1
|
Ortiz-Placín C, Salido GM, González A. Melatonin Interplay in Physiology and Disease-The Fountain of Eternal Youth Revisited. Biomolecules 2025; 15:682. [PMID: 40427575 PMCID: PMC12109172 DOI: 10.3390/biom15050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during the day. In addition to the pineal gland, other organs and tissues also produce melatonin, like, for example, the retina, Harderian glands, gut, ovaries, testes, skin, leukocytes, or bone marrow. The list of organs is extensive, including the cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, carotid body, placenta, and endometrium. At all these locations, the availability of melatonin is intended for local use. Interestingly, a decline of the circadian amplitude of the melatonin secretion occurs in old subjects in comparison to that found in younger subjects. Moreover, genetic and environmental factors are the primary causes of diseases, and oxidative stress is a key contributor to most pathologies. Numerous studies exist that show interesting effects of melatonin in different models of disease. Impairment in its secretion might have deleterious consequences for cellular physiology. In this regard, melatonin is a natural compound that is a carrier of a not yet completely known potential that deserves consideration. Thus, melatonin has emerged as a helpful ally that could be considered as a guard with powerful tools to orchestrate homeostasis in the body, majorly based on its antioxidant effects. In this review, we provide an overview of the widespread actions of melatonin against diseases preferentially affecting the elderly.
Collapse
Affiliation(s)
| | | | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003 Caceres, Spain; (C.O.-P.); (G.M.S.)
| |
Collapse
|
2
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Huang CR, Chu YT, Chang CL, Yip HK, Chen HH. ZNF746 plays cardinal roles on colorectal cancer (CRC) cell invasion and migration and regulates mitochondrial dynamics and morphological changes of CRC cells-Role of combined melatonin and 5-FU regimen. J Cell Biochem 2024; 125:e30507. [PMID: 38047497 DOI: 10.1002/jcb.30507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The underlying mechanism of colorectal cells developing into cancer cells has been extensively investigated, yet is still not fully delineated, resulting in the treatment of advanced colorectal cancer (CRC) remains regrettably an unmet need. Zinc Finger Protein 746/Parkin-interacting substrate (ZNF746/PARIS) has previously been identified to play a fundamental role on bladder cancer cell proliferation and metastasis that were effectively inhibited by melatonin (Mel). In this study, we utilized ex vivo/in vivo studies to verify whether the ZNF746 signaling was also crucial in CRC growth/invasion/migration. Tissue-bank specimens showed that the protein expression of ZNF746 was significantly increased in CRC than that of healthy colorectal tissues (p < 0.001). Additionally, in vitro study demonstrated that excessive expression of ZNF746 significantly inhibited mitochondrial activity via (1) interfering with the dynamic balance of mitochondrial fusion/fission and (2) inhibiting the protein expression of MFN1/MFN2/PGC1a (all p < 0.001). Furthermore, we identified that inhibition of ZNF746 protein expression significantly reduced the resistance of CRC cell lines to the anticancer drug of 5-FU (p < 0.001), whereas overexpression of ZNF746 significantly augmented resistance of CRC cells to 5-FU (all p < 0.001). Finally, using the cell culture method, we found that combined Mel and 5-FU was superior to merely one on promoting the CRC cell apoptosis (p < 0.001). Our results confirmed that ZNF746 signaling played a cardinal role of CRC cell proliferation/survival and combined Mel and 5-FU treatment attenuated the resistance of CRC cells to the drug mainly through suppressing this signaling.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
| | - Yu-Ting Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung, Taiwan
- Department of Nursing, Asia University Taichung, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Melatonin-Assisted Cisplatin Suppresses Urinary Bladder Cancer Cell Proliferation and Growth through Inhibiting PrP C-Regulated Cell Stress and Cell Proliferation Signaling. Int J Mol Sci 2023; 24:ijms24043353. [PMID: 36834767 PMCID: PMC9959909 DOI: 10.3390/ijms24043353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
This study investigated whether melatonin (Mel) would promote cisplatin to suppress the proliferation and growth of bladder cancer (BC) cells by inhibiting cellular prion protein (PrPC)-mediated cell stress and cell proliferation signaling. An immunohistochemical staining of tissue arrays from BC patients demonstrated that the PrPC expression was significantly upregulated from stage I to III BC (p < 0.0001). The BC cellline of T24 was categorized into G1 (T24), G2 (T24 + Mel/100 μM), G3 (T24+cisplatin/6 μM), G4 (PrPC overexpression in T24 (i.e., PrPC-OE-T24)), G5 (PrPC-OE-T24+Mel), and G6 (PrPC-OE-T24+cisplatin). When compared with a human uroepithelial cell line (SV-HUC-1), the cellular viability/wound healing ability/migration rate were significantly increased in T24 cells (G1) and further significantly increased in PrPC-OE-T24 cells (G4); and they were suppressed in Mel (G2/G5) or cisplatin (G3/G6) treatment (all p < 0.0001). Additionally, the protein expressions of cell proliferation (PI3K/p-Akt/p-m-TOR/MMP-9/PrPC), cell cycle/mitochondrial functional integrity (cyclin-D1/clyclin-E1/ckd2/ckd4/mitochondrial-cytochrome-C/PINK1), and cell stress (RAS/c-RAF/p-MEK1/2, p-ERK1/2) markers showed a similar pattern of cell viability among the groups (all p < 0.001). After the BC cell line of UMUC3 was implanted into nude mouse backs, by day 28 mthe BC weight/volume and the cellular levels of PrPC/MMP-2/MMP-9 were significantly, gradually reduced from groups one to four (all p < 0.0001). The protein expressions of cell proliferation (PI3K/p-Akt/p-m-TOR/MMP-9/PrPC), cell cycle/mitophagy (cyclin-D1/clyclin-E1/ckd2/ckd4/PINK1), and cell stress (RAS/c-RAF/p-MEK1,2/p-ERK1,2) signaling were significantly, progressively reduced from groups one to four, whereas the protein expressions of apoptotic (Mit-Bax/cleaved-caspase-3/cleaved-PARP) and oxidative stress/mitochondrial damaged (NOX-1/NOX-2/cytosolic-cytochrome-C/p-DRP1) markers expressed an opposite pattern of cell proliferation signaling among the groups (all p < 0.0001). Mel-cisplatin suppressed BC cell growth/proliferation via inhibiting the PrPC in upregulating the cell proliferation/cell stress/cell cycle signaling.
Collapse
|
5
|
Estaras M, Ortiz-Placin C, Castillejo-Rufo A, Fernandez-Bermejo M, Blanco G, Mateos JM, Vara D, Gonzalez-Cordero PL, Chamizo S, Lopez D, Rojas A, Jaen I, de Armas N, Salido GM, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin controls cell proliferation and modulates mitochondrial physiology in pancreatic stellate cells. J Physiol Biochem 2023; 79:235-249. [PMID: 36334253 PMCID: PMC9905253 DOI: 10.1007/s13105-022-00930-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells. In the presence of melatonin (1 mM, 100 µM, 10 µM, or 1 µM), decreases in the phosphorylation of c-Jun N-terminal kinase and of p44/42 and an increase in the phosphorylation of p38 were observed. Cell viability dropped in the presence of melatonin. A rise in the phosphorylation of AMP-activated protein kinase was detected in the presence of 1 mM and 100 µM melatonin. Treatment with 1 mM melatonin decreased the phosphorylation of protein kinase B, whereas 100 µM and 10 µM melatonin increased its phosphorylation. An increase in the generation of mitochondrial reactive oxygen species and a decrease of mitochondrial membrane potential were noted following melatonin treatment. Basal and maximal respiration, ATP production by oxidative phosphorylation, spare capacity, and proton leak dropped in the presence of melatonin. The expression of complex I of the mitochondrial respiratory chain was augmented in the presence of melatonin. Conversely, in the presence of 1 mM melatonin, decreases in the expression of mitofusins 1 and 2 were detected. The glycolysis and the glycolytic capacity were diminished in cells treated with 1 mM or 100 µM melatonin. Increases in the expression of phosphofructokinase-1 and lactate dehydrogenase were noted in cells incubated with 100 µM, 10 µM, or 1 µM melatonin. The expression of glucose transporter 1 was increased in cells incubated with 10 µM or 1 µM melatonin. Conversely, 1 mM melatonin decreased the expression of all three proteins. Our results suggest that melatonin, at pharmacological concentrations, might modulate mitochondrial physiology and energy metabolism in addition to major pathways involved in pancreatic stellate cell proliferation.
