1
|
Lett S, Christiansen CT, Dorrepaal E, Michelsen A. Moss species and precipitation mediate experimental warming stimulation of growing season N 2 fixation in subarctic tundra. GLOBAL CHANGE BIOLOGY 2024; 30:e17401. [PMID: 39041207 DOI: 10.1111/gcb.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Climate change in high latitude regions leads to both higher temperatures and more precipitation but their combined effects on terrestrial ecosystem processes are poorly understood. In nitrogen (N) limited and often moss-dominated tundra and boreal ecosystems, moss-associated N2 fixation is an important process that provides new N. We tested whether high mean annual precipitation enhanced experimental warming effects on growing season N2 fixation in three common arctic-boreal moss species adapted to different moisture conditions and evaluated their N contribution to the landscape level. We measured in situ N2 fixation rates in Hylocomium splendens, Pleurozium schreberi and Sphagnum spp. from June to September in subarctic tundra in Sweden. We exposed mosses occurring along a natural precipitation gradient (mean annual precipitation: 571-1155 mm) to 8 years of experimental summer warming using open-top chambers before our measurements. We modelled species-specific seasonal N input to the ecosystem at the colony and landscape level. Higher mean annual precipitation clearly increased N2 fixation, especially during peak growing season and in feather mosses. For Sphagnum-associated N2 fixation, high mean annual precipitation reversed a small negative warming response. By contrast, in the dry-adapted feather moss species higher mean annual precipitation led to negative warming effects. Modelled total growing season N inputs for Sphagnum spp. colonies were two to three times that of feather mosses at an area basis. However, at the landscape level where feather mosses were more abundant, they contributed 50% more N than Sphagnum. The discrepancy between modelled estimates of species-specific N input via N2 fixation at the moss core versus ecosystem scale, exemplify how moss cover is essential for evaluating impact of altered N2 fixation. Importantly, combined effects of warming and higher mean annual precipitation may not lead to similar responses across moss species, which could affect moss fitness and their abilities to buffer environmental changes.
Collapse
Affiliation(s)
- Signe Lett
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, Denmark
| | - Casper T Christiansen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, Denmark
| | - Ellen Dorrepaal
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dangar BV, Chavada P, Bhatt PJ, Raviya R. Reviewing bryophyte-microorganism association: insights into environmental optimization. Front Microbiol 2024; 15:1407391. [PMID: 38946907 PMCID: PMC11211263 DOI: 10.3389/fmicb.2024.1407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Bryophytes, the second-largest group of plants, play a crucial role as early colonizers of land and are a prolific source of naturally occurring substances with significant economic potential. Microorganisms, particularly bacteria, cyanobacteria, fungi form intricate associations with plants, notably bryophytes, contributing to the ecological functioning of terrestrial ecosystems and sometimes it gives negative impact also. This review elucidates the pivotal role of endophytic bacteria in promoting plant growth, facilitating nutrient cycling, and enhancing environmental health. It comprehensively explores the diversity and ecological significance of fungal and bacterial endophytes across various ecosystems. Furthermore, it highlights the moss nitrogen dynamics observed in select moss species. Throughout the review, emphasis is placed on the symbiotic interdependence between bryophytes and microorganisms, offering foundational insights for future research endeavors. By shedding light on the intricate bryophyte-microorganism associations, this study advances our understanding of the complex interplay between plants, microbes, and their environment, paving the way for further research and applications in environmental and biotechnological realms.
Collapse
Affiliation(s)
| | | | | | - Rajesh Raviya
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| |
Collapse
|
3
|
Ning D, Wang Y, Fan Y, Wang J, Van Nostrand JD, Wu L, Zhang P, Curtis DJ, Tian R, Lui L, Hazen TC, Alm EJ, Fields MW, Poole F, Adams MWW, Chakraborty R, Stahl DA, Adams PD, Arkin AP, He Z, Zhou J. Environmental stress mediates groundwater microbial community assembly. Nat Microbiol 2024; 9:490-501. [PMID: 38212658 DOI: 10.1038/s41564-023-01573-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.
Collapse
Affiliation(s)
- Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Yajiao Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Yupeng Fan
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Jianjun Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Ping Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel J Curtis
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Renmao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Lauren Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Terry C Hazen
- Department of Earth and Planetary Sciences, Bredesen Center, Department of Civil and Environmental Sciences, Center for Environmental Biotechnology, and Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Eric J Alm
- Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Farris Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Paul D Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
4
|
Groß C, Hossen S, Dittrich S, Knorr KH, Borken W, Noll M. Biological nitrogen fixation, diversity and community structure of diazotrophs in two mosses in 25 temperate forests. Environ Microbiol 2024; 26:e16555. [PMID: 38148519 DOI: 10.1111/1462-2920.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Many moss species are associated with nitrogen (N)-fixing bacteria (diazotrophs) that support the N supply of mosses. Our knowledge relates primarily to pristine ecosystems with low atmospheric N input, but knowledge of biological N fixation (BNF) and diazotrophic communities in mosses in temperate forests with high N deposition is limited. We measured BNF rates using the direct stable isotope method and studied the total and potentially active diazotrophic communities in two abundant mosses, Brachythecium rutabulum and Hypnum cupressiforme, both growing on lying deadwood trunks in 25 temperate forest sites. BNF rates in both mosses were similar to those observed in moss species of pristine ecosystems. H. cupressiforme fixed three times more N2 and exhibited lower diazotrophic richness than B. rutabulum. Frankia was the most prominent diazotroph followed by cyanobacteria Nostoc. Manganese, iron, and molybdenum contents in mosses were positively correlated with BNF and diazotrophic communities. Frankia maintained high BNF rates in H. cupressiforme and B. rutabulum even under high chronic N deposition in Central European forests. Moss N concentration and 15 N abundance indicate a rather minor contribution of BNF to the N nutrition of these mosses.
Collapse
Affiliation(s)
- Christina Groß
- Department of Soil Ecology, University of Bayreuth, Bayreuth, Germany
| | - Shakhawat Hossen
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Sebastian Dittrich
- Biodiversity and Conservation, Technical University of Dresden, Tharandt, Germany
| | - Klaus-Holger Knorr
- Institute of Landscape Ecology, Ecohydrology and Biogeochemistry Group, University of Münster, Münster, Germany
| | - Werner Borken
- Department of Soil Ecology, University of Bayreuth, Bayreuth, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| |
Collapse
|
5
|
Zheng M, Xu M, Li D, Deng Q, Mo J. Negative responses of terrestrial nitrogen fixation to nitrogen addition weaken across increased soil organic carbon levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162965. [PMID: 36948308 DOI: 10.1016/j.scitotenv.2023.162965] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
The traditional view holds that biological nitrogen (N) fixation is energetically expensive and thus, facultative N fixers reduce N fixation rates while obligate N fixers are excluded by non-N fixers as soil N becomes rich. This view, however, contradicts the phenomenon that N fixation does not decline in many terrestrial ecosystems under N enrichment. To address this paradoxical phenomenon, we conducted a meta-analysis of N fixation and diazotroph (N-fixing microorganism) community structure in response to N addition across terrestrial ecosystems. N addition inhibited N fixation, but the inhibitory effect weakened across increased soil organic carbon (SOC) concentrations. The response ratios of N fixation (including free-living, plant-associated, and symbiotic types) to N addition were lower in the ecosystems with low SOC concentrations (<10 mg/g) than in those with medium or high SOC concentrations (10-20 and > 20 mg/g, respectively). The negative N-addition effects on diazotroph abundance and diversity also weakened across increased SOC levels. Among the climatic and soil factors, SOC was the most important predictor regarding the responses of N fixation and diazotroph community structure to N addition. Overall, our study reveals the role of SOC in affecting the responses of N fixation to N addition, which helps understand the relationships of biological N fixation and N enrichment as well as the mechanisms of terrestrial C and N coupling.
