1
|
Li P, Zhu X, Huang C, Tian S, Li Y, Qiao Y, Liu M, Su J, Tian D. Effects of obesity on aging brain and cognitive decline: A cohort study from the UK Biobank. IBRO Neurosci Rep 2025; 18:148-157. [PMID: 39896714 PMCID: PMC11786748 DOI: 10.1016/j.ibneur.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Objective To investigate the impact of obesity on brain structure and cognition using large neuroimaging and genetic data. Methods Associations between body mass index (BMI), gray matter volume (GMV), whiter matter hyper-intensities (WMH), and fluid intelligence score (FIS) were estimated in 30283 participants from the UK Biobank. Longitudinal data analysis was conducted. Genome-wide association studies were applied to explore the genetic loci associations among BMI, GMV, WMH, and FIS. Mendelian Randomization analyses were applied to further estimate the effects of obesity on changes in the brain and cognition. Results The observational analysis revealed that BMI was negatively associated with GMV (r = -0.15, p < 1 × 10-24) and positively associated with WMH (r = 0.08, p < 1 × 10-16). The change in BMI was negatively associated with the change in GMV (r = -0.04, p < 5 × 10-5). Genetic overlap was observed among BMI, GMV, and FIS at SBK1 (rs2726032), SGF29 (rs17707300), TUFM (rs3088215), AKAP6 (rs1051695), IL27 (rs4788084), and SPI1 (rs3740689 and rs935914). The MR analysis provided evidence that higher BMI was associated with lower GMV (β=-1119.12, p = 5.77 ×10-6), higher WMH (β=42.76, p = 6.37 ×10-4), and lower FIS (β=-0.081, p = 1.92 ×10-23). Conclusions The phenotypic and genetic association between obesity and aging brain and cognitive decline suggested that weight control could be a promising strategy for slowing the aging brain.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Sheng C, Yue R. Investigating metabolic characteristics of type 2 diabetes mellitus-related cognitive dysfunction and correlating therapeutic effects of Di Dang Tang in animal models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119338. [PMID: 39826792 DOI: 10.1016/j.jep.2025.119338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Di Dang Tang is a classic formula from Shang Han Lun, originally used to treat conditions such as blood stasis and heat accumulation. It is widely applied in the treatment of diabetes and its complications, but its effects on Type 2 Diabetes Mellitus-related Cognitive Dysfunction (T2DM-CD) remain unclear. AIM OF THE STUDY The study aimed to investigate the metabolic characteristics of patients with T2DM-CD. Additionally, it sought to evaluate the effects of Di Dang Tang on cognitive function in T2DM-CD model rats by targeting the metabolic pathways identified in the clinical analysis, exploring the underlying mechanisms through animal experiments. METHODS Fasting venous serum was collected from patients with Type 2 Diabetes Mellitus (T2DM) to detect metabolism-related products, and KEGG annotation analysis was performed. Separately, thirty rats were randomly divided using a random number table method, with six rats selected as the blank control group. Twenty-four successfully modeled rats were then randomly divided into the model group and three Di Dang Tang groups (low, medium, and high doses). After administering the medication, the relevant indicators in the rats were assessed. RESULTS Clinical metabolomics detected 32 key differential metabolites between the T2DM-CD and the blank control groups. Between the T2DM-CD and T2DM groups, 29 key differential metabolites were identified. In animal experiments, blood glucose levels in the model group were significantly higher compared to the blank control group at the same time points, whereas the high dose groups of Di Dang Tang exhibited reduced blood glucose levels at weeks 6 and 8 relative to the model group. In the Morris water maze test, the model group had longer escape latencies than the blank control group. The medium and high dose groups of Di Dang Tang showed shorter latencies. Additionally, compared to the model group, the Di Dang Tang groups spent more time and covered more distance in the target quadrant but had reduced average proximity and fewer platform entries. HE staining observation of the hippocampal CA1 area showed no apparent pathological changes in the blank group, obvious pathological damage in the model group, and no significant pathological changes in the medium and high dose groups of Di Dang Tang. Compared to the