1
|
Dougan KE, Bellantuono AJ, Kahlke T, Abbriano RM, Chen Y, Shah S, Granados-Cifuentes C, van Oppen MJH, Bhattacharya D, Suggett DJ, Rodriguez-Lanetty M, Chan CX. Whole-genome duplication in an algal symbiont bolsters coral heat tolerance. SCIENCE ADVANCES 2024; 10:eadn2218. [PMID: 39028812 PMCID: PMC11259175 DOI: 10.1126/sciadv.adn2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.
Collapse
Affiliation(s)
- Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Camila Granados-Cifuentes
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Matthews JL, Ueland M, Bartels N, Lawson CA, Lockwood TE, Wu Y, Camp EF. Multi-Chemical Omics Analysis of the Symbiodiniaceae Durusdinium trenchii under Heat Stress. Microorganisms 2024; 12:317. [PMID: 38399721 PMCID: PMC10893086 DOI: 10.3390/microorganisms12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Thomas E. Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yida Wu
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emma F. Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Wang F, Guo S, Liang J, Sun X. In situ phytoplankton photosynthetic characteristics and their controlling factors in the eastern Indian Ocean. MARINE POLLUTION BULLETIN 2024; 198:115869. [PMID: 38061144 DOI: 10.1016/j.marpolbul.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photosynthesis is the most important bioenergy conversion process on Earth. Capturing instantaneous changes in in situ photosynthesis in open ocean ecosystems remains a major challenge. In this study, fast repetition rate fluorometry (FRRF), which can obtain nondestructive, real-time and in situ estimates of photosynthetic parameters, was used for the first time to continuously observe the spatial variation in in situ photosynthetic parameters in the eastern Indian Ocean (EIO). We further formulated new insights regarding abiotic and biotic factors of potential importance in determining photosynthetic performance. First, we found that the distributions of micro/nano- and picophytoplankton were opposite under the control of nutrient concentrations. Micro/nanophytoplankton had higher cell abundances in the nearshore and upwelling regions, while picophytoplankton had higher abundances in the open ocean, and Prochlorococcus was the dominant group. Second, based on the FRRF technology, we obtained the high-precision and high-density vertical profile map of photosynthetic parameters in the euphotic layer. It was observed that values of the maximum photochemical efficiency (Fv/Fm; 0.14-0.55, unitless) and the functional absorption cross-section of PSII (σPSII; 1.71-4.90 nm2 RCII-1) increased with increasing depth, while high values of the photosynthetic electron transfer rates (ETRRCII; 0.0019-17.0292 mol e- mol RCII-1 s-1) and the nonphotochemical quenching (NPQNSV; 0.35-7.26, unitless) occurred in the shallow 50 m layer, and the values decreased as the depth increased. Finally, we discussed limiting factors that regulated the distribution of photosynthetic parameters and concluded that optical properties varied significantly with changes in the ocean physico-chemical parameters and taxonomic composition of phytoplankton assemblages in the EIO. Picophytoplankton (especially cyanobacteria), rather than the micro/nanophytoplankton community, was the dominant factor influencing photosynthesis. Among abiotic factors, photosynthetically active radiation (PAR) was the proximal limiting factor affecting photosynthetic efficiency, followed by temperature and dissolved inorganic nitrogen (DIN). Consequently, phytoplankton photosynthetic parameters exhibited great variability, allowing rapid responses to environmental condition changes. In this study, we established the basis for detecting future changes in primary production in this oligotrophic area.
Collapse
Affiliation(s)
- Feng Wang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujin Guo
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Matthews JL, Hoch L, Raina JB, Pablo M, Hughes DJ, Camp EF, Seymour JR, Ralph PJ, Suggett DJ, Herdean A. Symbiodiniaceae photophysiology and stress resilience is enhanced by microbial associations. Sci Rep 2023; 13:20724. [PMID: 38007500 PMCID: PMC10676399 DOI: 10.1038/s41598-023-48020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023] Open
Abstract
Symbiodiniaceae form associations with extra- and intracellular bacterial symbionts, both in culture and in symbiosis with corals. Bacterial associates can regulate Symbiodiniaceae fitness in terms of growth, calcification and photophysiology. However, the influence of these bacteria on interactive stressors, such as temperature and light, which are known to influence Symbiodiniaceae physiology, remains unclear. Here, we examined the photophysiological response of two Symbiodiniaceae species (Symbiodinium microadriaticum and Breviolum minutum) cultured under acute temperature and light stress with specific bacterial partners from their microbiome (Labrenzia (Roseibium) alexandrii, Marinobacter adhaerens or Muricauda aquimarina). Overall, bacterial presence positively impacted Symbiodiniaceae core photosynthetic health (photosystem II [PSII] quantum yield) and photoprotective capacity (non-photochemical quenching; NPQ) compared to cultures with all extracellular bacteria removed, although specific benefits were variable across Symbiodiniaceae genera and growth phase. Symbiodiniaceae co-cultured with M. aquimarina displayed an inverse NPQ response under high temperatures and light, and those with L. alexandrii demonstrated a lowered threshold for induction of NPQ, potentially through the provision of antioxidant compounds such as zeaxanthin (produced by Muricauda spp.) and dimethylsulfoniopropionate (DMSP; produced by this strain of L. alexandrii). Our co-culture approach empirically demonstrates the benefits bacteria can deliver to Symbiodiniaceae photochemical performance, providing evidence that bacterial associates can play important functional roles for Symbiodiniaceae.
Collapse
Affiliation(s)
- Jennifer L Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Lilian Hoch
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marine Pablo
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
- Sorbonne University, Paris, France
| | - David J Hughes
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Institute of Marine Sciences, Townsville, QLD, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Reseach Centre (RSRC), King Abdullah University of Science & Technology, 23955, Thuwal, Saudi Arabia
| | - Andrei Herdean
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
5
|
McQuagge A, Pahl KB, Wong S, Melman T, Linn L, Lowry S, Hoadley KD. Cellular traits regulate fluorescence-based light-response phenotypes of coral photosymbionts living in-hospite. Front Physiol 2023; 14:1244060. [PMID: 37885802 PMCID: PMC10598705 DOI: 10.3389/fphys.2023.1244060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Diversity across algal family Symbiodiniaceae contributes to the environmental resilience of certain coral species. Chlorophyll-a fluorescence measurements are frequently used to determine symbiont health and resilience, but more work is needed to refine these tools and establish how they relate to underlying cellular traits. We examined trait diversity in symbionts from the generas Cladocopium and Durusdinium, collected from 12 aquacultured coral species. Photophysiological metrics (ΦPSII, σPSII, ρ, τ1, τ2, antenna bed quenching, non-photochemical quenching, and qP) were assessed using a prototype multi-spectral fluorometer over a variable light protocol which yielded a total of 1,360 individual metrics. Photophysiological metrics were then used to establish four unique light-response phenotypic variants. Corals harboring C15 were predominantly found within a single light-response phenotype which clustered separately from all other coral fragments. The majority of Durusdinium dominated colonies also formed a separate light-response phenotype which it shared with a few C1 dominated corals. C15 and D1 symbionts appear to differ in which mechanisms they use to dissipate excess light energy. Spectrally dependent variability is also observed across light-response phenotypes that may relate to differences in photopigment utilization. Symbiont cell biochemical and structural traits (atomic C:N:P, cell size, chlorophyll-a, neutral lipid content) was also assessed within each sample and differ across light-response phenotypes, linking photophysiological metrics with underlying primary cellular traits. Strong correlations between first- and second-order traits, such as Quantum Yield and cellular N:P content, or light dissipation pathways (qP and NPQ) and C:P underline differences across symbiont types and may also provide a means for using fluorescence-based metrics as biomarkers for certain primary-cellular traits.
Collapse
Affiliation(s)
- Audrey McQuagge
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - K. Blue Pahl
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Sophie Wong
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
- Department of Environmental Science, University of Virginia, Charlottesville, VA, United States
| | - Todd Melman
- Reef Systems Coral Farm, New Albany, OH, United States
| | - Laura Linn
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Sean Lowry
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Kenneth D. Hoadley
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| |
Collapse
|
6
|
Scharfenstein HJ, Alvarez‐Roa C, Peplow LM, Buerger P, Chan WY, van Oppen MJH. Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade-offs. Evol Appl 2023; 16:1549-1567. [PMID: 37752965 PMCID: PMC10519419 DOI: 10.1111/eva.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6-5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat-evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade-offs in growth rates were observed for the heat-evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat-evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat-evolved D. trenchii strain indicate that experimental evolution resulted in further trade-offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat-evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.