Collapse
Affiliation(s)
- Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; South China National Botanical Garden, Guangzhou, China.
| | - Meichen Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; South China National Botanical Garden, Guangzhou, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; South China National Botanical Garden, Guangzhou, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; South China National Botanical Garden, Guangzhou, China.
| |
Collapse
|
6
|
Avila Clasen L, Permin A, Horwath AB, Metcalfe DB, Rousk K. Do Nitrogen and Phosphorus Additions Affect Nitrogen Fixation Associated with Tropical Mosses? PLANTS (BASEL, SWITZERLAND) 2023; 12:1443. [PMID: 37050067 PMCID: PMC10097241 DOI: 10.3390/plants12071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tropical cloud forests are characterized by abundant and biodiverse mosses which grow epiphytically as well as on the ground. Nitrogen (N)-fixing cyanobacteria live in association with most mosses, and contribute greatly to the N pool via biological nitrogen fixation (BNF). However, the availability of nutrients, especially N and phosphorus (P), can influence BNF rates drastically. To evaluate the effects of increased N and P availability on BNF in mosses, we conducted a laboratory experiment where we added N and P, in isolation and combined, to three mosses (Campylopus sp., Dicranum sp. and Thuidium peruvianum) collected from a cloud forest in Peru. Our results show that N addition almost completely inhibited BNF within a day, whereas P addition caused variable results across moss species. Low N2 fixation rates were observed in Campylopus sp. across the experiment. BNF in Dicranum sp. was decreased by all nutrients, while P additions seemed to promote BNF in T. peruvianum. Hence, each of the three mosses contributes distinctively to the ecosystem N pool depending on nutrient availability. Moreover, increased N input will likely significantly decrease BNF associated with mosses also in tropical cloud forests, thereby limiting N input to these ecosystems via the moss-cyanobacteria pathway.
Collapse
Affiliation(s)
- Lina Avila Clasen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark (K.R.)
| | - Aya Permin
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark (K.R.)
| | - Aline B. Horwath
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem Science, Lund University, 221 00 Lund, Sweden
- Department of Ecology and Environmental Science, University of Umeå, 907 36 Umeå, Sweden
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark (K.R.)
| |
Collapse
|
7
|
Abreu-Junior CH, Gruberger GAC, Cardoso PHS, Gonçalves PWB, Nogueira TAR, Capra GF, Jani AD. Soybean Seed Enrichment with Cobalt and Molybdenum as an Alternative to Conventional Seed Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1164. [PMID: 36904024 PMCID: PMC10007214 DOI: 10.3390/plants12051164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Biological nitrogen fixation in soybean is enhanced when seed is treated with cobalt (Co) and molybdenum (Mo) prior to planting. In this study, our objective was to verify if Co and Mo application during the reproductive phase of the crop increases seed Co and Mo concentration without adverse effects on seed quality. Two experiments were conducted. First, we investigated foliar and soil Co and Mo application under greenhouse conditions. Next, we validated the results obtained in the first study. The treatments for both experiments consisted of Co doses combined with Mo, and a control without Co and Mo application. The foliar application was more efficient in producing enriched Co and Mo seed; meanwhile, as Co doses increased so did Co and Mo concentrations in the seed. There were no adverse effects on nutrition, development, quality, and yield of parent plants and seed when these micronutrients were applied. The seed showed higher germination, vigor, and uniformity for the development of soybean seedlings. We concluded that the application of 20 g ha-1 Co and 800 g ha-1 Mo via foliar application at the reproductive stage of soybean increased germination rate and achieved the best growth and vigor index of enriched seed.
Collapse
Affiliation(s)
- Cassio Hamilton Abreu-Junior
- Center of Nuclear Energy in Agriculture, Universidade de São Paulo, Av. Centenário 303, Piracicaba 13416-000, Brazil
| | - Gabriel Asa Corrêa Gruberger
- Center of Nuclear Energy in Agriculture, Universidade de São Paulo, Av. Centenário 303, Piracicaba 13416-000, Brazil
| | | | - Paula Wellen Barbosa Gonçalves
- School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal 14884-900, Brazil
| | - Thiago Assis Rodrigues Nogueira
- School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal 14884-900, Brazil
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Av. Brasil n◦ 56, Ilha Solteira 15385-000, Brazil
| | - Gian Franco Capra
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Polo Bionaturalistico, Via Piandanna n◦ 4, 07100 Sassari, Italy
| | - Arun Dilipkumar Jani
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, CA 93955, USA
| |
Collapse
|
8
|
El-Sherbeny TMS, Mousa AM, Zhran MA. Response of peanut (Arachis hypogaea L.) plant to bio-fertilizer and plant residues in sandy soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:253-265. [PMID: 35697953 PMCID: PMC9884651 DOI: 10.1007/s10653-022-01302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) fertilizer has been intensively used to improve peanut productivity. However, the high cost of N fertilizer, and the need for sustainable alternative fertilizer sources have increased the strategic importance of nitrogen fixation (NF). Thus, field experiments were conducted in an experimental farm with a drip irrigation system, at the Atomic Energy Authority, Inshas, Egypt, in order to measure the impact of efficiency symbiotic Bradyrhizobium sp. and asymbiotic Azotobacter sp. on NF, from air and soil, in the presence or absence of plant residues on the growth and yield of peanut plant. All treatments received nitrogen fertilizer at a rate of 72 kg N per hectare. Nitrogen dose was applied using ammonium sulphate 15N labeled of 10% atom excess from the peanut. Results indicated that the application of Bradyrhizobium sp. with plant residues significantly increased fresh and dry weight/m2, pod and seed weight/plant-1,100- seed weight, and biological yield kg ha-1, where the highest mean values of seed yield (4648 and 4529 kg ha-1), oil % (52.29 and 52.21%), seed protein percentage (16.09 and 15.89%), as well as nitrogen derived from air (63.14 and 66.20%) in the first and second seasons were recorded under the application of Bradyrhizobium sp, respectively. Bradyrhizobium sp. inoculation showed nearly close portions of Ndfa to those recorded with Azotobacter sp., in both the presence and absence of plant residue application through the two seasons. The investigated yield signs and their properties were significantly enhanced by bacterial inoculation with plant residue application. The present study shows that both possibility of NF of peanut, and nitrogen uptake in the soil are enhanced by field inoculation with effective Bradyrhizobium sp. with plant residue application. In practice, inoculation is a great strategy to improve soil fertility for subsequent planting, since it helps boost the import of nitrogen from plant biomass into the soil.
Collapse
Affiliation(s)
- T M S El-Sherbeny
- Nuclear Research Center, Plant Research Department, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer M Mousa
- Nuclear Research Center, Soil and Water Research Department, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mostafa A Zhran
- Nuclear Research Center, Soil and Water Research Department, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| |
Collapse
|
9
|
Quantification of biological nitrogen fixation by Mo-independent complementary nitrogenases in environmental samples with low nitrogen fixation activity. Sci Rep 2022; 12:22011. [PMID: 36539445 PMCID: PMC9768154 DOI: 10.1038/s41598-022-24860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Biological nitrogen fixation (BNF) by canonical molybdenum and complementary vanadium and iron-only nitrogenase isoforms is the primary natural source of newly fixed nitrogen. Understanding controls on global nitrogen cycling requires knowledge of the isoform responsible for environmental BNF. The isotopic acetylene reduction assay (ISARA), which measures carbon stable isotope (13C/12C) fractionation between ethylene and acetylene in acetylene reduction assays, is one of the few methods that can quantify isoform-specific BNF fluxes. Application of classical ISARA has been challenging because environmental BNF activity is often too low to generate sufficient ethylene for isotopic analyses. Here we describe a high sensitivity method to measure ethylene δ13C by in-line coupling of ethylene preconcentration to gas chromatography-combustion-isotope ratio mass spectrometry (EPCon-GC-C-IRMS). Ethylene requirements in samples with 10% v/v acetylene are reduced from > 500 to ~ 20 ppmv (~ 2 ppmv with prior offline acetylene removal). To increase robustness by reducing calibration error, single nitrogenase-isoform Azotobacter vinelandii mutants and environmental sample assays rely on a common acetylene source for ethylene production. Application of the Low BNF activity ISARA (LISARA) method to low nitrogen-fixing activity soils, leaf litter, decayed wood, cryptogams, and termites indicates complementary BNF in most sample types, calling for additional studies of isoform-specific BNF.