Collapse
Affiliation(s)
- Matias Estaras
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | - Candido Ortiz-Placin
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | - Alba Castillejo-Rufo
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | | | - Gerardo Blanco
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Jose M Mateos
- Departamento de Gastroenterología, Hospital Universitario, Cáceres, Spain
| | - Daniel Vara
- Departamento de Gastroenterología, Hospital Universitario, Cáceres, Spain
| | | | - Sandra Chamizo
- Departamento de Gastroenterología, Hospital Universitario, Cáceres, Spain
| | - Diego Lopez
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Adela Rojas
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Isabel Jaen
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Noelia de Armas
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Gines M Salido
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, Marseille, France
| | - Antonio Gonzalez
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain.
| |
Collapse
|
6
|
Estaras M, Martinez R, Garcia A, Ortiz-Placin C, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin modulates metabolic adaptation of pancreatic stellate cells subjected to hypoxia. Biochem Pharmacol 2022; 202:115118. [PMID: 35671789 DOI: 10.1016/j.bcp.2022.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Pancreatic stellate cells (PSCs), the main cell type responsible for the development of fibrosis in pancreatic cancer, proliferate actively under hypoxia. Melatonin has received attention as a potential antifibrotic agent due to its anti-proliferative actions on PSCs. In this work, we investigated the activation of the PI3K/Akt/mTOR pathway and the metabolic adaptations that PSCs undergo under hypoxic conditions, as well as the probable modulation by melatonin. Incubation of cells under hypoxia induced an increase in cell proliferation, and in the expression of alpha-smooth muscle actin and of collagen type 1. In addition, an increase in the phosphorylation of Akt was observed, whereas a decrease in the phosphorylation of PTEN and GSK-3b was noted. The phosphorylation of mTOR and its substrate p70 S6K was decreased under hypoxia. Treatment of PSCs with melatonin under hypoxia diminished cell proliferation, the levels of alpha-smooth muscle actin and of collagen type 1, the phosphorylation of Akt and increased phosphorylation of mTOR. Mitochondrial activity decreased in PSCs under hypoxia. A glycolytic shift was observed. Melatonin further decreased mitochondrial activity. Under hypoxia, no increase in autophagic flux was noted. However, melatonin treatment induced autophagy activation. Nevertheless, inhibition of this process did not induce detectable changes in the viability of cells treated with melatonin. We conclude that PSCs undergo metabolic adaptation under hypoxia that might help them survive and that pharmacological concentrations of melatonin modulate cell responses to hypoxia. Our results contribute to the knowledge of the mechanisms by which melatonin could modulate fibrosis within the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Remigio Martinez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, España
| | - Alfredo Garcia
- Departamento de Producción Animal, CICYTEX-La Orden, Guadajira, Badajoz, España
| | - Candido Ortiz-Placin
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Antonio Gonzalez
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España.
| |
Collapse
|
7
|
Ammar OA, El-Missiry MA, Othman AI, Amer ME. Melatonin is a potential oncostatic agent to inhibit HepG2 cell proliferation through multiple pathways. Heliyon 2022; 8:e08837. [PMID: 35141433 PMCID: PMC8814902 DOI: 10.1016/j.heliyon.2022.e08837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Chemotherapy is a cornerstone in the treatment of hepatocellular carcinoma (HCC). Melatonin is a pineal hormone that targets various cancers, however, its antitumor pathways are still not fully elucidated. OBJECTIVE This study investigated melatonin's antitumor molecular mechanisms to inhibit the proliferation of HepG2 cells. MATERIALS AND METHODS HepG2 Cells were classified into cells without treatment as a control group and cells treated with melatonin (5.4 mmol/L) for 48 h. Proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 were estimated using immunohistochemical analysis. Apoptosis and cell cycle were evaluated using flow cytometric analysis. Apoptotic markers were detected using RT-qPCR assay. Antioxidants and oxidative stress biomarkers were performed using a colorimetric assay. RESULTS Melatonin produced a remarkable steady decrease in the viability of HepG2 cells at a concentration range between 5-20 mmol/L. Melatonin suppressed cell proliferation in the G2/M phase of the cell cycle (34.97 ± 0.92%) and induced apoptosis (12.43 ± 0.73%) through up-regulating p21 and p53 that was confirmed by the reduction of PCNA and Ki-67 expressions. Additionally, melatonin repressed angiogenesis evidenced by the down-regulation of angiopoietin-2, vascular endothelial growth factor receptor-2 expressions (0.42-fold change), and the level of CD133. Moreover, melatonin augmented the oxidative stress manifested by a marked increase of 4-hydroxynonenal levels with a reduction of glutathione content and superoxide dismutase activity. DISCUSSION AND CONCLUSION Melatonin inhibits proliferation and angiogenesis and induced apoptosis and oxidative stress in HepG2 cells. These results indicate the oncostatic effectiveness of melatonin on liver cancer.
Collapse
Affiliation(s)
- Omar A. Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa, Egypt
| | | | - Azza I. Othman
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Maggie E. Amer
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
8
|
Lai Y, Zhang T, Song W, Li Z, Lin W. Evaluation of Cell Viability with a Single Fluorescent Probe Based on Two Kinds of Fluorescence Signal Modes. Anal Chem 2021; 93:12487-12493. [PMID: 34455772 DOI: 10.1021/acs.analchem.1c02911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate evaluation of cell viability is important for dosage tests of anticancer drugs, pathology, and numerous biological experiments. However, due to the serious insufficieny of fluorescent probes, which can distinguish various cell states, the study of cell viability is immensely limited. To resolve this issue, we design and synthesize a new probe ACD-E to monitor cell viability with two kinds of fluorescence signal modes, the first single fluorescent probe that can distinguish three different cell states and furnish accurate information in biological experiments. ACD-E can discriminate live and dead cells in a dual-color mode by evaluating cell mitochondrial esterase activity and can also discriminate live and early necrosis cells by determining mitochondrial viscosity in a "turn-on" mode in the near-infrared region. Significantly, the novel ACD-E can also distinguish cell viability in vivo. This work establishes a robust strategy for monitoring multiple cell states using a single fluorescent probe.
Collapse
Affiliation(s)
- Youbo Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Tengteng Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhui Song
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zihong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
9
|
Joshi A, Upadhyay KK, Vohra A, Shirsath K, Devkar R. Melatonin induces Nrf2-HO-1 reprogramming and corrections in hepatic core clock oscillations in Non-alcoholic fatty liver disease. FASEB J 2021; 35:e21803. [PMID: 34365685 DOI: 10.1096/fj.202002556rrr] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Melatonin pleiotropically regulates physiological events and has a putative regulatory role in the circadian clock desynchrony-mediated Non-alcoholic fatty liver disease (NAFLD). In this study, we investigated perturbations in the hepatic circadian clock gene, and Nrf2-HO-1 oscillations in conditions of high-fat high fructose (HFHF) diet and/or jet lag (JL)-mediated NAFLD. Melatonin treatment (100 µM) to HepG2 cells led to an improvement in oscillatory pattern of clock genes (Clock, Bmal1, and Per) in oleic acid (OA)-induced circadian desynchrony, while Cry, Nrf2, and HO-1 remain oblivious of melatonin treatment that was also validated by circwave analysis. C57BL/6J mice subjected to HFHF and/or JL, and treated with melatonin showed an improvement in the profile of lipid regulatory genes (CPT-1, PPARa, and SREBP-1c), liver function (AST and ALT) and histomorphology of fatty liver. A detailed scrutiny revealed that hepatic mRNA and protein profiles of Bmal1 (at ZT6) and Clock (at ZT12) underwent corrective changes in oscillations, but moderate corrections were recorded in other components of clock genes (Per1, Per2, and Cry2). Melatonin induced changes in oscillations of anti-oxidant genes (Nrf2, HO-1, and Keap1) subtly contributed in the overall improvement in NAFLD recorded herein. Taken together, melatonin induced reprograming of hepatic core clock and Nrf2-HO-1 genes leads to an improvement in HFHF/JL-induced NAFLD.