Collapse
Affiliation(s)
- Hugo J. Scharfenstein
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | | | - Lesa M. Peplow
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Patrick Buerger
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Applied BioSciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Wing Yan Chan
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| |
Collapse
|
7
|
Turnham KE, Aschaffenburg MD, Pettay DT, Paz-García DA, Reyes-Bonilla H, Pinzón J, Timmins E, Smith RT, McGinley MP, Warner ME, LaJeunesse TC. High physiological function for corals with thermally tolerant, host-adapted symbionts. Proc Biol Sci 2023; 290:20231021. [PMID: 37465983 PMCID: PMC10354691 DOI: 10.1098/rspb.2023.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The flexibility to associate with more than one symbiont may considerably expand a host's niche breadth. Coral animals and dinoflagellate micro-algae represent one of the most functionally integrated and widespread mutualisms between two eukaryotic partners. Symbiont identity greatly affects a coral's ability to cope with extremes in temperature and light. Over its broad distribution across the Eastern Pacific, the ecologically dominant branching coral, Pocillopora grandis, depends on mutualisms with the dinoflagellates Durusdinium glynnii and Cladocopium latusorum. Measurements of skeletal growth, calcification rates, total mass increase, calyx dimensions, reproductive output and response to thermal stress were used to assess the functional performance of these partner combinations. The results show both host-symbiont combinations displayed similar phenotypes; however, significant functional differences emerged when exposed to increased temperatures. Negligible physiological differences in colonies hosting the more thermally tolerant D. glynnii refute the prevailing view that these mutualisms have considerable growth tradeoffs. Well beyond the Eastern Pacific, pocilloporid colonies with D. glynnii are found across the Pacific in warm, environmentally variable, near shore lagoonal habitats. While rising ocean temperatures threaten the persistence of contemporary coral reefs, lessons from the Eastern Pacific indicate that co-evolved thermally tolerant host-symbiont combinations are likely to expand ecologically and spread geographically to dominate reef ecosystems in the future.
Collapse
Affiliation(s)
- Kira E. Turnham
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - D. Tye Pettay
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902,USA
| | - David A. Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur 23096, México
| | - Héctor Reyes-Bonilla
- Universidad Autónoma de Baja California Sur, Carretera al Sur 5.5, La Paz, C.P 23080, Mexico
| | - Jorge Pinzón
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ellie Timmins
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Wuerz M, Lawson CA, Oakley CA, Possell M, Wilkinson SP, Grossman AR, Weis VM, Suggett DJ, Davy SK. Symbiont Identity Impacts the Microbiome and Volatilome of a Model Cnidarian-Dinoflagellate Symbiosis. BIOLOGY 2023; 12:1014. [PMID: 37508443 PMCID: PMC10376011 DOI: 10.3390/biology12071014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.
Collapse
Affiliation(s)
- Maggie Wuerz
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Arthur R. Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
9
|
Kwok ACM, Chan WS, Wong JTY. Dinoflagellate Amphiesmal Dynamics: Cell Wall Deposition with Ecdysis and Cellular Growth. Mar Drugs 2023; 21:md21020070. [PMID: 36827111 PMCID: PMC9959387 DOI: 10.3390/md21020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Dinoflagellates are a major aquatic protist group with amphiesma, multiple cortical membranous "cell wall" layers that contain large circum-cortical alveolar sacs (AVs). AVs undergo extensive remodeling during cell- and life-cycle transitions, including ecdysal cysts (ECs) and resting cysts that are important in some harmful algal bloom initiation-termination. AVs are large cortical vesicular compartments, within which are elaborate cellulosic thecal plates (CTPs), in thecate species, and the pellicular layer (PL). AV-CTPs provide cellular mechanical protection and are targets of vesicular transport that are replaced during EC-swarmer cell transition, or with increased deposition during the cellular growth cycle. AV-PL exhibits dynamical-replacement with vesicular trafficking that are orchestrated with amphiesmal chlortetracycline-labeled Ca2+ stores signaling, integrating cellular growth with different modes of cell division cycle/progression. We reviewed the dynamics of amphiesma during different cell division cycle modes and life cycle stages, and its multifaceted regulations, focusing on the regulatory and functional readouts, including the coral-zooxanthellae interactions.
Collapse
|
10
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
11
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
12
|
Lo R, Dougan KE, Chen Y, Shah S, Bhattacharya D, Chan CX. Alignment-Free Analysis of Whole-Genome Sequences From Symbiodiniaceae Reveals Different Phylogenetic Signals in Distinct Regions. FRONTIERS IN PLANT SCIENCE 2022; 13:815714. [PMID: 35557718 PMCID: PMC9087856 DOI: 10.3389/fpls.2022.815714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 05/24/2023]
Abstract
Dinoflagellates of the family Symbiodiniaceae are predominantly essential symbionts of corals and other marine organisms. Recent research reveals extensive genome sequence divergence among Symbiodiniaceae taxa and high phylogenetic diversity hidden behind subtly different cell morphologies. Using an alignment-free phylogenetic approach based on sub-sequences of fixed length k (i.e. k-mers), we assessed the phylogenetic signal among whole-genome sequences from 16 Symbiodiniaceae taxa (including the genera of Symbiodinium, Breviolum, Cladocopium, Durusdinium and Fugacium) and two strains of Polarella glacialis as outgroup. Based on phylogenetic trees inferred from k-mers in distinct genomic regions (i.e. repeat-masked genome sequences, protein-coding sequences, introns and repeats) and in protein sequences, the phylogenetic signal associated with protein-coding DNA and the encoded amino acids is largely consistent with the Symbiodiniaceae phylogeny based on established markers, such as large subunit rRNA. The other genome sequences (introns and repeats) exhibit distinct phylogenetic signals, supporting the expected differential evolutionary pressure acting on these regions. Our analysis of conserved core k-mers revealed the prevalence of conserved k-mers (>95% core 23-mers among all 18 genomes) in annotated repeats and non-genic regions of the genomes. We observed 180 distinct repeat types that are significantly enriched in genomes of the symbiotic versus free-living Symbiodinium taxa, suggesting an enhanced activity of transposable elements linked to the symbiotic lifestyle. We provide evidence that representation of alignment-free phylogenies as dynamic networks enhances the ability to generate new hypotheses about genome evolution in Symbiodiniaceae. These results demonstrate the potential of alignment-free phylogenetic methods as a scalable approach for inferring comprehensive, unbiased whole-genome phylogenies of dinoflagellates and more broadly of microbial eukaryotes.
Collapse
Affiliation(s)
- Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Camp EF, Nitschke MR, Clases D, Gonzalez de Vega R, Reich HG, Goyen S, Suggett DJ. Micronutrient content drives elementome variability amongst the Symbiodiniaceae. BMC PLANT BIOLOGY 2022; 22:184. [PMID: 35395710 PMCID: PMC8994382 DOI: 10.1186/s12870-022-03512-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Elements are the basis of life on Earth, whereby organisms are essentially evolved chemical substances that dynamically interact with each other and their environment. Determining species elemental quotas (their elementome) is a key indicator for their success across environments with different resource availabilities. Elementomes remain undescribed for functionally diverse dinoflagellates within the family Symbiodiniaceae that includes coral endosymbionts. We used dry combustion and ICP-MS to assess whether Symbiodiniaceae (ten isolates spanning five genera Breviolum, Cladocopium, Durusdinium, Effrenium, Symbiodinium) maintained under long-term nutrient replete conditions have unique elementomes (six key macronutrients and nine micronutrients) that would reflect evolutionarily conserved preferential elemental acquisition. For three isolates we assessed how elevated temperature impacted their elementomes. Further, we tested whether Symbiodiniaceae conform to common stoichiometric hypotheses (e.g., the growth rate hypothesis) documented in other marine algae. This study considers whether Symbiodiniaceae isolates possess unique elementomes reflective of their natural ecologies, evolutionary histories, and resistance to environmental change. RESULTS Symbiodiniaceae isolates maintained under long-term luxury uptake conditions, all exhibited highly divergent elementomes from one another, driven primarily by differential content of micronutrients. All N:P and C:P ratios were below the Redfield ratio values, whereas C:N was close to the Redfield value. Elevated temperature resulted in a more homogenised elementome across isolates. The Family-level elementome was (C19.8N2.6 P1.0S18.8K0.7Ca0.1) · 1000 (Fe55.7Mn5.6Sr2.3Zn0.8Ni0.5Se0.3Cu0.2Mo0.1V0.04) mmol Phosphorous-1 versus (C25.4N3.1P1.0S23.1K0.9Ca0.4) · 1000 (Fe66.7Mn6.3Sr7.2Zn0.8Ni0.4Se0.2Cu0.2Mo0.2V0.05) mmol Phosphorous -1 at 27.4 ± 0.4 °C and 30.7 ± 0.01 °C, respectively. Symbiodiniaceae isolates tested here conformed to some, but not all, stoichiometric principles. CONCLUSIONS Elementomes for Symbiodiniaceae diverge from those reported for other marine algae, primarily via lower C:N:P and different micronutrient expressions. Long-term maintenance of Symbiodiniaceae isolates in culture under common nutrient replete conditions suggests isolates have evolutionary conserved preferential uptake for certain elements that allows these unique elementomes to be identified. Micronutrient content (normalised to phosphorous) commonly increased in the Symbiodiniaceae isolates in response to elevated temperature, potentially indicating a common elemental signature to warming.
