1
|
Chen SZQ, Pan RJ, Sun MY, He LP, Li CP. The relationship between whole blood iron and fasting blood glucose in community-dwelling elderly people: a cross-sectional study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:5. [PMID: 39773371 PMCID: PMC11706085 DOI: 10.1186/s41043-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Iron overload increases fasting blood glucose level in mice, leading to insulin insensitivity. However, no such relationship has been shown in the population. The relationship between whole blood iron levels and fasting blood glucose levels remained unclear. This study aimed to determine whether whole blood iron levels were associated with fasting blood glucose levels in community-dwelling older adults. This cross-sectional study was based on a community population and analyzed the distribution of whole blood iron and fasting blood glucose in a community population. A sample of 1560 community residents had their fasting blood glucose, gender, and age measured during the study. Covariates were assessed using correlation analysis, partial correlation analysis, and Student's t-test. To further investigate the impact of confounding factors in this study, we compared variations in whole blood iron levels between genders. Pearson correlation analysis showed no correlation between whole blood iron and fasting blood glucose. After adjusting for age and gender, no correlation was found between whole blood iron and fasting blood glucose as well. However, Pearson correlation analysis showed a correlation between whole blood iron and age(P<0.05, r=-0.181). whole blood iron concentrations gradually decreased with age. At the same time, mean whole blood iron concentrations were lower 420 mg/l among women and men in the community. And the mean levels of whole blood iron were higher in men(504.08 mg/l ± 45.98 mg/l) than in women(453.80 mg/l ± 38.13 mg/l). Our study indicated no association between whole blood iron. Age was a covariate, but fasting blood glucose was not, and fasting blood glucose was independently associated with whole blood iron concentrations, suggesting that older women in this community need adequate iron supplementation.
Collapse
Affiliation(s)
- Shu-Zi-Qi Chen
- School of Medicine, Taizhou University, No.1139, Shifu Avenue, Jiaojiang, 318000, Zhejiang, China
| | - Rou-Jun Pan
- School of Medicine, Taizhou University, No.1139, Shifu Avenue, Jiaojiang, 318000, Zhejiang, China
| | - Meng-Yan Sun
- School of Medicine, Taizhou University, No.1139, Shifu Avenue, Jiaojiang, 318000, Zhejiang, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, No.1139, Shifu Avenue, Jiaojiang, 318000, Zhejiang, China.
| | - Cui-Ping Li
- School of Medicine, Taizhou University, No.1139, Shifu Avenue, Jiaojiang, 318000, Zhejiang, China.
| |
Collapse
|
2
|
Wang M, Chen Z, Zhang Y. Serum Iron Levels, Dietary Iron Intake, and Supplement Use in Relation to Metabolic Syndrome in Adolescents: A Cross-Sectional Study. Biol Trace Elem Res 2025; 203:39-47. [PMID: 38517678 DOI: 10.1007/s12011-024-04152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
The objective of this study was to investigate the potential associations between serum iron levels, dietary iron intake, and iron supplementation, and the prevalence of metabolic syndrome (MetS) in adolescents A cross-sectional analysis was conducted, utilizing data from adolescents participating in the 2003-2018 cycle of the National Health and Nutrition Examination Survey (NHANES). Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) pertaining to serum iron, dietary iron, and iron supplementation were derived through multivariate logistic regression models. Additionally, a restricted cubic spline (RCS) regression model was applied to explore the nonlinear relationship between dietary iron and serum iron concerning MetS. The study encompassed 4858 American adolescents aged 12 to 19, among whom 413 (8.5%) manifested MetS. The study cohort exhibited an average age of 15.52 years, comprising 2551 males (52.51%) and 2307 females (47.49%). Relative to individuals in the lowest serum iron quartile, those in the highest quartile for serum iron (OR = 0.33, 95% CI 0.21-0.50), the highest quartile for dietary iron (OR = 0.53, 95% CI 0.32-0.89), and those utilizing iron supplements (OR = 0.61, 95% CI 0.37-0.99) evinced a diminished prevalence of MetS, even post adjustment for potential confounding variables. A non-linear relationship was discerned between serum iron and MetS, exhibiting a statistically significant negative correlation when serum iron concentrations exceeded the inflection point (serum iron = 8.66 µmol/L, P for nonlinear < 0.001). This investigation reveals that higher levels of serum iron, increased dietary iron intake, and the use of iron supplements are linked to a lower prevalence of MetS in US adolescents. These findings suggest that dietary modifications could play a role in promoting the health of adolescents.
Collapse
Affiliation(s)
- Meng Wang
- Department of Pediatrics, The Third Affiliated Hospital of Shanghai University, Wenzhou, 325000, People's Republic of China
- Department of Pediatrics, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
- Department of Pediatrics, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhiyuan Chen
- Department of Pediatrics, The Third Affiliated Hospital of Shanghai University, Wenzhou, 325000, People's Republic of China.
- Department of Pediatrics, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China.
- Department of Pediatrics, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515000, People's Republic of China
| |
Collapse
|
3
|
Kirkutyte I, Latunde-Dada GO. Relationship Between Hepatic Iron Concentration and Glycemic Metabolism, Prediabetes, and Type 2 Diabetes: A Systematic Review. Nutr Rev 2024:nuae197. [PMID: 39724915 DOI: 10.1093/nutrit/nuae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
CONTEXT Emerging research has suggested a potential link between high iron levels, indicated by serum ferritin levels, and the development of type 2 diabetes (T2D). However, the role of hepatic iron concentration (HIC) on T2D development and progression is not well understood. OBJECTIVES This study aims to systematically review the literature on HIC and/or the degree of hepatic iron overload (HIO) in individuals with prediabetes and/or diagnosed T2D, and to analyze associations between HIC and markers of glucose metabolism. DATA SOURCES The databases Medline, PubMed, Embase, CINAHL, and Web of Knowledge were searched for studies published in English from 1999 to March 2024. This review followed the Preferred Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. DATA EXTRACTION Data were extracted following the established eligibility criteria. Study characteristics and biomarkers related to prediabetes, T2D, and HIO were extracted. The risk of bias was analyzed using the Newcastle-Ottawa Scale. Data were stratified by the exposure and analyzed in subgroups according to the outcome. Data regarding the HIC values in controls, individuals with prediabetes, and individuals with T2D and the association estimates between HIC or HIO and markers of glycemic metabolism, prediabetes, or T2D were extracted. DATA ANALYSIS A total of 12 studies were identified, and data from 4110 individuals were analyzed. HIO was not consistently observed in prediabetic/T2D populations; however, elevated HIC was frequently observed in prediabetic and T2D individuals, and was associated with the disruption of certain glycemic markers in some cases. CONCLUSION The extent of iron overload, as indicated by hepatic iron load, varied among the prediabetic and T2D populations studied. Further research is needed to understand the distribution and regulation of iron in T2D pathology.
Collapse
Affiliation(s)
- Indre Kirkutyte
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom
| | - Gladys Oluyemisi Latunde-Dada
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
4
|
Allara E, Bell S, Smith R, Keene SJ, Gill D, Gaziano L, Morselli Gysi D, Wang F, Tragante V, Mason A, Karthikeyan S, Lumbers RT, Bonglack E, Ouwehand W, Roberts DJ, Dowsett J, Ostrowski SR, Larsen MH, Ullum H, Pedersen OB, Brunak S, Banasik K, Erikstrup C, Mitchell J, Fuchsberger C, Pattaro C, Pramstaller PP, Girelli D, Arvas M, Toivonen J, Molnos S, Peters A, Polasek O, Rudan I, Hayward C, McDonnell C, Pirastu N, Wilson JF, van den Hurk K, Quee F, Ferrucci L, Bandinelli S, Tanaka T, Girotto G, Concas MP, Pecori A, Verweij N, van der Harst P, van de Vegte YJ, Kiemeney LA, Sweep FC, Galesloot TE, Sulem P, Gudbjartsson D, Ferkingstad E, Djousse L, Cho K, Inouye M, Burgess S, Benyamin B, Oexle K, Swinkels D, Stefansson K, Magnusson M, Ganna A, Gaziano M, Ivey K, Danesh J, Pereira A, Wood AM, Butterworth AS, Di Angelantonio E. Novel loci and biomedical consequences of iron homoeostasis variation. Commun Biol 2024; 7:1631. [PMID: 39643614 PMCID: PMC11624196 DOI: 10.1038/s42003-024-07115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/21/2024] [Indexed: 12/09/2024] Open
Abstract
Iron homoeostasis is tightly regulated, with hepcidin and soluble transferrin receptor (sTfR) playing significant roles. However, the genetic determinants of these traits and the biomedical consequences of iron homoeostasis variation are unclear. In a meta-analysis of 12 cohorts involving 91,675 participants, we found 43 genomic loci associated with either hepcidin or sTfR concentration, of which 15 previously unreported. Mapping to putative genes indicated involvement in iron-trait expression, erythropoiesis, immune response and cellular trafficking. Mendelian randomisation of 292 disease outcomes in 1,492,717 participants revealed associations of iron-related loci and iron status with selected health outcomes across multiple domains. These associations were largely driven by HFE, which was associated with the largest iron variation. Our findings enhance understanding of iron homoeostasis and its biomedical consequences, suggesting that lifelong exposure to higher iron levels is likely associated with lower risk of anaemia-related disorders and higher risk of genitourinary, musculoskeletal, infectious and neoplastic diseases.
