH) alters neurons, glia and microvessels, which affects neurovascular unit coupling, leading to disruption in brain functions such as attention and working memory. Oxidative stress plays a crucial role in these alterations. The angiotensin type I receptors (AT1-R) mediate deleterious effects, such as oxidative/inflammatory responses, endothelial dysfunction, neuronal oxidative damage, alterations that overlap with those observed from AMPH exposure. Aims: The aim of this study was to evaluate the AT1-R role in AMPH-induced oxidative stress and glial and vascular alterations in the prefrontal cortex (PFC). Furthermore, we aimed to evaluate the involvement of AT1-R in the AMPH-induced short-term memory and working memory deficit. Methods: Male Wistar rats were repeatedly administered with the AT1-R blocker candesartan (CAND) and AMPH. Acute oxidative stress in the PFC was evaluated immediately after the last AMPH administration by determining lipid and protein peroxidation. After 21 off-drug days, long-lasting alterations in the glia, microvessel architecture and to cognitive tasks were evaluated by GFAP, CD11b and von Willebrand immunostaining and by short-term and working memory assessment. Results: AMPH induced acute oxidative stress, long-lasting glial reactivity in the PFC and a working memory deficit that were prevented by AT1-R blockade pretreatment. Moreover, AMPH induces transient angiogenesis in PFC via AT1-R. AMPH did not affect short-term memory. Conclusion: Our results support the protective role of AT1-R blockade in AMPH-induced oxidative stress, transient angiogenesis and long-lasting glial activation, preserving working memory performance.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Jazmin Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Kobiec T, Otero-Losada M, Chevalier G, Udovin L, Bordet S, Menéndez-Maissonave C, Capani F, Pérez-Lloret S. The Renin-Angiotensin System Modulates Dopaminergic Neurotransmission: A New Player on the Scene. Front Synaptic Neurosci 2021; 13:638519. [PMID: 33967734 PMCID: PMC8100578 DOI: 10.3389/fnsyn.2021.638519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is an extrapyramidal disorder characterized by neuronal degeneration in several regions of the peripheral and central nervous systems. It is the second most frequent neurodegenerative disease after Alzheimer's. It has become a major health problem, affecting 1% of the world population over 60 years old and 3% of people beyond 80 years. The main histological findings are intracellular Lewy bodies composed of misfolded α-synuclein protein aggregates and loss of dopaminergic neurons in the central nervous system. Neuroinflammation, apoptosis, mitochondrial dysfunction, altered calcium homeostasis, abnormal protein degradation, and synaptic pathobiology have been put forward as mechanisms leading to cell death, α-synuclein deposition, or both. A progressive loss of dopaminergic neurons in the substantia nigra late in the neurodegeneration leads to developing motor symptoms like bradykinesia, tremor, and rigidity. The renin-angiotensin system (RAS), which is involved in regulating blood pressure and body fluid balance, also plays other important functions in the brain. The RAS is involved in the autocrine and paracrine regulation of the nigrostriatal dopaminergic synapses. Dopamine depletion, as in PD, increases angiotensin II expression, which stimulates or inhibits dopamine synthesis and is released via AT1 or AT2 receptors. Furthermore, angiotensin II AT1 receptors inhibit D1 receptor activation allosterically. Therefore, the RAS may have an important modulating role in the flow of information from the brain cortex to the basal ganglia. High angiotensin II levels might even aggravate neurodegeneration, activating the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, which leads to increased reactive oxygen species production.
Collapse
Affiliation(s)
- Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Guenson Chevalier
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Camila Menéndez-Maissonave
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
- Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John F. Kennedy, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | - Santiago Pérez-Lloret
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Medicina, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Angiotensin-II Modulates GABAergic Neurotransmission in the Mouse Substantia Nigra. eNeuro 2021; 8:ENEURO.0090-21.2021. [PMID: 33771900 PMCID: PMC8174047 DOI: 10.1523/eneuro.0090-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
GABAergic projections neurons of the substantia nigra reticulata (SNr), through an extensive network of dendritic arbors and axon collaterals, provide robust inhibitory input to neighboring dopaminergic neurons in the substantia nigra compacta (SNc). Angiotensin-II (Ang-II) receptor signaling increases SNc dopaminergic neuronal sensitivity to insult, thus rendering these cells susceptible to dysfunction and destruction. However, the mechanisms by which Ang-II regulates SNc dopaminergic neuronal activity are unclear. Given the complex relationship between SN dopaminergic and GABAergic neurons, we hypothesized that Ang-II could regulate SNc dopaminergic neuronal activity directly and indirectly by modulating SNr GABAergic neurotransmission. Here, using transgenic mice, slice electrophysiology, and optogenetics, we provide evidence of an AT1 receptor-mediated signaling mechanism in SNr GABAergic neurons where Ang-II suppresses electrically-evoked neuronal output by facilitating postsynaptic GABAA receptors (GABAARs) and prolonging the action potential (AP) duration. Unexpectedly, Ang-II had no discernable effects on the electrical properties of SNc dopaminergic neurons. Also, and indicating a nonlinear relationship between electrical activity and neuronal output, following phasic photoactivation of SNr GABAergic neurons, Ang-II paradoxically enhanced the feedforward inhibitory input to SNc dopaminergic neurons. In sum, our observations describe an increasingly complex and heterogeneous response of the SN to Ang-II by revealing cell-specific responses and nonlinear effects on intranigral GABAergic neurotransmission. Our data further implicate the renin-angiotensin-system (RAS) as a functionally relevant neuromodulator in the substantia nigra, thus underscoring a need for additional inquiry.
Collapse
|
18
|
Machado TCG, Guatimosim C, Kangussu LM. The Renin-Angiotensin System in Huntington's Disease: Villain or Hero? Protein Pept Lett 2020; 27:456-462. [PMID: 31933441 PMCID: PMC7403685 DOI: 10.2174/0929866527666200110154523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022]
Abstract
Huntington’s Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder characterized by severe symptoms, including motor impairment, cognitive decline, and psychiatric alterations. Several systems, molecules, and mediators have been associated with the pathophysiology of HD. Among these, there is the Renin-Angiotensin System (RAS), a peptide hormone system that has been associated with the pathology of neuropsychiatric and neurodegenerative disorders. Important alterations in this system have been demonstrated in HD. However, the role of RAS components in HD is still unclear and needs further investigation. Nonetheless, modulation of the RAS components may represent a potential therapeutic strategy for the treatment of HD.