Collapse
Affiliation(s)
- Emma F Camp
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia.
| | - Matthew R Nitschke
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia
- School of Biological Sciences, Victoria University, Wellington, 6012, New Zealand
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
- Institute of Chemistry, University of Graz, Graz, 8010, Austria
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
- Institute of Chemistry, University of Graz, Graz, 8010, Austria
| | - Hannah G Reich
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Samantha Goyen
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
14
|
Proteome metabolome and transcriptome data for three Symbiodiniaceae under ambient and heat stress conditions. Sci Data 2022; 9:153. [PMID: 35383179 PMCID: PMC8983644 DOI: 10.1038/s41597-022-01258-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
The Symbiodiniaceae are a taxonomically and functionally diverse family of marine dinoflagellates. Their symbiotic relationship with invertebrates such as scleractinian corals has made them the focus of decades of research to resolve the underlying biology regulating their sensitivity to stressors, particularly thermal stress. Research to-date suggests that Symbiodiniaceae stress sensitivity is governed by a complex interplay between phylogenetic dependent and independent traits (diversity of characteristics of a species). Consequently, there is a need for datasets that simultaneously broadly resolve molecular and physiological processes under stressed and non-stressed conditions. Therefore, we provide a dataset simultaneously generating transcriptome, metabolome, and proteome data for three ecologically important Symbiodiniaceae isolates under nutrient replete growth conditions and two temperature treatments (ca. 26 °C and 32 °C). Elevated sea surface temperature is primarily responsible for coral bleaching events that occur when the coral-Symbiodiniaceae relationship has been disrupted. Symbiodiniaceae can strongly influence their host's response to thermal stress and consequently it is necessary to resolve drivers of Symbiodiniaceae heat stress tolerance. We anticipate these datasets to expand our understanding on the key genotypic and functional properties that influence the sensitivities of Symbiodiniaceae to thermal stress.
Collapse
|
15
|
Quigley KM, van Oppen MJH. Predictive models for the selection of thermally tolerant corals based on offspring survival. Nat Commun 2022; 13:1543. [PMID: 35351901 PMCID: PMC8964693 DOI: 10.1038/s41467-022-28956-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Finding coral reefs resilient to climate warming is challenging given the large spatial scale of reef ecosystems. Methods are needed to predict the location of corals with heritable tolerance to high temperatures. Here, we combine Great Barrier Reef-scale remote sensing with breeding experiments that estimate larval and juvenile coral survival under exposure to high temperatures. Using reproductive corals collected from the northern and central Great Barrier Reef, we develop forecasting models to locate reefs harbouring corals capable of producing offspring with increased heat tolerance of an additional 3.4° heating weeks (~3 °C). Our findings predict hundreds of reefs (~7.5%) may be home to corals that have high and heritable heat-tolerance in habitats with high daily and annual temperature ranges and historically variable heat stress. The locations identified represent targets for protection and consideration as a source of corals for use in restoration of degraded reefs given their potential to resist climate change impacts and repopulate reefs with tolerant offspring.
Collapse
Affiliation(s)
- K M Quigley
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - M J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Sezginer Y, Suggett DJ, Izett RW, Tortell PD. Irradiance and nutrient-dependent effects on photosynthetic electron transport in Arctic phytoplankton: A comparison of two chlorophyll fluorescence-based approaches to derive primary photochemistry. PLoS One 2021; 16:e0256410. [PMID: 34882695 PMCID: PMC8659313 DOI: 10.1371/journal.pone.0256410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
We employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary photochemistry in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait, where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated that kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based photochemistry estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.
Collapse
Affiliation(s)
- Yayla Sezginer
- Department of Earth, Oceans, and Atmospheric Science, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Robert W. Izett
- Department of Earth, Oceans, and Atmospheric Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philippe D. Tortell
- Department of Earth, Oceans, and Atmospheric Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Haydon TD, Seymour JR, Raina JB, Edmondson J, Siboni N, Matthews JL, Camp EF, Suggett DJ. Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments. Front Microbiol 2021; 12:756091. [PMID: 34759906 PMCID: PMC8575411 DOI: 10.3389/fmicb.2021.756091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that an effective approach for predicting whether and how reef-forming corals persist under future climate change is to examine populations thriving in present day extreme environments, such as mangrove lagoons, where water temperatures can exceed those of reef environments by more than 3°C, pH levels are more acidic (pH < 7.9, often below 7.6) and O2 concentrations are regularly considered hypoxic (<2 mg/L). Defining the physiological features of these “extreme” corals, as well as their relationships with the, often symbiotic, organisms within their microbiome, could increase our understanding of how corals will persist into the future. To better understand coral-microbe relationships that potentially underpin coral persistence within extreme mangrove environments, we therefore conducted a 9-month reciprocal transplant experiment, whereby specimens of the coral Pocillopora acuta were transplanted between adjacent mangrove and reef sites on the northern Great Barrier Reef. Bacterial communities associated with P. acuta specimens native to the reef environment were dominated by Endozoicomonas, while Symbiodiniaceae communities were dominated by members of the Cladocopium genus. In contrast, P. acuta colonies native to the mangrove site exhibited highly diverse bacterial communities with no dominating members, and Symbiodiniaceae communities dominated by Durusdinium. All corals survived for 9 months after being transplanted from reef-to-mangrove, mangrove-to-reef environments (as well as control within environment transplants), and during this time there were significant changes in the bacterial communities, but not in the Symbiodiniaceae communities or their photo-physiological functioning. In reef-to-mangrove transplanted corals, there were varied, but sometimes rapid shifts in the associated bacterial communities, including a loss of “core” bacterial members after 9 months where coral bacterial communities began to resemble those of the native mangrove corals. Bacterial communities associated with mangrove-to-reef P. acuta colonies also changed from their original composition, but remained different to the native reef corals. Our data demonstrates that P. acuta associated bacterial communities are strongly influenced by changes in environmental conditions, whereas Symbiodiniaceae associated communities remain highly stable.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | | | - Nachshon Siboni
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| |
Collapse
|
18
|
Turnham KE, Wham DC, Sampayo E, LaJeunesse TC. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. THE ISME JOURNAL 2021; 15:3271-3285. [PMID: 34012104 PMCID: PMC8528872 DOI: 10.1038/s41396-021-01007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
The application of molecular genetics has reinvigorated and improved how species are defined and investigated scientifically, especially for morphologically cryptic micro-organisms. Here we show how species recognition improves understanding of the ecology and evolution of mutualisms between reef-building corals and their mutualistic dinoflagellates (i.e. Symbiodiniaceae). A combination of genetic, ecological, and morphological evidence defines two sibling species of Cladocopium (formerly Symbiodinium Clade C), specific only to host corals in the common genus Pocillopora, which transmit their obligate symbionts during oogenesis. Cladocopium latusorum sp. nov. is symbiotic with P. grandis/meandrina while the smaller-celled C. pacificum sp. nov. associates with P. verrucosa. Both symbiont species form mutualisms with Pocillopora that brood their young. Populations of each species, like their hosts, are genetically well connected across the tropical and subtropical Pacific Ocean, indicating a capacity for long-range dispersal. A molecular clock approximates their speciation during the late Pliocene or early Pleistocene as Earth underwent cycles of precipitous cooling and warming; and corresponds to when their hosts were also diversifying. The long temporal and spatial maintenance of high host fidelity, as well as genetic connectivity across thousands of kilometers, indicates that distinct ecological attributes and close evolutionary histories will restrain the adaptive responses of corals and their specialized symbionts to rapid climate warming.
Collapse
Affiliation(s)
| | - Drew C Wham
- Penn State University, University Park, PA, USA
| | | | - Todd C LaJeunesse
- Penn State University, University Park, PA, USA.