blank control group, the model group showed significant increases in the levels of Arachidonic Acid (AA), Ceramide (Cer), Glutamate (Glu), TNF- α, IL-1β, TG, and LDL-C, and a significant decrease in HDL-C levels. Compared to the model group, the groups of Di Dang Tang significantly modulated the levels of the above indicators. In Western Blot (WB) assays, compared to the blank control group, the model group rats exhibited significantly higher levels of cPLA2, PKC, ERK, and JNK , and significantly lower levels of claudin-5, NMDA, CaMKII, CREB, and BDNF. The Di Dang Tang groups significantly altered the levels of the above indicators compared to the model group. CONCLUSION Amino acid metabolism, sphingolipid signaling pathways, glycerophospholipid metabolism, and various signaling pathways play significant roles in the pathogenesis of T2DM-CD. Di Dang Tang can improve learning and memory abilities in T2DM model rats and ameliorate cognitive impairments, potentially by regulating metabolic levels and inflammatory responses.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/blood
- Cognitive Dysfunction/drug therapy
- Male
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Humans
- Rats
- Rats, Sprague-Dawley
- Female
- Middle Aged
- Disease Models, Animal
- Metabolomics
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/blood
- Aged
- Blood Glucose/drug effects
Collapse
Affiliation(s)
- Changting Sheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Dias MF, Duarte JV, de Carvalho P, Castelo-Branco M. Unravelling pathological ageing with brain age gap estimation in Alzheimer's disease, diabetes and schizophrenia. Brain Commun 2025; 7:fcaf109. [PMID: 40161217 PMCID: PMC11950532 DOI: 10.1093/braincomms/fcaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 12/09/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Brain age gap estimation (BrainAGE), the difference between predicted brain age and chronological age, might be a putative biomarker aiming to detect the transition from healthy to pathological brain ageing. The biomarker primarily models healthy ageing with machine learning models trained with structural magnetic resonance imaging (MRI) data. BrainAGE is expected to translate the deviations in neural ageing trajectory and has been shown to be increased in multiple pathologies, such as Alzheimer's disease (AD), schizophrenia and Type 2 diabetes (T2D). Thus, accelerated ageing seems to be a general feature of neuropathological processes. However, neurobiological constraints remain to be identified to provide specificity to this biomarker. Explainability might be the key to uncovering age predictions and understanding which brain regions lead to an elevated predicted age on a given pathology compared to healthy controls. This is highly relevant to understanding the similarities and differences in neurodegeneration in AD and T2D, which remains an outstanding biological question. Sensitivity maps explain models by computing the importance of each voxel on the final prediction, thereby contributing to the interpretability of deep learning approaches. This paper assesses whether sensitivity maps yield different results across three conditions related to pathological neural ageing: AD, schizophrenia and T2D. Five deep learning models were considered, each model trained with different MRI data types: minimally processed T1-weighted brain scans, and corresponding grey matter, white matter, cerebrospinal fluid tissue segmentation and deformation fields (after spatial normalization). Our results revealed an increased BrainAGE in all pathologies, with a different mean, which is the smallest in schizophrenia; this is in line with the observation that neural loss is secondary in this early-onset condition. Importantly, our findings suggest that the sensitivity, indexing regional weights, for all models varies with age. A set of regions were shown to yield statistical differences across conditions. These sensitivity results suggest that mechanisms of neurodegeneration are quite distinct in AD and T2D. For further validation, the sensitivity and the morphometric maps were compared. The findings outlined a high congruence between the sensitivity and morphometry maps for age and clinical group conditions. Our evidence outlines that the biological explanation of model predictions is vital in adding specificity to the BrainAGE and understanding the pathophysiology of chronic conditions affecting the brain.