Collapse
Affiliation(s)
- Thatiane C G Machado
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas M Kangussu
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
19
|
Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2020; 199:101919. [PMID: 33039415 PMCID: PMC7543790 DOI: 10.1016/j.pneurobio.2020.101919] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is one of the oldest hormone systems in vertebrate phylogeny. RAS was initially related to regulation of blood pressure and sodium and water homeostasis. However, local or paracrine RAS were later identified in many tissues, including brain, and play a major role in their physiology and pathophysiology. In addition, a major component, ACE2, is the entry receptor for SARS-CoV-2. Overactivation of tissue RAS leads several oxidative stress and inflammatory processes involved in aging-related degenerative changes. In addition, a third level of RAS, the intracellular or intracrine RAS (iRAS), with still unclear functions, has been observed. The possible interaction between the intracellular and extracellular RAS, and particularly the possible deleterious or beneficial effects of the iRAS activation are controversial. The dopaminergic system is particularly interesting to investigate the RAS as important functional interactions between dopamine and RAS have been observed in the brain and several peripheral tissues. Our recent observations in mitochondria and nucleus of dopaminergic neurons may clarify the role of the iRAS. This may be important for the developing of new therapeutic strategies, since the effects on both extracellular and intracellular RAS must be taken into account, and perhaps better understanding of COVID-19 cell mechanisms.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain.
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
20
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Garrido-Gil P, Rodriguez-Perez AI, Lage L, Labandeira-Garcia JL. Estrogen Deficiency and Colonic Function: Surgical Menopause and Sex Differences in Angiotensin and Dopamine Receptor Interaction. J Gerontol A Biol Sci Med Sci 2020; 76:1533-1541. [DOI: 10.1093/gerona/glaa244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 01/11/2023] Open
Abstract
Abstract
The physiopathological mechanisms that regulate menopausal and sex differences in colonic transit, inflammatory processes, and efficacy of treatments have not been clarified. The dopaminergic system and renin–angiotensin system coexist in the gut and regulate different processes such as motility, absorption/secretion, and inflammation. We investigated the changes in expression of major angiotensin and dopamine receptors in the colon of male, female, and ovariectomized female mice. Possible interaction between both systems was investigated using male and female mice deficient (ko) for major angiotensin and dopamine receptors. In wild-type mice, colonic tissue from females showed lower angiotensin type 1/angiotensin type 2 ratio (an index of pro-inflammatory/anti-inflammatory renin–angiotensin system balance), lower dopamine D1 and D2 receptor expression, and lower levels of pro-inflammatory and pro-oxidative markers relative to males. Interestingly, ovariectomy increased the expression of pro-inflammatory angiotensin type 1 receptor expression and decreased anti-inflammatory angiotensin type 2 receptor expression, increased D1 and D2 receptor expression, and increased the levels of pro-inflammatory and pro-oxidative markers. Ovariectomy-induced changes were blocked by estrogen replacement. The present results suggest a mutual regulation between colonic angiotensin and dopamine receptors and sex differences in this mutual regulation. Estrogen regulates changes in both angiotensin and dopamine receptor expression, which may be involved in sex- and surgical menopause-related effects on gut motility, permeability, and vulnerability to inflammatory processes.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lucia Lage
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
22
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
23
|
Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, Franco R, Labandeira-Garcia JL. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun 2020; 87:256-271. [PMID: 31863823 DOI: 10.1016/j.bbi.2019.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Overactivity of the angiotensin-type-1 receptor (AT1)/NADPH-oxidase axis enhances aging processes, neuroinflammation and neurodegeneration. The role of AT2 receptors in the above-mentioned AT1-related effects in the aged brain, particularly substantia nigra, was investigated in this study. In the nigra, we observed a progressive decrease in AT2 mRNA expression with aging, and AT2 deletion led to changes in spontaneous motor behavior, dopamine receptors, renin-angiotensin system, and pro-oxidative and pro-inflammatory markers similar to those observed in aged wild type (WT) mice. Both aged WT mice and young AT2 KO mice showed an increased AT1, decreased MAS receptor and increased angiotensinogen mRNA and/or protein expression, as well as upregulation of pro-oxidative and pro-inflammatory markers. In cultures of microglial cells, activation of AT2 receptors inhibited the LPS-induced increase in AT1 mRNA and protein expression and neuroinflammatory markers. Both in AT2 KO microglial cultures and microglia obtained from adult AT2 KO mice, an increase in AT1 mRNA expression was observed. In cultured dopaminergic neurons, AT2 activation down-regulated AT1 mRNA and protein, and dopaminergic neurons from adult AT2 KO mice showed upregulation of AT1 mRNA expression. Both in microglia and dopaminergic neurons the pathway AT2/nitric oxide/cyclic guanosine monophosphate mediates the regulation of the AT1 mRNA and protein expression through downregulation of the Sp1 transcription factor. MAS receptors are also involved in the regulation of AT1 mRNA and protein expression by AT2. The results suggest that an aging-related decrease in AT2 expression plays a major role in the aging-related AT1 overexpression and AT1-related pro-inflammatory pro-oxidative effects.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Pedrosa
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria Garcia-Garrote
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Gemma Navarro
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rafael Franco
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
24
|
Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacol Res 2020; 153:104677. [PMID: 32023431 PMCID: PMC7056572 DOI: 10.1016/j.phrs.2020.104677] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Inflammation and gut dysbiosis are hallmarks of hypertension (HTN). Hydrogen sulfide (H2S) is an important freely diffusing molecule that modulates the function of neural, cardiovascular and immune systems, and circulating levels of H2S are reduced in animals and humans with HTN. While most research to date has focused on H₂S produced endogenously by the host, H2S is also produced by the gut bacteria and may affect the host homeostasis. Here, we review an association between neuroinflammation and gut dysbiosis in HTN, with special emphasis on a potential role of H2S in this interplay.