Collapse
|
10
|
Cleveland CC, Reis CRG, Perakis SS, Dynarski KA, Batterman SA, Crews TE, Gei M, Gundale MJ, Menge DNL, Peoples MB, Reed SC, Salmon VG, Soper FM, Taylor BN, Turner MG, Wurzburger N. Exploring the Role of Cryptic Nitrogen Fixers in Terrestrial Ecosystems: A Frontier in Nitrogen Cycling Research. Ecosystems 2022. [DOI: 10.1007/s10021-022-00804-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Chen Y, Wang Q, Zhu J, Xi Y, Zhang Q, Dai G, He N, Yu G. Atmospheric Wet Iron, Molybdenum, and Vanadium Deposition in Chinese Terrestrial Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12898-12905. [PMID: 36026692 DOI: 10.1021/acs.est.2c03213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Iron (Fe), molybdenum (Mo), and vanadium (V) are the main components of the three known biological nitrogenases, which constrain nitrogen fixation and affect ecosystem productivity. Atmospheric deposition is an important pathway of these trace metals into ecosystems. Here, we explored the deposition flux, spatiotemporal pattern, and influencing factors of atmospheric wet Fe, Mo, and V deposition based on China Wet Deposition Observation Network (ChinaWD) data from 2016 to 2020. Our results showed that atmospheric wet Fe, Mo, and V deposition was 7.77 ± 7.24, 0.16 ± 0.11, and 0.13 ± 0.12 mg m-2 a-1 in Chinese terrestrial ecosystems, respectively, and revealed obvious spatial patterns but no significant annual trends. Wet Fe deposition was significantly correlated with the soil Fe content. Mo and V deposition was more affected by anthropogenic activities than Fe deposition. Wet Mo deposition was significantly affected by Mo ore reserves and waste incineration. V deposition was significantly correlated with domestic biomass burning. This study quantified wet Fe, Mo, and V deposition in China for the first time, and the implications of atmospheric trace metal deposition on biological nitrogen fixation were discussed.
Collapse
Affiliation(s)
- Yanran Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Yue Xi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guanhua Dai
- Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Antu 133613, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
13
|
Wang QH, Zhang J, Liu Y, Jia Y, Jiao YN, Xu B, Chen ZD. Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4306-4322. [PMID: 35437589 DOI: 10.1093/jxb/erac127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.
Collapse
Affiliation(s)
- Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Alvarenga DO, Rousk K. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4473-4486. [PMID: 35728619 DOI: 10.1093/jxb/erac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Mosses are non-vascular plants usually found in moist and shaded areas, with great ecological importance in several ecosystems. This is especially true in northern latitudes, where mosses are responsible for up to 100% of primary production in some ecosystems. Mosses establish symbiotic associations with unique bacteria that play key roles in the carbon and nitrogen cycles. For instance, in boreal environments, more than 35% of the nitrogen fixed by diazotrophic symbionts in peatlands is transferred to mosses, directly affecting carbon fixation by the hosts, while moss-associated methanotrophic bacteria contribute 10-30% of moss carbon. Further, half of ecosystem N input may derive from moss-cyanobacteria associations in pristine ecosystems. Moss-bacteria interactions have consequences on a global scale since northern environments sequester 20% of all the carbon generated by forests in the world and stock at least 32% of global terrestrial carbon. Different moss hosts influence bacteria in distinct ways, which suggests that threats to mosses also threaten unique microbial communities with important ecological and biogeochemical consequences. Since their origin ~500 Ma, mosses have interacted with bacteria, making these associations ideal models for understanding the evolution of plant-microbe associations and their contribution to biogeochemical cycles.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| |
Collapse
|
15
|
Permin A, Horwath AB, Metcalfe DB, Priemé A, Rousk K. ‘High nitrogen‐fixing rates associated with ground‐covering mosses in a tropical mountain cloud forest will decrease drastically in a future climate’. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aya Permin
- Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
| | - Aline B. Horwath
- Biological and Environmental Sciences, Faculty of Natural Sciences University of Stirling Stirling UK
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem Science Lund University SE Lund Sweden
- Department of Ecology and Environmental Science SE Umeå Sweden
| | - Anders Priemé
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
- Section of Microbiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Kathrin Rousk
- Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
| |
Collapse
|
16
|
Liu X, Rousk K. The moss traits that rule cyanobacterial colonization. ANNALS OF BOTANY 2022; 129:147-160. [PMID: 34628495 PMCID: PMC8796673 DOI: 10.1093/aob/mcab127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Cyanobacteria associated with mosses represent a main nitrogen (N) source in pristine, high-latitude and -altitude ecosystems due to their ability to fix N2. However, despite progress made regarding moss-cyanobacteria associations, the factors driving the large interspecific variation in N2 fixation activity between moss species remain elusive. The aim of the study was to identify the traits of mosses that determine cyanobacterial colonization and thus N2 fixation activity. METHODS Four moss species varying in N2 fixation activity were used to assess cyanobacterial abundance and activity to correlate it with moss traits (morphological, chemical, water-balance traits) for each species. KEY RESULTS Moss hydration rate was one of the pivotal traits, explaining 56 and 38 % of the variation in N2 fixation and cyanobacterial colonization, respectively, and was linked to morphological traits of the moss species. Higher abundance of cyanobacteria was found on shoots with smaller leaves, and with a high frequency of leaves. High phenol concentration inhibited N2 fixation but not colonization. These traits driving interspecific variation in cyanobacterial colonization, however, are also affected by the environment, and lead to intraspecific variation. Approximately 24 % of paraphyllia, filamentous appendages on Hylocomium splendens stems, were colonized by cyanobacteria. CONCLUSIONS Our findings show that interspecific variations in moss traits drive differences in cyanobacterial colonization and thus, N2 fixation activity among moss species. The key traits identified here that control moss-associated N2 fixation and cyanobacterial colonization could lead to improved predictions of N2 fixation in different moss species as a function of their morphology.