Collapse
Affiliation(s)
- Maria Fátima Dias
- CIBIT (Coimbra Institute for Biomedical Imaging and Translational Research), ICNAS, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CISUC/LASI – Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, 3030-790 Coimbra, Portugal
| | - João Valente Duarte
- CIBIT (Coimbra Institute for Biomedical Imaging and Translational Research), ICNAS, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo de Carvalho
- CISUC/LASI – Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, 3030-790 Coimbra, Portugal
- Health Research Line, Intelligent Systems Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
| | - Miguel Castelo-Branco
- CIBIT (Coimbra Institute for Biomedical Imaging and Translational Research), ICNAS, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Research Line, Intelligent Systems Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
| |
Collapse
|
4
|
Mujunen T, Sompa U, Muñoz-Ruiz M, Monto E, Rissanen V, Ruuskanen H, Ahtiainen P, Piitulainen H. Early peripheral nerve impairments in type 1 diabetes are associated with cortical inhibition of ankle joint proprioceptive afference. Clin Neurophysiol 2025; 173:99-112. [PMID: 40090238 DOI: 10.1016/j.clinph.2025.02.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Diabetic sensorimotor peripheral neuropathy (DSPN) is a common complication of type 1 diabetes mellitus (T1DM). However, it is still unclear how the cortical processing of proprioceptive afference is altered due to DSPN. METHODS Cortical responses to right and left ankle joint rotations were recorded with magnetoencephalography and pooled together in 20 T1DM participants and 20 healthy controls for source space comparisons. T1DM participants also underwent a lower limb nerve-conduction study to correlate peripheral nerve function with the cortical responses. RESULTS Primary sensorimotor (SM1) cortex activation was wider in T1DM patients during beta suppression, with no between-group differences in the response strength. However, stronger beta suppressions in T1DM patients were correlated with axon-loss in the peripheral sensory afferents (p < 0.05). Weaker beta rebounds and stronger SM1 evoked field amplitudes were associated with impaired conduction velocities in the mixed nerves (p < 0.05). Lastly, stronger SM1 beta power was associated with both demyelination and axon-loss in the lower limb sensory afferents (p < 0.05). CONCLUSIONS T1DM is accompanied with wider SM1 cortex activation to proprioceptive stimuli, and the early asymptomatic DSPN impairments are linked to increased levels of cortical inhibition. SIGNIFICANCE T1DM is associated with comprehensive central pathophysiology evident in early DSPN.
Collapse
Affiliation(s)
- Toni Mujunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland.
| | - Urho Sompa
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Miguel Muñoz-Ruiz
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Elina Monto
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Valtteri Rissanen
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Heli Ruuskanen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Petteri Ahtiainen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
5
|
Varghese S, Thomas AM, V A, Solamon AJ. Clinical Profile of Acute Kidney Injury in Type 2 Diabetes Mellitus Adult Patients Presenting With Diabetic Ketoacidosis: A Cross-Sectional Study. Cureus 2025; 17:e80183. [PMID: 40190975 PMCID: PMC11972431 DOI: 10.7759/cureus.80183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
OBJECTIVE The purpose of this cross-sectional study was to identify the characteristics of acute kidney injury (AKI) in adult patients with type 2 diabetes mellitus (T2DM) who were admitted with diabetic ketoacidosis (DKA). METHODOLOGY One hundred patients were selected based on the inclusion and exclusion criteria. Kidney function was assessed using kidney estimated glomerular filtration rate (KeGFR) calculations based on the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Data collection included clinical, biological, and demographic information. Univariate and multivariate logistic regression analyses were performed, with a p-value of less than 0.05 considered statistically significant. The study also examined risk factors, intensive care unit (ICU) treatments, and clinical outcomes. RESULTS AKI was significantly associated with ICU length of stay (p = 0.002), and all patients with prolonged ICU admission developed this condition. A higher incidence of AKI was observed in patients requiring mechanical ventilation, renal replacement therapy, or inotropic support. Among the 100 patients included in the study, 94 achieved clinical recovery, including 76 who had AKI, while six patients did not survive. CONCLUSION AKI is a common complication of DKA in adults with T2DM, particularly in hot climate regions. Most cases were detected within the first 24 hours, classified as stage 1 severity, and were pre-renal. Early detection plays a crucial role in preventing complications and improving patient recovery. KeGFR calculations proved an effective tool for monitoring kidney function changes in these patients.