Collapse
Affiliation(s)
- Basak Donertas Ayaz
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States; Department of Pharmacology, College of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
25
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
26
|
Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, Labandeira-Garcia JL. Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death. Neurotherapeutics 2018; 15:1063-1081. [PMID: 29987762 PMCID: PMC6277291 DOI: 10.1007/s13311-018-0646-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The loss of dopaminergic neurons and α-synuclein accumulation are major hallmarks of Parkinson's disease (PD), and it has been suggested that a major mechanism of α-synuclein toxicity is microglial activation. The lack of animal models that properly reproduce PD, and particularly the underlying synucleinopathy, has hampered the clarification of PD mechanisms and the development of effective therapies. Here, we used neurospecific adeno-associated viral vectors serotype 9 coding for either the wild-type or mutated forms of human alpha-synuclein (WT and SynA53T, respectively) under the control of a synapsin promoter to further induce a marked dopaminergic neuron loss together with an important microglial neuroinflammatory response. Overexpression of neuronal alpha-synuclein led to increased expression of angiotensin type 1 receptors and NADPH oxidase activity, together with a marked increase in the number of OX-6-positive microglial cells and expression of markers of phagocytic activity (CD68) and classical pro-inflammatory/M1 microglial phenotype markers such as inducible nitric oxide synthase, tumor necrosis factor alpha, interleukin-1β, and IL-6. Moreover, a significant decrease in the expression of markers of immunoregulatory/M2 microglial phenotype such as the enzyme arginase-1 was constantly observed. Interestingly, alpha-synuclein-induced changes in microglial phenotype markers and dopaminergic neuron death were inhibited by simultaneous treatment with the angiotensin type 1 blockers candesartan or telmisartan. Our results suggest the repurposing of candesartan and telmisartan as a neuroprotective strategy for PD.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
| | - Diego Sucunza
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
- Neurosciences Division, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, 31008, Spain
| | - Maria A Pedrosa
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
| | - Jaime Kulisevsky
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital and Biomedical Research Institute, Universitat Autonoma de Barcelona and Universitat Oberta de Catalunya, Barcelona, 08025, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
- Neurosciences Division, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, 31008, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain.
| |
Collapse
|
27
|
Kirsch M, Mertens W. On the Drive Specificity of Freudian Drives for the Generation of SEEKING Activities: The Importance of the Underestimated Imperative Motor Factor. Front Psychol 2018; 9:616. [PMID: 29774002 PMCID: PMC5943553 DOI: 10.3389/fpsyg.2018.00616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Doubters of Freud's theory of drives frequently mentioned that his approach is outdated and therefore cannot be useful for solving current problems in patients with mental disorders. At present, many scientists believe that affects rather than drives are of utmost importance for the emotional life and the theoretical framework of affective neuroscience, developed by Panksepp, strongly underpinned this view. Panksepp evaluated seven so-called command systems and the SEEKING system is therein of central importance. Panksepp used Pankseppian drives as inputs for the SEEKING system but noted the missing explanation of drive-specific generation of SEEKING activities in his description. Drive specificity requires dual action of the drive: the activation of a drive-specific brain area and the release of the neurotransmitter dopamine. Noticeably, as Freud claimed drive specificity too, it was here analyzed whether a Freudian drive can evoke the generation of drive-specific SEEKING activities. Special importance was addressed to the imperative motor factor in Freud's drive theory because Panksepp's formulations focused on neural pathways without specifying underlying neurotransmitter/endocrine factors impelling motor activity. As Panksepp claimed sleep as a Pankseppian drive, we firstly had to classified sleep as a Freudian drive by using three evaluated criteria for a Freudian drive. After that it was possible to identify the imperative motor factors of hunger, thirst, sex, and sleep. Most importantly, all of these imperative motor factors can both activate a drive-specific brain area and release dopamine from dopaminergic neurons, i.e., they can achieve the so-called drive specificity. Surprisingly, an impaired Freudian drive can alter via endocrinological pathways the concentration of the imperative motor factor of a second Freudian drive, obviously in some independence to the level of the metabolic deficit, thereby offering the possibility to modulate the generation of SEEKING activities of this second Freudian drive. This novel possibility might help to refine the general understanding of the action of Freudian drives. As only imperative motor factors of Freudian drives can guarantee drive specificity for the generation of SEEKING activities, the impact of Freud's construct Eros (with its constituents hunger, thirst, sex, and sleep) should be revisited.
Collapse
Affiliation(s)
- Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Wolfgang Mertens
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Faculty of Psychology and Educational Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
28
|
Jiang L, Zhu R, Bu Q, Li Y, Shao X, Gu H, Kong J, Luo L, Long H, Guo W, Tian J, Zhao Y, Cen X. Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. Neurotherapeutics 2018; 15:500-510. [PMID: 29464572 PMCID: PMC5935642 DOI: 10.1007/s13311-018-0613-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methamphetamine (METH) abuse has become a major public health concern worldwide without approved pharmacotherapies. The brain renin-angiotensin system (RAS) is involved in the regulation of neuronal function as well as neurological disorders. Angiotensin II (Ang II), which interacts with Ang II type 1 receptor (AT1-R) in the brain, plays an important role as a neuromodulator in dopaminergic transmission. However, the role of brain RAS in METH-induced behavior is largely unknown. Here, we revealed that repeated METH administration significantly upregulated the expression of AT1-R in the striatum of mice, but downregulated dopamine D3 receptor (D3R) expression. A specific AT1-R blocker telmisartan, which can penetrate the brain-blood barrier (BBB), or genetic deletion of AT1-R was sufficient to attenuate METH-triggered hyperlocomotion in mice. However, intraperitoneal injection of AT1-R blocker losartan, which cannot penetrate BBB, failed to attenuate METH-induced behavior. Moreover, intra-striatum re-expression of AT1 with lentiviral virus expressing AT1 reversed the weakened locomotor activity of AT1-/- mice treated with METH. Losartan alleviated METH-induced cytotoxicity in SH-SY5Y cells in vitro, which was accompanied by upregulated expressions of D3R and dopamine transporter. In addition, intraperitoneal injection of perindopril, which is a specific ACE inhibitor and can penetrate BBB, significantly attenuated METH-induced hyperlocomotor activity. Collectively, our results show that blockade of brain RAS attenuates METH-induced hyperlocomotion and neurotoxicity possibly through modulation of D3R expression. Our findings reveal a novel role of Ang II-AT1-R in METH-induced hyperlocomotion.
