1
|
Xie J, Yuan C, Yang S, Ma Z, Li W, Mao L, Jiao P, Liu W. The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection-induced cell death. Cell Mol Biol Lett 2024; 29:138. [PMID: 39516736 PMCID: PMC11549821 DOI: 10.1186/s11658-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents the novel respiratory infectious disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by rapid spread throughout the world. Reactive oxygen species (ROS) account for cellular metabolic by-products, and excessive ROS accumulation can induce oxidative stress due to insufficient endogenous antioxidant ability. In the case of oxidative stress, ROS production exceeds the cellular antioxidant capacity, thus leading to cell death. SARS-CoV-2 can activate different cell death pathways in the context of infection in host cells, such as neutrophil extracellular trap (NET)osis, ferroptosis, apoptosis, pyroptosis, necroptosis and autophagy, which are closely related to ROS signalling and control. In this review, we comprehensively elucidated the relationship between ROS generation and the death of host cells after SARS-CoV-2 infection, which leads to the development of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lin Mao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Chang CY, Wu CC, Tzeng CY, Li JR, Chen YF, Chen WY, Kuan YH, Liao SL, Chen CJ. NMDA receptor blockade attenuates Japanese encephalitis virus infection-induced microglia activation. J Neuroinflammation 2024; 21:291. [PMID: 39511597 PMCID: PMC11545997 DOI: 10.1186/s12974-024-03288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Neurodegeneration and neuroinflammation are key components in the pathogenesis of Japanese Encephalitis caused by Japanese Encephalitis Virus (JEV) infection. The N-methyl-D-aspartate (NMDA)-type glutamate receptor displays excitatory neurotoxic and pro-inflammatory properties in a cell context-dependent manner. Herein, potential roles of the NMDA receptor in excitatory neurotoxicity and neuroinflammation and effects of NMDA receptor blockade against JEV pathogenesis were investigated in rat microglia, neuron/glia, neuron cultures, and C57BL/6 mice. In microglia, JEV infection induced glutamate release and activated post-receptor NMDA signaling, leading to activation of Ca2+ mobilization and Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), accompanied by pro-inflammatory NF-κB and AP-1 activation and cytokine expression. Additionally, increased Dynamin-Related Protein-1 protein phosphorylation, NAPDH Oxidase-2/4 expression, free radical generation, and Endoplasmic Reticulum stress paralleled with the reactive changes of microglia after JEV infection. JEV infection-induced biochemical and molecular changes contributed to microglia reactivity and pro-inflammatory cytokine expression. NMDA receptor antagonists MK801 and memantine alleviated intracellular signaling and pro-inflammatory cytokine expression in JEV-infected microglia. JEV infection induced neuronal cell death in neuron/glia culture associated with the concurrent production of pro-inflammatory cytokines. Conditioned media of JEV-infected microglia compromised neuron viability in neuron culture. JEV infection-associated neuronal cell death was alleviated by MK801 and memantine. Activation of NMDA receptor-related inflammatory changes, microglia activation, and neurodegeneration as well as reversal effects of memantine were revealed in the brains of JEV-infected mice. The current findings highlight a crucial role of the glutamate/NMDA receptor axis in linking excitotoxicity and neuroinflammation during the course of JEV pathogenesis, and proposes the anti-inflammatory and neuroprotective potential of NMDA receptor blockade.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City, 420, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
- Department of Financial Engineering, Providence University, Taichung City, 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City, 433, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan
| | - Yu-Fang Chen
- Department of Microbiology & Immunology, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
3
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Tripathi S, Sengar S, Shree B, Mohapatra S, Basu A, Sharma V. An RBM10 and NF-κB interacting host lncRNA promotes JEV replication and neuronal cell death. J Virol 2023; 97:e0118323. [PMID: 37991381 PMCID: PMC10734533 DOI: 10.1128/jvi.01183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Central nervous system infection by flaviviruses such as Japanese encephalitis virus, Dengue virus, and West Nile virus results in neuroinflammation and neuronal damage. However, little is known about the role of long non-coding RNAs (lncRNAs) in flavivirus-induced neuroinflammation and neuronal cell death. Here, we characterized the role of a flavivirus-induced lncRNA named JINR1 during the infection of neuronal cells. Depletion of JINR1 during virus infection reduces viral replication and cell death. An increase in GRP78 expression by JINR1 is responsible for promoting virus replication. Flavivirus infection induces the expression of a cellular protein RBM10, which interacts with JINR1. RBM10 and JINR1 promote the proinflammatory transcription factor NF-κB activity, which is detrimental to cell survival.
Collapse
Affiliation(s)
- Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Suryansh Sengar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| |
Collapse
|
5
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
6
|
Mechanisms of Neuroinvasion and Neuropathogenesis by Pathologic Flaviviruses. Viruses 2023; 15:v15020261. [PMID: 36851477 PMCID: PMC9965671 DOI: 10.3390/v15020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Flaviviruses are present on every continent and cause significant morbidity and mortality. In many instances, severe cases of infection with flaviviruses involve the invasion of and damage to the central nervous system (CNS). Currently, there are several mechanisms by which it has been hypothesized flaviviruses reach the brain, including the disruption of the blood-brain barrier (BBB) which acts as a first line of defense by blocking the entry of many pathogens into the brain, passing through the BBB without disruption, as well as travelling into the CNS through axonal transport from peripheral nerves. After flaviviruses have entered the CNS, they cause different neurological symptoms, leading to years of neurological sequelae or even death. Similar to neuroinvasion, there are several identified mechanisms of neuropathology, including direct cell lysis, blockage of the cell cycle, indication of apoptosis, as well as immune induced pathologies. In this review, we aim to summarize the current knowledge in the field of mechanisms of both neuroinvasion and neuropathogenesis during infection with a variety of flaviviruses and examine the potential contributions and timing of each discussed pathway.
Collapse
|
7
|
Glial Purinergic Signaling-Mediated Oxidative Stress (GPOS) in Neuropsychiatric Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1075440. [PMID: 35281471 PMCID: PMC8916856 DOI: 10.1155/2022/1075440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress (OS) has been implicated in the progression of multiple neuropsychiatric disorders, including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder, and autism. However, whether glial purinergic signaling interaction with oxidative/antioxidative system displays an important role in neuropsychiatric disorders is still unclear. In this review, we firstly summarize the oxidative/antioxidative pathways shared in different glial cells and highlight the cell type-specific difference in response to OS. Then, we collect the evidence showing the regulation of purinergic signaling in OS with an emphasis on adenosine and its receptors, P2Y1 receptor in the P2Y family and P2X7receptor in the P2X family. Available data shows that the activation of P1 receptors and P2X accelerates the OS; reversely, the activation of the P2Y family (P2Y1) causes protective effect against OS. Finally, we discuss current findings demonstrating the contribution of the purinergic signaling system to neuropsychiatric disorders and point out the potential role of OS in this process to propose a “glial purinergic-oxidative stress” (“GPOS”) hypothesis for future development of therapeutic strategies against a variety of neuropsychiatric disorders.