Collapse
Affiliation(s)
- Sajit Varghese
- Department of General Medicine, Pushpagiri Institute of Medical Sciences & Research Centre, Thiruvalla, IND
| | - Anna Mary Thomas
- Department of General Medicine, Pushpagiri Institute of Medical Sciences & Research Centre, Thiruvalla, IND
| | - Arjun V
- Department of General Medicine, Pushpagiri Institute of Medical Sciences & Research Centre, Thiruvalla, IND
| | - Acsa J Solamon
- Department of General Medicine, Pushpagiri Institute of Medical Sciences & Research Centre, Thiruvalla, IND
| |
Collapse
|
6
|
Oktem EO, Sayman D, Ayyildiz S, Oktem Ç, Ipek L, Ayyildiz B, Aslan F, Altindal EU, Yagci N, Dikici R, Karaca R, Cankaya Ş, Avnioglu S, Velioglu HA, Yulug B. Cognitive Function Deficits Associated With Type 2 Diabetes and Retinopathy: Volumetric Brain MR Imaging Study. Brain Behav 2025; 15:e70387. [PMID: 40022286 PMCID: PMC11870829 DOI: 10.1002/brb3.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus is a ubiquitous chronic inflammatory disease with deleterious effects on various tissues, including the kidney, retina, and peripheral nerves. Studies using histopathology and magnetic resonance imaging have revealed that diabetes-related chronic hyperglycemia may impact the brain's essential functioning by causing microvascular damage. The aim of this study was to examine the cognitive functioning of type 2 diabetic individuals with and without retinopathy by evaluating their morphological, structural, and biochemical differences. METHODS Demographic characteristics, education level, type of diabetes mellitus (DM), disease duration, treatment received, other diabetic complications, such as nephropathy and neuropathy, and detailed medical histories were recorded. All participants underwent an extensive neuropsychological examination with Montreal Cognitive Assessment (MoCA) testing. Brain magnetic resonance imaging was performed to evaluate gray matter volume differences between the groups. RESULTS Gray matter volume differences between the groups were observed. Differences were observed after multiple corrections (age, education, and total intracranial volume [TIV]). First, the diabetic retinopathy group exhibited a significantly smaller gray matter volume in the right inferior temporal gyrus than the diabetic group (p = 0.032). In addition, the diabetic retinopathy group exhibited a significantly smaller gray matter volume than the control group in the right insula (lateral and central part) (p = 0.011). In addition, MoCA scores exhibited significant correlation with the two regions emerging as statistically significant in our analyses (the right inferior temporal gyrus and right insula) (p = 0.003, p = 0.002, respectively). CONCLUSION Our results suggest the presence of a neurodegenerative process associated with cognitive dysfunction that is particularly prominent in the retinopathy stage of DM.
Collapse
Affiliation(s)
- Ece Ozdemir Oktem
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Dila Sayman
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Sevilay Ayyildiz
- School of Medicine, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Çaglar Oktem
- Department of OphthalmologyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Lutfiye Ipek
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | | | - Fatih Aslan
- Department of OphthalmologyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Emin Utku Altindal
- Department of OphthalmologyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Nilay Yagci
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Rumeysa Dikici
- Department of anatomyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Ramazan Karaca
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Şeyda Cankaya
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Seda Avnioglu
- Department of anatomyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Halil Aziz Velioglu
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
| | - Burak Yulug
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| |
Collapse
|
7
|
Spagnuolo MC, Gottmann P, Sommer J, Borgmann SO, Strassburger K, Rathmann W, Zaharia OP, Trenkamp S, Wagner R, Icks A, Herder C, Roden M, Maalmi H. Three-protein signature is associated with baseline and persistently elevated or recurrent depressive symptoms in individuals with recent-onset diabetes. BMJ Open Diabetes Res Care 2025; 13:e004396. [PMID: 39965868 PMCID: PMC11836832 DOI: 10.1136/bmjdrc-2024-004396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025] Open
Abstract
Depression is associated with diabetes, but the underlying causes remain unclear. To better understand depression in diabetes, this study investigated associations between 135 inflammatory and neurological protein biomarkers and depressive symptoms in individuals with diabetes.This cross-sectional study included 430 adults with a known diabetes duration <1 year from the German Diabetes Study (GDS), in whom biomarkers were measured in serum and depressive symptoms were evaluated at baseline and annually over 5 years using the Center for Epidemiological Studies Depression Scale (CES-D). Based on the information on depressive symptoms from the baseline and follow-up visits (n=305, ≥3 time points), we subdivided the sample into individuals with persistent or recurrent and transient or never depressive symptoms. We assessed the associations of each biomarker with baseline CES-D score (continuous) and persistent/recurrent depressive symptoms using multiple linear and logistic regression models, respectively.After adjustment for covariates, we identified a three-protein signature associated with baseline CES-D score and persistent/recurrent depressive symptoms. CUB domain-containing protein 1 (CDCP1) and NAD-dependent protein deacetylase sirtuin-2 (SIRT2) were positively associated with baseline (β 1.24 (95% CI 0.19 to 2.29); β 0.89 (95% CI 0.06 to 1.72)), respectively) and persistent/recurrent depressive symptoms (OR 1.58 (95% CI 1.08 to 2.31); OR 1.32 (95% CI 1.03 to 1.71), respectively), whereas leptin receptor (LEPR) was inversely associated with baseline (β -0.99 (95% CI -1.87 to -0.11)) and persistent/recurrent depressive symptoms (OR 0.70 (95% CI 0.49 to 0.99)). However, results were not significant after adjustment for multiple testing.In conclusion, the three-protein signature identified may provide insights into mechanisms underlying depressive symptoms in diabetes and might open new therapeutic avenues.The trial registration number of the study is NCT01055093.