Collapse
Affiliation(s)
- Xin Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| |
Collapse
|
17
|
Extreme freeze-thaw cycles do not affect moss-associated nitrogen fixation across a temperature gradient, but affect nutrient loss from mosses. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60406-60424. [PMID: 34535866 DOI: 10.1007/s11356-021-16191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Becky Nancy Aloo
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya.
| | - Ernest Rashid Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Billy Amendi Makumba
- Department of Biological Sciences, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - John Baptist Tumuhairwe
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| |
Collapse
|
19
|
Durrer A, Gumiere T, Rumenos Guidetti Zagatto M, Petry Feiler H, Miranda Silva AM, Henriques Longaresi R, Homma SK, Cardoso EJBN. Organic farming practices change the soil bacteria community, improving soil quality and maize crop yields. PeerJ 2021; 9:e11985. [PMID: 34631309 PMCID: PMC8465994 DOI: 10.7717/peerj.11985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background The importance of organic farming has increased through the years to promote food security allied with minimal harm to the ecosystem. Besides the environmental benefits, a recurring problem associated with organic management is the unsatisfactory yield. A possible solution may rely on the soil microbiome, which presents a crucial role in the soil system. Here, we aimed to evaluate the soil bacterial community structure and composition under organic and conventional farming, considering the tropical climate and tropical soil. Methodology Our organic management treatments were composed by composted poultry manure and green manure with Bokashi. Both organic treatments were based on low nitrogen inputs. We evaluated the soil bacterial community composition by high-throughput sequencing of 16S rRNA genes, soil fertility, and soil enzyme activity in two organic farming systems, one conventional and the last transitional from conventional to organic. Results We observed that both organic systems evaluated in this study, have higher yield than the conventional treatment, even in a year with drought conditions. These yield results are highly correlated with changes in soil chemical properties and enzymatic activity. The attributes pH, Ca, P, alkaline phosphatase, and β- glucosidase activity are positively correlated with organic systems, while K and Al are correlated with conventional treatment. Also, our results show in the organic systems the changes in the soil bacteria community, being phyla Acidobacteria, Firmicutes, Nitrospirae, and Rokubacteria the most abundant. These phyla were correlated with soil biochemical changes in the organic systems, helping to increase crop yields. Conclusion Different organic management systems, (the so-called natural and organic management systems, which use distinct organic sources), shift the soil bacterial community composition, implying changes in their functionalities. Also, our results contributed to the identification of target bacterial groups and changes in soil chemical properties and enzymatic activity in a trophic organic farming system, which may contribute to higher crop yields.
Collapse
Affiliation(s)
- Ademir Durrer
- Soil Science Department/ Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Thiago Gumiere
- Department of Soil and Agricultural Engineering, Laval University, Quebec City, Canada, Canada
| | | | - Henrique Petry Feiler
- Soil Science Department/ Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Antonio Marcos Miranda Silva
- Soil Science Department/ Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Elke J B N Cardoso
- Soil Science Department/ Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
20
|
Jabir T, Vipindas PV, Jesmi Y, Divya PS, Adarsh BM, Nafeesathul Miziriya HS, Mohamed Hatha AA. Influence of environmental factors on benthic nitrogen fixation and role of sulfur reducing diazotrophs in a eutrophic tropical estuary. MARINE POLLUTION BULLETIN 2021; 165:112126. [PMID: 33667934 DOI: 10.1016/j.marpolbul.2021.112126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 05/20/2023]
Abstract
Benthic nitrogen fixation in the tropical estuaries plays a major role in marine nitrogen cycle, its contribution to nitrogen budget and players behind process is not well understood. The present study was estimated the benthic nitrogen fixation rate in a tropical estuary (Cochin) and also evaluated the contribution of various diazotrophic bacterial communities. Nitrogen fixation was detected throughout year (0.1-1.11 nmol N g-1 h-1); higher activity was observed in post-monsoon. The nifH gene abundance was varied from 0.8 × 104 to 0.6 × 108 copies g-1dry sediment; highest was detected in post-monsoon. The Cluster I and Cluster III were the dominant diazotrophs. Sulfur reducing bacterial phylotypes (Deltaproteobacteria) contributed up to 2-72% of total nitrogen fixation. These bacteria may provide new nitrogen to these systems, counteracting nitrogen loss via denitrification and anammox. Overall, the study explained the importance of benthic nitrogen fixation and role of diazotrophs in a monsoon influenced tropical estuarine environments.
Collapse
Affiliation(s)
- T Jabir
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco-da-Gama, Goa 403 804, India.
| | - P V Vipindas
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco-da-Gama, Goa 403 804, India
| | - Y Jesmi
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - P S Divya
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - B M Adarsh
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - H S Nafeesathul Miziriya
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India.
| |
Collapse
|
21
|
Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, McDaniel SF, Fierer N. The bacterial communities of Alaskan mosses and their contributions to N 2-fixation. MICROBIOME 2021; 9:53. [PMID: 33622403 PMCID: PMC7903681 DOI: 10.1186/s40168-021-01001-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N2-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N2-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N2-fixation rates via 15N2 isotopic enrichment and identified potential N2-fixing bacteria using available literature and genomic information. RESULTS Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N2-fixing bacteria specific to some moss hosts, including potential N2-fixing bacteria outside well-studied cyanobacterial clades. CONCLUSIONS The strong effect of host identity on moss-associated bacterial communities demonstrates mosses' utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N2-fixation in high-latitude ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Hannah Holland-Moritz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
| | - Julia E. M. Stuart
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | - Lily R. Lewis
- Provost’s Office, University of Florida, Gainesville, FL USA
| | - Samantha N. Miller
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | - Michelle C. Mack
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | | | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO USA
| |
Collapse
|
22
|
Van Langenhove L, Depaepe T, Verryckt LT, Fuchslueger L, Donald J, Leroy C, Krishna Moorthy SM, Gargallo-Garriga A, Ellwood MDF, Verbeeck H, Van Der Straeten D, Peñuelas J, Janssens IA. Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142202. [PMID: 33254844 DOI: 10.1016/j.scitotenv.2020.142202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, yet little is known about the contribution made by free-living nitrogen fixers inhabiting the often-extensive forest canopy. We used the acetylene reduction assay, calibrated with 15N2, to measure free-living BNF on forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest floor in leaf litter and soil. We used a combination of calculated and published component densities to upscale free-living BNF rates to the forest level. We found that bryophytes and leaves situated in the canopy in particular displayed high mass-based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various canopy components. Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen by atmospheric deposition.
Collapse
Affiliation(s)
- Leandro Van Langenhove
- Research group Plants and Ecosystem (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lore T Verryckt
- Research group Plants and Ecosystem (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Lucia Fuchslueger
- Research group Plants and Ecosystem (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium; Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Julian Donald
- CNRS, IRD, UMR 5174 Evolution et Diversité Biologique (EDB), Université Toulouse, 3 Paul Sabatier, Toulouse, France
| | - Celine Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France; UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Sruthi M Krishna Moorthy
- Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, 9000 Ghent, Belgium
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain; Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300 Brno, Czech Republic
| | - M D Farnon Ellwood
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Hans Verbeeck
- Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, 9000 Ghent, Belgium
| | | | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ivan A Janssens
- Research group Plants and Ecosystem (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
23
|
Renaudin M, Darnajoux R, Bellenger JP. Quantification of Moss-Associated Cyanobacteria Using Phycocyanin Pigment Extraction. Front Microbiol 2021; 11:611792. [PMID: 33469453 PMCID: PMC7813775 DOI: 10.3389/fmicb.2020.611792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
In the boreal forest, cyanobacteria can establish associations with feather moss and realize the biological nitrogen fixation (BNF) reaction, consisting in the reduction of atmospheric dinitrogen into bioavailable ammonium. In this ecosystem, moss-associated cyanobacteria are the main contributors to BNF by contributing up to 50% of new N input. Current environmental changes driven by anthropogenic activities will likely affect cyanobacteria activity (i.e., BNF) and populations inhabiting mosses, leading to potential important consequences for the boreal forest. Several methods are available to efficiently measure BNF activity, but quantifying cyanobacteria biomass associated with moss is challenging because of the difficulty to separate bacteria colonies from the host plant. Attempts to separate cyanobacteria by shaking or sonicating in water were shown to be poorly efficient and repeatable. The techniques commonly used, microscopic counting and quantitative PCR (qPCR) are laborious and time-consuming. In aquatic and marine ecosystems, phycocyanin (PC), a photosynthesis pigment produced by cyanobacteria, is commonly used to monitor cyanobacteria biomass. In this study, we tested if PC extraction and quantification can be used to estimate cyanobacteria quantity inhabiting moss. We report that phycocyanin can be easily extracted from moss by freeze/thaw disturbance of cyanobacteria cells and can be quickly and efficiently measured by spectrofluorometry. We also report that phycocyanin extraction is efficient (high recovery), repeatable (relative SD < 13%) and that no significant matrix effects were observed. As for aquatic systems, the main limitation of cyanobacteria quantification using phycocyanin is the difference of cellular phycocyanin content between cyanobacteria strains, suggesting that quantification can be impacted by cyanobacteria community composition. Nonetheless, we conclude that phycocyanin extraction and quantification is an easy, rapid, and efficient tool to estimate moss-associated cyanobacteria number.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Romain Darnajoux
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
24
|
Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. THE ISME JOURNAL 2020; 14:3068-3078. [PMID: 32814866 PMCID: PMC7784912 DOI: 10.1038/s41396-020-00738-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023]
Abstract
In nitrogen-limited boreal forests, associations between feathermoss and diazotrophic cyanobacteria control nitrogen inputs and thus carbon cycling, but little is known about the molecular regulators required for initiation and maintenance of these associations. Specifically, a benefit to the cyanobacteria is not known, challenging whether the association is a nutritional mutualism. Targeted mutagenesis of the cyanobacterial alkane sulfonate monooxygenase results in an inability to colonize feathermosses by the cyanobacterium Nostoc punctiforme, suggesting a role for organic sulfur in communication or nutrition. Isotope probing paired with high-resolution imaging mass spectrometry (NanoSIMS) demonstrated bidirectional elemental transfer between partners, with carbon and sulfur both being transferred to the cyanobacteria, and nitrogen transferred to the moss. These results support the hypothesis that moss and cyanobacteria enter a mutualistic exosymbiosis with substantial bidirectional material exchange of carbon and nitrogen and potential signaling through sulfur compounds.