Collapse
|
8
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
9
|
Besson B, Basset J, Gatellier S, Chabrolles H, Chaze T, Hourdel V, Matondo M, Pardigon N, Choumet V. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis. PLoS One 2020; 15:e0232585. [PMID: 32374750 PMCID: PMC7202638 DOI: 10.1371/journal.pone.0232585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/18/2020] [Indexed: 12/31/2022] Open
Abstract
Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.
Collapse
Affiliation(s)
- Benoit Besson
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Justine Basset
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Sandrine Gatellier
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Hélène Chabrolles
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Véronique Hourdel
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Nathalie Pardigon
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Valérie Choumet
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Muri L, Leppert D, Grandgirard D, Leib SL. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci 2019; 76:3097-3116. [PMID: 31172218 PMCID: PMC7079810 DOI: 10.1007/s00018-019-03174-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
11
|
Zhu D, Li Y, Huang R, Luo L, Chen L, Fu P, He L, Li Y, Liao L, Zhu Z, Wang Y. Molecular characterization and functional activity of Prx1 in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 90:395-403. [PMID: 31054357 DOI: 10.1016/j.fsi.2019.04.302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Peroxiredoxin (Prx) family are known as an important antioxidant enzyme as the first line of defense against oxidative damage, and also involved in immune responses following viral and bacterial infection. Here, a full-length Prx1 cDNA sequence (CiPrx1) was cloned from grass carp (Ctenopharyngodon idella), which was 1029 bp, including a 5'-terminal untranslated region (UTR) of 121 bp, a 3'-UTR of 272 bp, an open reading frame of 600 bp encoding 199 amino acids with molecular weight of 22.21 kDa and isoelectric point of 6.30. CiPrx1 shares 80.8-99% protein sequence similarity with Prx1 of other fishes. The conserved peroxidase catalytic center "FYPLDFTFVCPTEI" and "GEVCPA" were observed in the sequence of CiPrx1; this indicated that it was a member of 2-Cys Prx. Subcellular localization of CiPrx1 was only strongly distributed in the cytoplasm. Quantitative real-time PCR (RT-qPCR) assays revealed that CiPrx1 mRNA was ubiquitously detected in all tested tissues, and the expression was comparatively high in liver, gill and spleen. Further, the expression of CiPrx1 can be induced by grass carp reovirus (GCRV), lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C) infection in the different tissues. Moreover, the recombinant CiPrx1 (rCiPrx1) protein was found a potential antioxidant enzyme, that could inhibit DNA damage from oxidants. Altogether, our results imply that CiPrx1 is associated with defending against virus and bacteria pathogens and oxidants in grass carp.
Collapse
Affiliation(s)
- Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lifei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
13
|
Xu X, Xu Y, Zhang Q, Yang F, Yin Z, Wang L, Li Q. Porcine epidemic diarrhea virus infections induce apoptosis in Vero cells via a reactive oxygen species (ROS)/p53, but not p38 MAPK and SAPK/JNK signalling pathways. Vet Microbiol 2019; 232:1-12. [PMID: 31030832 PMCID: PMC7117205 DOI: 10.1016/j.vetmic.2019.03.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
p53 is activated, translocated to nucleus and involved in PEDV-induced apoptosis. ROS are accumulated during PEDV infection and involved in PEDV-induced apoptosis. ROS are the upper stream of p53 in PEDV infection. This is the first report that PEDV induce Vero cells apoptosis via ROS/p53 signal pathway.
Porcine epidemic diarrhea virus (PEDV) is a member of Coronavirus, which causes severe watery diarrhea in piglets with high morbidity and mortality. ROS and p53 play key roles in regulating many kinds of cell process during viral infection, however, the exact function in PEDV-induced apoptosis remains unclear. In this study, the pro-apoptotic effect of PEDV was examined in Vero cells and we observed that PEDV infection increased MDM2 and CBP, promoted p53 phosphorylation at serine 20 and, promoted p53 nuclear translocation, leading to p53 activation in Vero cells. Treatment with the p53 inhibitor PFT-α could significantly inhibit PEDV-induced apoptosis. We also observed PEDV infection induced time-dependent ROS accumulation. Treatment with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) or N-acetylcysteine (NAC), significantly inhibited PEDV-induced apoptosis. Moreover, further inhibition tests were established to prove that p53 was regulated by ROS in PEDV-induced apoptosis. In addition, we also found that p38 MAPK and SAPK/JNK were activated in PEDV-infected Vero cells. However, treatment with the p38 MAPK inhibitor SB203580, and the SAPK/JNK inhibitor SP600125 reversed PEDV-induced apoptosis. Taken together, the results of this study demonstrate that activated p53 and accumulated ROS participated in PEDV-induced apoptosis and p53 could be regulated by ROS during PEDV infection. Activated p38 MAPK and SAPK/JNK exerted no influence on PEDV-induced apoptosis. These findings provide new insights into the function of p53 and ROS in the interaction of PEDV with Vero cells.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Christen V, Rusconi M, Crettaz P, Fent K. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro. Toxicol Appl Pharmacol 2017; 325:25-36. [PMID: 28385489 DOI: 10.1016/j.taap.2017.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland
| | - Manuel Rusconi
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Pierre Crettaz
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Basu M, Courtney SC, Brinton MA. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells. PLoS Pathog 2017; 13:e1006240. [PMID: 28241074 PMCID: PMC5344523 DOI: 10.1371/journal.ppat.1006240] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/09/2017] [Accepted: 02/14/2017] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress activates the cellular kinase HRI, which then phosphorylates eIF2α, resulting in stalled translation initiation and the formation of stress granules (SGs). SG assembly redirects cellular translation to stress response mRNAs and inhibits cap-dependent viral RNA translation. Flavivirus infections were previously reported to induce oxidative stress in infected cells but flavivirus-infected cells paradoxically develop resistance to arsenite (Ars)-induced SG formation with time after infection. This resistance was previously postulated to be due to sequestration of the SG protein Caprin1 by Japanese encephalitis virus capsid protein. However, Caprin1 did not co-localize with West Nile virus (WNV) capsid protein in infected cells. Other stressors induced SGs with equal efficiency in mock- and WNV-infected cells indicating the intrinsic ability of cells to assemble SGs was not disabled. Induction of both reactive oxygen species (ROS) and the antioxidant response was detected at early times after WNV-infection. The transcription factors, Nrf2 and ATF4, which activate antioxidant genes, were upregulated and translocated to the nucleus. Knockdown of Nrf2, ATF4 or apoptosis-inducing factor (AIF), a mitochondrial protein involved in regenerating intracellular reduced glutathione (GSH) levels, with siRNA or treatment of cells with buthionine sulphoximine, which induces oxidative stress by inhibiting GSH synthesis, decreased intracellular GSH levels and increased the number of SG-positive, infected cells. Mitochondria were protected from Ars-induced damage by WNV infection until late times in the infection cycle. The results indicate that the increase in virus-induced ROS levels is counterbalanced by a virus-induced antioxidant response that is sufficient to also overcome the increase in ROS induced by Ars treatment and prevent Ars-induced SG assembly and mitochondrial damage. The virus-induced alterations in the cellular redox status appear to provide benefits for the virus during its lifecycle.