Collapse
Affiliation(s)
- Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Jueying Kong
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Li Luo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China.
| |
Collapse
|
29
|
Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson's Disease Models. Mol Neurobiol 2018; 55:7297-7316. [PMID: 29404956 DOI: 10.1007/s12035-018-0937-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
The exact mechanism of gut dysfunction in Parkinson's disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
30
|
Garrido-Gil P, Dominguez-Meijide A, Moratalla R, Guerra MJ, Labandeira-Garcia JL. Aging-related dysregulation in enteric dopamine and angiotensin system interactions: implications for gastrointestinal dysfunction in the elderly. Oncotarget 2018. [PMID: 29541380 PMCID: PMC5834264 DOI: 10.18632/oncotarget.24330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gastrointestinal dysfunction is a common problem in the elderly. Aging-related changes in interactions between local dopaminergic and renin-angiotensin systems (RAS) have been observed in the brain, renal and vascular tissues. However, it is not known if these interactions also occur in the gut, and are dysregulated with aging. We showed a mutual regulation between the colonic dopaminergic system and RAS using young and aged mice deficient for major angiotensin and dopamine receptors. Aged rats showed a marked decrease in colonic dopamine D2 receptor expression, together with an increase in angiotensin type 1 (AT1) receptor expression, a decrease in angiotensin type 2 (AT2) receptor expression (i.e. an increase in the RAS pro-inflammatory arm activity), and increased levels of inflammatory and oxidative markers. Aged rats also showed increased levels of colonic dopamine and noradrenalin, and a marked decrease in acetylcholine and serotonin levels. The present observations contribute to explain an aging-related pro-inflammatory state and dysregulation in gastrointestinal function, which may be counteracted by treatment of aged animals with the AT1 receptor blocker candesartan.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Research Center for Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Centre on Neurodegenerative Diseases, Madrid, Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Research Center for Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Centre on Neurodegenerative Diseases, Madrid, Spain
| | - Rosario Moratalla
- Networking Research Centre on Neurodegenerative Diseases, Madrid, Spain.,Instituto Cajal, Madrid, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Research Center for Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Centre on Neurodegenerative Diseases, Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Research Center for Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Centre on Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
31
|
Perez-Lloret S, Otero-Losada M, Toblli JE, Capani F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson's disease. Expert Opin Investig Drugs 2017; 26:1163-1173. [PMID: 28836869 DOI: 10.1080/13543784.2017.1371133] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Currently, available therapies for Parkinson's disease (PD) are symptomatic. Therefore, the search for neuroprotective drugs remains a top priority. Areas covered: In this review, the potential symptomatic or disease-modifying effect of drugs targeting the Renin-Angiotensin System (RAS) in PD will be explored. Expert opinion: The importance of nigrostriatal local RAS has only begun to be unraveled in the last decades. On one hand, there is a complex feedback cycle between RAS and dopamine (DA). On the other hand, RAS affects dopaminergic neurons vulnerability. Neuroprotective effects in animal PD models have been shown for the angiotensin-converting enzyme (ACE) inhibitors captopril and perindopril, and the AT1 receptor antagonists losartan, candesartan and telmisartan. These effects appear to be mediated by a reduction in the overproduction of reactive oxygen species. In a proof-of-concept, randomized, double-blind, crossover study in PD patients, perindopril enhanced the effect of levodopa without inducing dyskinesias. There has not been any clinical trial exploring the neuroprotective effect of RAS drugs, but one cohort study in hypertensive patients suggested a protective effect of ACE inhibitors on PD risk. RAS is a promising target for symptomatic and neuroprotective therapies in PD. Further studies in PD animal models and patients are warranted.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- a Institute of Cardiology Research , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina
| | - Matilde Otero-Losada
- a Institute of Cardiology Research , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina
| | - Jorge E Toblli
- a Institute of Cardiology Research , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina
| | - Francisco Capani
- a Institute of Cardiology Research , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina.,b Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud , Universidad Autónoma de Chile , Santiago de Chile , Chile
| |
Collapse
|
32
|
Oliveira PAD, Dalton JAR, López-Cano M, Ricarte A, Morató X, Matheus FC, Cunha AS, Müller CE, Takahashi RN, Fernández-Dueñas V, Giraldo J, Prediger RD, Ciruela F. Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia. Sci Rep 2017; 7:1857. [PMID: 28500295 PMCID: PMC5431979 DOI: 10.1038/s41598-017-02037-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023] Open
Abstract
Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.
Collapse
Affiliation(s)
- Paulo A de Oliveira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - James A R Dalton
- Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Network Biomedical Research Center on Mental Health (CIBERSAM), Bellaterra, Spain
| | - Marc López-Cano
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Adrià Ricarte
- Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Network Biomedical Research Center on Mental Health (CIBERSAM), Bellaterra, Spain
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Filipe C Matheus
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - Andréia S Cunha
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Reinaldo N Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jesús Giraldo
- Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Network Biomedical Research Center on Mental Health (CIBERSAM), Bellaterra, Spain.
| | - Rui D Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil. .,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil.