Collapse
Affiliation(s)
- Apeksha Joshi
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kapil K Upadhyay
- Department of Internal medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kavita Shirsath
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
10
|
Estaras M, Gonzalez-Portillo MR, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernandez G, Lopez-Guerra D, Roncero V, Salido GM, González A. Melatonin Induces Apoptosis and Modulates Cyclin Expression and MAPK Phosphorylation in Pancreatic Stellate Cells Subjected to Hypoxia. Int J Mol Sci 2021; 22:5555. [PMID: 34074034 PMCID: PMC8197391 DOI: 10.3390/ijms22115555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In certain diseases of the pancreas, pancreatic stellate cells form an important part of fibrosis and are critical for the development of cancer cells. A hypoxic condition develops within the tumor, to which pancreatic stellate cells adapt and are able to proliferate. The consequence is the growth of the tumor. Melatonin, the product of the pineal gland, is gaining attention as an agent with therapeutic potential against pancreatic cancers. Its actions on tumor cells lead, in general, to a reduction in cell viability and proliferation. However, its effects on pancreatic stellate cells subjected to hypoxia are less known. In this study, we evaluated the actions of pharmacological concentrations of melatonin (1 mM-1 µM) on pancreatic stellate cells subjected to hypoxia. The results show that melatonin induced a decrease in cell viability at the highest concentrations tested. Similarly, the incorporation of BrdU into DNA was diminished by melatonin. The expression of cyclins A and D also was decreased in the presence of melatonin. Upon treatment of cells with melatonin, increases in the expression of major markers of ER stress, namely BIP, phospho-eIF2α and ATF-4, were detected. Modulation of apoptosis was noticed as an increase in caspase-3 activation. In addition, changes in the phosphorylated state of p44/42, p38 and JNK MAPKs were detected in cells treated with melatonin. A slight decrease in the content of α-smooth muscle actin was detected in cells treated with melatonin. Finally, treatment of cells with melatonin decreased the expression of matrix metalloproteinases 2, 3, 9 and 13. Our observations suggest that melatonin, at pharmacological concentrations, diminishes the proliferation of pancreatic stellate cells subjected to hypoxia through modulation of cell cycle, apoptosis and the activation of crucial MAPKs. Cellular responses might involve certain ER stress regulator proteins. In view of the results, melatonin could be taken into consideration as a potential therapeutic agent for pancreatic fibrosis.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Manuel R. Gonzalez-Portillo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Miguel Fernandez-Bermejo
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Jose M. Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Gerardo Blanco-Fernandez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Gines M. Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| |
Collapse
|
11
|
Estaras M, Gonzalez-Portillo MR, Martinez R, Garcia A, Estevez M, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernández G, Lopez-Guerra D, Roncero V, Salido GM, Gonzalez A. Melatonin Modulates the Antioxidant Defenses and the Expression of Proinflammatory Mediators in Pancreatic Stellate Cells Subjected to Hypoxia. Antioxidants (Basel) 2021; 10:577. [PMID: 33918063 PMCID: PMC8070371 DOI: 10.3390/antiox10040577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic stellate cells (PSC) play a major role in the formation of fibrotic tissue in pancreatic tumors. On its side, melatonin is a putative therapeutic agent for pancreatic cancer and inflammation. In this work, the actions of melatonin on PSC subjected to hypoxia were evaluated. Reactive oxygen species (ROS) generation reduced (GSH) and oxidized (GSSG) levels of glutathione, and protein and lipid oxidation were analyzed. The phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and the regulatory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα) was studied. The expression of Nrf2-regulated antioxidant enzymes, superoxide dismutase (SOD) enzymes, cyclooxygenase 2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also studied. Total antioxidant capacity (TAC) was assayed. Finally, cell viability was studied. Under hypoxia and in the presence of melatonin generation of ROS was observed. No increases in the oxidation of proteins or lipids were detected. The phosphorylation of Nrf2 and the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1, heme oxygenase-1, SOD1, and of SOD2 were augmented. The TAC was increased. Protein kinase C was involved in the effects of melatonin. Melatonin decreased the GSH/GSSG ratio at the highest concentration tested. Cell viability dropped in the presence of melatonin. Finally, melatonin diminished the phosphorylation of NF-kB and the expression of COX-2, IL-6, and TNF-α. Our results indicate that melatonin, at pharmacological concentrations, modulates the red-ox state, viability, and the expression of proinflammatory mediators in PSC subjected to hypoxia.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Manuel R. Gonzalez-Portillo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Alfredo Garcia
- Department of Animal Production, CICYTEX-La Orden, 06187 Badajoz, Spain;
| | - Mario Estevez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres, Spain;
| | - Miguel Fernandez-Bermejo
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Jose M. Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Gines M. Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| |
Collapse
|
12
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
13
|
Estaras M, Martinez-Morcillo S, García A, Martinez R, Estevez M, Perez-Lopez M, Miguez MP, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco G, Lopez D, Roncero V, Salido GM, Gonzalez A. Pancreatic stellate cells exhibit adaptation to oxidative stress evoked by hypoxia. Biol Cell 2020; 112:280-299. [PMID: 32632968 DOI: 10.1111/boc.202000020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Alfredo García
- Department of Animal Production, Cicytex-La Orden, Badajoz, Spain
| | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Mario Estevez
- IPROCAR Research Institute, Food Technology, University of Extremadura, Caceres, 10003, Spain
| | - Marcos Perez-Lopez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Maria P Miguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
14
|
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886:173471. [PMID: 32877658 DOI: 10.1016/j.ejphar.2020.173471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Chen YT, Huang CR, Chang CL, Chiang JY, Luo CW, Chen HH, Yip HK. Jagged2 progressively increased expression from Stage I to III of Bladder Cancer and Melatonin-mediated downregulation of Notch/Jagged2 suppresses the Bladder Tumorigenesis via inhibiting PI3K/AKT/mTOR/MMPs signaling. Int J Biol Sci 2020; 16:2648-2662. [PMID: 32792862 PMCID: PMC7415428 DOI: 10.7150/ijbs.48358] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background: This study assessed the expression of Jagged2 in human bladder cancer (BC) tested the hypothesis that melatonin (Mel) inhibited the tumorigenesis of BC cells mainly through downregulating the Notch/Jagged2 and PI3K/AKT/mTOR/MMPs(2&9) signaling pathways. Methods and Results: Tissue array from BC patients showed that the gene and protein expressions of JAG2/Jagged2 were significantly upregulated from T1 to T3 (primary tumor size) and from stage I to III (all p<0.001). In vitro study showed that in BC cell line of UMUC3, the cellular and protein expressions of Jagged2 were significantly attenuated in Mel-treated UMUC3 and further attenuated in UMUC3 shRNA silenced Notch/JAG2 (UMUC3KD) than in UMUC3 only (all p<0.0001). The protein expressions of Notch/Jagged2/MMPs(2&9)/PI3K/p-AKT/mTOR/p53/ratio of LC3BII/LC3B-I were significantly progressively reduced from UMUC3 to UMUC3+Mel/1.0mM, further to UMUC3+Mel/2.0mM and furthermore to UMUC3KD (all p<0.0001). The cell proliferation/invasion/colony formation/healing-process were significantly inhibited in Mel-treated/2.0mM UMUC3 and further significantly inhibited in UMUC3KD regardless of Mel treatment as compared with UMUC3 only (all p<0.0001). By day 28 after UMUC3 implanted into nude mouse back, the BC weight/volume were significantly reduced in UMUC3+Mel (100 mg/kg/day) and furthermore reduced in UMUC3KD (all p<0.0001) as compared with UMUC3 only (all p<0.0001). The cellular (MMPs(2&9)/Notch/Jagged2) and protein (Notch/Jagged2/PI3K/p-AKT/mTOR/MMPs(2&9)) exhibited a similar trend, whereas the PTEN protein level exhibited an opposite pattern of PI3K among three groups (all p<0.0001). Conclusion: Notch/Jagged-PI3K/p-AKT/mTOR/MMPs is one essential signaling pathway for BC survival, proliferation and invasion that were remarkably suppressed by Mel treatment.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| |