Collapse
Affiliation(s)
- Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Eric R A Pederson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Philip D Weyman
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Zymergen Inc., Emeryville, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ulla Rassmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
25
|
Zheng M, Zhou Z, Zhao P, Luo Y, Ye Q, Zhang K, Song L, Mo J. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. GLOBAL CHANGE BIOLOGY 2020; 26:6203-6217. [PMID: 32869422 DOI: 10.1111/gcb.15328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Biological nitrogen (N) fixation plays an important role in terrestrial N cycling and represents a key driver of terrestrial net primary productivity (NPP). Despite the importance of N fixation in terrestrial ecosystems, our knowledge regarding the controls on terrestrial N fixation remains poor. Here, we conducted a meta-analysis (based on 852 observations from 158 studies) of N fixation across three types of ecosystems with different status of disturbance (no management, restoration [previously disturbed], and disturbance [currently disturbed]) and in response to multiple environmental change factors (warming, elevated carbon dioxide [CO2 ], increased precipitation, increased drought, increased N deposition, and their combinations). We explored the mechanisms underlying the changes in N fixation by examining the variations in soil physicochemical properties (bulk density, texture, moisture, and pH), plant and microbial characteristics (dominant plant species numbers, plant coverage, and soil microbial biomass), and soil resources (total carbon, total N, total phosphorus (P), inorganic N, and inorganic P). Human disturbance inhibited non-symbiotic N fixation but not symbiotic N fixation. Terrestrial N fixation was stimulated by warming (+152.7%), elevated CO2 (+19.6%), and increased precipitation (+73.1%) but inhibited by increased drought (-30.4%), N deposition (-31.0%), and combinations of available multiple environmental change factors (-14.5%), the extents of which varied among biomes and ecosystem compartments. Human disturbance reduced the N fixation responses to environmental change factors, which was associated with the changes in soil physicochemical properties (2%-56%, p < .001) and the declines in plant and microbial characteristics (3%-49%, p ≤ .003) and soil resources (6%-48%, p ≤ .03). Overall, our findings reveal for the first time the effects of multiple environmental change factors on terrestrial N fixation and indicate the role of human disturbance activities in inhibiting N fixation, which can improve our understanding, modeling, and prediction of terrestrial N budgets, NPP, and ecosystem feedbacks under global change scenarios.
Collapse
Affiliation(s)
- Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenghu Zhou
- Center for Ecological Research, Northeast Forestry University, Harbin, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kerong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Liang Song
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
26
|
Wong MY, Neill C, Marino R, Silvério D, Howarth RW. Molybdenum, phosphorus, and pH do not constrain nitrogen fixation in a tropical forest in the southeastern Amazon. Ecology 2020; 102:e03211. [PMID: 32981087 DOI: 10.1002/ecy.3211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023]
Abstract
High rates of biological nitrogen fixation (BNF) are commonly reported for tropical forests, but most studies have been conducted in regions that receive substantial inputs of molybdenum (Mo) from atmospheric dust and sea-salt aerosols. Even in these regions, the low availability of Mo can constrain free-living BNF catalyzed by heterotrophic bacteria and archaea. We hypothesized that in regions where atmospheric inputs of Mo are low and soils are highly weathered, such as the southeastern Amazon, Mo would constrain BNF. We also hypothesized that the high soil acidity, characteristic of the Amazon Basin, would further constrain Mo availability and therefore soil BNF. We conducted two field experiments across the wet and dry seasons, adding Mo, phosphorus (P), and lime alone and in combination to the forest floor in the southeastern Amazon. We sampled soils and litter immediately, and then weeks and months after the applications, and measured Mo and P availability through resin extractions and BNF with the acetylene reduction assay. The experimental additions of Mo and P increased their availability and the lime increased soil pH. While the combination of Mo and P increased BNF at some time points, BNF rates did not increase strongly or consistently across the study as a whole, suggesting that Mo, P, and soil pH are not the dominant controls over BNF. In a separate short-term laboratory experiment, BNF did not respond strongly to Mo and P even when labile carbon was added. We postulate that high nitrogen (N) availability in this area of the Amazon, as indicated by the stoichiometry of soils and vegetation and the high nitrate soil stocks, likely suppresses BNF at this site. These patterns may also extend across highly weathered soils with high N availability in other topographically stable regions of the tropics.
Collapse
Affiliation(s)
- Michelle Y Wong
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | | | - Roxanne Marino
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Divino Silvério
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Canarana, Mato Grosso, 78640-000, Brazil.,Departamento de Biologia, Universidade Federal Rural da Amazônia-UFRA, Capitão Poço, Pará, 68650-000, Brazil
| | - Robert W Howarth
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA.,Woods Hole Research Center, Falmouth, Massachusetts, 02450, USA
| |
Collapse
|
27
|
Jean M, Holland-Moritz H, Melvin AM, Johnstone JF, Mack MC. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. THE NEW PHYTOLOGIST 2020; 227:1335-1349. [PMID: 32299141 DOI: 10.1111/nph.16611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.