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci 2017; 9:129. [PMID: 28515690 PMCID: PMC5413566 DOI: 10.3389/fnagi.2017.00129] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative
stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain.,Neurosciences Division, Center for Applied Medical Research (CIMA), University of NavarraPamplona, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| |
Collapse
|
34
|
Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun 2017; 62:277-290. [PMID: 28232171 DOI: 10.1016/j.bbi.2017.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Dopamine is an immunomodulatory molecule that acts on immune effector cells both in the CNS and peripheral tissues. However, the role of changes in dopamine levels in the neuroinflammatory response is controversial. The local/paracrine renin-angiotensin system (RAS) plays a major role in inflammatory processes in peripheral tissues and brain. In the present study, we investigated the possible role of the brain RAS in the effects of dopamine on the glial inflammatory responses. Astrocytes are the major source of the precursor protein angiotensinogen and angiotensin II (AII) in the brain. Neurotoxins such as MPP+ (1-methyl-4-phenylpyridinium) can act directly on astrocytes to increase levels of angiotensinogen and AII. Conversely, dopamine, via type-2 (D2) receptors, inhibited production of angiotensinogen, decreased expression of angiotensin type-1 (AT1) receptors and increased expression of AT2 receptors. In microglia, dopamine and dopamine agonists also regulated RAS activity. First, indirectly, via downregulation of the astrocyte-derived AII. Second, via dopamine-induced regulation of microglial angiotensin receptors. Dopamine decreased the microglial AT1/AT2 ratio leading to inhibition of the pro-inflammatory AT1/NADPH-oxidase/superoxide axis. D2 receptors were particularly responsible for microglial RAS inhibition in basal culture conditions. However, both D1 and D2 agonists inhibited the AT1/NADPH-oxidase axis in lipopolysaccharide-treated (LPS; i.e. activated) microglia. The results indicate that the decrease in dopamine levels observed in early stages of Parkinson's disease and aging may promote neuroinflammation and disease progression via glial RAS exacerbation.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
35
|
Garrido-Gil P, Rodriguez-Perez AI, Fernandez-Rodriguez P, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Struct Funct 2017; 222:2559-2571. [PMID: 28161727 DOI: 10.1007/s00429-016-1357-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system (RAS) was initially considered as a circulating humoral system, which function is the regulation of blood pressure. However, it is now known that there exists local RAS in many tissues, including brain. In recent studies, we have demonstrated the presence of a local RAS in the substantia nigra of rodents and primates that modulates dopamine release and dopamine receptor expression. However, overactivation of local RAS exacerbates neuroinflammation, oxidative stress and dopaminergic cell death. In the striatum, it is not clear whether angiotensin receptors are located in dopaminergic terminals, glial cells and/or the projection neurons. The present study shows the location of major components of the RAS in striatal projection neurons of rats and monkeys (both in neurons of the direct and the indirect pathways). Striatal astrocytes and microglial cells also express major RAS components, which increase after induction of neuroinflammation by intrastriatal injection of lipopolysaccharide. Angiotensin receptors were located at the cell surface and also at cytoplasmic and nuclear levels. The results obtained by immunolabeling and confocal microscopy were confirmed with laser microdissection of striatal neurons and glial cells and detection of mRNA expression by PCR. The sequence of the resulting PCR products was verified by DNA sequencing. In addition to the interaction between angiotensin and dopamine receptors in dopaminergic neurons to regulate dopamine release, interaction between angiotensin and dopamine receptors in projection striatal neurons may further modulate the effects of dopamine on the direct and indirect pathways by fine-tuning striatal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patricia Fernandez-Rodriguez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Lanciego
- Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
36
|
Rocha NP, Scalzo PL, Barbosa IG, de Campos-Carli SM, Tavares LD, de Souza MS, Christo PP, Reis HJ, Simões E Silva AC, Teixeira AL. Peripheral levels of angiotensins are associated with depressive symptoms in Parkinson's disease. J Neurol Sci 2016; 368:235-9. [PMID: 27538640 DOI: 10.1016/j.jns.2016.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The pathogenesis of PD remains elusive. The renin-angiotensin-system (RAS) has recently been implicated in the degeneration of dopaminergic neurons. This study aimed to compare plasma levels of components of the RAS of individuals with PD with controls. We also investigated the association between these circulating markers and motor, depressive and cognitive parameters. METHODS Thirty PD patients and twenty controls were subjected to clinical evaluation, including cognitive and depressive symptoms assessment. Plasma levels of Angiotensin (Ang) I, Ang II, Ang- (1-7), angiotensin-converting enzyme (ACE) and ACE2 were measured by Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS PD patients presented lower plasma levels of Ang I, Ang II and Ang- (1-7) than control individuals. Among PD patients, lower circulating levels of angiotensins were associated with increased severity of depressive symptoms. CONCLUSIONS This is the first study showing that peripheral levels of RAS components are changed in PD and associated with depressive symptoms.
Collapse
Affiliation(s)
- Natalia Pessoa Rocha
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Neurofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Paula Luciana Scalzo
- Laboratório de Neurobiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Guimarães Barbosa
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Salvina Maria de Campos-Carli
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lívia Duarte Tavares
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Soares de Souza
- Departamento de Neurologia e Neurocirurgia, Santa Casa de Belo Horizonte Hospital, Belo Horizonte, Brazil
| | - Paulo Pereira Christo
- Departamento de Neurologia e Neurocirurgia, Santa Casa de Belo Horizonte Hospital, Belo Horizonte, Brazil
| | - Helton José Reis
- Laboratório de Neurofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
37
|
Grafe LA, Flanagan-Cato LM. Differential effects of mineralocorticoid and angiotensin II on incentive and mesolimbic activity. Horm Behav 2016; 79:28-36. [PMID: 26730722 PMCID: PMC4765502 DOI: 10.1016/j.yhbeh.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/22/2023]
Abstract
The controls of thirst and sodium appetite are mediated in part by the hormones aldosterone and angiotensin II (AngII). The present study examined the behavioral and neural mechanisms of altered effort-value in animals treated with systemic mineralocorticoids, intracerebroventricular AngII, or both. First, rats treated with mineralocorticoid and AngII were tested in the progressive ratio operant task. The willingness to work for sodium versus water depended on hormonal treatment. In particular, rats treated with both mineralocorticoid and AngII preferentially worked for access to sodium versus water compared with rats given only one of these hormones. Second, components of the mesolimbic dopamine pathway were examined for modulation by mineralocorticoids and AngII. Based on cFos immunohistochemistry, AngII treatment activated neurons in the ventral tegmental area and nucleus accumbens, with no enhancement by mineralocorticoid pretreatment. In contrast, Western blot analysis revealed that combined hormone treatment increased levels of phospho-tyrosine hydroxylase in the ventral tegmental area. Thus, mineralocorticoid and AngII treatments differentially engaged the mesolimbic pathway based on tyrosine hydroxylase levels versus cFos activation.