Collapse
|
16
|
Melatonin-induced ApoE expression in mouse astrocytes protects endothelial cells from OGD-R induced injuries. Transl Psychiatry 2020; 10:181. [PMID: 32513932 PMCID: PMC7280243 DOI: 10.1038/s41398-020-00864-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/10/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is a leading reason of death and long-term disability, and most studies mainly focus on efforts to protect neurons. However, failed clinical trials suggest that therapies against single target in neurons may not be sufficient and the involvement of endothelial cells and glial cells have been underestimated. Astrocytes are the major source of ApoE in the brain and endothelial cells express high level of ApoE receptors. Thus, ApoE may mediate the interaction between astrocytes and endothelial cells. To address whether and how ApoE-mediated astrocytes-endothelial cells interaction contributes to the pathogenesis of stroke, we used oxygen and glucose deprivation-reoxygenation (OGD-R) as a stroke model and investigated the effects of OGD-R on astrocytes-endothelial cell co-cultures in the current study. We find that OGD-R leads to various damages to endothelial cells, including compromised cell viability, increased ROS level, enhanced caspase activity, and higher apoptotic rate. Meanwhile, mouse astrocytes could secrete ApoE to activate PI3K/eNOS signaling in endothelial cells to prevent OGD-R induced injuries. In addition, OGD-R induces down-regulation of ApoE in astrocyte-endothelial cell co-cultures while melatonin restores astrocytic ApoE expression via pCREB pathway and protects endothelial cell in OGD-R treated co-cultures. Our study provides evidence that astrocytes could protect endothelial cells via ApoE in OGD-R condition and Melatonin could induce ApoE expression to protect endothelial cells.
Collapse
|
17
|
Estaras M, Peña FJ, Tapia JA, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Blanco G, Lopez D, Salido GM, Gonzalez A. Melatonin modulates proliferation of pancreatic stellate cells through caspase-3 activation and changes in cyclin A and D expression. J Physiol Biochem 2020; 76:345-355. [PMID: 32361979 DOI: 10.1007/s13105-020-00740-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
In this study, the effects of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and proliferation, caspase-3 activation, and the expression of cyclin A and cyclin D were analyzed. Our results show that melatonin decreased PSC viability in a time- and concentration-dependent manner. This effect was not inhibited by treatment of cells with MT1, MT2, calmodulin, or ROR-alpha inhibitors prior to melatonin addition. Activation of caspase-3 in response to melatonin was detected. The expression of cyclin A and cyclin D was decreased in cells treated with melatonin. Finally, changes in BrdU incorporation into the newly synthesized DNA of proliferating cells were also observed in the presence of melatonin. We conclude that melatonin, at pharmacological concentrations, modulates proliferation of PSC through activation of apoptosis and involving crucial regulators of the cell cycle. These actions might not require specific melatonin receptors. Our observations suggest that melatonin, at high doses, could potentially exert anti-fibrotic effects and, thus, could be taken into consideration as supportive treatment in the therapy of pancreatic diseases.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain.
| |
Collapse
|
18
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
19
|
Estaras M, Ameur FZ, Roncero V, Fernandez-Bermejo M, Blanco G, Lopez D, Mateos JM, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces Ca 2+ mobilization, reactive oxygen species generation and impairs trypsin secretion in mouse pancreatic acinar cells. Biochim Biophys Acta Gen Subj 2019; 1863:129407. [PMID: 31381958 DOI: 10.1016/j.bbagen.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM-50 μM) on isolated mouse pancreatic acinar cells. METHODS Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1, Ahmed BenBella, Algeria
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
20
|
Estaras M, Moreno N, Santofimia-Castaño P, Martinez-Morcillo S, Roncero V, Blanco G, Lopez D, Fernandez-Bermejo M, Mateos JM, Iovanna JL, Salido GM, Gonzalez A. Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells. J Physiol Biochem 2019; 75:185-197. [PMID: 30868511 DOI: 10.1007/s13105-019-00671-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type-specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2-loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red-derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Noelia Moreno
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gines M Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain.
| |
Collapse
|
21
|
Chen YT, Yang CC, Shao PL, Huang CR, Yip HK. Melatonin-mediated downregulation of ZNF746 suppresses bladder tumorigenesis mainly through inhibiting the AKT-MMP-9 signaling pathway. J Pineal Res 2019; 66:e12536. [PMID: 30372570 DOI: 10.1111/jpi.12536] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/20/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There still lacking effective treatment for bladder cancer. This study investigated whether melatonin (Mel) can suppress the growth and invasion of bladder cancer cells. Male C57B/L6 mice were categorized into control group (ie, subcutaneous injection of HT1197 bladder cancer cell line at the back] and treatment group [subcutaneous HT1197 cells + intraperitoneal Mel (100 mg/kg/d) from day 8 to day 21 after tumor cell injection]. In vitro Mel suppressed cell growth of four bladder cancer cell lines (ie, T24, RT4, HT1197, HT1376), cell migration in HT1197/HT1376, mitochondrial membrane potential (MMP) in T24 and colony formation in RT4 cells as well as arrested the cell cycle at G0 phase and inhibited the mitotic phase of T24 cells (all P < 0.0001). Protein expression of ZNF746 in RT4/T24 cells and protein expression phosphorylated (p)-AKT/MMP-2/MMP-9 in HT1197/HT1376 cells were reduced following Mel treatment (all P < 0.001). Transfection of T24 cells with plasmid-based shRNA (ie, ZNF746-silencing) downregulated the protein expression of MMP-9, cell growth, and invasion and attachment to endothelial cells but upregulated the colony formation (all P < 0.001). Mel suppressed oxidative stress and MMP but upregulated mitochondria mass in ZNF746-silenced T24 cells, whereas these parameters exhibited a similar patter to Mel treatment in ZNF746-silenced T24 cells (all P < 0.0001). In vivo study demonstrated that Mel treatment significantly suppressed cellular expressions of MMP-9/MMP-2, protein expressions of ZNF746/p-AKT, and tumor size (all P < 0.001). Mel treatment suppressed the growth, migration, and invasion of bladder carcinoma cells through downregulating ZNF746-regulated MMP-9/MMP-2 signaling.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Department of Nursing, Asia University, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Tamtaji OR, Mirhosseini N, Reiter RJ, Behnamfar M, Asemi Z. Melatonin and pancreatic cancer: Current knowledge and future perspectives. J Cell Physiol 2018; 234:5372-5378. [PMID: 30229898 DOI: 10.1002/jcp.27372] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, Texas
| | - Morteza Behnamfar
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Jaworek J, Leja-Szpak A, Nawrot-Porąbka K, Szklarczyk J, Kot M, Pierzchalski P, Góralska M, Ceranowicz P, Warzecha Z, Dembinski A, Bonior J. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis. Int J Mol Sci 2017; 18:ijms18051014. [PMID: 28481310 PMCID: PMC5454927 DOI: 10.3390/ijms18051014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK). Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1) Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK) release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2) Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3) In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.