Collapse
Affiliation(s)
- Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Sean C. Courtney
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Margo A. Brinton
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Suwanprinya L, Morales NP, Sanvarinda P, Dieng H, Okabayashi T, Morales Vargas RE. Dengue Virus-Induced Reactive Oxygen Species Production in Rat Microglial Cells. Jpn J Infect Dis 2016; 70:383-387. [PMID: 28003593 DOI: 10.7883/yoken.jjid.2016.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Encephalitis has been described worldwide as a severe complication in patients infected by dengue virus. Reactive oxygen species (ROS) production is a key mechanism involved in the neuronal damage caused by viral encephalitis. In the present study, the capability of dengue virus serotypes 2 (DENV2) and DENV4 to induce ROS production was investigated in a rat microglial cell line, HAPI cells. The cells were infected with DENV2 and DENV4 at a multiplicity of infection of 0.1 for a 2-h adsorption period. Japanese encephalitis virus (JEV) was used as the reference. DENV2- and DENV4-induced microglial activation and significantly increased ROS production corresponded to decreased cell viability. The activity of DENV4 was significantly higher than the activities of DENV2 and JEV at 48 and 72 h post infection. DENV4 partly induced ROS production via an iron-induced Fenton reaction, as demonstrated by the treatment with an iron chelator, deferiprone. Despite the induction of increased inducible nitric oxide synthase expression and nitric oxide (NO) production by JEV, DENV2, and DENV4 did not induce NO production, suggesting the activation of different pathways in response to infections by different viruses. In conclusion, DENV2 and DENV4 have the capability to induce ROS production and activate microglia, which have been reported as the key components of neuronal damage.
Collapse
Affiliation(s)
| | | | | | - Hamady Dieng
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak
| | - Tamaki Okabayashi
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Mahidol University.,Department of Virology, Research Institute for Microbial Diseases, Osaka University
| | | |
Collapse
|
17
|
Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Sci Signal 2016; 9:ra98. [DOI: 10.1126/scisignal.aaf5132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Liu MW, Liu R, Wu HY, Zhang W, Xia J, Dong MN, Yu W, Wang Q, Xie FM, Wang R, Huang YQ, Qian CY. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression. Int J Mol Med 2016; 38:1419-1432. [PMID: 27666960 PMCID: PMC5065294 DOI: 10.3892/ijmm.2016.2749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/08/2016] [Indexed: 01/26/2023] Open
Abstract
Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)-induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may prevent LPS-induced pro-inflammatory gene expression through inhibiting the NF-κB and MAPK signaling pathways by upregulating TIPE2 expression, thereby attenuating LPS-induced liver injury in rats. The marked protective effects of XBJ suggest that it has the potential to be used in the treatment of LPS-induced liver injury.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rong Liu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hai-Yin Wu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jing Xia
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Min-Na Dong
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wen Yu
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Feng-Mei Xie
- Department of Gastroenterology, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rui Wang
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun-Qiao Huang
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chuan-Yun Qian
- Department of Emergency Medicine, The First Hospital Affiliated To Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
Mouse Adenovirus Type 1 Early Region 1A Effects on the Blood-Brain Barrier. mSphere 2016; 1:mSphere00079-16. [PMID: 27303733 PMCID: PMC4894691 DOI: 10.1128/msphere.00079-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/26/2023] Open
Abstract
Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix metalloproteinases in brains of infected mice. We investigated whether the major transcriptional regulator of adenoviruses, E1A protein, is responsible for any of the specific phenotypes that result from MAV-1 infection. For some of the functions assayed, an E1A mutant virus behaved like wild-type virus. However, expression of mRNA for one matrix metalloproteinase was higher in the virus lacking E1A protein production. This highlights the complex nature of encephalitis and suggests that E1A may have transcriptional effects on host genes important for the development of encephalitis. Mouse adenovirus type 1 (MAV-1) infects endothelial cells and disrupts the blood-brain barrier (BBB), causing encephalitis in inbred and outbred mice. Using a virus mutant that does not produce the early region 1A protein E1A, we investigated whether the activity of this known viral transcriptional regulator is needed for BBB disruption and other phenotypes associated with encephalitis. The wild-type (wt) virus and E1A mutant virus caused similar levels of permeability of sodium fluorescein in brains of infected mice. In an in vitro assay of BBB integrity, wt and mutant virus caused similar decreases in transendothelial electrical resistance in primary mouse brain endothelial cell monolayers. These results indicate that E1A protein does not contribute to disruption of BBB integrity in animals or cultured cells. Both wt and E1A mutant virus infection of mice led to similar increases in the activity of two matrix metalloproteinases known to correlate with BBB disruption, MMP2 and MMP9, while causing no increase in the steady-state expression of MMP2 or MMP9 mRNA. In contrast, the amount of MMP3 transcripts increased upon infection by both viruses and to a higher level in infections by the mutant virus lacking E1A protein production. There was no difference in the levels of steady-state expression of mRNA for tight junction proteins among mock virus, wt virus, and mutant virus infections. Thus, the MAV-1 E1A protein does not measurably affect BBB integrity in the parameters assayed, although it reduces the amount of MMP3 mRNA steady-state expression induced in brains upon infection. IMPORTANCE Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix metalloproteinases in brains of infected mice. We investigated whether the major transcriptional regulator of adenoviruses, E1A protein, is responsible for any of the specific phenotypes that result from MAV-1 infection. For some of the functions assayed, an E1A mutant virus behaved like wild-type virus. However, expression of mRNA for one matrix metalloproteinase was higher in the virus lacking E1A protein production. This highlights the complex nature of encephalitis and suggests that E1A may have transcriptional effects on host genes important for the development of encephalitis.