Collapse
Affiliation(s)
- Laura A Grafe
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Loretta M Flanagan-Cato
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
38
|
Marchese NA, Artur de laVillarmois E, Basmadjian OM, Perez MF, Baiardi G, Bregonzio C. Brain Angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology (Berl) 2016; 233:795-807. [PMID: 26613735 DOI: 10.1007/s00213-015-4153-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023]
Abstract
RATIONALE Angiotensin II, by activation of its brain AT1-receptors, plays an active role as neuromodulator in dopaminergic transmission. These receptors participate in the development of amphetamine-induced behavioral and dopamine release sensitization. Dopamine is involved in cognitive processes and provides connectivity between brain areas related to these processes. Amphetamine by its mimetic activity over dopamine neurotransmission elicits differential responses after acute administration or after re-exposure following long-term withdrawal periods in different cognitive processes. OBJECTIVE The purpose of this study is to evaluate the AT1-receptor involvement in the acute and long-term amphetamine-induced alterations in long-term memory and in cellular-related events. METHODS Male Wistar rats (250-300 g) were used in this study. Acute effects: Amphetamine (0.5/2.5 mg/kg i.p.) was administered after post-training in the inhibitory avoidance (IA) response. The AT1-receptor blocker Losartan was administered i.c.v. before a single dose of amphetamine (0.5 mg/kg i.p.). Long-term effects: The AT1-receptors blocker Candesartan (3 mg/kg p.o.) was administered for 5 days followed by 5 consecutive days of amphetamine (2.5 mg/kg/day, i.p.). The neuroadaptive changes were evidenced after 1 week of withdrawal by an amphetamine challenge (0.5 mg/kg i.p.). The IA response, the neuronal activation pattern, and the hippocampal synaptic transmission were evaluated. RESULTS The impairing effect in the IA response of post-training acute amphetamine was partially prevented by Losartan. The long-term changes induced by repeated amphetamine (resistance to acute amphetamine interference in the IA response, neurochemical altered response, and increased hippocampal synaptic transmission) were prevented by AT1-receptors blockade. CONCLUSIONS AT1-receptors are involved in the acute alterations and in the neuroadaptations induced by repeated amphetamine associated with neurocognitive processes.
Collapse
Affiliation(s)
- Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Emilce Artur de laVillarmois
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela Fernanda Perez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
39
|
Inhibition of endoplasmic reticulum stress-activated IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson's disease. Eur J Pharmacol 2016; 776:106-15. [PMID: 26879867 DOI: 10.1016/j.ejphar.2016.02.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/17/2023]
Abstract
Telmisartan, one unique angiotensin II type 1 receptor blocker, has been attracting attention due to its putative peroxisome proliferator-activated receptor (PPAR)-γ or β/δ actions. Recently, telmisartan has been reported to exert neuroprotective effects in animal models of Parkinson's disease (PD). However, the underlying mechanisms have not been fully clarified. Recently, accumulating evidence has shown that endoplasmic reticulum (ER) stress plays a crucial role in rotenone-induced neuronal apoptosis. Additionally, studies have revealed that inositol-requiring enzyme/endonuclease 1α (IRE1α) is necessary and sufficient to trigger ER stress. In the present study, we aimed to determine whether ER stress-activated IRE1α-mediated apoptotic pathway is involved in the neuroprotection of telmisartan in the rotenone rats of PD and explore the possible involvement of PPAR-β/δ activation. The catalepsy tests were performed to test the catalepsy symptom. The dopamine content and α-synuclein expression were ascertained through high-performance liquid chromatography and immunohistochemistry, respectively. The expression of IRE1α, TNF receptor associated factor 2 (TRAF2), caspase-12 and PPAR-β/δ was detected by western blot. Neuronal apoptosis was assessed by TUNEL and immunohistochemistry. Our results show that telmisartan ameliorated the catalepsy symptom and attenuated dopamine depletion as well as α-synuclein accumulation. Moreover, telmisartan decreased ER stress-mediated neuronal apoptosis. Furthermore, telmisartan inhibited IRE1α-TRAF2-caspase-12 apoptotic signaling pathway. Additionally, telmisartan activated PPAR β/δ, implying that PPAR-β/δ activation properties of telmisartan are possibly or partially involved in the neuroprotective effects. In conclusion, our findings suggest that suppressing ER stress-activated IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rats of PD.
Collapse
|
40
|
Rangel-Barajas C, Coronel I, Florán B. Dopamine Receptors and Neurodegeneration. Aging Dis 2015; 6:349-68. [PMID: 26425390 DOI: 10.14336/ad.2015.0330] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/30/2015] [Indexed: 01/19/2023] Open
Abstract
Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson's disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- 1Department of Psychological and Brain Sciences Program in Neurosciences, Indiana University Bloomington, Bloomington, IN 47405, USA ; 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Israel Coronel
- 3Health Sciences Faculty, Anahuac University, Mexico Norte, State of Mexico, Mexico
| | - Benjamín Florán
- 4Department of Physiology, Biophysics and Neurosciences CINVESTAV-IPN, Mexico
| |
Collapse
|
41
|
Casarsa BS, Marinzalda MÁ, Marchese NA, Paz MC, Vivas L, Baiardi G, Bregonzio C. A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. Neuroscience 2015; 307:1-13. [PMID: 26299338 DOI: 10.1016/j.neuroscience.2015.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/29/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED Previous results from our laboratory showed that angiotensin II AT1 receptors (AT1-R) are involved in the neuroadaptative changes induced by amphetamine. The aim of the present work was to study functional and neurochemical responses to angiotensin II (ANG II) mediated by AT1-R activation in animals previously exposed to amphetamine. For this purpose male Wistar rats (250-320 g) were treated with amphetamine (2.5mg/kg/day intraperitoneal) or saline for 5 days and implanted with intracerebroventricular (i.c.v.) cannulae. Seven days after the last amphetamine administration the animals received ANG II (400 pmol) i.c.v. One group was tested in a free choice paradigm for sodium (2% NaCl) and water intake and sacrificed for Fos immunoreactivity (Fos-IR) determinations. In a second group of rats, urine and plasma samples were collected for electrolytes and plasma renin activity determination and then they were sacrificed for Fos-IR determination in Oxytocinergic neurons (Fos-OT-IR). RESULTS Repeated amphetamine exposure (a) prevented the increase in sodium intake and Fos-IR cells in caudate-putamen and accumbens nucleus induced by ANG II i.c.v. (b) potentiated urinary sodium excretion and Fos-OT-IR in hypothalamus and (c) increased the inhibitory response in plasma renin activity, in response to ANG II i.c.v. Our results indicate a possible functional desensitisation of AT1-R in response to ANG II, induced by repeated amphetamine exposure. This functional AT1-R desensitisation allows to unmask the effects of ANG II i.c.v. mediated by oxytocin. We conclude that the long lasting changes in brain AT1-R functionality should be considered among the psychostimulant-induced neuroadaptations.