- Penn State Institutes of Energy and the Environment, University Park, PA, USA.
| |
Collapse
|
19
|
Hoadley KD, Pettay DT, Lewis A, Wham D, Grasso C, Smith R, Kemp DW, LaJeunesse T, Warner ME. Different functional traits among closely related algal symbionts dictate stress endurance for vital Indo-Pacific reef-building corals. GLOBAL CHANGE BIOLOGY 2021; 27:5295-5309. [PMID: 34255912 PMCID: PMC9291761 DOI: 10.1111/gcb.15799] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 05/24/2023]
Abstract
Reef-building corals in the genus Porites are one of the most important constituents of Indo-Pacific reefs. Many species within this genus tolerate abnormally warm water and exhibit high specificity for particular kinds of endosymbiotic dinoflagellates that cope with thermal stress better than those living in other corals. Still, during extreme ocean heating, some Porites exhibit differences in their stress tolerance. While corals have different physiological qualities, it remains unknown whether the stability and performance of these mutualisms is influenced by the physiology and genetic relatedness of their symbionts. We investigated two ubiquitous Pacific reef corals, Porites rus and Porites cylindrica, from warmer inshore and cooler offshore reef systems in Palau. While these corals harbored a similar kind of symbiont in the genus Cladocopium (within the ITS2 C15 subclade), rapidly evolving genetic markers revealed evolutionarily diverged lineages corresponding to each Porites species living in each reef habitat. Furthermore, these closely related Cladocopium lineages were differentiated by their densities in host tissues, cell volume, chlorophyll concentration, gross photosynthesis, and photoprotective pathways. When assessed using several physiological proxies, these previously undifferentiated symbionts contrasted in their tolerance to thermal stress. Symbionts within P. cylindrica were relatively unaffected by exposure to 32℃ for 14 days, whereas P. rus colonies lost substantial numbers of photochemically compromised symbionts. Heating reduced the ability of the offshore symbiont associated with P. rus to translocate carbon to the coral. By contrast, high temperatures enhanced symbiont carbon assimilation and delivery to the coral skeleton of inshore P. cylindrica. This study indicates that large physiological differences exist even among closely related symbionts, with significant implications for thermal susceptibility among reef-building Porites.
Collapse
Affiliation(s)
- Kenneth D. Hoadley
- School of Marine Science and PolicyUniversity of DelawareLewesUK
- Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
- Dauphin Island Sea LabDauphin IslandAlabamaUSA
| | - Daniel. T. Pettay
- School of Marine Science and PolicyUniversity of DelawareLewesUK
- Present address:
University of South CarolinaBeaufortSouth CarolinaUSA
| | - Allison Lewis
- Department of BiologyPennsylvania State Institutes of Energy and the EnvironmentUniversity ParkPennsylvaniaUSA
- Present address:
National Science FoundationSilver SpringsMarylandUSA
| | - Drew Wham
- Department of BiologyPennsylvania State Institutes of Energy and the EnvironmentUniversity ParkPennsylvaniaUSA
| | - Chris Grasso
- School of Marine Science and PolicyUniversity of DelawareLewesUK
| | - Robin Smith
- Science Under SailWellington ParkQLDAustralia
- Present address:
The Nature ConservancySt. CroixUS Virgin IslandsUSA
| | - Dustin W. Kemp
- Department of BiologyUniversity of AlabamaBirminghamAlabamaUSA
| | - Todd LaJeunesse
- Department of BiologyPennsylvania State Institutes of Energy and the EnvironmentUniversity ParkPennsylvaniaUSA
| | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesUK
| |
Collapse
|
20
|
Clegg MR, Wacker A, Spijkerman E. Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates. FRONTIERS IN PLANT SCIENCE 2021; 12:707541. [PMID: 34512692 PMCID: PMC8424187 DOI: 10.3389/fpls.2021.707541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.
Collapse
Affiliation(s)
- Mark R. Clegg
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alexander Wacker
- Department of Theoretical Aquatic Ecology and Ecophysiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Animal Ecology Group, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Elly Spijkerman
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Evaluation of Filter, Paramagnetic, and STAGETips Aided Workflows for Proteome Profiling of Symbiodiniaceae Dinoflagellate. Processes (Basel) 2021. [DOI: 10.3390/pr9060983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The integrity of coral reef ecosystems worldwide rests on a fine-tuned symbiotic interaction between an invertebrate and a dinoflagellate microalga from the family Symbiodiniaceae. Recent advances in bottom-up shotgun proteomic approaches and the availability of vast amounts of genetic information about Symbiodiniaceae have provided a unique opportunity to better understand the molecular mechanisms underpinning the interactions of coral-Symbiodiniaceae. However, the resilience of this dinoflagellate cell wall, as well as the presence of polyanionic and phenolics cell wall components, requires the optimization of sample preparation techniques for successful implementation of bottom-up proteomics. Therefore, in this study we compare three different workflows—filter-aided sample preparation (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and stop-and-go-extraction tips (STAGETips, ST)—to develop a high-throughput proteotyping protocol for Symbiodiniaceae algal research. We used the model isolate Symbiodinium tridacnidorum. We show that SP3 outperformed ST and FASP with regard to robustness, digestion efficiency, and contaminant removal, which led to the highest number of total (3799) and unique proteins detected from 23,593 peptides. Most of these proteins were detected with ≥2 unique peptides (73%), zero missed tryptic peptide cleavages (91%), and hydrophilic peptides (>70%). To demonstrate the functionality of this optimized SP3 sample preparation workflow, we examined the proteome of S. tridacnidorum to better understand the molecular mechanism of peridinin-chlorophyll-protein complex (PCP, light harvesting protein) accumulation under low light (LL, 30 μmol photon m−2 s−1). Cells exposed to LL for 7 days upregulated various light harvesting complex (LHCs) proteins through the mevalonate-independent pathway; proteins of this pathway were at 2- to 6-fold higher levels than the control of 120 μmol photon m−2 s−1. Potentially, LHCs which were maintained in an active phosphorylated state by serine/threonine-protein kinase were also upregulated to 10-fold over control. Collectively, our results show that the SP3 method is an efficient high-throughput proteotyping tool for Symbiodiniaceae algal research.
Collapse
|
22
|
Iwasaki K, Evenhuis C, Tamburic B, Kuzhiumparambil U, O'Connor W, Ralph P, Szabó M. Improving light and CO2 availability to enhance the growth rate of the diatom, Chaetoceros muelleri. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Rabouille S, Campbell DA, Masuda T, Zavřel T, Bernát G, Polerecky L, Halsey K, Eichner M, Kotabová E, Stephan S, Lukeš M, Claquin P, Bonomi-Barufi J, Lombardi AT, Červený J, Suggett DJ, Giordano M, Kromkamp JC, Prášil O. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Front Microbiol 2021; 12:617802. [PMID: 33897635 PMCID: PMC8063122 DOI: 10.3389/fmicb.2021.617802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.
Collapse
Affiliation(s)
- Sophie Rabouille
- Sorbonne Université, CNRS, LOV, Villefranche-sur-Mer, France.,Sorbonne Université, CNRS, LOMIC, Banyuls-sur-Mer, France
| | - Douglas A Campbell
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Mount Allison University, Sackville, NB, Canada
| | - Takako Masuda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - Gábor Bernát
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno u. 3. 8237 Tihany, Hungary
| | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Meri Eichner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eva Kotabová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Susanne Stephan
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, Stechlin, Germany.,Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, Berlin, Germany
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Pascal Claquin
- UMR BOREA (CNRS 8067), MNHN, IRD (207), Université de Caen Basse-Normandie, Caen, France
| | - José Bonomi-Barufi
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Mario Giordano
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Dipartimento di Scienze della Vita e dell'Ambiente, UniversitaÌ Politecnica delle Marche, Ancona, Italy
| | - Jacco C Kromkamp
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Utrecht, Netherlands
| | - Ondřej Prášil
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| |
Collapse
|
24
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
25
|
Quigley KM, Alvarez Roa C, Beltran VH, Leggat B, Willis BL. Experimental evolution of the coral algal endosymbiont,
Cladocopium goreaui
: lessons learnt across a decade of stress experiments to enhance coral heat tolerance. Restor Ecol 2021. [DOI: 10.1111/rec.13342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine Science PMB3, Townsville Queensland Australia
| | - Carlos Alvarez Roa
- Australian Institute of Marine Science PMB3, Townsville Queensland Australia
| | - Victor H. Beltran
- Faculty of Natural Sciences Autonomous University of Carmen (UNACAR) Campeche Mexico
| | - Bill Leggat
- School of Environmental and Life Sciences The University of Newcastle Callaghan, New Castle Australia
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies, and College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
26
|
Hughes DJ, Giannini FC, Ciotti AM, Doblin MA, Ralph PJ, Varkey D, Verma A, Suggett DJ. Taxonomic Variability in the Electron Requirement for Carbon Fixation Across Marine Phytoplankton. JOURNAL OF PHYCOLOGY 2021; 57:111-127. [PMID: 32885422 DOI: 10.1111/jpy.13068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global ocean. As FRRf measures electron transport rates through photosystem II (ETRPSII ), a critical, but difficult to predict conversion factor termed the "electron requirement for carbon fixation" (Φe,C ) is needed to scale ETRPSII to C-fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C , while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n = 17 strains) spanning multiple taxonomic and size classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4-10 mol e- · [mol C]-1 ) and was negatively correlated with growth rate (R2 = 0.7, P < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady-state, nutrient-replete growth. Inclusion of meta-analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in situ, facilitate up-scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C-cycling.