Collapse
Affiliation(s)
- Mélanie Jean
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences and Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - April M Melvin
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Independent researcher, Washington, DC, 20001, USA
| | - Jill F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
28
|
Stuart JEM, Holland-Moritz H, Lewis LR, Jean M, Miller SN, McDaniel SF, Fierer N, Ponciano JM, Mack MC. Host Identity as a Driver of Moss-Associated N2 Fixation Rates in Alaska. Ecosystems 2020. [DOI: 10.1007/s10021-020-00534-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Zhang X, Ward BB, Sigman DM. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem Rev 2020; 120:5308-5351. [DOI: 10.1021/acs.chemrev.9b00613] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Bess B. Ward
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
Zhou L, Wang X, Ren W, Xu Y, Zhao L, Zhang Y, Teng Y. Contribution of autochthonous diazotrophs to polycyclic aromatic hydrocarbon dissipation in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137410. [PMID: 32120099 DOI: 10.1016/j.scitotenv.2020.137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Understanding the role played by autochthonous functional microbes involved in the biotransformation of pollutants would help optimize bioremediation performance at contaminated sites. However, our knowledge of the remediation potential of indigenous diazotrophs in contaminated soils remains inadequate. Using a microcosm experiment, soil nitrogen fixation activity was manipulated by molybdenum (Mo) and tungsten (W), and their effect on the removal of polycyclic aromatic hydrocarbons (PAHs) was determined in agricultural and industrial soils. Results showed that after 42 days of incubation, PAH dissipation efficiency was significantly enhanced by 1.06-fold in 600 μg kg-1 Mo-treated agricultural soil, compared with that in the control. For the industrial soil, 1200 μg kg-1 Mo treatment significantly promoted PAH removal by 90.76% in 21 days, whereas no significant change was observed between treatments and control at the end of the incubation period. W also exerted a similar effect on PAH dissipation. The activity and gene abundance of nitrogenase were also increased under Mo/W treatments in the two soils. Spearman's correlation analysis further indicated that removal of PAHs was positively correlated with nitrogenase activity in soil, which could be due to the elevated abundances of PAH-degrading genes (PAH-RHDα) in these treatments. Our results suggest the importance of autochthonous diazotrophs in PAH-contaminated soils, which indicates a feasible and environmentally friendly biostimulation strategy of manipulating nitrogen fixation capacity.
Collapse
Affiliation(s)
- Lu Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
31
|
Kox MAR, van den Elzen E, Lamers LPM, Jetten MSM, van Kessel MAHJ. Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. AMB Express 2020; 10:61. [PMID: 32236738 PMCID: PMC7109220 DOI: 10.1186/s13568-020-00994-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Peatlands have acted as C-sinks for millennia, storing large amounts of carbon, of which a significant amount is yearly released as methane (CH4). Sphagnum mosses are a key genus in many peat ecosystems and these mosses live in close association with methane-oxidizing and nitrogen-fixing microorganisms. To disentangle mechanisms which may control Sphagnum-associated methane-oxidation and nitrogen-fixation, we applied four treatments to Sphagnum mosses from a pristine peatland in Finland: nitrogen fertilization, phosphorus fertilization, CH4 addition and light. N and P fertilization resulted in nutrient accumulation in the moss tissue, but did not increase Sphagnum growth. While net CO2 fixation rates remained unaffected in the N and P treatment, net CH4 emissions decreased because of enhanced CH4 oxidation. CH4 addition did not affect Sphagnum performance in the present set-up. Light, however, clearly stimulated the activity of associated nitrogen-fixing and methane-oxidizing microorganisms, increasing N2 fixation rates threefold and CH4 oxidation rates fivefold. This underlines the strong connection between Sphagnum and associated N2 fixation and CH4 oxidation. It furthermore indicates that phototrophy is a strong control of microbial activity, which can be directly or indirectly.
Collapse
Affiliation(s)
- Martine A R Kox
- Department of Microbiology, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Eva van den Elzen
- Department of Aquatic Ecology and Environmental Biology, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, Radboud University, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
van den Elzen E, Bengtsson F, Fritz C, Rydin H, Lamers LPM. Variation in symbiotic N2 fixation rates among Sphagnum mosses. PLoS One 2020; 15:e0228383. [PMID: 32017783 PMCID: PMC7001857 DOI: 10.1371/journal.pone.0228383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/14/2020] [Indexed: 11/18/2022] Open
Abstract
Biological nitrogen (N) fixation is an important process supporting primary production in ecosystems, especially in those where N availability is limiting growth, such as peatlands and boreal forests. In many peatlands, peat mosses (genus Sphagnum) are the prime ecosystem engineers, and like feather mosses in boreal forests, they are associated with a diverse community of diazotrophs (N2-fixing microorganisms) that live in and on their tissue. The large variation in N2 fixation rates reported in literature remains, however, to be explained. To assess the potential roles of habitat (including nutrient concentration) and species traits (in particular litter decomposability and photosynthetic capacity) on the variability in N2 fixation rates, we compared rates associated with various Sphagnum moss species in a bog, the surrounding forest and a fen in Sweden. We found appreciable variation in N2 fixation rates among moss species and habitats, and showed that both species and habitat conditions strongly influenced N2 fixation. We here show that higher decomposition rates, as explained by lower levels of decomposition-inhibiting compounds, and higher phosphorous (P) levels, are related with higher diazotrophic activity. Combining our findings with those of other studies, we propose a conceptual model in which both species-specific traits of mosses (as related to the trade-off between rapid photosynthesis and resistance to decomposition) and P availability, explain N2 fixation rates. This is expected to result in a tight coupling between P and N cycling in peatlands.
Collapse
Affiliation(s)
- Eva van den Elzen
- Department of Aquatic Ecology and Environmental Biology, Institute for
Water and Wetland Research, Radboud University, AJ Nijmegen, the
Netherlands
| | - Fia Bengtsson
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre,
Uppsala University, Uppsala, Sweden
| | - Christian Fritz
- Department of Aquatic Ecology and Environmental Biology, Institute for
Water and Wetland Research, Radboud University, AJ Nijmegen, the
Netherlands
| | - Håkan Rydin
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre,
Uppsala University, Uppsala, Sweden
| | - Leon P. M. Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for
Water and Wetland Research, Radboud University, AJ Nijmegen, the
Netherlands
| |
Collapse
|
33
|
Salazar A, Rousk K, Jónsdóttir IS, Bellenger J, Andrésson ÓS. Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology 2020; 101:e02938. [PMID: 31750541 PMCID: PMC7027553 DOI: 10.1002/ecy.2938] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022]
Abstract
Warming can alter the biogeochemistry and ecology of soils. These alterations can be particularly large in high northern latitude ecosystems, which are experiencing the most intense warming globally. In this meta-analysis, we investigated global trends in how experimental warming is altering the biogeochemistry of the most common limiting nutrient for biological processes in cold ecosystems of high northern latitudes (>50°): nitrogen (N). For comparison, we also analyzed cold ecosystems at intermediate and high southern latitudes. In addition, we examined N-relevant genes and enzymes, and the abundance of belowground organisms. Together, our findings suggest that warming in cold ecosystems increases N mineralization rates and N2 O emissions and does not affect N fixation, at least not in a consistent way across biomes and conditions. Changes in belowground N fluxes caused by warming lead to an accumulation of N in the forms of dissolved organic and root N. These changes seem to be more closely linked to increases in enzyme activity that target relatively labile N sources, than to changes in the abundance of N-relevant genes (e.g., amoA and nosZ). Finally, our analysis suggests that warming in cold ecosystems leads to an increase in plant roots, fungi, and (likely in an indirect way) fungivores, and does not affect the abundance of archaea, bacteria, or bacterivores. In summary, our findings highlight global trends in the ways warming is altering the biogeochemistry and ecology of soils in cold ecosystems, and provide information that can be valuable for prediction of changes and for management of such ecosystems.