Collapse
Affiliation(s)
- B S Casarsa
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M Á Marinzalda
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - N A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M C Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Baiardi
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - C Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
42
|
Martínez-Pinilla E, Rodríguez-Pérez AI, Navarro G, Aguinaga D, Moreno E, Lanciego JL, Labandeira-García JL, Franco R. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol 2015; 96:131-42. [PMID: 25986885 DOI: 10.1016/j.bcp.2015.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
Identification of G protein-coupled receptors and their specific function in a given neuron becomes essential to better understand the variety of signal transduction mechanisms associated with neurotransmission. We hypothesized that angiotensin II type 1 (AT1) and dopamine D2 receptors form heteromers in the central nervous system, specifically in striatum. Using bioluminescence resonance energy transfer, a direct interaction was demonstrated in cells transfected with the cDNA for the human version of the receptors. Heteromerization did not affect cAMP signaling via D2 receptors but attenuated the coupling of AT1 receptors to Gq. A common feature of heteromers, namely cross-antagonism, i.e. the blockade of the signaling of one receptor by the blockade of the partner receptor, was tested in co-transfected cells. Candesartan, the selective AT1 receptor antagonist, was able to block D2-receptor mediated effects on cAMP levels, MAP kinase activation and β-arrestin recruitment. This effect of candesartan, which constitutes a property for the dopamine-angiotensin receptor heteromer, was similarly occurring in primary cultures of neurons and rat striatal slices. The expression of heteromers in striatum was confirmed by robust labeling using in situ proximity ligation assays. The results indicate that AT1 receptors are expressed in striatum and form heteromers with dopamine D2 receptors that enable drugs selective for the AT1 receptor to alter the functional response of D2 receptors.
Collapse
Affiliation(s)
- E Martínez-Pinilla
- Neuroscience Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | - A I Rodríguez-Pérez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - G Navarro
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - D Aguinaga
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - E Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J L Lanciego
- Neuroscience Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J L Labandeira-García
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - R Franco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
43
|
Tchekalarova J, Loyens E, Smolders I. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats. Epilepsy Behav 2015; 46:66-71. [PMID: 25922088 DOI: 10.1016/j.yebeh.2015.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/14/2022]
Abstract
In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Ellen Loyens
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
44
|
Nakaoka H, Mogi M, Kan-No H, Tsukuda K, Ohshima K, Wang XL, Chisaka T, Bai HY, Shan BS, Kukida M, Iwanami J, Horiuchi M. Angiotensin II type 2 receptor signaling affects dopamine levels in the brain and prevents binge eating disorder. J Renin Angiotensin Aldosterone Syst 2015; 16:749-57. [PMID: 25757658 DOI: 10.1177/1470320315573680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Binge eating disorder (BED) is associated with dopaminergic activation as food reward, resulting in metabolism-related disorders. Stimulation of angiotensin type 2 (AT2) receptor is reported to inhibit dopamine synthesis. We investigated the possible roles of AT2 receptor-mediated dopamine regulation in the pathogenesis of BED. MATERIALS AND METHODS Male C57BL/6 mice, type 2 diabetic (KKAy) mice and AT2 receptor-null (AT2KO) mice at eight weeks old were treated with AT2 receptor agonist, compound 21 (C21) or saline for two weeks. Mice were subjected to fasting for two days followed by re-feeding for seven days. RESULTS Treatment with C21 attenuated the rebound proportion of body weight, food intake and water intake in KKAy mice, but not in C57BL/6 and AT2KO mice. Dopamine concentration in the striatum was further increased by fasting in KKAy and AT2KO mice. Administration of C21 significantly attenuated this fasting-induced increase in dopamine level only in KKAy mice. Dopamine receptor D1, D2 expression in the substantia nigra were markedly lower in KKAy mice compared with C57BL/6 mice, while administration of C21 increased their expression in KKAy mice. CONCLUSIONS Our study suggests that AT2 receptor stimulation may be a new therapeutic approach to improve eating disorder associated with dopamine resistance.
Collapse
Affiliation(s)
- Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Kousei Ohshima
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan
| |
Collapse
|
45
|
Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, Cancela LM, Bregonzio C. Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res 2014; 272:314-23. [PMID: 25046593 DOI: 10.1016/j.bbr.2014.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
A single or repeated exposure to psychostimulants induces long-lasting neuroadaptative changes. Different neurotransmitter systems are involved in these responses including the neuropeptide angiotensin II. Our study tested the hypothesis that the neuroadaptative changes induced by amphetamine produce alterations in brain RAS components that are involved in the expression of the locomotor sensitization to the psychostimulant drug. Wistar male rats, pretreated with amphetamine were used 7 or 21 days later to study AT1 receptors by immunohistochemistry and western blot and also angiotensinogen mRNA and protein in caudate putamen and nucleus accumbens. A second group of animals was used to explore the possible role of Ang II AT1 receptors in the expression of behavioral sensitization. In these animals treated in the same way, bearing intra-cerebral cannula, the locomotor activity was tested 21 days later, after an amphetamine challenge injection and the animals received an AT1 blocker, losartan, or saline 5min before the amphetamine challenge. An increase of AT1 receptor density induced by amphetamine was found in both studied areas and a decrease in angiotensinogen mRNA and protein only in CPu at 21 days after treatment; meanwhile, no changes were established in NAcc. Finally, the increased locomotor activity induced by amphetamine challenge was blunted by losartan administration in CPu. No differences were detected in the behavioral sensitization when the AT1 blocker was injected in NAcc. Our results support the hypothesis of a key role of brain RAS in the neuroadaptative changes induced by amphetamine.