Collapse
|
20
|
Guo M, Wei J, Huang X, Zhou Y, Yan Y, Qin Q. JNK1 Derived from Orange-Spotted Grouper, Epinephelus coioides, Involving in the Evasion and Infection of Singapore Grouper Iridovirus (SGIV). Front Microbiol 2016; 7:121. [PMID: 26903999 PMCID: PMC4748057 DOI: 10.3389/fmicb.2016.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/22/2015] [Indexed: 01/16/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) regulates cellular responses to various extracellular stimuli, environmental stresses, pathogen infections, and apoptotic agents. Here, a JNK1, Ec-JNK1, was identified from orange-spotted grouper, Epinephelus coioides. Ec-JNK1 has been found involving in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis in vitro. SGIV infection activated Ec-JNK1, of which phosphorylation of motif TPY is crucial for its activity. Over-expressing Ec-JNK1 phosphorylated transcription factors c-Jun and promoted the infection and replication of SGIV, while partial inhibition of the phosphorylation of Ec-JNK1 showed the opposite effects by over-expressing the dominant-negative EcJNK1-Δ183-185 mutant. Interestingly, SGIV enhanced the viral infectivity by activating Ec-JNK1 which in turn drastically inhibited the antiviral responses of type 1 IFN, indicating that Ec-JNK1 could be involved in blocking IFN signaling during SGIV infection. In addition, Ec-JNK1 enhanced the activation of AP-1, p53, and NF-κB, and resulted in increasing the levels of SGIV-induced cell death. The caspase 3-dependent activation correlated with the phosphorylation of Ec-JNK1 and contributed to SGIV-induced apoptosis. Taken together, SGIV modulated the phosphorylation of Ec-JNK1 to inactivate the antiviral signaling, enhance the SGIV-induced apoptosis and activate transcription factors for efficient infection and replication. The “positive cooperativity” molecular mechanism mediated by Ec-JNK1 contributes to the successful evasion and infection of iridovirus pathogenesis.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Yongcan Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou, China
| | - Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
21
|
Shukla V, Shakya AK, Shukla M, Kumari N, Krishnani N, Dhole TN, Misra UK. Circulating levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases during Japanese encephalitis virus infection. Virusdisease 2016; 27:63-76. [PMID: 26925446 DOI: 10.1007/s13337-015-0301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are widely implicated in modulating blood brain barrier (BBB) integrity and affect the entry of peripheral immune cells into the central nervous system (CNS). The expression of MMPs is tightly regulated at the level of gene transcription, conversion of pro-enzyme to active MMPs and by the action of tissue inhibitors of metalloproteinases (TIMP). The crucial role of MMPs in inflammation indicates that perturbation of the MMP/TIMP balance decisively plays an important role in pathogenesis during viral encephalitis. The study was performed to evaluate the production of MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-3 in the sera of JEV i.e. GP 78668A (GP-78) infected BALB/c mouse model of encephalitis and gel zymography was performed for MMP-2 and MMP-9 activities. The estimation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-3 in JEV-infected mouse serum was analyzed by ELISA along with brain histopathology and immunohistochemistry. Evan's blue dye exclusion test was done to check the BBB integrity. Gelatin gel zymography was performed for MMP-2 and MMP-9 activities. We noticed an upregulated expression of MMPs in the sera of virus infected groups compared to controls at different days post inoculation (dpi). Post hoc analysis between days also reveals significant increase (p < 0.05) in virus infected groups with disease progression. In contrast, TIMPs expressions were significantly (p < 0.005) down regulated in the virus infected group. We provide preliminary evidence for a pattern of TIMP response in JEV infection distinct from that seen in acute inflammatory CNS conditions in JE, shown in our previous findings. Increased MMP-2 and MMP-9 activities were also found in a virus infected group with disease progression and are consistent with our previous finding of MMP-2 and MMP-9 activities in the CNS which clearly demonstrate worsen role of these immune mediators in JEV infection. This study will help to identify new targets for the therapeutic treatment of inflammatory mediated CNS disorders in JEV infection and may lead to the development of potential pharmacological targets in future.
Collapse
Affiliation(s)
- Vibha Shukla
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Akhalesh Kumar Shakya
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Mukti Shukla
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Niraj Kumari
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - T N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Usha Kant Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
22
|
Yan Y, Xin A, Liu Q, Huang H, Shao Z, Zang Y, Chen L, Sun Y, Gao H. Induction of ROS generation and NF-κB activation in MARC-145 cells by a novel porcine reproductive and respiratory syndrome virus in Southwest of China isolate. BMC Vet Res 2015; 11:232. [PMID: 26358082 PMCID: PMC4565009 DOI: 10.1186/s12917-015-0480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/13/2015] [Indexed: 01/06/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of an economically important swine disease that has devastated the swine industry since the late 1980s. The aim of the present study was to investigate the interaction between reactive oxygen species (ROS) and NF-κB by PRRSV infection. Results We isolated the local strain of PRRSV from southwest China, designated YN-2011, then sequenced and analyzed the genome. YN-2011 was then used to evaluate the interaction of ROS and NF-κB. In PRRSV infected MARC-145 cells, there was a time-dependent increase in ROS and Maleic Dialdehyde (MDA). Accordingly, NF-κB activation was also increased as PRRSV infection progressed. Degradation of IκB mRNA was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα significantly suppressed NF-κB induced by PRRSV. Conclusions The results indicate that the generation of ROS is involved in PRRSV replication and this progression is associated with the alteration in NF-κB activity induced by ROS. These results should extend our better understanding the interaction between PRRSV and host MARC-145 cells. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0480-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulin Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People's Republic of China.
| | - Aiguo Xin
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, People's Republic of China.
| | - Qian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Hui Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Zhiyong Shao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Yating Zang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Ling Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Yongke Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| | - Hong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
23
|
Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G. Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci 2015; 2:19. [PMID: 25988186 PMCID: PMC4429632 DOI: 10.3389/fmolb.2015.00019] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
Matrix metalloproteinases (MMPs), a large family of calcium-dependent zinc-containing endopeptidases, are involved in the tissue remodeling and degradation of the extracellular matrix. MMPs are widely distributed in the brain and regulate various processes including microglial activation, inflammation, dopaminergic apoptosis, blood-brain barrier disruption, and modulation of α-synuclein pathology. High expression of MMPs is well documented in various neurological disorders including Parkinson's disease (PD), Alzheimer's disease (AD), Japanese encephalitis (JE), and Glaucoma. Although potentially critical, the role of MMPs in neuronal disorders is under-investigated. The present review summarizes the role of MMPs in neurodegeneration with a particular emphasis on PD, AD, JE, and Glaucoma.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biology, City College of New York New York, NY, USA
| | - Sanjeev K Srivastava
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal Siliguri, India
| | - Tapas K Chaudhuri
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal Siliguri, India
| | | |
Collapse
|
24
|
Chang CY, Li JR, Chen WY, Ou YC, Lai CY, Hu YH, Wu CC, Chang CJ, Chen CJ. Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-Infected astrocytes. Glia 2015; 63:1915-1932. [PMID: 25959931 DOI: 10.1002/glia.22857] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/24/2015] [Indexed: 01/08/2023]
Abstract