Collapse
Affiliation(s)
- Alejandro Salazar
- Faculty of Life and Environmental SciencesUniversity of IcelandSturlugata 7101ReykjavíkIceland
| | - Kathrin Rousk
- Department of BiologyTerrestrial Ecology SectionUniversity of CopenhagenUniversitetsparken 152100CopenhagenDenmark
- Center for Permafrost (CENPERM)University of CopenhagenØster Voldgade 101350CopenhagenDenmark
| | - Ingibjörg S. Jónsdóttir
- Faculty of Life and Environmental SciencesUniversity of IcelandSturlugata 7101ReykjavíkIceland
| | - Jean‐Philippe Bellenger
- Centre SeveDepartment of ChemistryFaculty of SciencesUniversite de SherbrookeJ1K2R1SherbrookeQuebecCanada
| | - Ólafur S. Andrésson
- Faculty of Life and Environmental SciencesUniversity of IcelandSturlugata 7101ReykjavíkIceland
| |
Collapse
|
34
|
Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proc Natl Acad Sci U S A 2019; 116:24682-24688. [PMID: 31727845 PMCID: PMC6900544 DOI: 10.1073/pnas.1913314116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biological nitrogen fixation (BNF) is responsible for large new N inputs to terrestrial ecosystems, particularly in pristine, high-latitude areas undergoing rapid global change. The most common form of nitrogenase requires molybdenum (Mo) and Mo limitation of BNF is ubiquitous. Mo-free alternative forms of nitrogenase exist, but their roles in environmental BNF have remained uncertain. This study on N2-fixing cyanolichens provides extensive field evidence, at an ecosystem scale, that vanadium (V)-based nitrogenase greatly contributes to BNF when Mo availability is limited. Mo exposure data in circumboreal forests further suggest that V-based BNF is widespread. The results showcase the resilience of BNF to micronutrient limitation and reveal strong links between the biogeochemical cycle of macronutrients and micronutrients in terrestrial ecosystems. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15–50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·glichen−1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.
Collapse
|
35
|
Zheng M, Zhou Z, Luo Y, Zhao P, Mo J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. GLOBAL CHANGE BIOLOGY 2019; 25:3018-3030. [PMID: 31120621 DOI: 10.1111/gcb.14705] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/05/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Biological nitrogen (N) fixation (BNF), an important source of N in terrestrial ecosystems, plays a critical role in terrestrial nutrient cycling and net primary productivity. Currently, large uncertainty exists regarding how nutrient availability regulates terrestrial BNF and the drivers responsible for this process. We conducted a global meta-analysis of terrestrial BNF in response to N, phosphorus (P), and micronutrient (Micro) addition across different biomes (i.e, tropical/subtropical forest, savanna, temperate forest, grassland, boreal forest, and tundra) and explored whether the BNF responses were affected by fertilization regimes (nutrient-addition rates, duration, and total load) and environmental factors (mean annual temperature [MAT], mean annual precipitation [MAP], and N deposition). The results showed that N addition inhibited terrestrial BNF (by 19.0% (95% confidence interval [CI]: 17.7%-20.3%); hereafter), Micro addition stimulated terrestrial BNF (30.4% [25.7%-35.3%]), and P addition had an inconsistent effect on terrestrial BNF, i.e., inhibiting free-living N fixation (7.5% [4.4%-10.6%]) and stimulating symbiotic N fixation (85.5% [25.8%-158.7%]). Furthermore, the response ratios (i.e., effect sizes) of BNF to nutrient addition were smaller in low-latitude (<30°) biomes (8.5%-36.9%) than in mid-/high-latitude (≥30°) biomes (32.9%-61.3%), and the sensitivity (defined as the absolute value of response ratios) of BNF to nutrients in mid-/high-latitude biomes decreased with decreasing latitude (p ≤ 0.009; linear/logarithmic regression models). Fertilization regimes did not affect this phenomenon (p > 0.05), but environmental factors did affect it (p < 0.001) because MAT, MAP, and N deposition accounted for 5%-14%, 10%-32%, and 7%-18% of the variance in the BNF response ratios in cold (MAT < 15°C), low-rainfall (MAP < 2,500 mm), and low-N-deposition (<7 kg ha-1 year-1 ) biomes, respectively. Overall, our meta-analysis depicts a global pattern of nutrient impacts on terrestrial BNF and indicates that certain types of global change (i.e., warming, elevated precipitation and N deposition) may reduce the sensitivity of BNF in response to nutrient enrichment in mid-/high-latitude biomes.
Collapse
Affiliation(s)
- Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghu Zhou
- Center for Ecological Research, Northeast Forestry University, Harbin, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
36
|
Kozar SF, Symonenko EP, Volkohon VV, Volkogon MV. Nanocarboxylates of molybdenum and of iron enhance the functional activity of Rhizobium radiobacter 204. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-018-00939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Nelson JM, Hauser DA, Gudiño JA, Guadalupe YA, Meeks JC, Salazar Allen N, Villarreal JC, Li FW. Complete Genomes of Symbiotic Cyanobacteria Clarify the Evolution of Vanadium-Nitrogenase. Genome Biol Evol 2019; 11:1959-1964. [PMID: 31243438 PMCID: PMC6645180 DOI: 10.1093/gbe/evz137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Plant endosymbiosis with nitrogen-fixing cyanobacteria has independently evolved in diverse plant lineages, offering a unique window to study the evolution and genetics of plant-microbe interaction. However, very few complete genomes exist for plant cyanobionts, and therefore little is known about their genomic and functional diversity. Here, we present four complete genomes of cyanobacteria isolated from bryophytes. Nanopore long-read sequencing allowed us to obtain circular contigs for all the main chromosomes and most of the plasmids. We found that despite having a low 16S rRNA sequence divergence, the four isolates exhibit considerable genome reorganizations and variation in gene content. Furthermore, three of the four isolates possess genes encoding vanadium (V)-nitrogenase (vnf), which is uncommon among diazotrophs and has not been previously reported in plant cyanobionts. In two cases, the vnf genes were found on plasmids, implying possible plasmid-mediated horizontal gene transfers. Comparative genomic analysis of vnf-containing cyanobacteria further identified a conserved gene cluster. Many genes in this cluster have not been functionally characterized and would be promising candidates for future studies to elucidate V-nitrogenase function and regulation.
Collapse
Affiliation(s)
- Jessica M Nelson
- Boyce Thompson Institute, Ithaca, New York
- Plant Biology Section, Cornell University, Ithaca, New York
| | - Duncan A Hauser
- Boyce Thompson Institute, Ithaca, New York
- Plant Biology Section, Cornell University, Ithaca, New York
| | - José A Gudiño
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, California
| | | | - Juan Carlos Villarreal
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Biology, Laval University, Quebec City, Quebec, Canada
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York
- Plant Biology Section, Cornell University, Ithaca, New York
| |
Collapse
|
38
|
Ma J, Bei Q, Wang X, Lan P, Liu G, Lin X, Liu Q, Lin Z, Liu B, Zhang Y, Jin H, Hu T, Zhu J, Xie Z. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:686-694. [PMID: 30176479 DOI: 10.1016/j.scitotenv.2018.08.318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 05/27/2023]
Abstract
Molybdenum (Mo) deficiency in the farmland of China may limit biological nitrogen fixation (BNF), however, the impact of Mo application on BNF capacities and diazotrophic communities in rice-soil systems is unclear. In this experiment, treatments in a 6.7 atom% 15N2-labelling field-based growth chamber for 74 days and treatments in a 99 atom% 15N2-labelling microcosm experiment for 40 days combined with 16S rRNA gene sequencing and DNA-stable isotope probing (SIP) were used to investigate the impacts of Mo application on BNF and diazotrophic communities. Our results showed that under the condition that no nitrogen (N) fertilizer was applied, Mo application (500 g sodium molybdate ha-1) significantly increased N2 fixation in a rice-Inceptisol system, from 22.3 to 53.1 kg N ha-1. Mo application significantly increased the number of nifH gene copies and the relative abundance of cyanobacteria in both growth chamber and microcosm experiments. Among cyanobacteria, the relative abundances of the most abundant genera Leptolyngbya and Microcoleus were significantly increased by Mo application. 15N2-DNA-SIP further demonstrated that Leptolyngbya and Microcoleus incorporated 15N2. Mo application greatly increased BNF in Mo-deficient paddy field (≤0.068 mg kg-1) and stimulated the growth of cyanobacteria. These results indicated that Mo application in Mo-deficient paddy field could be a useful measure to increase soil N input under no N fertilization.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Qicheng Bei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China
| | - Xiaojie Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China
| | - Gang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China
| | - Xingwu Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China
| | - Qi Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Zhibin Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Benjuan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Yanhui Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Haiyang Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Tianlong Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road No. 19A, Beijing 100049, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing 210008, China.