Collapse
Affiliation(s)
- Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Katarzyna Nawrot-Porąbka
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Joanna Szklarczyk
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Michalina Kot
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Marta Góralska
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Kraków, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Kraków, Poland.
| | - Artur Dembinski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Kraków, Poland.
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Kraków, Poland.
| |
Collapse
|
25
|
Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 2016; 7:2985-3001. [PMID: 26672764 PMCID: PMC4823085 DOI: 10.18632/oncotarget.6407] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 02/01/2023] Open
Abstract
Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment.
Collapse
|
26
|
Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration. Int J Mol Sci 2016; 17:341. [PMID: 26959015 PMCID: PMC4813203 DOI: 10.3390/ijms17030341] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 12/27/2022] Open
Abstract
For several years, oncostatic and antiproliferative properties, as well as thoses of cell death induction through 5-methoxy-N-acetiltryptamine or melatonin treatment, have been known. Paradoxically, its remarkable scavenger, cytoprotective and anti-apoptotic characteristics in neurodegeneration models, such as Alzheimer’s disease and Parkinson’s disease are known too. Analogous results have been confirmed by a large literature to be associated to the use of many other bioactive molecules such as resveratrol, tocopherol derivatives or vitamin E and others. It is interesting to note that the two opposite situations, namely the neoplastic pathology and the neurodegeneration, are characterized by deep alterations of the metabolome, of mitochondrial function and of oxygen consumption, so that the oncostatic and cytoprotective action can find a potential rationalization because of the different metabolic and mitochondrial situations, and in the effect that these molecules exercise on the mitochondrial function. In this review we discuss historical and general aspects of melatonin, relations between cancers and the metabolome and between neurodegeneration and the metabolome, and the possible effects of melatonin and of other bioactive molecules on metabolic and mitochondrial dynamics. Finally, we suggest a common general mechanism as responsible for the oncostatic/cytoprotective effect of melatonin and of other molecules examined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
27
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [PMID: 25764371 DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Melatonin, the product of the pineal gland, possesses antioxidant, anti-inflammatory, and antitumor properties in different tissues, in addition to its role as regulator of biological rhythms. In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSCs) have been examined. Cell viability was studied using AlamarBlue® test. Cell-type specific markers and total amylase content were analyzed by immunocytochemistry and colorimetric methods, respectively. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The cellular red-ox state was monitored following CM-H2DCFDA-derived fluorescence. Determination of the activation of p44/42 mitogen-activated protein kinase (MAPK), SAPK/JNK and p38 was measured by Western blot analysis. Our results show that PSCs viability decreased in the presence of 100 μM or 1 mM melatonin. However, in the presence of 1 or 10 μM melatonin, no changes in cell viability were observed. Melatonin MT1 and MT2 receptors could not be detected. Melatonin induced Ca(2+) mobilization from intracellular pools. In the presence of melatonin, activation of crucial components of MAPKs pathway was noticed. Finally, the indole did not change the oxidative state of PSCs, but exerted a protective effect against H2O2-induced oxidation. We conclude that melatonin, at pharmacological concentrations, might regulate cellular proliferation of PSCs independently of specific plasma membrane receptors.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, E-10003, Caceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Santofimia-Castaño P, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A. Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol Cell Biochem 2014; 397:75-86. [PMID: 25084987 DOI: 10.1007/s11010-014-2174-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
Intracellular Ca(2+) overload has been considered a common pathological precursor of pancreatic injury. In this study, the effects of melatonin on Ca(2+) mobilization induced by cholecystokinin octapeptide (CCK-8) in freshly isolated mouse pancreatic acinar cells have been examined. Changes in intracellular free Ca(2+) concentration were followed by single cell fluorimetry. For this purpose, cells were loaded with the Ca(2+)-sensitive fluorescent dye fura-2-acetoxymethyl ester. In order to evaluate the contribution of Ca(2+) transport at the plasma membrane, at the endoplasmic reticulum (ER) or at the mitochondria, cells were incubated with CCK-8 alone or in combination with LaCl3, thapsigargin (Tps), or FCCP to, respectively, uncouple Ca(2+) transport at these localizations. The experiments were performed in the absence or in the presence of melatonin in combination with the stimuli mentioned. Our results show that the total Ca(2+) mobilization evoked by CCK-8 was attenuated by a 30% in the presence of 100 µM melatonin compared with the responses induced by CCK-8 alone. Upon inhibition of Ca(2+) transport into the ER by Tps, Ca(2+) mobilization was also reduced in the presence of melatonin. In the presence of LaCl3 plus melatonin, the total Ca(2+) mobilization induced by CCK-8 was significantly decreased, compared with the response obtained without melatonin but in the presence of LaCl3. No major differences were found when the cells were incubated with CCK-8 or Tps alone or in combination with LaCl3 plus melatonin and FCCP, compared with the responses obtained in the absence of FCCP. The initial Ca(2+) release from intracellular stores evoked by CCK-8 or Tps was not significantly reduced in the presence of melatonin. The effect of melatonin could be explained on the basis of a stimulated Ca(2+) transport out of the cell through the plasma membrane and by a stimulation of Ca(2+) reuptake into the ER. Accumulation of Ca(2+) into mitochondria might not be a major mechanism stimulated by melatonin. We conclude that melatonin alleviates intracellular Ca(2+) accumulation, a situation potentially leading to cell damage in the exocrine pancreas.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Avenida Universidad s/n, 10003, Caceres, Spain
| | | | | | | | | |
Collapse
|
30
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells. Toxicol Lett 2014; 229:465-473. [PMID: 25068500 DOI: 10.1016/j.toxlet.2014.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
Abstract
Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Lourdes Garcia-Sanchez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Deborah Clea Ruy
- Facultade de Agronomia & Medicina Veterinaria, Universidade de Brasilia, 70900-100, Brasilia DF, Brazil
| | | | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain.
| |
Collapse
|
31
|
Overcoming hypoxic-resistance of tumor cells to TRAIL-induced apoptosis through melatonin. Int J Mol Sci 2014; 15:11941-56. [PMID: 25000265 PMCID: PMC4139822 DOI: 10.3390/ijms150711941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022] Open
Abstract
A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.
Collapse
|
32
|
Zhou Q, Gui S, Zhou Q, Wang Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One 2014; 9:e101132. [PMID: 24992189 PMCID: PMC4084631 DOI: 10.1371/journal.pone.0101132] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022] Open
Abstract
Objective Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. Methods MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN), myosin light chain kinase (MLCK) and phosphorylation of myosin light chain (MLC), JNK were detected by western blots. Results After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. Conclusions Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.