Collapse
Affiliation(s)
- David J Hughes
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Fernanda C Giannini
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Laboratorio Aquarela, Centro de Biologia Marinha (CEBIMar/USP) - Universidade de Sao Paulo, Rodovia Manoel Hypolito Rego, km 131.5, Sao Sebastiao, SP, Brazil
| | - Aurea M Ciotti
- Laboratorio Aquarela, Centro de Biologia Marinha (CEBIMar/USP) - Universidade de Sao Paulo, Rodovia Manoel Hypolito Rego, km 131.5, Sao Sebastiao, SP, Brazil
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Deepa Varkey
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
27
|
Reich HG, Tu WC, Rodriguez IB, Chou Y, Keister EF, Kemp DW, LaJeunesse TC, Ho TY. Iron Availability Modulates the Response of Endosymbiotic Dinoflagellates to Heat Stress. JOURNAL OF PHYCOLOGY 2021; 57:3-13. [PMID: 32996595 DOI: 10.1111/jpy.13078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef-building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe') to limiting (50 pM Fe') under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe' at 26-28°C vs. 250 pM Fe' at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga's response to thermal stress suggests the importance of trace metals to the health of coral-algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Wan-Chen Tu
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Yalan Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Elise F Keister
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Dustin W Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Divergence of photosynthetic strategies amongst marine diatoms. PLoS One 2020; 15:e0244252. [PMID: 33370327 PMCID: PMC7769462 DOI: 10.1371/journal.pone.0244252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies. However, how different light harvesting strategies and downstream pathways for oxygen production and consumption interact to balance excitation pressure remains unknown. We therefore examined the responses of three diatom taxa adapted to inherently different light climates (estuarine Thalassioisira weissflogii, coastal Thalassiosira pseudonana and oceanic Thalassiosira oceanica) during transient shifts from a moderate to high growth irradiance (85 to 1200 μmol photons m-2 s-1). Transient high light exposure caused T. weissflogii to rapidly downregulate PSII with substantial nonphotochemical quenching, protecting PSII from inactivation or damage, and obviating the need for induction of O2 consuming (light-dependent respiration, LDR) pathways. In contrast, T. oceanica retained high excitation pressure on PSII, but with little change in RCII photochemical turnover, thereby requiring moderate repair activity and greater reliance on LDR. T. pseudonana exhibited an intermediate response compared to the other two diatom species, exhibiting some downregulation and inactivation of PSII, but high repair of PSII and induction of reversible PSII nonphotochemical quenching, with some LDR. Together, these data demonstrate a range of strategies for balancing light harvesting and utilization across diatom species, which reflect their adaptation to sustain photosynthesis under environments with inherently different light regimes.
Collapse
|
29
|
Sherman J, Gorbunov MY, Schofield O, Falkowski PG. Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:2912-2925. [PMID: 33380749 PMCID: PMC7754432 DOI: 10.1002/lno.11562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/18/2020] [Accepted: 06/23/2020] [Indexed: 06/12/2023]
Abstract
The West Antarctic Peninsula (WAP) is a highly productive polar ecosystem where phytoplankton dynamics are regulated by intense bottom-up control from light and iron availability. Rapid climate change along the WAP is driving shifts in the mixed layer depth and iron availability. Elucidating the relative role of each of these controls and their interactions is crucial for understanding of how primary productivity will change in coming decades. Using a combination of ultra-high-resolution variable chlorophyll fluorescence together with fluorescence lifetime analyses on the 2017 Palmer Long Term Ecological Research cruise, we mapped the temporal and spatial variability in phytoplankton photophysiology across the WAP. Highest photosynthetic energy conversion efficiencies and lowest fluorescence quantum yields were observed in iron replete coastal regions. Photosynthetic energy conversion efficiencies decreased by ~ 60% with a proportional increase in quantum yields of thermal dissipation and fluorescence on the outer continental shelf and slope. The combined analysis of variable fluorescence and lifetimes revealed that, in addition to the decrease in the fraction of inactive reaction centers, up to 20% of light harvesting chlorophyll-protein antenna complexes were energetically uncoupled from photosystem II reaction centers in iron-limited phytoplankton. These biophysical signatures strongly suggest severe iron limitation of photosynthesis in the surface waters along the continental slope of the WAP.
Collapse
Affiliation(s)
- Jonathan Sherman
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Maxim Y. Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Oscar Schofield
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
- Center for Ocean Observing Leadership, Department of Marine and Coastal SciencesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
30
|
Fujise L, Suggett DJ, Stat M, Kahlke T, Bunce M, Gardner SG, Goyen S, Woodcock S, Ralph PJ, Seymour JR, Siboni N, Nitschke MR. Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol Ecol 2020; 30:343-360. [PMID: 33141992 DOI: 10.1111/mec.15719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023]
Abstract
Dinoflagellates of the family Symbiodiniaceae form mutualistic symbioses with marine invertebrates such as reef-building corals, but also inhabit reef environments as free-living cells. Most coral species acquire Symbiodiniaceae horizontally from the surrounding environment during the larval and/or recruitment phase, however the phylogenetic diversity and ecology of free-living Symbiodiniaceae on coral reefs is largely unknown. We coupled environmental DNA sequencing and genus-specific qPCR to resolve the community structure and cell abundances of free-living Symbiodiniaceae in the water column, sediment, and macroalgae and compared these to coral symbionts. Sampling was conducted at two time points, one of which coincided with the annual coral spawning event when recombination between hosts and free-living Symbiodiniaceae is assumed to be critical. Amplicons of the internal transcribed spacer (ITS2) region were assigned to 12 of the 15 Symbiodiniaceae genera or genera-equivalent lineages. Community compositions were separated by habitat, with water samples containing a high proportion of sequences corresponding to coral symbionts of the genus Cladocopium, potentially as a result of cell expulsion from in hospite populations. Sediment-associated Symbiodiniaceae communities were distinct, potentially due to the presence of exclusively free-living species. Intriguingly, macroalgal surfaces displayed the highest cell abundances of Symbiodiniaceae, suggesting a key role for macroalgae in ensuring the ecological success of corals through maintenance of a continuum between environmental and symbiotic populations of Symbiodiniaceae.
Collapse
Affiliation(s)
- Lisa Fujise
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - David J Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael Stat
- Trace and Environmental DNA (TrEnD) Laboratory, Curtin University, Bentley, Perth, WA, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Tim Kahlke
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, Curtin University, Bentley, Perth, WA, Australia
| | - Stephanie G Gardner
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Marine Science and Innovation, University of New South Wales Australia, Kensington, NSW, Australia
| | - Samantha Goyen
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Stephen Woodcock
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin R Seymour
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew R Nitschke
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
31
|
Nitschke MR, Craveiro SC, Brandão C, Fidalgo C, Serôdio J, Calado AJ, Frommlet JC. Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to Formally Recognize Clades Fr3 and H as Genera in the Family Symbiodiniaceae (Dinophyceae). JOURNAL OF PHYCOLOGY 2020; 56:923-940. [PMID: 32267533 DOI: 10.1111/jpy.12999] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/03/2020] [Indexed: 05/13/2023]
Abstract
The Symbiodiniaceae are a family of marine dinoflagellates known mostly for their endosymbiotic interactions with invertebrates and protists, but facultatively and exclusively free-living life histories in this family are also evident. A recent systematic revision of the Symbiodiniaceae replaced the clade-based nomenclature of seven divergent lineages of "Symbiodinium" sensu lato with one based on formally described genera. The revised taxonomy was not extended to the whole group because type species to describe a new genus for each of the remaining clades and subclades were lacking. In an effort to characterize benthic habitats of symbiodiniaceans in sediments at Heron Island (Great Barrier Reef, Australia), we isolated >100 monoclonal Symbiodiniaceae cultures. Four of these belonged to Symbiodiniaceae 'subclade' Fr3, and three to Clade H, based on nucleotide sequence similarity (ITS2, LSU, cp23S, and mtCOB), representing the first cultures of these taxa. Based on these isolates, we propose two new genera: Freudenthalidium gen. nov. and Halluxium gen. nov., circumscribing Clades Fr3 and H, respectively. Three new species are described: Freudenthalidium heronense, F. endolithicum, and Halluxium pauxillum. Kofoidian tabulations of motile cells confirm previous observations that amphiesmal vesicle arrangements are generally conserved across the family. These descriptions are an important step toward completing the systematic revision of the Symbiodiniaceae. That this contribution was enabled by isolates from an endopsammic habitat highlights the potential of discovering new symbiodiniacean species in the environment, the study of which will lead to a deeper understanding of free-living versus symbiotic life histories in this ecologically important family of dinoflagellates.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Sandra C Craveiro
- Department of Biology and GeoBioTec Research Unit, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cláudio Brandão
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cátia Fidalgo
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Serôdio
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - António J Calado
- Department of Biology and GeoBioTec Research Unit, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jörg C Frommlet
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
32
|
Verma A, Hughes DJ, Harwood DT, Suggett DJ, Ralph PJ, Murray SA. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol Evol 2020; 10:6257-6273. [PMID: 32724512 PMCID: PMC7381561 DOI: 10.1002/ece3.6358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south-eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north-south gradient in southeastern Australia. Sixty-eight strains were established from eight sampling sites. The study revealed long-standing genetic diversity among strains established from the northern-most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin-like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate-driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | | | - David J. Suggett
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Peter J. Ralph