Collapse
Affiliation(s)
- Elias Allara
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Steven Bell
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Rebecca Smith
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Spencer J Keene
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Liam Gaziano
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Deisy Morselli Gysi
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Statistics, Federal University of Parana, Curitiba, Brazil
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feiyi Wang
- Genetic Epidemiology Lab, Institute for Molecular Medicine Finland, Helsinki, Finland
| | | | - Amy Mason
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Savita Karthikeyan
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | | | - Emmanuela Bonglack
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Willem Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
- Department of Haematology, University College London Hospitals NHS Trust, London, UK
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Haematology, Churchill Hospital, Headington, Oxford, UK
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margit Hørup Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Zealand University Hospital, Køge, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine, Bolzano, Italy
- Department of Neurology, General Central Hospital, Bolzano, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Referral Center, University Hospital of Verona, Verona, Italy
| | - Mikko Arvas
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Sophie Molnos
- msg life central europe gmbh, München, Germany
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, München, Germany
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ciara McDonnell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland, Edinburgh, UK
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Katja van den Hurk
- Donor Studies, Department of Donor Medicine Research, Sanquin Research, Amsterdam, The Netherlands
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Franke Quee
- Donor Studies, Department of Donor Medicine Research, Sanquin Research, Amsterdam, The Netherlands
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Luigi Ferrucci
- Longitudinal studies section, National Institute on Aging, Baltimore, MD, USA
| | | | - Toshiko Tanaka
- Longitudinal studies section, National Institute on Aging, Baltimore, MD, USA
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Alessandro Pecori
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lambertus A Kiemeney
- IQ Health, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fred C Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Daniel Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Luc Djousse
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Inouye
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Medical Research Council Biostatistics Unit, Cambridge, UK
| | - Beben Benyamin
- Australian Centre for Precision Health & Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Konrad Oexle
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, München, Germany
| | - Dorine Swinkels
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Magnusson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Andrea Ganna
- Genetic Epidemiology Lab, Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kerry Ivey
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Alexandre Pereira
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela M Wood
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Centre of Artificial Intelligence in Medicine, Cambridge, UK
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- BHF Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- Health Data Science Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
5
|
Wang Z, Yan Q, Wang Z, Hu Z, Wang C, Zhang X, Gao X, Bai X, Chen X, Zhang L, Lv D, Liu H, Chen Y. Ferroptosis and its implications in bone-related diseases. PeerJ 2024; 12:e18626. [PMID: 39619200 PMCID: PMC11606331 DOI: 10.7717/peerj.18626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Ferroptosis, a recently recognized form of regulated cell death (RCD) characterized by iron-dependent lipid peroxide accumulation, has emerged as a noteworthy regulator in various bone-related diseases, including osteoporosis (OP), osteoarthritis (OA), and osteosarcoma (OS). OS primarily afflicts the elderly, rendering them susceptible to fractures due to increased bone fragility. OA represents the most prevalent arthritis in the world, often observed in the aging population. OS predominantly manifests during adolescence, exhibiting an aggressive nature and bearing a significantly unfavorable prognosis. In this review article, we present an overview of the characteristics and mechanism of ferroptosis and its involvement in bone-related diseases, with a particular focus on OP, OA, and OS. Furthermore, we summarize chemical compounds or biological factors that impact bone-related diseases by regulating ferroptosis. Through an in-depth exploration of ferroptosis based on current research findings, this review provides promising insights for potential therapeutic approaches to effectively manage and mitigate the impact of these bone-related pathological conditions.
Collapse
Affiliation(s)
- Zihao Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Qiupeng Yan
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Teaching and Research Section of Introduction to Basic Medicine, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Zhen Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Zunguo Hu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Chenchen Wang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xueshuai Gao
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Bai
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xiaosu Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Lingyun Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Danyue Lv
- Shandong Second Medical University, Clinical Medicine, School of Clinical Medicine, Weifang, Shandong, China
| | - Huancai Liu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Yanchun Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| |
Collapse
|
6
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Wang Z, Peng J. Impact of serum iron levels on in-hospital mortality and clinical outcomes in patients with ST segment elevation myocardial infarction undergoing emergency percutaneous coronary intervention: a retrospective analysis. Coron Artery Dis 2024; 35:539-546. [PMID: 38809141 PMCID: PMC11426973 DOI: 10.1097/mca.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/26/2023] [Indexed: 05/30/2024]
Abstract
BACKGROUND Despite advances in percutaneous coronary intervention (PCI) for ST segment elevation myocardial infarction (STEMI), in-hospital mortality remains a concern, highlighting the need for the identification of additional risk factors such as serum iron levels. OBJECTIVE This study aims to assess the relationship between serum iron levels and in-hospital mortality among patients with STEMI undergoing emergency PCI. METHODS A total of 685 patients diagnosed with STEMI, treated with emergency PCI between January 2020 and June 2023, were included in this retrospective observational study. Participants were categorized based on serum iron levels into a low serum iron group (Fe <7.8 μmol/L) and a control group (Fe ≥7.8 μmol/L). Clinical and biochemical variables were compared between the groups. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors for in-hospital mortality. RESULTS The low serum iron group demonstrated significantly higher in-hospital mortality rates (9.3 vs. 1.0%, P < 0.05) compared with the control group. Multivariate logistic regression revealed that a left ventricular ejection fraction less than 40% upon admission [odds ratio (OR), 8.01; 95% confidence interval (CI), 1.230-52.173; P = 0.029], the occurrence of no-reflow during PCI (OR, 7.13; 95% CI, 1.311-38.784; P = 0.023), and serum iron levels below 7.8 μmol/L (OR, 11.32; 95% CI, 2.345-54.640; P = 0.003) were independent risk factors for in-hospital mortality. CONCLUSION Low serum iron levels are associated with increased in-hospital mortality in patients with STEMI undergoing emergency PCI. Serum iron levels may serve as an independent prognostic marker and could inform risk stratification and therapeutic targeting in this patient population.
Collapse
Affiliation(s)
- Zuoyan Wang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianjun Peng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sui C, Li M, Zhang Q, Li J, Gao Y, Zhang X, Wang N, Liang C, Guo L. Increased brain iron deposition in the basial ganglia is associated with cognitive and motor dysfunction in type 2 diabetes mellitus. Brain Res 2024; 1846:149263. [PMID: 39369777 DOI: 10.1016/j.brainres.2024.149263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE Compared with those in type 2 diabetes mellitus (T2DM) patients without diabetic peripheral neuropathy (DPN), alterations in brain iron levels in the basal ganglia (an iron-rich region) and motor and cognitive dysfunction in T2DM patients with DPN have not been fully elucidated. We aimed to explore changes in brain iron levels in the basal ganglia in T2DM patients with DPN using quantitative susceptibility mapping (QSM). METHODS Thirty-four patients with DPN, fifty-five patients with diabetes without DPN (non-DPN, NDPN), and fifty-one healthy controls (HCs) were recruited and underwent cognitive and motor assessments, blood biochemical tests, and brain QSM imaging. One-way ANOVA was applied to evaluate the variations in cognitive, motor and blood biochemical indicators across the three groups. Then, we performed multiple linear regression analysis to identify the possible factors associated with the significant differences in susceptibility values of the basal ganglia subregions between the two T2DM groups. RESULTS Susceptibility values in the putamen and the caudate nucleus were greater in the T2DM patients than in the HCs (DPN patients vs. HCs, p < 0.05; NDPN patients vs. HCs, p < 0.05, FDR correction), and there were no significant differences between the DPN patients and NDPN patients. Multiple linear regression analysis revealed that age and history of diabetes played crucialroles in brain iron deposition in the putamen and the caudate nucleus. Notably, DPN in T2DM patients had no effect on brain iron deposition in the putamen or the caudate nucleus. The susceptibility values of the putamen was positively correlated with the Timed Up and Go test score and negatively correlated with gait speed, the Montreal Cognitive Assessment score, and the Symbol Digit Modalities Test score in T2DM patients. CONCLUSIONS Iron-based susceptibility in the putamen, measured by QSM, can reflect motor function in T2DM patients and might indicate micropathological changes in brain tissue in T2DM patients.
Collapse
Affiliation(s)
- Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York. 407 East 61st Street, New York, NY 10065, USA.