Collapse
Affiliation(s)
- Qiaoyun Zhou
- Department of Respiratory Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Shuyu Gui
- Department of Respiratory Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Gene Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (SG); (YW)
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Gene Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Gene Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (SG); (YW)
| |
Collapse
|
33
|
Ordoñez R, Carbajo-Pescador S, Prieto-Dominguez N, García-Palomo A, González-Gallego J, Mauriz JL. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res 2014; 56:20-30. [PMID: 24117795 DOI: 10.1111/jpi.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/30/2013] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide because of its high incidence and its metastatic potential. Extracellular matrix degradation by matrix metalloproteinases (MMPs) has been connected with cancer cell invasion, and it has been suggested that inhibition of MMPs by synthetic and natural inhibitors may be of great importance in the HCC therapies. Melatonin, the main product of the pineal gland, exerts antiproliferative, proapoptotic, and antiangiogenic properties in HepG2 human hepatocellular cells, and exhibits anti-invasive and antimetastatic activities by suppressing the enzymatic activity of MMP-9 in different tumor types. However, the underlying mechanism of anti-invasive activity in HCC models has not been fully elucidated. Here, we demonstrate that 1 mm melatonin dosage reduced in IL-1β-induced HepG2 cells MMP-9 gelatinase activity and inhibited cell invasion and motility through downregulation of MMP-9 gene expression and upregulation of the MMP-9-specific inhibitor tissue inhibitor of metalloproteinases (TIMP)-1. No significant changes were observed in the expression and activity of MMP-2, the other proteinase implicated in matrix collagen degradation, and its tissue inhibitor, TIMP-2. Also, melatonin significantly suppressed IL-1β-induced nuclear factor-kappaB (NF-κB) translocation and transcriptional activity. In summary, we demonstrate that melatonin modulates motility and invasiveness of HepG2 cell in vitro through a molecular mechanism that involves TIMP-1 upregulation and attenuation of MMP-9 expression and activity via NF-κB signal pathway inhibition.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain; Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Santofimia-Castaño P, Ruy DC, Salido GM, González A. Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells. J Physiol Biochem 2013; 69:897-908. [PMID: 23904230 DOI: 10.1007/s13105-013-0267-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023]
Abstract
In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca(2+) signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca(2+) concentration ([Ca(2+)](c)). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM-1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca(2+)](c), followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca(2+)](c) peak response, a faster rate of decay of [Ca(2+)](c) and lower values for the steady state of [Ca(2+)](c), compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca(2+) mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca(2+) mobilization induced by 10 pM CCK-8. On the other hand, Ca(2+) entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca(2+) signals.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Avenida Universidad s/n, 10003, Caceres, Spain
| | | | | | | |
Collapse
|
35
|
Batista APC, da Silva TG, Teixeira ÁA, de Medeiros PL, Teixeira VW, Alves LC, dos Santos FA. Melatonin effect on the ultrastructure of Ehrlich ascites tumor cells, lifetime and histopathology in Swiss mice. Life Sci 2013. [DOI: 10.1016/j.lfs.2013.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 2013; 17:1483-96. [DOI: 10.1517/14728222.2013.834890] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Fan L, Sun G, Ma T, Zhong F, Wei W. Melatonin overcomes apoptosis resistance in human hepatocellular carcinoma by targeting survivin and XIAP. J Pineal Res 2013; 55:174-83. [PMID: 23679681 DOI: 10.1111/jpi.12060] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022]
Abstract
Apoptosis resistance in hepatocellular carcinoma (HCC) is one of the most significant factors for hepatocarcinogenesis and tumor progression, and leads to resistance to conventional chemotherapy. It is well known that inhibitor of apoptosis proteins (IAPs) play key roles in apoptosis resistance, it has become an important target for antitumor therapy. In this study, we examined if melatonin, the main secretory product of the pineal gland, targeted IAPs, leading to the inhibition of apoptosis resistance. To accomplish this, we first observed that four members of IAPs (cIAP-1, cIAP-2, survivin, and XIAP) were overexpressed in human HCC tissue. Interestingly, melatonin significantly inhibited the growth of HepG2 and SMMC-7721 cells and promoted apoptosis along with the downregulation of survivin and XIAP, but had no effect on the expression of cIAP-1 and cIAP-2. These data suggest that the inhibition of survivin and XIAP by melatonin may play an important part in reversing apoptosis resistance. Notably, cIAP-1, survivin and XIAP were significantly associated with the coexpression of COX-2 in human HCC specimens. Melatonin also reduced the expression of COX-2 and inhibited AKT activation in HepG2 and SMMC-7721 cells. Inhibition of COX-2 activity with the selective inhibitor, NS398, and inhibition of AKT activation using the PI3K inhibitor, LY294002, in tumor cells confirmed that melatonin-induced apoptosis was COX-2/PI3K/AKT-dependent, suggesting that the COX-2/PI3K/AKT pathway plays a role in melatonin inhibition of IAPs. Taken together, these results suggest that melatonin overcomes apoptosis resistance by the suppressing survivin and XIAP via the COX-2/PI3K/AKT pathway in HCC cells.
Collapse
Affiliation(s)
- Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | |
Collapse
|
39
|
Fan L, Sun G, Ma T, Zhong F, Lei Y, Li X, Wei W. Melatonin reverses tunicamycin-induced endoplasmic reticulum stress in human hepatocellular carcinoma cells and improves cytotoxic response to doxorubicin by increasing CHOP and decreasing survivin. J Pineal Res 2013; 55:184-94. [PMID: 23711089 DOI: 10.1111/jpi.12061] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022]
Abstract
Chemoresistance in hepatocellular carcinoma (HCC) is associated with multiple cellular responses to environmental stresses, such as nutrient deprivation and hypoxia. Nevertheless, whether ER stress resulting from nutrient deprivation and tumor hypoxia contributes to drug resistance remains unclear. Melatonin increased the efficacy of chemotherapeutic drugs in hepatocellular carcinoma in our previous studies. However, the effects of melatonin on endoplasmic reticulum (ER) stress-induced resistance to chemotherapeutic agents in HCC have not been tested. The effect of the endoplasmic reticulum (ER) stress response during resistance of human hepatocellular carcinoma cells against doxorubicin was investigated in this study. Pretreatment of HepG2 and SMMC-7721 cells (two human hepatocellular carcinoma cell lines) with tunicamycin, an ER stress inducer, drastically decreased the rate of apoptosis generated by doxorubicin. Interestingly, co-pretreatment with tunicamycin and melatonin significantly increased apoptosis induced by doxorubicin. Simultaneously, the expression of phosphorylated AKT (p-AKT) was elevated in HepG2 and SMMC-7721 cells given tunicamycin but reduced in the presence of melatonin. Furthermore, consistent with inhibition of AKT activation by using the PI3K inhibitor LY294002, melatonin elevated the levels of CHOP (C/EBP-homologous protein) and reduced the levels of Survivin (a member of the inhibitor of apoptosis protein family)suggesting that inhibition of the PI3K/AKT pathway by melatonin-reversed ER stress-induced resistance to doxorubicin in human hepatocellular carcinoma cells. These results demonstrate that melatonin attenuates ER stress-induced resistance to doxorubicin in human hepatocellular carcinoma cells by down-regulating the PI3K/AKT pathway, increasing the levels of CHOP and decreasing the levels of Survivin.
Collapse
Affiliation(s)
- Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 2013; 109:83-91. [PMID: 23756865 PMCID: PMC3708553 DOI: 10.1038/bjc.2013.285] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) growth relies on angiogenesis via vascular endothelial growth factor (VEGF) release. Hypoxia within tumour environment leads to intracellular stabilisation of hypoxia inducible factor 1 alpha (Hif1α) and signal transducer and activator of transcription (STAT3). Melatonin induces apoptosis in HCC, and shows anti-angiogenic features in several tumours. In this study, we used human HepG2 liver cancer cells as an in vitro model to investigate the anti-angiogenic effects of melatonin. METHODS HepG2 cells were treated with melatonin under normoxic or CoCl2-induced hypoxia. Gene expression was analysed by RT-qPCR and western blot. Melatonin-induced anti-angiogenic activity was confirmed by in vivo human umbilical vein endothelial cells (HUVECs) tube formation assay. Secreted VEGF was measured by ELISA. Immunofluorescence was performed to analyse Hif1α cellular localisation. Physical interaction between Hif1α and its co-activators was analysed by immunoprecipitation and chromatin immunoprecipitation (ChIP). RESULTS Melatonin at a pharmacological concentration (1 mM) decreases cellular and secreted VEGF levels, and prevents HUVECs tube formation under hypoxia, associated with a reduction in Hif1α protein expression, nuclear localisation, and transcriptional activity. While hypoxia increases phospho-STAT3, Hif1α, and CBP/p300 recruitment as a transcriptional complex within the VEGF promoter, melatonin 1 mM decreases their physical interaction. Melatonin and the selective STAT3 inhibitor Stattic show a synergic effect on Hif1α, STAT3, and VEGF expression. CONCLUSION Melatonin exerts an anti-angiogenic activity in HepG2 cells by interfering with the transcriptional activation of VEGF, via Hif1α and STAT3. Our results provide evidence to consider this indole as a powerful anti-angiogenic agent for HCC treatment.