Blood-brain barrier (BBB) characteristics are induced and maintained by crosstalk between brain microvascular endothelial cells and neighboring cells. Using in vitro cell models, we previously found that a bystander effect was a cause for Japanese encephalitis-associated endothelial barrier disruption. Brain astrocytes, which neighbor BBB endothelial cells, play roles in the maintenance of BBB integrity. By extending the scope of relevant studies, a potential mechanism has been shown that the activation of neighboring astrocytes could be a cause of disruption of endothelial barrier integrity during the course of Japanese encephalitis viral (JEV) infection. JEV-infected astrocytes were found to release biologically active molecules that activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1) and claudin-5, and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. JEV infection caused astrocytes to release vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and matrix metalloproteinases (MMP-2/MMP-9). Our data demonstrated that VEGF and IL-6 released by JEV-infected astrocytes were critical for the proteasomal degradation of ZO-1 and the accompanying disruption of endothelial barrier integrity through the activation of Janus kinase-2 (Jak2)/signal transducer and activator of transcription-3 (STAT3) signaling as well as the induction of ubiquitin-protein ligase E3 component, n-recognin-1 (Ubr 1) in endothelial cells. MMP-induced endothelial barrier disruption was accompanied by MMP-mediated proteolytic degradation of claudin-5 and ubiquitin proteasome-mediated degradation of ZO-1 via extracellular VEGF release. Collectively, these data suggest that JEV infection could activate astrocytes and cause release of VEGF, IL-6, and MMP-2/MMP-9, thereby contributing, in a concerted action, to the induction of Japanese encephalitis-associated BBB breakdown. GLIA 2015;63:1915-1932.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Fong-Yuan Hospital, Taichung, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Yi Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Hui Hu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Financial and Computational Mathematics, Providence University, Taichung, Taiwan
| | - Chen-Jung Chang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Sciences and Technology, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Center for General Education, Tunghai University, Taichung, Taiwan.,Department of Nursing, HungKuang University, Taichung, Taiwan
| |
Collapse
|
25
|
Shi W, Hou X, Peng H, Zhang L, Li Y, Gu Z, Jiang Q, Shi M, Ji Y, Jiang J. MEK/ERK signaling pathway is required for enterovirus 71 replication in immature dendritic cells. Virol J 2014; 11:227. [PMID: 25548009 PMCID: PMC4304142 DOI: 10.1186/s12985-014-0227-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022] Open
Abstract
Background The mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) signaling pathway is involved in viral life cycle. However, the effect of MEK/ERK pathway in enterovirus 71(EV71)-infected immature dendritic cells (iDCs) is still unclear. Methods Human peripheral blood mononuclear cells (PBMCs) were isolated and induced to generate iDCs. Unifected iDCs and EV71-infected iDCs with a multiplicity of infection (MOI = 5) were analyzed by flow cytometry. Differential gene expressions of MEK/ERK signaling pathway molecules in EV71-infected iDCs were performed by PCR arrays. The phosphorylation of MEK/ERK pathway molecules in EV71-infected iDCs preincubated without or with U0126 (20 μM) at indicated times was detected by Western blot. The concentrations of IL-1α, IL-2, IL-6, IL-12, TNF-α, IFN-α1, IFN-β and IFN-γ in culture supernatant were analyzed by the luminex fluorescent technique. Results When iDCs were infected with EV71 for 24 h, the percentage of CD80, CD83, CD86 and HLA-DR expressed on iDCs significantly increased. PCR arrays showed that gene expressions of molecules in MEK/ERK signaling pathway were remarkably upregulated in EV71-infected iDCs. EV71 infection activated both MEK1/2 and ERK1/2, which phosphorylated their downstream transcription factor c-Fos, c-Jun, c-myc and Elk1. Importantly, the treatment of U0126 significantly inhibited MEK/ERK signaling pathway molecules and severely impaired virus replication., Additionally, EV71 infection promoted the expression of son of sevenless (SOS1) and increased the secretion of IL-1α, IL-2, IL-6, IL-12, TNF-α,IFN-β and IFN-γ. Furthermore,the release of IL-1α, IL-2,IL-6 and TNF-α could be effectively suppressed by inhibitor U0126. Conclusions Our data suggest that the MEK/ERK signaling pathway plays an important role in EV71-infected iDCs and these molecules may be potential targets for the development of new anti-EV71 drugs.
Collapse
Affiliation(s)
- Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Xueling Hou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Hongjun Peng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Li Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Yuanyuan Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Zhiwen Gu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Qingbo Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Mei Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Yun Ji
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu, 213003, PR China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
26
|
Daep CA, Muñoz-Jordán JL, Eugenin EA. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. J Neurovirol 2014; 20:539-60. [PMID: 25287260 PMCID: PMC4331079 DOI: 10.1007/s13365-014-0285-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/01/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
The flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses.
Collapse
Affiliation(s)
- Carlo Amorin Daep
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Jorge L. Muñoz-Jordán
- Centers for Disease Control and Prevention Dengue Branch, 1324 Cañada Street, San Juan, PR 00971
| | - Eliseo Alberto Eugenin
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
27
|
Tsai KL, Chang YL, Huang PH, Cheng YH, Liu DH, Chen HY, Kao CL. Ginkgo biloba extract inhibits oxidized low-density lipoprotein (oxLDL)-induced matrix metalloproteinase activation by the modulation of the lectin-like oxLDL receptor 1-regulated signaling pathway in human umbilical vein endothelial cells. J Vasc Surg 2014; 63:204-15.e1. [PMID: 25080882 DOI: 10.1016/j.jvs.2014.05.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/26/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND The overexpression of matrix metalloproteinases (MMPs) induced by oxidized low-density lipoprotein (oxLDL) has been found in atherosclerotic lesions. Previous reports have identified that oxLDL, via the upregulation of lectin-like ox-LDL receptor 1 (LOX-1), modulates the expression of MMPs in endothelial cells. Ginkgo biloba extract (GbE), from Ginkgo biloba leaves, has often been considered as a therapeutic compound for cardiovascular and neurologic diseases. However, further investigation is needed to ascertain the probable molecular mechanisms underlying the antiatherogenic effects of GbE. The aim of this study was to investigate the effects of GbE on oxLDL-activated MMPs of human endothelial cells and to test the involvement of LOX-1 and protein kinase C (PKC)-α, extracellular signal-regulated kinase (ERK), and peroxisome proliferator-activated receptor-γ (PPAR-γ). METHODS Human umbilical vein endothelial cells were stimulated with oxLDL, with or without GbE treatment. LOX-1 signaling and MMPs expression were tested by Western blotting or activity assay. Further, protein expression levels of PKC-α, ERK, nuclear factor-κB, and PPAR-γ were investigated by Western blotting. RESULTS GbE inhibited the oxLDL-caused upregulation of MMP-1, MMP-2, and MMP-3. Pretreating with GbE reduced oxLDL-activated LOX-1 expression. Furthermore, pharmacologic inhibitors of free radicals, Ca(++), PKC, and GbE, inhibited the oxLDL-induced ERK and nuclear factor-κB activation. Lastly, GbE ameliorated the oxLDL-inhibited PPAR-γ function. CONCLUSIONS Data obtained in this study indicate that GbE actives its protective effects by regulating the LOX-1-mediated PKC-α/ERK/PPAR-γ/MMP pathway, resulting in the suppression of reactive oxygen species formation and, ultimately, the reduction of MMPs expression in endothelial cells treated with oxLDL.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Institute and Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ding-Hao Liu
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Yun Chen
- Institute and Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Physical Therapy & Assistive Technology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
28
|
Maurya SK, Mishra J, Tripathi VK, Sharma R, Siddiqui MH. Cypermethrin induces astrocyte damage: role of aberrant Ca(2+), ROS, JNK, P38, matrix metalloproteinase 2 and migration related reelin protein. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 111:51-59. [PMID: 24861934 DOI: 10.1016/j.pestbp.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Cypermethrin is a synthetic type II pyrethroid, derived from a natural pyrethrin of the chrysanthemum plant. Cypermethrin-mediated neurotoxicity is well studied; however, relatively less is known of its effect on astrocyte development and migration. Astrocytes are the major components of blood brain barrier (BBB), and astrocyte damage along with BBB dysfunction impair the tight junction (TJ) proteins resulting in altered cell migration and neurodegeneration. Here, we studied the mechanism of cypermethin mediated rat astrocyte damage and BBB disruption, and determined any change in expression of proteins associated with cell migration. Through MTT assay we found that cypermethrin reduced viability of cultured rat astrocytes. Immunolabelling with astrocyte marker, glial fibrillary acidic protein, revealed alteration in astrocyte morphology. The astrocytes demonstrated an enhanced release of intracellular Ca(++) and ROS, and up-regulation in p-JNK and p-P38 levels in a time-dependent manner. Cypermethrin disrupted the BBB (in vivo) in developing rats and attenuated the expression of the extracellular matrix molecule (ECM) and claudin-5 in cultured astrocytes. We further observed an augmentation in the levels of matrix metalloproteinase 2 (MMP2), known to modulate cellular migration and disrupt the developmental ECM and BBB. We observed an increase in the levels of reelin, involved in cell migration, in cultured rat astrocytes. The reelin receptor, α3β1integrin, and a mammalian cytosolic protein Disabled1 (Dab1) were also up-regulated. Overall, our study demonstrates that cypermethrin induces astrocyte injury via modulation in Ca(++), ROS, JNK and P38 pathways, which may alter MMP expression and reelin dependent astrocyte migration during brain development.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biosciences, Integral University, Lucknow 226026, India; Developmental Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India.