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Xinyue Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| |
Collapse
|
9
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
10
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
11
|
Sobieska K, Buczyńska A, Krętowski AJ, Popławska-Kita A. Iron homeostasis and insulin sensitivity: unraveling the complex interactions. Rev Endocr Metab Disord 2024; 25:925-939. [PMID: 39287729 PMCID: PMC11470850 DOI: 10.1007/s11154-024-09908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Diabetes has arisen as a noteworthy global health issue, marked by escalating incidence and mortality rates. Insulin, crucial for preserving euglycemia, acts as a vital energy provider for various tissues. Iron metabolism notably plays a significant role in the development of insulin resistance, a key factor in the onset of various metabolic disorders. The intricate interaction between iron and insulin signaling encompasses complex regulatory mechanisms at the molecular level, thereby impacting cellular reactions to insulin. The intricate interplay between insulin and glucagon, essential for precise regulation of hepatic glucose production and systemic glucose levels, may be influenced by certain microelements for instance zinc, copper, iron, boron, calcium, cobalt, chromium, iodine, magnesium and selenium. While significant progress has been achieved in elucidating the pathophysiological connections between iron overload and glucose metabolism, our understanding of the involvement of the Fenton reaction and oxidative stress in insulin resistance influencing many chronical conditions remains limited. Furthermore, the exploration of the multifaceted roles of insulin in the human body continues to be a subject of active investigation by numerous scientific researchers. This review comprehensively outlines the potential adverse impact of iron overload on insulin function and glucose metabolism. Additionally, we provide a synthesis of findings derived from various research domains, encompassing population studies, animal models, and clinical investigations, to scrutinize the multifaceted relationship between iron and insulin sensitivity. Moreover, we delineate instances of correlations between serum iron levels and various medical conditions, including the diabetes also gestational diabetes and obesity.
Collapse
Affiliation(s)
- Katarzyna Sobieska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
12
|
Li N, Yan S, Weng J, Liang G, Gong Y, Su Y, Wei X, Ren W, Zhen Q, Zhu J, Liu F, Zhang F, Wang Y. Association of mid-pregnancy ferritin levels with postpartum glucose metabolism in women with gestational diabetes. Nutr Diabetes 2024; 14:77. [PMID: 39333472 PMCID: PMC11437195 DOI: 10.1038/s41387-024-00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Ferritin, a key indicator of body iron levels, has been reported to associate with type 2 diabetes (T2DM) and the onset of Gestational diabetes mellitus (GDM). However, limited research explores the association between mid-pregnancy ferritin levels and the risk of postpartum abnormal glucose metabolism (AGM) in patients with GDM. METHODS A retrospective cohort study was conducted in 1514 women with GDM recruited from January 2016 to January 2021, and 916 women were included. Demographic characteristics, medical history and family history, pregnancy complications were recorded. Multiple logistic regression models were performed to assess the association between mid-pregnancy ferritin levels and the risk of postpartum AGM. RESULTS Following the postpartum oral glucose tolerance test, 307 (33.5%) exhibited AGM. The AGM group had higher mid-pregnancy serum ferritin levels [AGM vs NGT: 23 (11.7, 69) µg/L vs 17.80 (9.85, 40.7) µg/L, P < 0.001] and had a larger proportion of women with ferritin levels ≥30 µg/L (AGM vs NGT: 43.6% vs 31.4%, P < 0.001). Logistic regression analysis demonstrated that women with ferritin levels≥ 30 µg/L had a 1.566 times higher risk of developing postpartum AGM. CONCLUSIONS These findings indicate that elevated mid-pregnancy ferritin levels are significantly and independently associated with increased postpartum AGM risk in women with previous GDM. Consequently, cautious consideration is necessary for prescribing iron supplements in prenatal care, particularly for non-anemic women with GDM at high risk of developing diabetes after delivery.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shuai Yan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianrong Weng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Guiling Liang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yujia Gong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanmei Su
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenqian Ren
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qin Zhen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jiali Zhu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, 100 Haining Rd, Shanghai, 200080, China.
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
13
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Darwitz BP, Genito CJ, Thurlow LR. Triple threat: how diabetes results in worsened bacterial infections. Infect Immun 2024; 92:e0050923. [PMID: 38526063 PMCID: PMC11385445 DOI: 10.1128/iai.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.
Collapse
Affiliation(s)
- Benjamin P Darwitz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher J Genito
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Lance R Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Rajput SK, Arya V. Impact of Biosensors and Biomarkers in Diabetes Care: A Review. BIOMEDICAL MATERIALS & DEVICES 2024. [DOI: 10.1007/s44174-024-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025]
|
16
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
17
|
Jin EJ, Jo Y, Wei S, Rizzo M, Ryu D, Gariani K. Ferroptosis and iron metabolism in diabetes: Pathogenesis, associated complications, and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1447148. [PMID: 39279996 PMCID: PMC11392752 DOI: 10.3389/fendo.2024.1447148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Diabetes mellitus is a complex chronic disease, considered as one of the most common metabolic disorders worldwide, posing a major threat to global public health. Ferroptosis emerges as a novel mechanism of programmed cell death, distinct from apoptosis, necrosis, and autophagy, driven by iron-dependent lipid peroxidation accumulation and GPx4 downregulation. A mounting body of evidence highlights the interconnection between iron metabolism, ferroptosis, and diabetes pathogenesis, encompassing complications like diabetic nephropathy, cardiomyopathy, and neuropathy. Moreover, ferroptosis inhibitors hold promise as potential pharmacological targets for mitigating diabetes-related complications. A better understanding of the role of ferroptosis in diabetes may lead to an improvement in global diabetes management. In this review, we delve into the intricate relationship between ferroptosis and diabetes development, exploring associated complications and current pharmacological treatments.
Collapse
Affiliation(s)
- Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Manfredi Rizzo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition, and Therapeutic Education, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
18
|
Mandić-Marković V, Dobrijević Z, Robajac D, Miljuš G, Šunderić M, Penezić A, Nedić O, Ardalić D, Miković Ž, Radojičić O, Mandić M, Mitrović J. Biochemical Markers in the Prediction of Pregnancy Outcome in Gestational Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1250. [PMID: 39202531 PMCID: PMC11356194 DOI: 10.3390/medicina60081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Gestational diabetes mellitus (GDM) may impact both maternal and fetal/neonatal health. The identification of prognostic indicators for GDM may improve risk assessment and selection of patient for intensive monitoring. The aim of this study was to find potential predictors of adverse pregnancy outcome in GDM and normoglycemic patients by comparing the levels of different biochemical parameters and the values of blood cell count (BCC) between GDM and normoglycemic patients and between patients with adverse and good outcome. Materials and Methods: Prospective clinical study included 49 patients with GDM (study group) and 44 healthy pregnant women (control group) who underwent oral glucose tolerance test (OGTT) at gestational age of 24-28 weeks. At the time of OGTT peripheral blood was taken for the determination of glucose levels, insulin, glycated hemoglobin, lipid status, homeostatic model assessment, BCC, iron and zinc metabolism, liver function, kidney function and inflammatory status. Each group was divided into two subgroups-normal and poor pregnancy outcome. Results: Higher RBC, hemoglobin concentration, hematocrit value, fasting glucose, uric acid and fibrinogen were found in GDM patients compared to control group. In GDM patients with poor pregnancy outcome values of fibrinogen, ALT, sedimentation rate, granulocyte and total leukocyte counts were elevated, while the serum level of zinc was significantly lower. Higher level of fibrinogen was found in normoglycemic patients with adverse pregnancy outcomes. ROC curve was constructed in order to assess fibrinogen's biomarker potential. The established AUC value for diagnostic ROC was 0.816 (p < 0.001, 95% CI 0.691-0.941), while the AUC value for assessing fibrinogen's potential to predict poor pregnancy outcome in GDM was 0.751 (p = 0.0096, 95% CI 0.561-0.941). Conclusions: The results of our study demonstrated that the best prognostic potential in GDM showed inflammation related parameters, identifying fibrinogen as a parameter with both diagnostic and prognostic ability.
Collapse
Affiliation(s)
- Vesna Mandić-Marković
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Department for High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics “Narodni Front”, Kraljice Natalije 62, 11000 Belgrade, Serbia; (D.A.); (O.R.); (M.M.); (J.M.)
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (Z.D.); (D.R.); (G.M.); (M.Š.); (A.P.); (O.N.)
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (Z.D.); (D.R.); (G.M.); (M.Š.); (A.P.); (O.N.)
| | - Goran Miljuš
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (Z.D.); (D.R.); (G.M.); (M.Š.); (A.P.); (O.N.)
| | - Miloš Šunderić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (Z.D.); (D.R.); (G.M.); (M.Š.); (A.P.); (O.N.)
| | - Ana Penezić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (Z.D.); (D.R.); (G.M.); (M.Š.); (A.P.); (O.N.)