Collapse
|
41
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
42
|
Wang J, Guo W, Chen W, Yu W, Tian Y, Fu L, Shi D, Tong B, Xiao X, Huang W, Deng W. Melatonin potentiates the antiproliferative and pro-apoptotic effects of ursolic acid in colon cancer cells by modulating multiple signaling pathways. J Pineal Res 2013; 54:406-16. [PMID: 23330808 DOI: 10.1111/jpi.12035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is largely distributed in medical herbs and edible plants. Melatonin is an indoleamine compound produced in the pineal gland and also a plant-derived product. Both UA and melatonin have been shown to inhibit cancer cell growth in numerous studies, but they have never been combined altogether as an anticolon cancer treatment. In this study, we investigated whether the association between UA and melatonin leads to an enhanced antiproliferative and pro-apoptotic activities in colon cancer SW480 and LoVo cells. We found that combined treatment with UA and melatonin significantly enhanced inhibition of cell viability and migration, promoted changes in cell morphology and spreading, and increased induction of apoptosis, thereby potentiating the effects of UA alone in colon cancer cells. Moreover, we found that the enhanced effects of UA and melatonin combination are mediated through simultaneous modulation of cytochrome c/caspase, MMP9/COX-2, and p300/NF-κB signaling pathways. Combined treatment with UA and melatonin triggered the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, induced cleavage of caspase and PARP proteins, enhanced inhibition of MMP9 and COX-2 expression, promoted p300 and NF-κB translocation from cell nuclei to cytoplasm, and abrogated NF-κB binding and p300 recruitment to COX-2 promoter in colon cancer cells. These results, therefore, demonstrated that melatonin potentiated the antiproliferative and pro-apoptotic effects of UA in colon cancer cells by modulating multiple signaling pathways and suggest that such a combinational treatment might potentially become an effective way in colon cancer therapy.
Collapse
Affiliation(s)
- Jingshu Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim KJ, Choi JS, Kang I, Kim KW, Jeong CH, Jeong JW. Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. J Pineal Res 2013; 54:264-70. [PMID: 22924616 DOI: 10.1111/j.1600-079x.2012.01030.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/13/2012] [Indexed: 12/27/2022]
Abstract
The sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and nutrients. Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor angiogenesis and growth by regulating the transcription of genes in response to hypoxic stress. This study was designed to investigate the effects of melatonin on tumor growth and angiogenesis, as well as the mechanism underlying the antitumor activities of melatonin. In this study, we show that the administration of melatonin inhibits tumor growth and blocks tumor angiogenesis in mice. Moreover, melatonin diminished the expression of the HIF-1α protein within the tumor mass during tumorigenesis. Our findings suggest that melatonin is a promising anti-angiogenic therapeutic agent targeting HIF-1α in cancer. Considering that HIF-1α is overexpressed in a majority of human cancers, melatonin could offer a potent therapeutic agent for cancer.
Collapse
Affiliation(s)
- Kil-Jung Kim
- Department of Biomedical Science, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Rodriguez C, Martín V, Herrera F, García-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sánchez-Sánchez AM, Suárez S, Puente-Moncada N, Anítua MJ, Antolín I. Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int J Mol Sci 2013; 14:6597-613. [PMID: 23528889 PMCID: PMC3645656 DOI: 10.3390/ijms14046597] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
It is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined. Moreover, a synergistic effect has been found in several cancer types when it is administered in combination with chemotherapeutic agents. In the present review, we will summarize published work on the pro-apoptotic effect of melatonin in cancer cells and the reported mechanisms involved in such action. We will also construct a hypothesis on how different cell signaling pathways may relate each other on account for such effect.
Collapse
Affiliation(s)
- Carmen Rodriguez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Vanesa Martín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Federico Herrera
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisboa, Professor Egas Moniz Avenue, 1649-028 Lisboa, Portugal
| | - Guillermo García-Santos
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Jezabel Rodriguez-Blanco
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| | - Sara Casado-Zapico
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Ana María Sánchez-Sánchez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Santos Suárez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| | - Noelia Puente-Moncada
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
- Oncology Institute of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - María José Anítua
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| | - Isaac Antolín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, c/Julian Claveria 6, 33006 Oviedo, Spain; E-Mails: (V.M.); (F.H.); (G.G.-S.); (J.R.-B.); (S.C.-Z.); (A.M.S.-S.); (S.S.); (N.P.-M.); (M.J.A.); (I.A.)
| |
Collapse
|
45
|
Carbajo-Pescador S, Steinmetz C, Kashyap A, Lorenz S, Mauriz JL, Heise M, Galle PR, González-Gallego J, Strand S. Melatonin induces transcriptional regulation of Bim by FoxO3a in HepG2 cells. Br J Cancer 2012; 108:442-9. [PMID: 23257900 PMCID: PMC3566813 DOI: 10.1038/bjc.2012.563] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Melatonin induces apoptosis in many different cancer cell lines, including hepatocellular carcinoma cells. However, the responsible pathways have not been clearly elucidated. A member of the forkhead transcription factors' family, FoxO3a, has been implicated in the expression of the proapoptotic protein Bim (a Bcl-2-interacting mediator of cell death). In this study, we used human HepG2 liver cancer cells as an in vitro model to investigate whether melatonin treatment induces Bim through regulation by the transcription factor FoxO3a. Methods: Cytotoxicity of melatonin was compared in HepG2 hepatoblastoma cells and primary human hepatocytes. Proapoptotic Bim expression was analysed by reverse transcriptase–polymerase chain reaction and western blot. Reporter gene assays and chromatin immunoprecipitation assays were performed to analyse whether FoxO3a transactivates the Bim promoter. Small interfering RNA (siRNA) was used to study the role of FoxO3a in Bim expression. Immunofluorescence was performed to analyse FoxO3a localisation in HepG2 cells. Results: Melatonin treatment induces apoptosis in HepG2 cells, but not in primary human hepatocytes. The proapoptotic effect was mediated by increased expression of the BH3-only protein Bim. During melatonin treatment, we observed increased transcriptional activity of the forkhead-responsive element and could demonstrate that FoxO3a binds to a specific sequence within the Bim promoter. Furthermore, melatonin reduced phosphorylation of FoxO3a at Thr32 and Ser253, and induced its increased nuclear localisation. Moreover, silencing experiments with FoxO3a siRNA prevented Bim upregulation. Conclusion: This study shows that melatonin can induce apoptosis in HepG2 hepatocarcinoma cells through the upregulation of proapoptotic Bim mediated by nuclear translocation and activation of the transcription factor FoxO3a.