| |
Collapse
|
39
|
Scott DL, Bradley RL, Bellenger JP, Houle D, Gundale MJ, Rousk K, DeLuca TH. Anthropogenic deposition of heavy metals and phosphorus may reduce biological N 2 fixation in boreal forest mosses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:203-210. [PMID: 29477819 DOI: 10.1016/j.scitotenv.2018.02.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
A study was undertaken to test the effects of molybdenum (Mo) and phosphorus (P) amendments on biological nitrogen (N) fixation (BNF) by boreal forest moss-associated cyanobacteria. Feather moss (Pleurozium schreberi) samples were collected on five sites, on two dates and at different roadside distances (0-100m) corresponding to an assumed gradient of reactive N deposition. Potential BNF of Mo and P amended moss samples was measured using the acetylene reduction assay. Total N, P and heavy metal concentrations of mosses collected at 0 and 100m from roadsides were also measured. Likewise, the needles from Norway spruce trees (Picea abies) at different roadside distances were collected in late summer and analyzed for total N, P and heavy metals. There was a significant increase in BNF with roadside distance on 7-of-10 individual Site×Date combinations. We found no clear evidence of an N gradient across roadside distances. Elemental analyses of feather moss and Norway spruce needle tissues suggested decreasing deposition of heavy metals (Mo-Co-Cr-Ni-V-Pb-Ag-Cu) as well as P with increasing distance from the roadside. The effects of Mo and P amendments on BNF were infrequent and inconsistent across roadside distances and across sites. One particular site, however, displayed greater concentrations of heavy metals near the roadside, as well as a steeper P fertility gradient with roadside distance, than the other sites. Here, BNF increased with roadside distance only when moss samples were amended with P. Also at this site, BNF across all roadside distances was higher when mosses were amended with both Mo and P, suggesting a co-limitation of these two nutrients in controlling BNF. In summary, our study showed a potential for car emissions to increase heavy metals and P along roadsides and underscored the putative roles of these anthropogenic pollutants on BNF in northern latitudes.
Collapse
Affiliation(s)
- Dalton L Scott
- Université de Sherbrooke, Département de Biologie, Sherbrooke, Canada
| | - Robert L Bradley
- Université de Sherbrooke, Département de Biologie, Sherbrooke, Canada.
| | | | - Daniel Houle
- Ministère des Forêts, de la Faune et des Parcs, Québec, Canada
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Denmark
| | - Thomas H DeLuca
- Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States
| |
Collapse
|
40
|
Joanisse GD, Bradley RL, Preston CM. The spread of Kalmia angustifolia on black spruce forest cutovers contributes to the spatial heterogeneity of soil resources. PLoS One 2018; 13:e0198860. [PMID: 29927964 PMCID: PMC6013165 DOI: 10.1371/journal.pone.0198860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 11/23/2022] Open
Abstract
Kalmia angustifolia is a boreal ericaceous shrub that can rapidly spread on black spruce forest cutovers in eastern Canada, where CPRS (i.e. Cutting with Protection of Regeneration and Soils”) is practiced. The proliferation of Kalmia often coincides with a reduction in the growth rate of regenerating black spruce seedlings. We report on a study where we compared the local effects of Kalmia and black spruce seedling patches (i.e. two types of “Vegetation”) on chemical and biochemical soil properties in CPRS cutovers within mesic spruce-moss and xeric spruce-lichen ecosystems, as well as in four mature spruce-moss forests (i.e. three “Site Types”). Results from 13C-CPMAS-NMR revealed lower O-alkyl C (i.e. carbohydrates), higher aromatic C (i.e. lignin and other phenolics) and higher carbonyl-C (i.e. amide-C and carboxyl groups) in spruce-moss than in spruce-lichen forest floors (F-horizon). In spite of these distinctions, we observed only a small number of Site Type x Vegetation interactions controlling soil properties. Vegetation had a significant effect on ten forest floor properties. Most notably, Kalmia patches had higher concentrations of condensed tannins and lower mineral N cycling. On the other hand, Site Type had a relatively greater effect on the deeper podzolic-B horizons, where mineral N and microbial activity were higher in mature spruce-moss forests than in the cutovers. Green and senescent Kalmia leaves collected at these sites had higher N, tannin and phenolic concentrations than green and senescent spruce needles. A 25 month litter bag study found lower decomposition of Kalmia leaf litter in spruce patches on spruce-lichen cutovers compared to spruce patches on spruce-moss cutovers, or to Kalmia patches on spruce-lichen cutovers. Given that black spruce seedlings obtain most of their nutrients from the forest floor, our results suggest that CPRS may have long-term negative effects on black spruce forest productivity if the spread of Kalmia is left unchecked.
Collapse
Affiliation(s)
- Gilles D. Joanisse
- Centre d’enseignement et de recherche en foresterie de Sainte-Foy Inc. (CERFO), Québec city, Québec, Canada
- Département de Biologie, Université de Sherbrooke, Boulevard de l’université, Sherbrooke, Québec, Canada
| | - Robert L. Bradley
- Département de Biologie, Université de Sherbrooke, Boulevard de l’université, Sherbrooke, Québec, Canada
- * E-mail:
| | - Caroline M. Preston
- Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
| |
Collapse
|
41
|
Warshan D, Liaimer A, Pederson E, Kim SY, Shapiro N, Woyke T, Altermark B, Pawlowski K, Weyman PD, Dupont CL, Rasmussen U. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont. Mol Biol Evol 2018; 35:1160-1175. [PMID: 29554291 PMCID: PMC5913679 DOI: 10.1093/molbev/msy029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.
Collapse
Affiliation(s)
- Denis Warshan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Eric Pederson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sea-Yong Kim
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Nicole Shapiro
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Bjørn Altermark
- Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Philip D Weyman
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA
| | - Christopher L Dupont
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
Rousk K, Sorensen PL, Michelsen A. What drives biological nitrogen fixation in high arctic tundra: Moisture or temperature? Ecosphere 2018. [DOI: 10.1002/ecs2.2117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kathrin Rousk
- Department of Biology; Terrestrial Ecology Section; University of Copenhagen; Universitetsparken 15 2100 Copenhagen Denmark
- Center for Permafrost (CENPERM); University of Copenhagen; Øster Voldgade 10 1350 Copenhagen Denmark
| | - Pernille Laerkedal Sorensen
- Department of Biology; Terrestrial Ecology Section; University of Copenhagen; Universitetsparken 15 2100 Copenhagen Denmark
| | - Anders Michelsen
- Department of Biology; Terrestrial Ecology Section; University of Copenhagen; Universitetsparken 15 2100 Copenhagen Denmark
- Center for Permafrost (CENPERM); University of Copenhagen; Øster Voldgade 10 1350 Copenhagen Denmark
| |
Collapse
|
43
|
McRose DL, Baars O, Morel FMM, Kraepiel AML. Siderophore production in
Azotobacter vinelandii
in response to Fe‐, Mo‐ and V‐limitation. Environ Microbiol 2017; 19:3595-3605. [DOI: 10.1111/1462-2920.13857] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/08/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Darcy L. McRose
- Department of GeosciencesPrinceton UniversityPrinceton NJ 08544 USA
| | - Oliver Baars
- Department of GeosciencesPrinceton UniversityPrinceton NJ 08544 USA
| | | | | |
Collapse
|
44
|
Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME JOURNAL 2017; 11:2821-2833. [PMID: 28800136 PMCID: PMC5702739 DOI: 10.1038/ismej.2017.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022]
Abstract
Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis.
Collapse
|