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia; (Z.D.); (D.R.); (G.M.); (M.Š.); (A.P.); (O.N.)
| | - Danijela Ardalić
- Department for High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics “Narodni Front”, Kraljice Natalije 62, 11000 Belgrade, Serbia; (D.A.); (O.R.); (M.M.); (J.M.)
| | - Željko Miković
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Department for High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics “Narodni Front”, Kraljice Natalije 62, 11000 Belgrade, Serbia; (D.A.); (O.R.); (M.M.); (J.M.)
| | - Ognjen Radojičić
- Department for High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics “Narodni Front”, Kraljice Natalije 62, 11000 Belgrade, Serbia; (D.A.); (O.R.); (M.M.); (J.M.)
| | - Milica Mandić
- Department for High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics “Narodni Front”, Kraljice Natalije 62, 11000 Belgrade, Serbia; (D.A.); (O.R.); (M.M.); (J.M.)
| | - Jelena Mitrović
- Department for High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics “Narodni Front”, Kraljice Natalije 62, 11000 Belgrade, Serbia; (D.A.); (O.R.); (M.M.); (J.M.)
| |
Collapse
|
19
|
Liang Y, Luo S, Bell S, Mo JMY, He B, Zhou Y, Bai X, Au Yeung SL. Do iron homeostasis biomarkers mediate the associations of liability to type 2 diabetes and glycemic traits in liver steatosis and cirrhosis: a two-step Mendelian randomization study. BMC Med 2024; 22:270. [PMID: 38926684 PMCID: PMC11210020 DOI: 10.1186/s12916-024-03486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Previous studies, including Mendelian randomization (MR), have demonstrated type 2 diabetes (T2D) and glycemic traits are associated with increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD). However, few studies have explored the underlying pathway, such as the role of iron homeostasis. METHODS We used a two-step MR approach to investigate the associations of genetic liability to T2D, glycemic traits, iron biomarkers, and liver diseases. We analyzed summary statistics from various genome-wide association studies of T2D (n = 933,970), glycemic traits (n ≤ 209,605), iron biomarkers (n ≤ 246,139), MASLD (n ≤ 972,707), and related biomarkers (alanine aminotransferase (ALT) and proton density fat fraction (PDFF)). Our primary analysis was based on inverse-variance weighting, followed by several sensitivity analyses. We also conducted mediation analyses and explored the role of liver iron in post hoc analysis. RESULTS Genetic liability to T2D and elevated fasting insulin (FI) likely increased risk of liver steatosis (ORliability to T2D: 1.14 per doubling in the prevalence, 95% CI: 1.10, 1.19; ORFI: 3.31 per log pmol/l, 95% CI: 1.92, 5.72) and related biomarkers. Liability to T2D also likely increased the risk of developing liver cirrhosis. Genetically elevated ferritin, serum iron, and liver iron were associated with higher risk of liver steatosis (ORferritin: 1.25 per SD, 95% CI 1.07, 1.46; ORliver iron: 1.15 per SD, 95% CI: 1.05, 1.26) and liver cirrhosis (ORserum iron: 1.31, 95% CI: 1.06, 1.63; ORliver iron: 1.34, 95% CI: 1.07, 1.68). Ferritin partially mediated the association between FI and liver steatosis (proportion mediated: 7%, 95% CI: 2-12%). CONCLUSIONS Our study provides credible evidence on the causal role of T2D and elevated insulin in liver steatosis and cirrhosis risk and indicates ferritin may play a mediating role in this association.
Collapse
Affiliation(s)
- Ying Liang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Luo
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Steven Bell
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Jacky Man Yuen Mo
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Baoting He
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yangzhong Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shiu Lun Au Yeung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
21
|
Khatami F, Lange T, Groothof D, Ahanchi NS, Quezada-Pinedo HG, Raeisi-Dehkordi H, De Borst MH, Vidal PM, Mohan S, Prabhakaran D, Bano A, Bakker SJL, Muka T, Eisenga MF. Potential Mediating Role of Iron Biomarkers in the Association of Sex With Glucose, Insulin, and Type 2 Diabetes. J Endocr Soc 2024; 8:bvae098. [PMID: 38840960 PMCID: PMC11150721 DOI: 10.1210/jendso/bvae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 06/07/2024] Open
Abstract
Context Sex-specific prevalence and incidence of type 2 diabetes (T2D) have been reported, but the underlying mechanisms are uncertain. Objective In this study, we aimed to investigate whether iron biomarkers mediate the association between biological sex and glucose metabolism and the incidence of T2D. Methods We used data from the general population enrolled in the prospective Prevention of REnal and Vascular ENd-stage Disease study in Groningen, The Netherlands. We measured ferritin, transferrin saturation (TSAT), hepcidin, soluble transferrin receptor (sTfR), fasting plasma glucose (FPG), fasting plasma insulin (FPI) levels, and incidence of T2D. We used multivariable regression and mediation analyses to investigate our hypothesis. All iron biomarkers, FPG, and FPI were log-transformed. Results The mean (SD) age of the 5312 (51.3% female) individuals was 52.2 (11.6) years. Compared with males, females had lower FPG (β = -.01; 95% CI -0.02, -0.01) and FPI (β = -.03; 95% CI -0.05, -0.02) levels. Ferritin, hepcidin, and sTfR showed potential mediating effects on the association between sex and FPG, 21%, 5%, and 7.1%, respectively. Furthermore, these variables mediated 48.6%, 5.7%, and 3.1% of the association between sex and FPI, respectively. Alternatively, TSAT had a suppressive mediating role in the association of sex with FPG and FPI. The incidence of T2D was lower in females than in males (hazard ratio 0.58; 95% CI 0.44, 0.77), with 19.2% of this difference being mediated by ferritin. Conclusion Iron biomarkers may partially mediate the association between sex and glucose homeostasis. Future studies addressing the causality of our findings are needed.
Collapse
Affiliation(s)
- Farnaz Khatami
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Community Medicine Department, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | - Theis Lange
- Department of Public Health, Section of Biostatistics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Dion Groothof
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Hugo G Quezada-Pinedo
- The Generation R Study Group, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hamidreza Raeisi-Dehkordi
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Martin H De Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Pedro-Marques Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Sailesh Mohan
- Centre for Chronic Conditions and Injuries (CCCI), Public Health Foundation of India, 110070 Delhi, India
- Centre for Chronic Disease Control (CCDC), 110016 Delhi, India
| | - Dorairaj Prabhakaran
- Centre for Chronic Conditions and Injuries (CCCI), Public Health Foundation of India, 110070 Delhi, India
- Centre for Chronic Disease Control (CCDC), 110016 Delhi, India
| | - Arjola Bano
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Department of Cardiology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
22
|
AlQarni AM, Alghamdi AA, Aljubran HJ, Bamalan OA, Abuzaid AH, AlYahya MA, AlAwami AM, Al Shubbar MD, Al Yousif GF. Exploring the Impact of Iron Deficiency Anaemia on Glycated Haemoglobin A1c Levels in Pregnant and Non-Pregnant Women: A Systematic Review. Int J Womens Health 2024; 16:797-809. [PMID: 38765207 PMCID: PMC11100956 DOI: 10.2147/ijwh.s462163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Haemoglobin A1C (HbA1c) is fundamental in monitoring glycaemic control during pregnancy. However, several conditions could affect this test's accuracy, including iron deficiency anaemia (IDA). Hence, this systematic review delves into the underexplored connection between IDA, iron replacement therapy (IRT), and haemoglobin A1C (HbA1c) during pregnancy. An electronic search of the Cochrane, MEDLINE, and Embase databases was conducted by six authors. From a comprehensive search strategy, 968 records were obtained. After applying the inclusion and exclusion criteria, seven studies were included, comprising 365 women selected for analysis. Six studies indicated a positive correlation between IDA and HbA1c levels, while one found no correlation. The average HbA1c level of the included studies in pregnant women was 5.64%. In comparison, it was found that non-pregnant women had lower HbA1c levels. Among the included studies, the mean HbA1c levels decreased from 5.1% to 4.89% after treating pregnant women with IRT. The review emphasises the complexity of interpreting HbA1c levels in pregnant women with IDA, highlighting the influence of pregnancy-induced physiological changes. In addition, this suggests that HbA1c should not be the sole criterion for diabetes management in pregnant women with IDA. Future research should focus on alternative glycaemic monitoring methods unaffected by IDA.
Collapse
Affiliation(s)
- Amani M AlQarni
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amal A Alghamdi
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hussain J Aljubran
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Omar A Bamalan
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah H Abuzaid
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed A AlYahya
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed M AlAwami
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Ghada F Al Yousif
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
23
|
Huang W, Das NK, Radyk MD, Keeley T, Quiros M, Jain C, El-Derany MO, Swaminathan T, Dziechciarz S, Greenson JK, Nusrat A, Samuelson LC, Shah YM. Dietary Iron Is Necessary to Support Proliferative Regeneration after Intestinal Injury. J Nutr 2024; 154:1153-1164. [PMID: 38246358 PMCID: PMC11181351 DOI: 10.1016/j.tjnut.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Megan D Radyk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Theresa Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Chesta Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thaarini Swaminathan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Sofia Dziechciarz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
24
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
25
|
Liu Y, Clarke R, Bennett DA, Zong G, Gan W. Iron Status and Risk of Heart Disease, Stroke, and Diabetes: A Mendelian Randomization Study in European Adults. J Am Heart Assoc 2024; 13:e031732. [PMID: 38497484 PMCID: PMC11010009 DOI: 10.1161/jaha.123.031732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The relevance of iron status biomarkers for coronary artery disease (CAD), heart failure (HF), ischemic stroke (IS), and type 2 diabetes (T2D) is uncertain. We compared the observational and Mendelian randomization (MR) analyses of iron status biomarkers and hemoglobin with these diseases. METHODS AND RESULTS Observational analyses of hemoglobin were compared with genetically predicted hemoglobin with cardiovascular diseases and diabetes in the UK Biobank. Iron biomarkers included transferrin saturation, serum iron, ferritin, and total iron binding capacity. MR analyses assessed associations with CAD (CARDIOGRAMplusC4D [Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus The Coronary Artery Disease Genetics], n=181 522 cases), HF (HERMES [Heart Failure Molecular Epidemiology for Therapeutic Targets), n=115 150 cases), IS (GIGASTROKE, n=62 100 cases), and T2D (DIAMANTE [Diabetes Meta-Analysis of Trans-Ethnic Association Studies], n=80 154 cases) genome-wide consortia. Observational analyses demonstrated J-shaped associations of hemoglobin with CAD, HF, IS, and T2D. In contrast, MR analyses demonstrated linear positive associations of higher genetically predicted hemoglobin levels with 8% higher risk per 1 SD higher hemoglobin for CAD, 10% to 13% for diabetes, but not with IS or HF in UK Biobank. Bidirectional MR analyses confirmed the causal relevance of iron biomarkers for hemoglobin. Further MR analyses in global consortia demonstrated modest protective effects of iron biomarkers for CAD (7%-14% lower risk for 1 SD higher levels of iron biomarkers), adverse effects for T2D, but no associations with IS or HF. CONCLUSIONS Higher levels of iron biomarkers were protective for CAD, had adverse effects on T2D, but had no effects on IS or HF. Randomized trials are now required to assess effects of iron supplements on risk of CAD in high-risk older people.