Collapse
Affiliation(s)
- S Carbajo-Pescador
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sánchez-Hidalgo M, Lee M, de la Lastra CA, Guerrero JM, Packham G. Melatonin inhibits cell proliferation and induces caspase activation and apoptosis in human malignant lymphoid cell lines. J Pineal Res 2012; 53:366-73. [PMID: 22582944 DOI: 10.1111/j.1600-079x.2012.01006.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin exerts strong anti-tumour activity via several mechanisms, including anti-proliferative and pro-apoptotic effects in addition to its potent antioxidant activity. Several studies have investigated the effects of melatonin on haematological malignancies. However, the previous studies investigating lymphoid malignancies have been largely restricted to a single type of malignancy, Burkitt's lymphoma (BL). Thus, we examined the actions of melatonin on the growth and apoptosis in a small panel of cell lines representing different human lymphoid malignancies including Ramos (Epstein-Barr virus-negative BL), SU-DHL-4 (diffuse large B cell lymphoma), DoHH2 (follicular B non-Hodgkin lymphoma) and JURKAT (acute T cell leukaemia). We showed that melatonin promotes cell cycle arrest and apoptosis in all these cells, although there was marked variations in responses among different cell lines (sensitivity; Ramos/DoHH2 > SU-DHL-4 > JURKAT). Melatonin-induced apoptosis was relatively rapid, with increased caspase 3 and PARP cleavage detected within 0.5-1 h following melatonin addition. Moreover, there was evidence for rapid processing of both caspase 9, as well as a breakdown of the mitochondrial inner transmembrane potential. On the contrary, caspase activation was detected only in SU-DHL-4 and Ramos cells following melatonin treatment suggesting that the extrinsic pathway does not make a consistent contribution to melatonin-induced apoptosis in malignant lymphocytes. Although all cell lines expressed the high-affinity melatonin receptors, MT1 and MT2, melatonin-induced caspase activation appeared to be independent these receptors. Our findings confirm that melatonin could be a potential chemotherapeutic/preventive agent for malignant lymphocytes. However, it is necessary to take into account that different lymphoid malignancies may differ in their response to melatonin.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Enzyme Activation
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Jurkat Cells
- Lymphoma, Non-Hodgkin/enzymology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Melatonin/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Poly(ADP-ribose) Polymerases/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/enzymology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Time Factors
Collapse
Affiliation(s)
- Marina Sánchez-Hidalgo
- Faculty of Medicine, Cancer Research UK Centre, Cancer Sciences, Southampton General Hospital, University of Southampton, Southampton, UK.
| | | | | | | | | |
Collapse
|
47
|
Wang J, Xiao X, Zhang Y, Shi D, Chen W, Fu L, Liu L, Xie F, Kang T, Huang W, Deng W. Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J Pineal Res 2012; 53:77-90. [PMID: 22335196 DOI: 10.1111/j.1600-079x.2012.00973.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Melatonin exhibits anti-inflammatory and anticancer effects and could be a chemopreventive and chemotherapeutic agent against cancers, but the precise mechanisms involved remain largely unresolved. In this study, we evaluated the mechanism of action of melatonin in human MDA-MB-361 breast cancer cells. Melatonin at pharmacological concentrations (10(-3) m) significantly suppressed cell proliferation and induced apoptosis in a dose-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of COX-2, p300, and NF-κB signaling. Melatonin significantly inhibited COX-2 expression and prostaglandin E(2) (PGE2) production, abrogated p300 histone acetyltransferase activity and p300-mediated NF-κB acetylation, thereby blocking NF-κB binding and p300 recruitment to COX-2 promoter. Pretreatment with a COX-2- or p300-selective inhibitor abrogated the melatonin-induced inhibition of cell proliferation, whereas PGE2 treatment or COX-2 transfection reversed the inhibition by melatonin. Moreover, melatonin markedly inhibited phosphorylation of PI3K, Akt, PRAS40, and GSK-3 proteins, thereby inactivating the PI3K/Akt signaling pathway. Pretreatment with a PI3K- or an Akt-selective inhibitor or an Akt-specific siRNA blocked the melatonin-mediated inhibition of cell proliferation. Conversely, gene delivery of a constitutively active Akt effectively reversed the inhibition by melatonin. Furthermore, melatonin induced Apaf-1 expression, triggered cytochrome C release, and stimulated caspase-3 and caspase-9 activities and cleavage, leading to an activation of the Apaf-1-dependent apoptotic pathway. Pretreatment with an Apaf-1-specific siRNA effectively attenuated the melatonin-induced apoptosis. These results therefore indicate that melatonin inhibits cell proliferation and induces apoptosis in MDA-MB-361 breast cancer cells in vitro by simultaneously suppressing the COX-2/PGE2, p300/NF-κB, and PI3K/Akt/signaling and activating the Apaf-1/caspase-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Jingshu Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, Pariente JA. Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 2012; 53:91-8. [PMID: 22288984 DOI: 10.1111/j.1600-079x.2012.00974.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant action. Thus, melatonin has proven useful in the treatment of tumors in association with chemotherapeutic drugs. This study was performed to evaluate the effect of melatonin on the cytotoxicity and apoptosis induced by three different chemotherapeutic agents, namely 5-fluorouracil (5-FU), cisplatin, and doxorubicin in the rat pancreatic tumor cell line AR42J. We found that both melatonin and the three chemotherapeutic drugs induce a time-dependent decrease in AR42J cell viability, reaching the highest cytotoxic effect after 48 hr of incubation. Furthermore, melatonin significantly augmented the cytotoxicity of the chemotherapeutic agents. Consistently, cotreatment of AR42J cells with each of the chemotherapeutic agents in the presence of melatonin increased the population of apoptotic cells, elevated mitochondrial membrane depolarization, and augmented intracellular reactive oxygen species (ROS) production compared to treatment with each chemotherapeutic agent alone. These results provide evidence that in vitro melatonin enhances chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor AR42J cells and, therefore, melatonin may be potentially applied to pancreatic tumor treatment as a powerful synergistic agent in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Abdulhadi C Uguz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | | | | | | | | | | |
Collapse
|
49
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
50
|
Han Y, Demorrow S, Invernizzi P, Jing Q, Glaser S, Renzi A, Meng F, Venter J, Bernuzzi F, White M, Francis H, Lleo A, Marzioni M, Onori P, Alvaro D, Torzilli G, Gaudio E, Alpini G. Melatonin exerts by an autocrine loop antiproliferative effects in cholangiocarcinoma: its synthesis is reduced favoring cholangiocarcinoma growth. Am J Physiol Gastrointest Liver Physiol 2011; 301:G623-G633. [PMID: 21778461 PMCID: PMC3191557 DOI: 10.1152/ajpgi.00118.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/18/2011] [Indexed: 01/31/2023]
Abstract
Cholangiocarcinoma (CCA) is a devastating biliary cancer. Melatonin is synthesized in the pineal gland and peripheral organs from serotonin by two enzymes, serotonin N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT). Cholangiocytes secrete neuroendocrine factors, including serotonin-regulating CCA growth by autocrine mechanisms. Melatonin exerts its effects by interaction with melatonin receptor type 1A/1B (MT1/MT2) receptors. We propose that 1) in CCA, there is decreased expression of AANAT and ASMT and secretion of melatonin, changes that stimulate CCA growth; and 2) in vitro overexpression of AANAT decreases CCA growth. We evaluated the 1) expression of AANAT, ASMT, melatonin, and MT1/MT2 in human nonmalignant and CCA lines and control and CCA biopsy samples; 2) melatonin levels in nonmalignant and CCA lines, and bile and serum from controls and patients with intrahepatic CCA; 3) effect of melatonin on the growth and expression of AANAT/ASMT and MT1/MT2 in CCA lines implanted into nude mice; and 4) effect of AANAT overexpression on the proliferation, apoptosis, and expression of MT1/MT2 in Mz-ChA-1 cells. The expression of AANAT, ASMT, and melatonin decreased, whereas MT1/MT2 expression increased in CCA lines and biopsy samples. Melatonin secretion decreased in the supernatant of CCA lines and bile of CCA patients. Melatonin decreased xenograft CCA tumor growth in nude mice by increased AANAT/ASMT and melatonin, along with reduced MT1/MT2 expression. Overexpression of AANAT in Mz-ChA-1 cells inhibited proliferation and MT1/MT2 expression and increased apoptosis. There is dysregulation of the AANAT/ASMT/melatonin → melatonin receptor axis in CCA, which inhibited melatonin secretion and subsequently enhanced CCA growth.
Collapse
Affiliation(s)
- Yuyan Han
- Division Research, Central Texas Veterans Health Care System, Tempe, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|