| | - Juhi Mishra
- Developmental Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Vinay Kumar Tripathi
- In vitro Toxicology Laboratory, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Rolee Sharma
- Department of Biosciences, Integral University, Lucknow 226026, India
| | | |
Collapse
|
29
|
Zhang Y, Wang Z, Chen H, Chen Z, Tian Y. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 2014; 24:30-6. [PMID: 24780919 DOI: 10.1016/j.ijid.2014.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China; Squadron 13 of Cadet Brigade, College of Medical Laboratory Technology, Third Military Medical University, Chongqing, PR China
| | - Zehua Wang
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China; Squadron 17, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Huan Chen
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China; Squadron 13 of Cadet Brigade, College of Medical Laboratory Technology, Third Military Medical University, Chongqing, PR China
| | - Zongtao Chen
- Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Yanping Tian
- Department of Histology and Embryology, School of Basic Medicine, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
30
|
Role of redox signaling in neuroinflammation and neurodegenerative diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:484613. [PMID: 24455696 PMCID: PMC3884773 DOI: 10.1155/2013/484613] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS), a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS) have been detected in patients with neurodegenerative diseases such as Alzheimer's disease (AD). These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs), cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases.
Collapse
|
31
|
Shwetank, Date OS, Kim KS, Manjunath R. Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E. PLoS One 2013; 8:e79197. [PMID: 24236107 PMCID: PMC3827286 DOI: 10.1371/journal.pone.0079197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-β and TNF-α production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-α as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-α and IFN-β as well as the dsRNA analog, poly (I:C). Both IFN-β and TNF-α further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.
Collapse
Affiliation(s)
- Shwetank
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Onkar S. Date
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kwang S. Kim
- Department of Pediatric Infectious Diseases, John Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | |
Collapse
|
32
|
Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling. Biochem Biophys Res Commun 2013; 442:33-7. [PMID: 24225120 PMCID: PMC7092821 DOI: 10.1016/j.bbrc.2013.10.164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/30/2013] [Indexed: 01/11/2023]
Abstract
TGEV infection induced ROS accumulation. ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells.
Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-l-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.
Collapse
|
33
|
Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol 2013; 88:1150-61. [PMID: 24198423 DOI: 10.1128/jvi.02738-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Though the compromised blood-brain barrier (BBB) is a pathological hallmark of Japanese encephalitis-associated neurological sequelae, the underlying mechanisms and the specific cell types involved are not understood. BBB characteristics are induced and maintained by cross talk between brain microvascular endothelial cells and neighboring elements of the neurovascular unit. In this study, we show a potential mechanism of disruption of endothelial barrier integrity during the course of Japanese encephalitis virus (JEV) infection through the activation of neighboring pericytes. We found that cultured brain pericytes were susceptible to JEV infection but were without signs of remarkable cytotoxicity. JEV-infected pericytes were found to release biologically active molecules which activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1), and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. Infection of pericytes with JEV was found to elicit elevated production of interleukin-6 (IL-6), which contributed to the aforementioned endothelial changes. We further demonstrated that ubiquitin-protein ligase E3 component n-recognin-1 (Ubr 1) was a key upstream regulator which caused proteasomal degradation of ZO-1 downstream of IL-6 signaling. During JEV central nervous system trafficking, endothelial cells rather than pericytes are directly exposed to cell-free viruses in the peripheral bloodstream. Therefore, the results of this study suggest that subsequent to primary infection of endothelial cells, JEV infection of pericytes might contribute to the initiation and/or augmentation of Japanese encephalitis-associated BBB breakdown in concerted action with other unidentified barrier disrupting factors.
Collapse
|
34
|
Shukla V, Shakya AK, Dhole TN, Misra UK. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of children with Japanese encephalitis virus infection. Arch Virol 2013; 158:2561-75. [PMID: 23836397 DOI: 10.1007/s00705-013-1783-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/31/2013] [Indexed: 12/13/2022]
Abstract
The expression of matrix metalloproteinases (MMPs) is tightly regulated at the level of gene transcription, conversion of pro-enzyme to active MMPs, and the action of tissue inhibitors of metalloproteinases (TIMPs). The present study aimed to investigate the expression of some specific MMPs (2, 7, 9) and TIMPs (1, 2, 3) in serum and cerebrospinal fluid (CSF) of children with Japanese encephalitis virus (JEV) infection. Serum and CSF levels of MMPs and TIMPs in children with JEV infection and disease control (DC) were compared. The CSF and serum concentrations of MMP-2, TIMP-2 and TIMP-3 were significantly higher in children with JEV infection compared to DC. The concentration of MMP-9 in serum was significantly higher in children with JEV infection than in the DC and healthy control (HC), while in the CSF, no significant difference was observed compared to DC. The MMP-7 serum concentration was significantly higher in children with JEV infection compared to HC, but no significant difference was observed compared to DC. MMP-7 concentration was undetectable in CSF in both groups. The TIMP-1 CSF concentration was significantly higher, while the serum concentration was significantly lower, in children with JEV infection compared to DC. No correlation was found between the levels of each biomolecule measured in CSF and serum, suggesting that the levels in CSF represent local production within the CNS rather than production in the periphery. We also observed leucocytosis, mononuclear pleocytosis and elevated protein concentrations in the CSF of children with JEV infection compared to DC.