Collapse
Affiliation(s)
- Yunan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Robert Clarke
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Derrick A. Bennett
- Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Wei Gan
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Innovation Building, Old Road CampusOxfordUnited Kingdom
| |
Collapse
|
26
|
Mohammadi S, Ghaderi S, Sayehmiri F, Fathi M. Quantitative susceptibility mapping for iron monitoring of multiple subcortical nuclei in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1331831. [PMID: 38510699 PMCID: PMC10950952 DOI: 10.3389/fendo.2024.1331831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Iron accumulation in the brain has been linked to diabetes, but its role in subcortical structures involved in motor and cognitive functions remains unclear. Quantitative susceptibility mapping (QSM) allows the non-invasive quantification of iron deposition in the brain. This systematic review and meta-analysis examined magnetic susceptibility measured by QSM in the subcortical nuclei of patients with type 2 diabetes mellitus (T2DM) compared with controls. Methods PubMed, Scopus, and Web of Science databases were systematically searched [following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines] for studies reporting QSM values in the deep gray matter (DGM) regions of patients with T2DM and controls. Pooled standardized mean differences (SMDs) for susceptibility were calculated using fixed-effects meta-analysis models, and heterogeneity was assessed using I2. Sensitivity analyses were conducted, and publication bias was evaluated using Begg's and Egger's tests. Results Six studies including 192 patients with T2DM and 245 controls were included. This study found a significant increase in iron deposition in the subcortical nuclei of patients with T2DM compared to the control group. The study found moderate increases in the putamen (SMD = 0.53, 95% CI 0.33 to 0.72, p = 0.00) and dentate nucleus (SMD = 0.56, 95% CI 0.27 to 0.85, p = 0.00) but weak associations between increased iron levels in the caudate nucleus (SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and red nucleus (SMD = 0.22, 95% CI 0.00 0.44, p = 0.05). No statistical significance was found for iron deposition alterations in the globus pallidus (SMD = 0.19; 95% CI -0.01 to 0.38; p = 0.06) and substantia nigra (SMD = 0.12, 95% CI -0.10, 0.34, p = 0.29). Sensitivity analysis showed that the findings remained unaffected by individual studies, and consistent increases were observed in multiple subcortical areas. Discussion QSM revealed an increase in iron in the DGM/subcortical nuclei in T2DM patients versus controls, particularly in the motor and cognitive nuclei, including the putamen, dentate nucleus, caudate nucleus, and red nucleus. Thus, QSM may serve as a potential biomarker for iron accumulation in T2DM patients. However, further research is needed to validate these findings.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Domellöf M, Sjöberg A. Iron - a background article for the Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10451. [PMID: 38370116 PMCID: PMC10870973 DOI: 10.29219/fnr.v68.10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024] Open
Abstract
Iron absorption from foods is generally lower than that of most other nutrients and is highly variable depending on individual iron status and iron bioavailability in the meal. Several large population groups in the Nordic and Baltic countries are at risk of iron deficiency, including infants, young children, menstruating females, pregnant women as well as vegetarians. Iron deficiency leads to anemia, fatigue, and limited capacity for physical activity. Of particular concern is that iron deficiency anemia in young children is associated with impaired neurodevelopment. A comprehensive literature search has been performed and summarized. New factorial calculations have been performed considering iron losses, iron absorption and iron requirements in various population groups. Recent data on iron intakes and the prevalence of iron deficiency in the Nordic countries are presented. Average requirements and tentative recommended intakes are presented for 12 different population groups. Pregnant women and those with high menstrual blood losses should consume iron-rich food and undergo screening for iron deficiency. Infants should consume iron-rich complementary foods and cow's milk should be avoided as a drink before 12 months of age and limited to < 500 mL/day in toddlers. Vegetarians should consume a diet including wholegrains, legumes, seeds, and green vegetables together with iron absorption enhancers. There is no evidence that iron intake per se increases the risk of cancer or diabetes. Iron absorption from foods is generally lower than that of most other nutrients and can vary between <2 and 50% depending on individual iron status and iron bioavailability in the meal.
Collapse
Affiliation(s)
- Magnus Domellöf
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Agneta Sjöberg
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Ohori K, Yano T, Katano S, Nagaoka R, Numazawa R, Yamano K, Fujisawa Y, Kouzu H, Nagano N, Fujito T, Nishikawa R, Ohwada W, Sato T, Furuhashi M. Relationship between serum iron level and physical function in heart failure patients is lost by presence of diabetes. ESC Heart Fail 2024; 11:513-523. [PMID: 38088258 PMCID: PMC10804160 DOI: 10.1002/ehf2.14610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Iron deficiency (ID) is common in patients with heart failure (HF) and is reportedly associated with exercise intolerance and impaired quality of life. Iron supplementation therapy in HF patients with ID improves exercise capacity. Conversely, protective roles of iron depletion in the development of diabetes mellitus (DM) and its complications have been proposed. This study aimed to determine the impact of ID on physical function in HF patients with and without DM. METHODS AND RESULTS We enrolled consecutive patients who were admitted to our institute for HF diagnosis and management. The short physical performance battery (SPPB) was used to evaluate physical function, and low physical function was defined as an SPPB score of <10 points as individuals with SPPB scores of <10 points are most likely to be classified as frail and are at high risk for disability and future adverse events, including death. ID was defined as serum ferritin < 100 or 100-299 ng/mL when transferrin saturation (TSAT) was <20% according to the HF guidelines. Among the 562 HF patients (72 ± 14 years old; 56% male), 329 patients (58%) and 191 patients (34%) had ID and low physical function, respectively. Multivariate logistic regression analysis showed that TSAT as a continuous variable, but not ID, was a predictor of low physical function (odds ratio: 0.980, P = 0.024). Subgroup analysis showed that a significant association between low TSAT and low physical function was lost in HF patients with DM (P for interaction < 0.001). A spline dose-response curve for the relationship between TSAT and risk of low physical function with adjustments for covariates associated with low physical function in non-DM patients was almost linear with an increase in the risk of low physical function as the TSAT increased, but such a relationship was not found in the analyses of DM patients. A lack of close TSAT-SPPB relationship in HF patients with DM was confirmed also in a propensity-score-matched cohort. CONCLUSIONS TSAT as a continuous variable, but not ID, was independently associated with physical function in HF patients, and a significant association was lost in patients with HF and DM, suggesting a limited impact of iron supplementation therapy in HF patients with DM.
Collapse
Affiliation(s)
- Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of CardiologyHokkaido Cardiovascular HospitalSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Satoshi Katano
- Division of RehabilitationSapporo Medical University HospitalSapporoJapan
| | - Ryohei Nagaoka
- Division of RehabilitationSapporo Medical University HospitalSapporoJapan
| | - Ryo Numazawa
- Division of RehabilitationSapporo Medical University HospitalSapporoJapan
- Graduate School of MedicineSapporo Medical UniversitySapporoJapan
| | - Kotaro Yamano
- Division of RehabilitationSapporo Medical University HospitalSapporoJapan
| | - Yusuke Fujisawa
- Division of RehabilitationSapporo Medical University HospitalSapporoJapan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
29
|
Sun K, Zhao JV, Nelson EAS, Wong VWS, Lam HSHS, Hui LL. Iron status and non-alcoholic fatty liver disease: A Mendelian randomization study. Nutrition 2024; 118:112295. [PMID: 38103266 DOI: 10.1016/j.nut.2023.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVES The aim of this study was to assess the association of genetically determined iron status with the risk for non-alcoholic fatty liver disease (NAFLD) using two-sample Mendelian randomization (MR) analysis. METHODS We applied single nucleotide polymorphisms (SNPs) associated at genome-wide significance with iron status proxied by serum iron, ferritin, transferrin, and transferrin saturation from the Genetics of Iron status Consortium (N = 48 793), in a genome-wide association study of 1664 NAFLD cases and 400 055 controls from the United Kingdom Biobank. A SNP associated with multiple markers of iron status was only applied to one marker with the strongest association in the main analysis. Their effects on NAFLD were calculated using inverse variance weighting after excluding SNPs associated with alkaline phosphatase and lipid metabolism. RESULTS The risk for NAFLD is negatively associated with genetically predicted serum transferrin level with a 20% reduction in NAFLD risk per SD (0.65g/L) increase in transferrin (95% confidence interval [CI], 0.66-0.97), and trending positive association with transferrin saturation (odds ratio [OR], 1.50; 95% CI, 0.96-2.35) but it was not associated with serum iron (OR, 0.90; 95% CI, 0.63-1.29) and ferritin (OR, 1.33; 95% CI, 0.54-3.30). CONCLUSIONS MR analysis provided evidence that genetically predicted higher serum transferrin, indicating lower iron status, may be protective against NAFLD, whereas higher transferrin saturation, indicating higher iron status, might increase the risk for NAFLD and its pathogenesis.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Edmund Anthony Severn Nelson
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Vincent Wai Sun Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hugh Simon Hung San Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lai Ling Hui
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, PR China.