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Shauna A. Murray
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
33
|
Camp EF, Kahlke T, Nitschke MR, Varkey D, Fisher NL, Fujise L, Goyen S, Hughes DJ, Lawson CA, Ros M, Woodcock S, Xiao K, Leggat W, Suggett DJ. Revealing changes in the microbiome of Symbiodiniaceae under thermal stress. Environ Microbiol 2020; 22:1294-1309. [DOI: 10.1111/1462-2920.14935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Emma F. Camp
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Tim Kahlke
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Matthew R. Nitschke
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
- School of Biological SciencesVictoria University of Wellington Wellington New Zealand
| | - Deepa Varkey
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
- Department of Molecular SciencesMacquarie University Sydney NSW 2109 Australia
| | - Nerissa L. Fisher
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Lisa Fujise
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Samantha Goyen
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Caitlin A. Lawson
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Mickael Ros
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Stephen Woodcock
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Kun Xiao
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - William Leggat
- School of Environmental and Life SciencesUniversity of Newcastle Ourimbah NSW 2308 Australia
| | - David J. Suggett
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| |
Collapse
|
34
|
Lawson CA, Possell M, Seymour JR, Raina JB, Suggett DJ. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep 2019; 9:17395. [PMID: 31758008 PMCID: PMC6874547 DOI: 10.1038/s41598-019-53552-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Biogenic volatile organic compounds (BVOCs) influence organism fitness by promoting stress resistance and regulating trophic interactions. Studies examining BVOC emissions have predominantly focussed on terrestrial ecosystems and atmospheric chemistry - surprisingly, highly productive marine ecosystems remain largely overlooked. Here we examined the volatilome (total BVOCs) of the microalgal endosymbionts of reef invertebrates, Symbiodiniaceae. We used GC-MS to characterise five species (Symbiodinium linucheae, Breviolum psygmophilum, Durusdinium trenchii, Effrenium voratum, Fugacium kawagutii) under steady-state growth. A diverse range of 32 BVOCs were detected (from 12 in D. trenchii to 27 in S. linucheae) with halogenated hydrocarbons, alkanes and esters the most common chemical functional groups. A thermal stress experiment on thermally-sensitive Cladocopium goreaui and thermally-tolerant D. trenchii significantly affected the volatilomes of both species. More BVOCs were detected in D. trenchii following thermal stress (32 °C), while fewer BVOCs were recorded in stressed C. goreaui. The onset of stress caused dramatic increases of dimethyl-disulfide (98.52%) in C. goreaui and nonanoic acid (99.85%) in D. trenchii. This first volatilome analysis of Symbiodiniaceae reveals that both species-specificity and environmental factors govern the composition of BVOC emissions among the Symbiodiniaceae, which potentially have, as yet unexplored, physiological and ecological importance in shaping coral reef community functioning.
Collapse
Affiliation(s)
- Caitlin A Lawson
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia.
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - David J Suggett
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| |
Collapse
|
35
|
McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evol 2019; 9:12767-12778. [PMID: 31788212 PMCID: PMC6875658 DOI: 10.1002/ece3.5749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef-building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high- and low-light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross-paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.
Collapse
Affiliation(s)
- Shelby E. McIlroy
- Graduate Program in Evolution, Ecology and BehaviorState University of New YorkUniversity at BuffaloBuffaloNew York
- Swire Institute of Marine ScienceSchool of Biological ScienceThe University of Hong KongHong Kong
- Present address:
Swire Institute of Marine ScienceSchool of Biological ScienceThe University of Hong KongHong Kong
| | - Ross Cunning
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
- Present address:
Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinois
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Mary Alice Coffroth
- Graduate Program in Evolution, Ecology and BehaviorState University of New YorkUniversity at BuffaloBuffaloNew York
- Department of GeologyState University of New YorkUniversity at BuffaloBuffaloNew York
| |
Collapse
|
36
|
Host-symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep 2019; 9:9985. [PMID: 31292499 PMCID: PMC6620294 DOI: 10.1038/s41598-019-46412-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
High sea surface temperatures often lead to coral bleaching wherein reef-building corals lose significant numbers of their endosymbiotic dinoflagellates (Symbiodiniaceae). These increasingly frequent bleaching events often result in large scale coral mortality, thereby devasting reef systems throughout the world. The reef habitats surrounding Palau are ideal for investigating coral responses to climate perturbation, where many inshore bays are subject to higher water temperature as compared with offshore barrier reefs. We examined fourteen physiological traits in response to high temperature across various symbiotic dinoflagellates in four common Pacific coral species, Acropora muricata, Coelastrea aspera, Cyphastrea chalcidicum and Pachyseris rugosa found in both offshore and inshore habitats. Inshore corals were dominated by a single homogenous population of the stress tolerant symbiont Durusdinium trenchii, yet symbiont thermal response and physiology differed significantly across coral species. In contrast, offshore corals harbored specific species of Cladocopium spp. (ITS2 rDNA type-C) yet all experienced similar patterns of photoinactivation and symbiont loss when heated. Additionally, cell volume and light absorption properties increased in heated Cladocopium spp., leading to a greater loss in photo-regulation. While inshore coral temperature response was consistently muted relative to their offshore counterparts, high physiological variability in D. trenchii across inshore corals suggests that bleaching resilience among even the most stress tolerant symbionts is still heavily influenced by their host environment.
Collapse
|
37
|
Song X, Tan M, Xu G, Su X, Liu J, Ni G, Li Y, Tan Y, Huang L, Shen P, Li G. Is phosphorus a limiting factor to regulate the growth of phytoplankton in Daya Bay, northern South China Sea: a mesocosm experiment. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:559-568. [PMID: 31123966 DOI: 10.1007/s10646-019-02049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Previous field investigations implied a potential phosphorus (P)-limitation on the growth of phytoplankton in Daya Bay, a mesotrophic bay in the northern South China Sea. Using a total of 15 mesocosms (3 × 3 × 1.5 m, with ~10.8 m3 natural seawater containing phytoplankton assemblages for each), we found P-enrichment caused no obvious effect on phytoplankton (Chl a) growth across 8-day's cultivation in neither winter nor summer, while nitrogen (N)-enrichment greatly increased Chl a in both seasons. N plus P-enrichment further increased Chl a content. The N- or N plus P-enrichments increased the allocation of nano-Chl a but decreased micro-Chl a in most cases, with no obvious effect by P-alone. Coincided with nutrients effect on Chl a content, N- or N plus P-enrichments significantly enhanced the maximum photochemical quantum yield of Photosystem II (FV/FM) and maximum relative electron transport rate (rETRmax), but declined the non-photochemical quenching (NPQ), as well as the threshold for light saturation of electron transport (EK); again, P-enrichment had no significant effect. Moreover, the absorption cross section for PSII photochemistry (σPSII) and electron transport efficiency (α) increased due to N- or N plus P-enrichments, indicating the increased nutrients enhance the light utilization efficiency through promoting PSII light harvesting ability, and thus to enhance phytoplankton growth. Our findings indicate that N- or N plus P-enrichments rigorously fuel phytoplankton blooms regardless of N:P ratios, making a note of caution on the expected P-deficiency or P-limitation on the basis of Redfield N:P ratios in Daya Bay.
Collapse
Affiliation(s)
- Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
| | - Meiting Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ge Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Xinying Su
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Gaungyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510160, Guangzhou, China
| | - Yao Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liangmin Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Pingping Shen
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China.
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Guangdong, 510301, Guangzhou, China.
| |
Collapse
|
38
|
Lin S, Yu L, Zhang H. Transcriptomic Responses to Thermal Stress and Varied Phosphorus Conditions in Fugacium kawagutii. Microorganisms 2019; 7:microorganisms7040096. [PMID: 30987028 PMCID: PMC6517890 DOI: 10.3390/microorganisms7040096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023] Open
Abstract
Coral reef-associated Symbiodiniaceae live in tropical and oligotrophic environments and are prone to heat and nutrient stress. How their metabolic pathways respond to pulses of warming and phosphorus (P) depletion is underexplored. Here, we conducted RNA-seq analysis to investigate transcriptomic responses to thermal stress, phosphate deprivation, and organic phosphorus (OP) replacement in Fugacium kawagutii. Using dual-algorithm (edgeR and NOIseq) to remedy the problem of no replicates, we conservatively found 357 differentially expressed genes (DEGs) under heat stress, potentially regulating cell wall modulation and the transport of iron, oxygen, and major nutrients. About 396 DEGs were detected under P deprivation and 671 under OP utilization, both mostly up-regulated and potentially involved in photosystem and defensome, despite different KEGG pathway enrichments. Additionally, we identified 221 genes that showed relatively stable expression levels across all conditions (likely core genes), mostly catalytic and binding proteins. This study reveals a wide range of, and in many cases previously unrecognized, molecular mechanisms in F. kawagutii to cope with heat stress and phosphorus-deficiency stress. Their quantitative expression dynamics, however, requires further verification with triplicated experiments, and the data reported here only provide clues for generating testable hypotheses about molecular mechanisms underpinning responses and adaptation in F. kawagutii to temperature and nutrient stresses.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
39
|
Bayliss SLJ, Scott ZR, Coffroth MA, terHorst CP. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol Evol 2019; 9:2803-2813. [PMID: 30891218 PMCID: PMC6406013 DOI: 10.1002/ece3.4959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Symbionts within the family Symbiodiniaceae are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species, Breviolum antillogorgium and B. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high-nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context-dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont.