Collapse
Affiliation(s)
- Vibha Shukla
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | | | | | | |
Collapse
|
35
|
Yang CM, Lee IT, Hsu RC, Chi PL, Hsiao LD. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicol Appl Pharmacol 2013; 272:431-42. [PMID: 23774252 DOI: 10.1016/j.taap.2013.05.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-l-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47(phox), p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Tseng HC, Lee IT, Lin CC, Chi PL, Cheng SE, Shih RH, Hsiao LD, Yang CM. IL-1β promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-κB- and AP-1-dependent pathways. PLoS One 2013; 8:e57955. [PMID: 23505448 PMCID: PMC3591450 DOI: 10.1371/journal.pone.0057955] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1β (IL-1β) plays a critical mediator in the pathogenesis of eye diseases. The implication of IL-1β in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of IL-1β-induced MMP-9 expression in Statens Seruminstitut Rabbit Corneal Cells (SIRCs) are largely unclear. Here, we demonstrated that in SIRCs, IL-1β induced MMP-9 promoter activity and mRNA expression associated with an increase in the secretion of pro-MMP-9. IL-1β-induced pro-MMP-9 expression and MMP-9 mRNA levels were attenuated by pretreatment with the inhibitor of MEK1/2 (U0126), JNK1/2 (SP600125), NF-κB (Bay11-7082), or AP-1 (Tanshinone IIA) and transfection with siRNA of p42 or JNK2. Moreover, IL-1β markedly stimulated p42/p44 MAPK and JNK1/2 phosphorylation in SIRCs. In addition, IL-1β also enhanced p42/p44 MAPK translocation from the cytosol into the nucleus. On the other hand, IL-1β induced c-Jun and c-Fos mRNA expression, c-Jun phosphorylation, and AP-1 promoter activity. NF-κB translocation, IκBα degradation, and NF-κB promoter activity were also enhanced by IL-1β. Pretreatment with U0126 or SP600125 inhibited IL-1β-induced AP-1 and NF-κB promoter activity, but not NF-κB translocation from the cytosol into the nucleus. Finally, we established that IL-1β could stimulate SIRCs migration via p42/p44 MAPK-, JNK1/2-, AP-1-, and NF-κB-dependent MMP-9 induction. These results suggested that NF-κB and AP-1 activated by JNK1/2 and p42/p44 MAPK cascade are involved in IL-1β-induced MMP-9 expression in SIRCs.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Shin-Ei Cheng
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Ruey-Horng Shih
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Yang CM, Lee IT, Lin CC, Wang CH, Cherng WJ, Hsiao LD. c-Src-dependent MAPKs/AP-1 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Biochem Pharmacol 2013; 85:1115-23. [PMID: 23353699 DOI: 10.1016/j.bcp.2013.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
TNF-α plays a critical mediator in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression are largely unclear in the heart cells. Here, we demonstrated that in rat embryonic-heart derived H9c2 cells, TNF-α could induce MMP-9 mRNA expression associated with an increase in the secretion of MMP-9, determined by real-time PCR, zymography, and promoter activity assays. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of c-Src, EGFR, PDGFR, p110, Akt, or c-Jun. TNF-α stimulated c-Src, PDGFR, and EGFR phosphorylation, which were reduced by PP1. In addition, TNF-α-stimulated Akt phosphorylation was inhibited by PP1, AG1478, AG1296, or LY294002. We further demonstrated that TNF-α markedly stimulated p38 MAPK, p42/p44 MAPK, and JNK1/2 phosphorylation via a c-Src/EGFR, PDGFR/PI3K/Akt pathway. Finally, we showed that, in H9c2 cells, TNF-α-stimulated AP-1 promoter activity, c-Jun mRNA expression, and c-Jun phosphorylation were attenuated by PP1, AG1478, AG1296, LY294002, SB202190, SP600125, or U0126. These results suggested that TNF-α-induced MMP-9 expression is mediated through a c-Src/EGFR, PDGFR/PI3K/Akt/MAPKs/AP-1 cascade in H9c2 cells. Consequently, MMP-9 induction may contribute to cell migration and cardiovascular inflammation.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
38
|
Yiang GT, Chen YH, Chou PL, Chang WJ, Wei CW, Yu YL. The NS3 protease and helicase domains of Japanese encephalitis virus trigger cell death via caspase‑dependent and ‑independent pathways. Mol Med Rep 2013; 7:826-30. [PMID: 23291778 DOI: 10.3892/mmr.2013.1261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/04/2012] [Indexed: 11/06/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito‑borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV‑induced apoptosis are unclear. In order to identify the viral proteins associated with JEV‑induced apoptosis, pEGFP‑non‑structural protein 3 (NS3) 1‑619 (expressing the JEV NS3 intact protein, including the protease and helicase domains), pEGFP‑NS3 1‑180 (expressing the protease domain) and pEGFP‑NS3 163‑619 (expressing the helicase domain) were transfected into target cells to study cell death. Results demonstrate that the JEV NS3 intact protein and protease and helicase domains induce cell death. In addition, cell death was identified to be significantly higher in cells transfected with the NS3 protease domain compared with the intact protein and helicase domain. Caspase activation was also analyzed in the current study. NS3 intact protein and NS3 protease and helicase domains activated caspase‑9/‑3‑dependent and ‑independent pathways. However, caspase‑8 activity was not found to be significantly different in NS3‑transfected cells compared with control. In summary, the present study demonstrates that the NS3 helicase and protease domains of JEV activate caspase‑9/‑3‑dependent and ‑independent cascades and trigger cell death.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
39
|
Spindler KR, Hsu TH. Viral disruption of the blood-brain barrier. Trends Microbiol 2012; 20:282-90. [PMID: 22564250 DOI: 10.1016/j.tim.2012.03.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
The blood-brain barrier (BBB) provides significant protection against microbial invasion of the brain. However, the BBB is not impenetrable, and mechanisms by which viruses breach it are becoming clearer. In vivo and in vitro model systems are enabling identification of host and viral factors contributing to breakdown of the unique BBB tight junctions. Key mechanisms of tight junction damage from inside and outside cells are disruption of the actin cytoskeleton and matrix metalloproteinase activity, respectively. Viral proteins acting in BBB disruption are described for HIV-1, currently the most studied encephalitic virus; other viruses are also discussed.
Collapse
Affiliation(s)
- Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| | | |
Collapse
|
40
|
Ralay Ranaivo H, Hodge JN, Choi N, Wainwright MS. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J Neuroinflammation 2012; 9:68. [PMID: 22507553 PMCID: PMC3419618 DOI: 10.1186/1742-2094-9-68] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/16/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Astrocytes are an integral component of the blood-brain barrier (BBB) which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP)-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. METHODS Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK), reactive oxygen species (ROS) and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP)-1 produced by astrocytes was measured by ELISA. RESULTS We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. CONCLUSIONS These results link albumin (acting through ROS and the p38 MAPK) to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or traumatic brain injury. The increase in MMP-9 produced by albumin further implicates both astrocytes and albumin in the acute and long-term complications of acute CNS insults, including cerebral edema and epilepsy.
Collapse
Affiliation(s)
- Hantamalala Ralay Ranaivo
- Department of Pediatrics, Division of Neurology, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA
| | | | | | | |
Collapse
|
41
|
Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol 2012; 93:1193-1203. [PMID: 22398316 DOI: 10.1099/vir.0.040899-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) encephalitis is characterized by neuroinflammation, neuronal loss and blood-brain barrier (BBB) disruption. However, the mechanisms associated with the BBB disruption are unclear. Complex interactions between the tight junction proteins (TJP) and the adherens junction proteins (AJP) of the brain microvascular endothelial cells are responsible for maintaining the BBB integrity. Herein, we characterized the relationship between the BBB disruption and expression kinetics of key TJP, AJP and matrix metalloproteinases (MMPs) in the mice brain. A dramatic increase in the BBB permeability and extravasation of IgG was observed at later time points of the central nervous system (CNS) infection and did not precede virus-CNS entry. WNV-infected mice exhibited significant reduction in the protein levels of the TJP ZO-1, claudin-1, occludin and JAM-A, and AJP β-catenin and vascular endothelial cadherin, which correlated with increased levels of MMP-1, -3 and -9 and infiltrated leukocytes in the brain. Further, intracranial inoculation of WNV also demonstrated increased extravasation of IgG in the brain, suggesting the role of virus replication in the CNS in BBB disruption. These data suggest that altered expression of junction proteins is a pathological event associated with WNV infection and may explain the molecular basis of BBB disruption. We propose that WNV initially enters CNS without altering the BBB integrity and later virus replication in the brain initiates BBB disruption, allowing enhanced infiltration of immune cells and contribute to virus neuroinvasion via the 'Trojan-horse' route. These data further implicate roles of multiple MMPs in the BBB disruption and strategies to interrupt this process may influence the WNV disease outcome.