| |
Collapse
|
30
|
Bahaaeldin AM, Hussein MS, Hashem SS, Saleh AMM. Study of the Relationship Between Insulin Resistance, Iron Status Markers, and Body Weight in a Sample of Egyptian Population. Curr Diabetes Rev 2024; 20:e170823219896. [PMID: 37592776 DOI: 10.2174/1573399820666230817102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Iron plays a key role in the regulation of body iron homeostasis and is used as a clinical marker for iron deficiency (ID) and hemochromatosis. The idea that iron dysregulation may contribute to various metabolic diseases, such as obesity, insulin resistance, MetS, and T2DM, is a hot topic of discussion. AIM The aim of this study is to investigate the relationship insulin resistance, iron status markers, and body weight in a sample of Egyptian population. METHODS A case control study was conducted on 90 subjects with age ranging from 18 to 70 years old from a diabetes outpatient clinic, and they were divided to three groups: Group I, non-obese- non-diabetic as the control group; Group II, obese-non-diabetic; and Group III, obese-diabetic. RESULTS In our study, there was no statistically significant difference between the three studied groups regarding the different iron parameters. Similarly, we found that neither HOMA-IR nor body weight had a significant correlation with iron status markers. On the contrary, we detected significant positive correlations between the TIBC and the fasting blood glucose, between the serum iron and the LDL, between the TSAT and the systolic blood pressure, and between the HOMA-IR and hematocrit. CONCLUSION Our study demonstrated no direct statistical significant relationship between the different iron parameters, obesity, and insulin resistance, either in the diabetic or non-diabetic subjects. This may be due to the complex metabolic dysregulation and the small number of the sample for future investigations.
Collapse
Affiliation(s)
- Ahmed Mohamed Bahaaeldin
- Internal Medicine and Endocrinology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Magda Shoukry Hussein
- Internal Medicine and Endocrinology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa Shaaban Hashem
- Internal Medicine and Endocrinology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Mahmoud Mohamed Saleh
- Internal Medicine and Endocrinology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Hazarika A, Nongkhlaw B, Mukhopadhyay A. Evaluation of the expression of genes associated with iron metabolism in peripheral blood mononuclear cells from Type 2 diabetes mellitus patients. Free Radic Biol Med 2024; 210:344-351. [PMID: 38056574 PMCID: PMC7615906 DOI: 10.1016/j.freeradbiomed.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
AIMS Type 2 Diabetes (T2DM) has been linked to ferroptosis. This study aimed to assess expression levels of genes linked with iron metabolism in peripheral blood mononuclear cells (PBMCs) from T2DM patients and to investigate the association of these expression levels with anthropometric and clinical parameters. METHODS Gene expression of iron metabolism genes (Ferritin Light Chain, FTL; Ferritin Heavy Chain, FTH1; Transferrin Receptor, TFRC; Divalent Metal Transporter 1, SLC11A2; Ferroportin, SLC40A1) in archival PBMCs was assessed using quantitative real-time PCR assays. Correlations of gene expression with anthropometric/biochemical patient data were evaluated. RESULTS The study included 36 (18 male/18 female) T2DM patients and 45 (28 male/17 female) normoglycemic (NGT) subjects with a mean age of 38.1 ± 6.8 years and 47.6 ± 8.6 years respectively. Relative expression of FTL was significantly lower in T2DM females compared to that in NGT females (P = 0.027). Relative expression of SLC40A1 was significantly lower in the T2DM group (P = 0.043) and in the T2DM females (P = 0.021). Relative expression of SLC11A2 was negatively correlated with systolic blood pressure in T2DM male patients. Relative expression of SLC40A1 was negatively associated with serum phosphorous and positively associated with serum thyroid stimulating hormone in male T2DM patients. CONCLUSIONS Our findings indicate a reduction in the expression of FTL in perimenopausal T2DM females. Also, in male T2DM patients and NGT subjects, biochemical markers are significantly correlated with the expression of FTL, FTH1, SLC11A2, and SLC40A1 in PBMCs.
Collapse
Affiliation(s)
- Ankita Hazarika
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Bajanai Nongkhlaw
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.
| |
Collapse
|
32
|
Huang Z, Ma Y, Sun Z, Cheng L, Wang G. Ferroptosis: potential targets and emerging roles in pancreatic diseases. Arch Toxicol 2024; 98:75-94. [PMID: 37934210 DOI: 10.1007/s00204-023-03625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis is a newly discovered form of regulatory cell death characterized by excessive iron-dependent lipid peroxidation. In the past decade, significant breakthroughs have been made in comprehending the features and regulatory mechanisms of ferroptosis, and it has been confirmed that ferroptosis plays a pivotal role in the pathophysiological processes of various diseases, including tumors, inflammation, neurodegenerative diseases, and infectious diseases. The pancreas, which is the second largest digestive gland in the human body and has both endocrine and exocrine functions, is a vital organ for controlling digestion and metabolism. In recent years, numerous studies have confirmed that ferroptosis is closely related to pancreatic diseases, which is attributed to abnormal iron accumulation, as an essential biochemical feature of ferroptosis, is often present in the pathological processes of various pancreatic exocrine and endocrine diseases and the vulnerability of the pancreas to oxidative stress stimulation and damage. Therefore, comprehending the regulatory mechanism of ferroptosis in pancreatic diseases may provide valuable new insights into treatment strategies. In this review, we first summarize the hallmark features of ferroptosis and then analyze the exact mechanisms by which ferroptosis is precisely regulated at multiple levels and links, including iron metabolism, lipid metabolism, the GPX4-mediated ferroptosis defense system, the GPX4-independent ferroptosis defense system, and the regulation of autophagy on ferroptosis. Finally, we discuss the role of ferroptosis in the occurrence and development of pancreatic diseases and summarize the feasibility and limitations of ferroptosis as a therapeutic target for pancreatic diseases.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuan Ma
- Medical Department, The First Affifiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhiguo Sun
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
33
|
Sharma R, Gibb AA, Barnts K, Elrod JW, Puri S. Alternative oxidase promotes high iron tolerance in Candida albicans. Microbiol Spectr 2023; 11:e0215723. [PMID: 37929974 PMCID: PMC10714975 DOI: 10.1128/spectrum.02157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The yeast C. albicans exhibits metabolic flexibility for adaptability to host niches with varying availability of nutrients including essential metals like iron. For example, blood is iron deplete, while the oral cavity and the intestinal lumen are considered iron replete. We show here that C. albicans can tolerate very high levels of environmental iron, despite an increase in high iron-induced reactive oxygen species (ROS) that it mitigates with the help of a unique oxidase, known as alternative oxidase (AOX). High iron induces AOX1/2 that limits mitochondrial accumulation of ROS. Genetic elimination of AOX1/2 resulted in diminished virulence during oropharyngeal candidiasis in high iron mice. Since human mitochondria lack AOX protein, it represents a unique target for treatment of fungal infections.
Collapse
Affiliation(s)
- Rishabh Sharma
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Andrew A. Gibb
- Department of Cardiovascular Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Kelcie Barnts
- Oral and Maxillofacial Pathology, Medicine and Surgery, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - John W. Elrod
- Department of Cardiovascular Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
35
|
Sam RM, Shetty SS, Kumari N S, KP S, Bhandary P. Association between iron profile status and insulin resistance in patients with type 2 diabetes mellitus. J Diabetes Metab Disord 2023; 22:1453-1458. [PMID: 37975116 PMCID: PMC10638270 DOI: 10.1007/s40200-023-01268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/19/2023] [Indexed: 11/19/2023]
Abstract
Introduction Individuals' burden of insulin resistance and metabolic syndrome, such as type 2 diabetes mellitus, is increasing. This indicates to intrigue into various facets of prevention, early screening, prognostication and feasible treatment alternatives in this arena. Aim This study targets to evaluate iron profile status among people diagnosed with type 2 diabetes mellitus and normoglycemic in order to deduce association between iron parameters and insulin resistance, if any exist. Methodology A case-control study of total 123 subjects, comprising males and females in the age group of 30 - 70 years were recruited for the study. Case group constituted 81 participants who were diagnosed with type 2 diabetes mellitus and control group constituted 42 healthy individuals who attended routine health check-ups in the hospital. Iron profile parameters including Serum Iron, Serum Ferritin, Total Iron binding Capacity and Glycemic profile parameter like fasting blood glucose, serum insulin were estimated. Transferrin saturation and HOMA-IR were calculated. Result Ferritin and Transferrin saturation was found to be higher in cases than in controls with significance of p = 0.003 and p = 0.021 respectively and TIBC (total iron-binding capacity) was lesser in cases with p = 0.031. Comparison of Serum Iron values did not yield a significant result. Correlation study between ferritin and insulin resistance parameters yielded a satisfactory result in the cases (p<0.05) and controls (p<0.01) separately. Conclusion This study implies that there is a clear link between iron profile status, notably ferritin, and the emergence of insulin resistance, and hence insulin production. This study supports the function of the micronutrient iron in the etiology of type 2 diabetes and its consequences.