Collapse
Affiliation(s)
- Shannon L. J. Bayliss
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Zoë R. Scott
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
| | - Mary Alice Coffroth
- Department of Geology and Graduate Program in Evolution, Ecology and BehaviorUniversity at BuffaloBuffaloNew York
| | | |
Collapse
|
40
|
Baker KG, Radford DT, Evenhuis C, Kuzhiumparam U, Ralph PJ, Doblin MA. Thermal niche evolution of functional traits in a tropical marine phototroph. JOURNAL OF PHYCOLOGY 2018; 54:799-810. [PMID: 29901841 DOI: 10.1111/jpy.12759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/10/2018] [Indexed: 05/28/2023]
Abstract
Land-based plants and ocean-dwelling microbial phototrophs known as phytoplankton, are together responsible for almost all global primary production. Habitat warming associated with anthropogenic climate change has detrimentally impacted marine primary production, with the effects observed on regional and global scales. In contrast to slower-growing higher plants, there is considerable potential for phytoplankton to evolve rapidly with changing environmental conditions. The energetic constraints associated with adaptation in phytoplankton are not yet understood, but are central to forecasting how global biogeochemical cycles respond to contemporary ocean change. Here, we demonstrate a number of potential trade-offs associated with high-temperature adaptation in a tropical microbial eukaryote, Amphidinium massartii (dinoflagellate). Most notably, the population became high-temperature specialized (higher fitness within a narrower thermal envelope and higher thermal optimum), and had a greater nutrient requirement for carbon, nitrogen and phosphorus. Evidently, the energetic constraints associated with living at elevated temperature alter competiveness along other environmental gradients. While high-temperature adaptation led to an irreversible change in biochemical composition (i.e., an increase in fatty acid saturation), the mechanisms underpinning thermal evolution in phytoplankton remain unclear, and will be crucial to understanding whether the trade-offs observed here are species-specific or are representative of the evolutionary constraints in all phytoplankton.
Collapse
Affiliation(s)
- Kirralee G Baker
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Dale T Radford
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Christian Evenhuis
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Unnikrishnan Kuzhiumparam
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Peter J Ralph
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Martina A Doblin
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| |
Collapse
|
41
|
Hughes DJ, Campbell DA, Doblin MA, Kromkamp JC, Lawrenz E, Moore CM, Oxborough K, Prášil O, Ralph PJ, Alvarez MF, Suggett DJ. Roadmaps and Detours: Active Chlorophyll- a Assessments of Primary Productivity Across Marine and Freshwater Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12039-12054. [PMID: 30247887 DOI: 10.1021/acs.est.8b03488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Assessing phytoplankton productivity over space and time remains a core goal for oceanographers and limnologists. Fast Repetition Rate fluorometry (FRRf) provides a potential means to realize this goal with unprecedented resolution and scale yet has not become the "go-to" method despite high expectations. A major obstacle is difficulty converting electron transfer rates to equivalent rates of C-fixation most relevant for studies of biogeochemical C-fluxes. Such difficulty stems from methodological inconsistencies and our limited understanding of how the electron requirement for C-fixation (Φe,C) is influenced by the environment and by differences in the composition and physiology of phytoplankton assemblages. We outline a "roadmap" for limiting methodological bias and to develop a more mechanistic understanding of the ecophysiology underlying Φe,C. We 1) re-evaluate core physiological processes governing how microalgae invest photosynthetic electron transport-derived energy and reductant into stored carbon versus alternative sinks. Then, we 2) outline steps to facilitate broader uptake and exploitation of FRRf, which could transform our knowledge of aquatic primary productivity. We argue it is time to 3) revise our historic methodological focus on carbon as the currency of choice, to 4) better appreciate that electron transport fundamentally drives ecosystem biogeochemistry, modulates cell-to-cell interactions, and ultimately modifies community biomass and structure.
Collapse
Affiliation(s)
- David J Hughes
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - Douglas A Campbell
- Department of Biology , Mount Allison University , Sackville , New Brunswick E4L 1E4 , Canada
| | - Martina A Doblin
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - Jacco C Kromkamp
- Department of Estuarine and Delta Systems , NIOZ Royal Netherlands Institute for Sea Research and Utrecht University , P.O. Box 140, 4401 NT Yerseke , The Netherlands
| | - Evelyn Lawrenz
- Centre Algatech , Institute of Microbiology, Czech Academy of Sciences , Třeboň 379 81 , Czech Republic
| | - C Mark Moore
- Ocean and Earth Science , University of Southampton, National Oceanography Centre, Southampton , European Way , Southampton SO14 3ZH , U.K
| | | | - Ondřej Prášil
- Centre Algatech , Institute of Microbiology, Czech Academy of Sciences , Třeboň 379 81 , Czech Republic
| | - Peter J Ralph
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - Marco F Alvarez
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| | - David J Suggett
- Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia
| |
Collapse
|
42
|
Malerba ME, Palacios MM, Palacios Delgado YM, Beardall J, Marshall DJ. Cell size, photosynthesis and the package effect: an artificial selection approach. THE NEW PHYTOLOGIST 2018; 219:449-461. [PMID: 29658153 DOI: 10.1111/nph.15163] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Cell size correlates with most traits among phytoplankton species. Theory predicts that larger cells should show poorer photosynthetic performance, perhaps due to reduced intracellular self-shading (i.e. package effect). Yet current theory relies heavily on interspecific correlational approaches and causal relationships between size and photosynthetic machinery have remained untested. As a more direct test, we applied 250 generations of artificial selection (c. 20 months) to evolve the green microalga Dunaliella teriolecta (Chlorophyta) toward different mean cell sizes, while monitoring all major photosynthetic parameters. Evolving larger sizes (> 1500% difference in volume) resulted in reduced oxygen production per chlorophyll molecule - as predicted by the package effect. However, large-evolved cells showed substantially higher rates of oxygen production - a finding unanticipated by current theory. In addition, volume-specific photosynthetic pigments increased with size (Chla+b), while photo-protectant pigments decreased (β-carotene). Finally, larger cells displayed higher growth performances and Fv /Fm , steeper slopes of rapid light curves (α) and smaller light-harvesting antennae (σPSII ) with higher connectivity (ρ). Overall, evolving a common ancestor into different sizes showed that the photosynthetic characteristics of a species coevolves with cell volume. Moreover, our experiment revealed a trade-off between chlorophyll-specific (decreasing with size) and volume-specific (increasing with size) oxygen production in a cell.
Collapse
Affiliation(s)
- Martino E Malerba
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Maria M Palacios
- Department of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| | | | - John Beardall
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
43
|
Quigley KM, Strader ME, Matz MV. Relationship between Acropora millepora juvenile fluorescence and composition of newly established Symbiodinium assemblage. PeerJ 2018; 6:e5022. [PMID: 29922515 PMCID: PMC6005160 DOI: 10.7717/peerj.5022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Coral-dinoflagellate symbiosis is the key biological interaction enabling existence of modern-type coral reefs, but the mechanisms regulating initial host-symbiont attraction, recognition and symbiont proliferation thus far remain largely unclear. A common reef-building coral, Acropora millepora, displays conspicuous fluorescent polymorphism during all phases of its life cycle, due to the differential expression of fluorescent proteins (FPs) of the green fluorescent protein family. In this study, we examine whether fluorescent variation in young coral juveniles exposed to natural sediments is associated with the uptake of disparate Symbiodinium assemblages determined using ITS-2 deep sequencing. We found that Symbiodinium assemblages varied significantly when redness values varied, specifically in regards to abundances of clades A and C. Whether fluorescence was quantified as a categorical or continuous trait, clade A was found at higher abundances in redder juveniles. These preliminary results suggest juvenile fluorescence may be associated with Symbiodinium uptake, potentially acting as either an attractant to ecologically specific types or as a mechanism to modulate the internal light environment to control Symbiodinium physiology within the host.