Collapse
Affiliation(s)
- Kelsey Roe
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Stephanie Lum
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Beverly Orillo
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
42
|
Yang CM, Lin CC, Lee IT, Lin YH, Yang CM, Chen WJ, Jou MJ, Hsiao LD. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation 2012; 9:12. [PMID: 22251375 PMCID: PMC3298505 DOI: 10.1186/1742-2094-9-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/18/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS) cells, including astrocytes and neurons. Matrix metalloproteinase (MMP)-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB) and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) are largely unclear. METHODS In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos), c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs. RESULTS Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone), c-Src (PP1), PDGFR (AG1296), and PI3K (LY294002), and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs. CONCLUSION From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung University and Chang Gung Memorial Hospital, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yi-Hsin Lin
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Caleb M Yang
- School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Wei-June Chen
- Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| |
Collapse
|
43
|
Shukla V, Kumar Shakya A, Dhole TN, Misra UK. Upregulated expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in BALB/c mouse brain challenged with Japanese encephalitis virus. Neuroimmunomodulation 2012; 19:241-54. [PMID: 22441541 DOI: 10.1159/000335182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Uncontrolled immune responses in the nervous system are potentially damaging following Japanese encephalitis virus (JEV) infection. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) act together to control the proteolysis of extracellular matrix. Disbalances in the MMP/TIMP system during virally induced neurodegenerative processes and inflammations are responsive to changes in the progression of diseases. METHODS The expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-3 in JEV-infected mouse brain was analyzed by RT-PCR for semiquantitation and ELISA for estimation of protein along with brain histopathology at different days postinoculation (dpi). Gelatin gel zymography was performed for MMP-2 and MMP-9 activities. RESULTS In the virus-infected group, expression of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-3 was found to be increased from 1 dpi to 6 dpi as compared to controls by both RT-PCR and ELISA. The expressions of MMPs and TIMPs at mRNA and protein levels were in concordance with each other. Post hoc multiple comparison analysis between days revealed that, in the virus-infected groups, significant increases (p < 0.05) in MMP and TIMP levels were observed between various dpi at both mRNA and protein levels. Only the MMP-7 protein level at 6 dpi was not significant compared to 5 dpi (p = 0.99). CONCLUSION Overexpression of MMPs and TIMPs is associated with disease severity in the central nervous system (CNS) during JEV infection. Our results showed that JEV infection can alter the expression of MMPs and TIMPs in the CNS. Thus, assessing these important immune mediators in CNS infection appears to play an important role in the development of symptoms and may help to understand the JEV-induced neurological disorders. More studies are required on this important enzymatic system to study their role in immune mediated pathogenesis.
Collapse
Affiliation(s)
- Vibha Shukla
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | |
Collapse
|
44
|
Kuo DY, Chen PN, Kuo MH, Chen CH, Hsieh YS, Chu SC. NF-κB knockdown can modulate amphetamine-mediated feeding response. Neuropharmacology 2011; 62:1684-94. [PMID: 22182781 DOI: 10.1016/j.neuropharm.2011.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 12/15/2022]
Abstract
This study determined if transcription factor NF-κB is involved in the effect of amphetamine (AMPH)-mediated feeding response. Moreover, possible roles of hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) were also investigated. AMPH was administered daily to rats for four days. Changes in NF-κB, NPY and POMC expression were assessed and compared. The NPY gene was down-regulated with maximal response on Day 2 during AMPH treatment, which was consistent with the response to feeding behavior. In contrast, NF-κB and POMC genes were up-regulated, and their expression was increased by about 200% and 450%, respectively, with maximal response on Day 2. Moreover, NF-κB DNA binding ability and expression were increased similar to that of POMC. To examine further if NF-κB was involved, intracerebroventricular infusion of NF-κB antisense oligonucleotide was performed 1 h before the daily AMPH dosing in freely moving rats. Results showed that NF-κB knockdown could modify AMPH anorexia as well as NPY and POMC expression. The present findings prove that cerebral NF-κB participates in AMPH-mediated appetite suppression, possibly by modulating NPY and POMC expression. These results may aid in therapeutic research on AMPH and AMPH-like anti-obesity drugs.
Collapse
Affiliation(s)
- Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
45
|
Chen CJ, Ou YC, Chang CY, Pan HC, Lin SY, Liao SL, Raung SL, Chen SY, Chang CJ. Src signaling involvement in Japanese encephalitis virus-induced cytokine production in microglia. Neurochem Int 2011; 58:924-33. [DOI: 10.1016/j.neuint.2011.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/23/2023]
|
46
|
Kuo MY, Ou HC, Lee WJ, Kuo WW, Hwang LL, Song TY, Huang CY, Chiu TH, Tsai KL, Tsai CS, Sheu WHH. Ellagic acid inhibits oxidized low-density lipoprotein (OxLDL)-induced metalloproteinase (MMP) expression by modulating the protein kinase C-α/extracellular signal-regulated kinase/peroxisome proliferator-activated receptor γ/nuclear factor-κB (PKC-α/ERK/PPAR-γ/NF-κB) signaling pathway in endothelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5100-5108. [PMID: 21480623 DOI: 10.1021/jf1041867] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Previous studies have shown that vascular endothelium-derived matrix metalloproteinases (MMPs) contribute to the destabilization of atherosclerotic plaques, a key event triggering acute myocardial infarction. In addition, studies have reported that the PKC-MEK-PPARγ signaling pathway is involved in oxidized low-density lipoprotein (oxLDL)-induced expression of MMPs. Ellagic acid, a phenolic compound found in fruits and nuts, has potent antioxidant, anti-inflammatory, and anticancerous properties. However, the molecular mechanisms underlying its antiatherogenic effects remain to be clarified. This study aimed to assess whether the effects of ellagic acid on the fibrotic markers MMP-1 and MMP-3 are modulated by the PKC-ERK-PPAR-γ signaling pathway in human umbilical vein endothelial cells (HUVECs) that have been exposed to oxLDL. It was found that ellagic acid significantly inhibited oxLDL-induced expressions of MMP-1 and MMP-3. Pretreatment with ellagic acid and DPI, a well-known ROS inhibitor, attenuated the oxLDL-induced expression and activity of PKC-α. In addition, ellagic acid as well as pharmacological inhibitors of ROS, calcium, and PKC strongly suppressed the oxLDL-induced phosphorylation of extracellular signal-regulated kinase (ERK) and NF-κB activation. Moreover, ellagic acid ameliorated the oxLDL-induced suppression of PPAR-γ expression. In conclusion, the data suggest that ellagic acid elicits its protective effects by modulating the PKC-α/ERK/PPAR-γ/NF-κB pathway, resulting in the suppression of ROS generation and, ultimately, inhibition of MMP-1 and MMP-3 expression in HUVECs exposed to oxLDL.
Collapse
Affiliation(s)
- Mei-Ying Kuo
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|