Collapse
Affiliation(s)
- Maria Constanza Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina
| | - Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina
| | - Maria Mercedes Stroppa
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, Argentina
| | | | - Hans Imboden
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT- CONICET), Universidad Nacional de Córdoba. Facultad de Ciencias Quimicas, Universidad Católica de Córdoba
| | - Liliana Marina Cancela
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina.
| |
Collapse
|
46
|
Labandeira-García JL, Garrido-Gil P, Rodriguez-Pallares J, Valenzuela R, Borrajo A, Rodríguez-Perez AI. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat 2014; 8:67. [PMID: 25071471 PMCID: PMC4086395 DOI: 10.3389/fnana.2014.00067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023] Open
Abstract
Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jose L Labandeira-García
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| |
Collapse
|
47
|
Fear-potentiated behaviour is modulated by central amygdala angiotensin II AT1 receptors stimulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:183248. [PMID: 25003108 PMCID: PMC4070540 DOI: 10.1155/2014/183248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022]
Abstract
Central nucleus of the amygdala (CeA) is one of the most important regulatory centres for the emotional processes. Among the different neurotransmitter systems present in this nucleus, AT1 receptors have been also found, but their role in the generation and modulation of emotions is not fully understood. The present work evaluated the effect of intra-amygdalar injection of losartan (AT1 receptor antagonist) and angiotensin II (Ang II) in the anxiety state induced by fear-potentiated plus maze in male Wistar rats. Fear in the elevated plus maze can be potentiated by prior inescapable footshock stress. The decrease in the time spent in the open arms induced by the inescapable footshock was totally prevented by losartan (4 pmol) administration in CeA. It was also found that Ang II (48 fmol) administration decreased the time spent in the open arms in animals with or without previous footshock exposure. The locomotor activity and grooming behaviour were also evaluated. The results obtained from the different parameters analyzed allowed us to conclude that the Ang II AT1 receptors in CeA are involved in the anxiety state induced by stress in the fear-potentiated plus-maze behaviour.
Collapse
|
48
|
Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S, Mazouz H, Temmar M, Albu A, Bordet R, Hanon O, Gueyffier F, Wang J, Black S, Sato N. Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 2014; 9:1413-31. [DOI: 10.1586/ern.09.89] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Angiotensin II AT₁ receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. BIOMED RESEARCH INTERNATIONAL 2013; 2013:534817. [PMID: 24089683 PMCID: PMC3780567 DOI: 10.1155/2013/534817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022]
Abstract
It was already found that Ang II AT1 receptors are involved in the neuroadaptative changes induced by a single exposure to amphetamine, and such changes are related to the development of behavioral and neurochemical sensitization. The induction of the immediately early gene c-fos has been used to define brain activated areas by amphetamine. Our aim was to evaluate the participation of AT1 receptors in the neuronal activation induced by amphetamine sensitization. The study examined the c-fos expression in mesocorticolimbic areas induced by amphetamine challenge (0.5 mg/kg i.p) in animals pretreated with candesartan, a selective AT1 receptor blocker (3 mg/kg p.o × 5 days), and amphetamine (5 mg/kg i.p) 3 weeks before the challenge. Increased c-fos immunoreactivity was found in response to the amphetamine challenge in the dorsomedial caudate-putamen and nucleus accumbens, and both responses were blunted by the AT1 receptor blocker pretreatment. In the infralimbic prefrontal cortex, increased c-fos immunoreactivity was found in response to amphetamine and saline challenge, and both were prevented by the AT1 receptor blocker. No differences were found neither in ventral tegmental area nor prelimbic cortex between groups. Our results indicate an important role for brain Ang II in the behavioral and neuronal sensitization induced by amphetamine.
Collapse
|
50
|
Dominguez-Meijide A, Villar-Cheda B, Garrido-Gil P, Sierrra-Paredes G, Guerra MJ, Labandeira-Garcia JL. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson's disease treated with L-DOPA. Neuropharmacology 2013; 76 Pt A:156-68. [PMID: 23973568 DOI: 10.1016/j.neuropharm.2013.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 01/08/2023]
Abstract
Beneficial effects of angiotensin type-1 receptor (AT1) inhibition have been observed in a number of brain processes mediated by oxidative stress and neuroinflammation, including Parkinson's disease. However, important counterregulatory interactions between dopamine and angiotensin systems have recently been demonstrated in several peripheral tissues, and it is possible that a decrease in dopamine levels due to AT1 inhibition may interfere with neuroprotective strategies. The present experiments involving rats with normal dopaminergic innervation indicate that chronic treatment with the AT1 antagonist candesartan does not significantly affect striatal levels of dopamine, serotonin or metabolites, as does not significantly affect motor behavior, as evaluated by the rotarod test. Interestingly, chronic administration of candesartan to normal rats induced a marked increase in dopamine D1 and a decrease in dopamine D2 receptor expression. In a rat model of Parkinson's disease treated with L-DOPA, no differences in striatal dopamine and serotonin levels were observed between candesartan-treated rats and untreated, which suggests that chronic treatment with candesartan does not significantly affect the process of L-DOPA decarboxylation and dopamine release in Parkinson's disease patients. Candesartan did not induce any differences in the striatal expression of dopamine D1 and D2 and serotonin 5-HT1B receptors in 6ydroxydopamine-lesioned rats treated with L-DOPA. The results suggest that chronic treatment with AT1 antagonists as a neuroprotective strategy does not significantly affect striatal dopamine release or motor behavior. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | | | | | | | | | | |
Collapse
|