Collapse
Affiliation(s)
- Kate M. Quigley
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Marie E. Strader
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
44
|
Bellis ES, Edlund RB, Berrios HK, Lessios HA, Denver DR. Molecular signatures of host specificity linked to habitat specialization in Exaiptasia sea anemones. Ecol Evol 2018; 8:5413-5426. [PMID: 29938062 PMCID: PMC6010850 DOI: 10.1002/ece3.4058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Rising ocean temperatures associated with global climate change induce breakdown of the symbiosis between coelenterates and photosynthetic microalgae of the genus Symbiodinium. Association with more thermotolerant partners could contribute to resilience, but the genetic mechanisms controlling specificity of hosts for particular Symbiodinium types are poorly known. Here, we characterize wild populations of a sea anemone laboratory model system for anthozoan symbiosis, from contrasting environments in Caribbean Panama. Patterns of anemone abundance and symbiont diversity were consistent with specialization of holobionts for particular habitats, with Exaiptasia pallida/S. minutum (ITS2 type B1) abundant on vertical substrate in thermally stable, shaded environments but E. brasiliensis/Symbiodinium sp. (ITS2 clade A) more common in shallow areas subject to high temperature and irradiance. Population genomic sequencing revealed a novel E. pallida population from the Bocas del Toro Archipelago that only harbors S. minutum. Loci most strongly associated with divergence of the Bocas-specific population were enriched in genes with putative roles in cnidarian symbiosis, including activators of the complement pathway of the innate immune system, thrombospondin-type-1 repeat domain proteins, and coordinators of endocytic recycling. Our findings underscore the importance of unmasking cryptic diversity in natural populations and the role of long-term evolutionary history in mediating interactions with Symbiodinium.
Collapse
Affiliation(s)
- Emily S. Bellis
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Reid. B. Edlund
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Hazel K. Berrios
- Department of Biological SciencesArkansas State UniversityJonesboroArkansas
| | | | - Dee R. Denver
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| |
Collapse
|
45
|
Lawson CA, Raina JB, Kahlke T, Seymour JR, Suggett DJ. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:7-11. [PMID: 29124895 DOI: 10.1111/1758-2229.12599] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/25/2017] [Accepted: 10/30/2017] [Indexed: 05/12/2023]
Abstract
Dinoflagellates of the genus Symbiodinium underpin the survival and ecological success of corals. The use of cultured strains has been particularly important to disentangle the complex life history of Symbiodinium and their contribution to coral host physiology. However, these cultures typically harbour abundant bacterial communities which likely play important, but currently unknown, roles in Symbiodinium biology. We characterized the bacterial communities living in association with a wide phylogenetic diversity of Symbiodinium cultures (18 types spanning 5 clades) to define the core Symbiodinium microbiome. Similar to other systems, bacteria were nearly two orders of magnitude more numerically abundant than Symbiodinium cells and we identified three operational taxonomic units (OTUs) which were present in all cultures. These represented the α-proteobacterium Labrenzia and the γ-proteobacteria Marinobacter and Chromatiaceae. Based on the abundance and functional potential of bacteria harboured in these cultures, their contribution to Symbiodinium physiology can no longer be ignored.
Collapse
Affiliation(s)
- Caitlin A Lawson
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | | | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
46
|
Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ. Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (
Symbiodinium
) Across Different Types (Species) Under Alternate Light and Temperature Conditions. J Eukaryot Microbiol 2018; 65:505-517. [DOI: 10.1111/jeu.12497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lisa Fujise
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Matthew R. Nitschke
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Jörg C. Frommlet
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Stephen Woodcock
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Ralph
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - David J. Suggett
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| |
Collapse
|
47
|
Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME JOURNAL 2017; 12:161-172. [PMID: 29192903 PMCID: PMC5739009 DOI: 10.1038/ismej.2017.151] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 01/31/2023]
Abstract
The association between corals and photosynthetic dinoflagellates (Symbiodinium spp.) is the key to the success of reef ecosystems in highly oligotrophic environments, but it is also their Achilles‘ heel due to its vulnerability to local stressors and the effects of climate change. Research during the last two decades has shaped a view that coral host–Symbiodinium pairings are diverse, but largely exclusive. Deep sequencing has now revealed the existence of a rare diversity of cryptic Symbiodinium assemblages within the coral holobiont, in addition to one or a few abundant algal members. While the contribution of the most abundant resident Symbiodinium species to coral physiology is widely recognized, the significance of the rare and low abundant background Symbiodinium remains a matter of debate. In this study, we assessed how coral–Symbiodinium communities assemble and how rare and abundant components together constitute the Symbiodinium community by analyzing 892 coral samples comprising >110 000 unique Symbiodinium ITS2 marker gene sequences. Using network modeling, we show that host–Symbiodinium communities assemble in non-random ‘clusters‘ of abundant and rare symbionts. Symbiodinium community structure follows the same principles as bacterial communities, for which the functional significance of rare members (the ‘rare bacterial biosphere’) has long been recognized. Importantly, the inclusion of rare Symbiodinium taxa in robustness analyses revealed a significant contribution to the stability of the host–symbiont community overall. As such, it highlights the potential functions rare symbionts may provide to environmental resilience of the coral holobiont.
Collapse
|
48
|
Wang JT, Keshavmurthy S, Chu TY, Chen CA. Diverse responses of Symbiodinium types to menthol and DCMU treatment. PeerJ 2017; 5:e3843. [PMID: 29018600 PMCID: PMC5628609 DOI: 10.7717/peerj.3843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/02/2017] [Indexed: 12/13/2022] Open
Abstract
To understand the mechanism of photosynthetic inhibition and generation of reactive oxygen species (ROS) in Symbiodinium types under stress, chemicals such as dichlorophenyl dimethylurea (DCMU) are widely used. Moreover, DCMU and recently menthol were used to generate aposymbiotic cnidarian hosts. While the effects of DCMU on Symbiodinium cells have been extensively studied, no studies have shown the mechanism behind menthol-induced coral bleaching. Moreover, no study has compared the effects of DCMU and menthol treatments on photosystem II (PSII) activity and generation of ROS in different Symbiodinium types. In this study, we utilized five freshly isolated Symbiodinium types (S. minutum (B1), S. goreaui (C1), C3, C15, and S. trenchii (D1a)) to compare the effects of DCMU and menthol treatments. Symbiodinium cells were exposed to DCMU and menthol at different concentrations for 4 h. Results showed that values of the 50% inhibitory concentration (IC50) for PSII inhibition were 0.72∼1.96 mM for menthol-treated cells compared to 29∼74 pM for DCMU-treated cells. Diverse responses of Symbiodinium types were displayed in terms of PSII tolerance to menthol (S. minutum > S. trenchii = C15 > C3 = S. goreaui), and also in the response curves. In contrast, responses were not so diverse when the different types were treated with DCMU. Three of five menthol-treated Symbiodinium types showed instant and significant ROS generation when PSII activity was inhibited, compared to no ROS being generated in DCMU-treated Symbiodinium types. Both results indicated that menthol inhibited Symbiodinium PSII activity through Symbiodinium type-dependent mechanisms, which were also distinct from those with DCMU treatment. This study further confirmed that photosynthetic functions Symbiodinium have diverse responses to stress even within the same clade.
Collapse
Affiliation(s)
- Jih-Terng Wang
- Graduate Institute of Biotechnology, Tajen University, Pingtung, Taiwan
| | | | - Tzu-Ying Chu
- Graduate Institute of Biotechnology, Tajen University, Pingtung, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Bellis ES, Denver DR. Natural Variation in Responses to Acute Heat and Cold Stress in a Sea Anemone Model System for Coral Bleaching. THE BIOLOGICAL BULLETIN 2017; 233:168-181. [PMID: 29373064 DOI: 10.1086/694890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rising ocean temperatures disrupt the symbiosis between corals and their microalgae, accelerating global decline of coral reef ecosystems. Because of the difficulty of performing laboratory experiments with corals, the sea anemone Aiptasia has emerged as an important model system for molecular studies of coral bleaching and symbiosis. Here, we investigate natural variation in bleaching responses among different genetic lineages of Aiptasia. Both heat- and cold-induced paths to symbiosis breakdown were analyzed. Significant genetic variation in response to acute heat stress was observed, with severe bleaching of two Aiptasia strains from Hawaii but minimal bleaching of strains from the U.S. South Atlantic, including the strain used to generate the Aiptasia reference genome. Both strains from Hawaii hosted Symbiodinium type B1, whereas strains from the U.S. South Atlantic hosted type A4 or B2. In contrast to the results from exposures to acute heat stress, negligible variation was observed in response to a pulsed cold shock despite moderate bleaching across all strains. These results support our hypothesis that bleaching responses to distinct stressors are independent. Our findings emphasize the role of stress regime when predicting adaptive responses of symbiotic cnidarians to changing climates, because genetic variation may exist for some forms of stress-induced bleaching but not others.
Collapse
|
50
|
Suggett DJ, Warner ME, Leggat W. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. Trends Ecol Evol 2017; 32:735-745. [DOI: 10.1016/j.tree.2017.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
|