Collapse
Affiliation(s)
- Reeba Maryam Sam
- KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Shilpa S Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Suchetha Kumari N
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Sharmila KP
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Prajna Bhandary
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| |
Collapse
|
36
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
37
|
Liu C, Wang W, Gu J. Targeting ferroptosis: New perspectives of Chinese herbal medicine in the treatment of diabetes and its complications. Heliyon 2023; 9:e22250. [PMID: 38076182 PMCID: PMC10709212 DOI: 10.1016/j.heliyon.2023.e22250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of cell death. A large number of studies have confirmed that ferroptosis plays a vital role in the occurrence and development of diabetes and diabetic complications. Previous studies have found that Chinese herbal medicines have very promising results in the prevention and treatment of diabetes and diabetic complications, and some of these herbs or herbal natural compounds may act via the inhibition of ferroptosis. In this review, we summarized the relationship between ferroptosis and diabetes and diabetic complications, and discussed its molecular mechanisms. We also reviewed the published studies of herbal medicines or herbal natural compounds that improved diabetes or diabetic complications via the ferroptosis pathway. In addition, we are trying to provide new insights for better treatment of diabetes and diabetic complications with Chinese herbal medicine and its herbal compounds.
Collapse
Affiliation(s)
- Cuiping Liu
- Department of Endocrinology, The Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
- Clinical Research and Translation Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
| | - Wuxi Wang
- Community Health Service Center of Tongyuanju, Chongqing, PR China
| | - Junling Gu
- Department of Endocrinology, The Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
- Clinical Research and Translation Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
| |
Collapse
|
38
|
AlQarni AM, Alghamdi AA, Aljubran HJ, Bamalan OA, Abuzaid AH, AlYahya MA. The Effect of Iron Replacement Therapy on HbA1c Levels in Diabetic and Nondiabetic Patients: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:7287. [PMID: 38068338 PMCID: PMC10707099 DOI: 10.3390/jcm12237287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Several studies have reported that iron-deficiency anemia (IDA) and its treatment might lead to a distorted reading of glycated hemoglobin (HbA1c) value. Hence, this review aims to systematically investigate the effect of iron replacement therapy (IRT) on HbA1c levels, as the literature is deficient in assessing this clinical phenomenon. METHODS An electronic search of the Cochrane, MEDLINE, and Embase databases was conducted by four independent authors. RESULTS Among the 8332 articles identified using the search strategy, 10 records (with a total of 2113 participants) met the inclusion criteria and were analyzed. In nine of the studies, IRT was found to decrease HbA1c levels; in the remaining study, IRT was found to increase HbA1c levels. The effect size of the pooled standardized mean difference in HbA1c levels between the treatment and control groups with IDA was 1.8 (95% CI = -0.5, 2.31). Heterogeneity was assessed using the I2 and χ2 tests, and the resultant values were 98.46% and p = 0.09, respectively. Additionally, the mean difference between the HbA1c levels (pre-IRT and post-IRT) showed a drop in the HbA1c levels which ranged from 1.20 to 0.43 mg/dL. CONCLUSIONS The results suggest that IRT decreases HbA1c levels, and it is helpful in treating IDA patients with poor glycemic control. Accordingly, the results provide an added perspective on antidiabetic medication dosing and physicians' interpretation of initially elevated HbA1c values.
Collapse
Affiliation(s)
- Amani M. AlQarni
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.A.); (H.J.A.); (O.A.B.); (A.H.A.); (M.A.A.)
| | | | | | | | | | | |
Collapse
|
39
|
Huang JH, Li RH, Tsai LC. Dual nature of ferritin for hematologic, liver functional, and metabolic parameters in older diabetic patients. Sci Rep 2023; 13:20207. [PMID: 37980447 PMCID: PMC10657432 DOI: 10.1038/s41598-023-47678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/16/2023] [Indexed: 11/20/2023] Open
Abstract
This study explored the association between ferritin with hematologic, liver functional, and metabolic parameters in older diabetic patients. A total of 210 diabetic patients aged 65 or older were classified into four groups according to the reference range of serum ferritin. Demographic variables and health-related lifestyle factors were obtained through the utilization of a standardized questionnaire. Anthropometric measures, blood pressure, hematology test, and biochemical assessment were also performed. Among all patients, 29.5% had anemia. The percentage of anemia in groups low ferritin (< 40 μg/L), lower side within the reference range (40-120 μg/L), higher side within the reference range (121-200 μg/L), and high ferritin levels (> 200 μg/L) were 50.0, 27.7, 20.5, and 24.2% (P = 0.025), respectively. Low ferritin levels had a higher risk of anemia and a high red blood cell distribution width (RDW). High ferritin levels were associated with a higher risk of high glutamate pyruvate transaminase, obesity, high fasting blood glucose (FBG), and high postprandial blood glucose. The higher side within the reference range of ferritin also showed a higher risk of high FBG and high glycated hemoglobin. Nevertheless, there was no significant association between ferritin and inflammation marker, serum lipids or blood pressure. Overall, ferritin demonstrates a dual nature in older diabetic patients: low ferritin levels are linked to anemia or elevated RDW, while high levels are linked to obesity, increased liver enzymes, and worse glycemia control.
Collapse
Affiliation(s)
- Jui-Hua Huang
- Department of Golden-Ager Industry Management, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Ren-Hau Li
- Department of Psychology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Leih-Ching Tsai
- Division of Endocrine and Metabolism, Department of Internal Medicine, Erlin-Branch, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
40
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
41
|
Huang Y, Ding Y, Wang B, Ji Q, Peng C, Tan Q. Neutrophils extracellular traps and ferroptosis in diabetic wounds. Int Wound J 2023; 20:3840-3854. [PMID: 37199077 PMCID: PMC10588347 DOI: 10.1111/iwj.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Wound healing is an extremely complex process involving multiple levels of cells and tissues. It is mainly completed through four stages: haemostasis, inflammation, proliferation, and remodelling. When any one of these stages is impaired, it may lead to delayed healing or even transformation into chronic refractory wounds. Diabetes is a kind of common metabolic disease that affects approximately 500 million people worldwide, 25% of whom develop skin ulcers that break down repeatedly and are difficult to heal, making it a growing public health problem. Neutrophils extracellular traps and ferroptosis are new types of programmed cell death identified in recent years and have been found to interact with diabetic wounds. In this paper, the normal wound healing and interfering factors of the diabetic refractory wound were outlined. The mechanism of two kinds of programmed cell death was also described, and the interaction mechanism between different types of programmed cell death and diabetic refractory wounds was discussed.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Youjun Ding
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Emergency SurgeryThe Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People's Hospital)ZhenjiangChina
| | - Beizhi Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Qian Ji
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Chen Peng
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Burns and Plastic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Burns and Plastic SurgeryAnqing Shihua Hospital of Nanjing Drum Tower Hospital GroupAnqingChina
| |
Collapse
|
42
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
43
|
Wang S, Lu Y, Chi T, Zhang Y, Zhao Y, Guo H, Feng L. Identification of ferroptosis-related genes in type 2 diabetes mellitus based on machine learning. Immun Inflamm Dis 2023; 11:e1036. [PMID: 37904700 PMCID: PMC10566453 DOI: 10.1002/iid3.1036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), which has a high incidence and several harmful consequences, poses a severe danger to human health. Research on the function of ferroptosis in T2DM is increasing. This study uses bioinformatics techniques identify new diagnostic T2DM biomarkers associated with ferroptosis. METHODS To identify ferroptosis-related genes (FRGs) that are differentially expressed between T2DM patients and healthy individuals, we first obtained T2DM sequencing data and FRGs from the Gene Expression Omnibus (GEO) database and FerrDb database. Then, drug-gene interaction networks and competitive endogenous RNA (ceRNA) networks linked to the marker genes were built after marker genes were filtered by two machine learning algorithms (LASSO and SVM-RFE algorithms). Finally, to confirm the expression of marker genes, the GSE76895 dataset was utilized. The protein and RNA expression of some marker genes in T2DM and nondiabetic tissues was also examined by Western blotting, immunohistochemistry (IHC), immunofluorescence (IF) and quantitative real-time PCR (qRT-PCR). RESULTS We obtained 58 differentially expressed genes (DEGs) associated with ferroptosis. GO and KEGG enrichment analyses showed that these DEGs were significantly enriched in hypoxia and ferroptosis. Subsequently, eight marker genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2, and MYCN) were screened by LASSO and SVM-RFE machine learning algorithms, and a model was constructed based on these eight genes. This model also has high diagnostic power. In addition, based on these eight genes, we obtained 48 drugs and constructed a complex ceRNA network map. Finally, Western blotting, IHC, IF, and qRT-PCR results of clinical samples further confirmed the results of public databases. CONCLUSIONS The diagnosis and aetiology of T2DM can be greatly aided by eight FRGs, providing novel therapeutic avenues.
Collapse
Affiliation(s)
- Sen Wang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Yongpan Lu
- Department of Plastic Surgery, The First Clinical Medical College, Shandong University of Traditional Chinese MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalJinanShandongChina
| | - Tingting Chi
- Department of Acupuncture and RehabilitationThe Affiliated Qingdao Hai Ci Hospital of Qingdao University (West Hospital Area)QingdaoShandongChina
| | - Yixin Zhang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Yuli Zhao
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Huimin Guo
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Li Feng
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
44
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
45
|
Wu Z, Guan T, Cai D, Su G. Exposure to multiple metals in adults and diabetes mellitus: a cross-sectional analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3251-3261. [PMID: 36227414 DOI: 10.1007/s10653-022-01411-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/01/2022] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus (DM) is the most widely recognized metabolic illness with expanding morbidity among ongoing years. Its high incapacity rate and death rate badly affect individuals' quality of life. Increasing proofs backed the relationship between metal exposures with the risk of DM, but the methodological boundedness cannot clarify the complexity of the internal relationship of metal mixtures. We fitted the logistic regression model, weighted quantile sum regression model, and Bayesian kernel machine regression model to assess the relationship between the metal exposures with DM in adults who participated in the National Health and Nutrition Examination Survey 2013-2016. The metals (lead, cadmium, and copper) levels were significantly higher among diabetic compared to the healthy controls. In the logistic regression model established for each single metal, lead and manganese were associated with DM in both unadjusted and mutually adjusted models (highest vs. lowest concentration quartile). When considering all metal as a mixed exposure, we found a generally positive correlation between metal mixtures with DM (binary outcome) and glycohemoglobin (HbA1c) levels (continuous outcome). Exposure to metal mixtures was associated with an increased risk of DM and elevated levels of HbA1c.
Collapse
Affiliation(s)
- Zhen Wu
- Suqian Center for Disease Control and Prevention, 8 Renmin Avenue, Suqian, 223899, Jiangsu, China.
| | - Tong Guan
- Suqian Center for Disease Control and Prevention, 8 Renmin Avenue, Suqian, 223899, Jiangsu, China
| | - Dandan Cai
- Suqian Center for Disease Control and Prevention, 8 Renmin Avenue, Suqian, 223899, Jiangsu, China
| | - Gang Su
- Suqian Center for Disease Control and Prevention, 8 Renmin Avenue, Suqian, 223899, Jiangsu, China
| |
Collapse
|
46
|
Angelovski M, Spirovska M, Nikodinovski A, Stamatoski A, Atanasov D, Mladenov M, Hadzi-Petrushev N. Serum redox markers in uncomplicated type 2 diabetes mellitus accompanied with abnormal iron levels. Cent Eur J Public Health 2023; 31:133-139. [PMID: 37451247 DOI: 10.21101/cejph.a7399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES This study aimed at evaluating the serum redox status in type 2 diabetes mellitus (T2DM) accompanied with an imbalance in iron concentrations. METHODS Diabetic patients were grouped according to serum iron levels [normal (DNFe), low (DLFe), and high (DHFe)], and their clinical and redox parameters [total sulfhydryl groups (tSH), uric acid (UA), and total bilirubin (tBILI) as non-enzymatic antioxidants, and malondialdehyde (MDA) and advanced oxidation products of proteins (AOPP) as markers of oxidative stress] were determined. RESULTS Glucose and HbA1c levels in the T2DM patients did not differ in function of serum iron. T2DM was associated with reduced tSH levels. In the diabetic patients, tSH, UA, and tBILI negatively correlated with MDA, as well as HbA1c with UA. Accordingly, AOPP and MDA were higher in the diabetic groups compared to the controls. The reduced antioxidant capacity was particularly pronounced in the DLFe group, which was further characterized by lower levels of UA and tBILI compared to the other groups. Subsequently, the level of MDA in the DLFe group was higher compared to the DNFe and DHFe groups. The positive correlation between serum iron levels and the antioxidants UA and tBILI, in conjunction with the negative correlation between serum iron levels and the markers of oxidative stress in the diabetic patients, corroborated the indication that comparatively higher level of oxidative stress is present when T2DM coexists with decreased iron levels. CONCLUSIONS T2DM-associated redox imbalance is characterized by a decrease in serum total sulfhydryl groups and low serum iron-associated reduction in uric acid and total bilirubin levels, accompanied by increased oxidative stress markers. The relatively noninvasive and simple determination of these parameters may be of considerable interest in monitoring the pathophysiological processes in T2DM patients, and may provide useful insights into the effects of potential therapeutic or nutritional interventions.
Collapse
Affiliation(s)
- Marija Angelovski
- Department of Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Marina Spirovska
- Department of Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Aleksandar Nikodinovski
- Institute for Preclinical and Clinical Pharmacology and Toxicology, Medical Faculty, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Aleksandar Stamatoski
- University Clinic for Maxillofacial Surgery, Medical Faculty, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Dino Atanasov
- Department of Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Mitko Mladenov
- Department of Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Nikola Hadzi-Petrushev
- Department of Physiology, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| |
Collapse
|
47
|
Charlebois E, Pantopoulos K. Nutritional Aspects of Iron in Health and Disease. Nutrients 2023; 15:2441. [PMID: 37299408 PMCID: PMC10254751 DOI: 10.3390/nu15112441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Dietary iron assimilation is critical for health and essential to prevent iron-deficient states and related comorbidities, such as anemia. The bioavailability of iron is generally low, while its absorption and metabolism are tightly controlled to satisfy metabolic needs and prevent toxicity of excessive iron accumulation. Iron entry into the bloodstream is limited by hepcidin, the iron regulatory hormone. Hepcidin deficiency due to loss-of-function mutations in upstream gene regulators causes hereditary hemochromatosis, an endocrine disorder of iron overload characterized by chronic hyperabsorption of dietary iron, with deleterious clinical complications if untreated. The impact of high dietary iron intake and elevated body iron stores in the general population is not well understood. Herein, we summarize epidemiological data suggesting that a high intake of heme iron, which is abundant in meat products, poses a risk factor for metabolic syndrome pathologies, cardiovascular diseases, and some cancers. We discuss the clinical relevance and potential limitations of data from cohort studies, as well as the need to establish causality and elucidate molecular mechanisms.
Collapse
Affiliation(s)
- Edouard Charlebois
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
48
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
49
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
50
|
Fernandes S, Tlemçani M, Bortoli D, Feliciano M, Lopes ME. A Portable Measurement Device Based on Phenanthroline Complex for Iron Determination in Water. SENSORS (BASEL, SWITZERLAND) 2023; 23:1058. [PMID: 36772098 PMCID: PMC9919581 DOI: 10.3390/s23031058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In this work, a newly developed self-contained, portable, and compact iron measurement system (IMS) based on spectroscopy absorption for determination of Fe2+ in water is presented. One of the main goals of the IMS is to operate the device in the field as opposed to instruments commonly used exclusively in the laboratory. In addition, the system has been tuned to quantify iron concentrations in accordance with the values proposed by the regulations for human consumption. The instrument uses the phenanthroline standard method for iron determination in water samples. This device is equipped with an optical sensing system consisting of a light-emitting diode paired with a photodiode to measure absorption radiation through ferroin complex medium. To assess the sensor response, four series of Fe2+ standard samples were prepared with different iron concentrations in various water matrices. Furthermore, a new solid reagent prepared in-house was investigated, which is intended as a "ready-to-use" sample pre-treatment that optimizes work in the field. The IMS showed better analytical performance compared with the state-of-the-art instrument. The sensitivity of the instrument was found to be 2.5 µg Fe2+/L for the measurement range established by the regulations. The linear response of the photodiode was determined for concentrations between 25 and 1000 µg Fe2+/L, making this device suitable for assessing iron in water bodies.
Collapse
Affiliation(s)
- Samuel Fernandes
- Department of Mechatronics Engineering, School of Science and Technology, Universidade de Évora, 7000-671 Évora, Portugal
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Mouhaydine Tlemçani
- Department of Mechatronics Engineering, School of Science and Technology, Universidade de Évora, 7000-671 Évora, Portugal
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Daniele Bortoli
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
- Physics Department, School of Science and Technology (ECT), Universidade de Évora, 7000-671 Évora, Portugal
- Earth Remote Sensing Laboratory (EaRSLab), Institute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Manuel Feliciano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Elmina Lopes
- Department of Chemistry and Biochemistry, School of Science and Technology (ECT), Universidade de Évora, 7000-671 Evora, Portugal
| |
Collapse
|