Collapse
Affiliation(s)
- Maria C Spagnuolo
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), München, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam, Germany
| | - Jana Sommer
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Olivia Borgmann
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oana Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Icks
- German Center for Diabetes Research (DZD), München, Germany
- Institute for Health Services Research and Health Economics, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München, Germany
| |
Collapse
|
8
|
Kang Y, Feng Z, Zhang Q, Liu M, Li Y, Yang H, Zheng L, Cheng C, Zhou W, Lou D, Li X, Chen L, Feng Y, Duan X, Duan J, Yu M, Yang S, Liu Y, Wang X, Deng B, Liu C, Yao X, Zhu C, Liang C, Zeng X, Ren S, Li Q, Zhong Y, Yan Y, Meng H, Zhong Z, Zhang Y, Kang J, Luan X, Pan S, Wu Y, Li T, Song W, Zhang Y. Identification of circulating risk biomarkers for cognitive decline in a large community-based population in Chongqing China. Alzheimers Dement 2025; 21:e14443. [PMID: 39713874 PMCID: PMC11848162 DOI: 10.1002/alz.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION This study aims to investigate the relationship between blood-based pathologies and established risk factors for cognitive decline in the community-based population of Chongqing, a region with significant aging. METHODS A total of 26,554 residents aged 50 years and older were recruited. Multinomial logistic regression models were applied to assess the risk factors of cognition levels. Propensity score matching and linear mixed effects models were used to evaluate the relationship between key risk factors and the circulating biomarkers. RESULTS Shared and distinct risk factors for MCI and dementia were identified. Age, lower education, medical history of stroke, hypertension, and epilepsy influenced mild cognitive impairment (MCI) progression to dementia. Correlations between key risk factors and circulating neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), amyloid β protein (Aβ)40, and Aβ42/Aβ40 ratio suggest underlying mechanisms contributing to cognitive impairment. DISCUSSION The common and distinct risk factors across cognitive decline stages emphasize the need for tailored interventions. The correlations with blood biomarkers provide insights into potential management targets. HIGHLIGHTS From a large community-based cohort study on the residents in Chongqing, we have identified that mild cognitive impairment (MCI) and dementia share several common risk factors, including age, female gender, rural living, lower education levels, and a medical history of stroke. However, each condition also has its own unique risk factors. Several factors contribute to the progression of MCI into dementia including age, education levels, occupation, and a medical history of hypertension and epilepsy. We discover the correlations between the risk factors for dementia and blood biomarkers that indicate the presence of axonal damage, glial activation, and Aβ pathology.
Collapse
|
9
|
Long Q, Huang P, Kuang J, Huang Y, Guan H. Diabetes exerts a causal impact on the nervous system within the right hippocampus: substantiated by genetic data. Endocrine 2025; 87:599-608. [PMID: 39480567 DOI: 10.1007/s12020-024-04081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Diabetes and neuronal loss in the hippocampus have been observed to be correlated in several studies; however, the exact causality of this association remains uncertain. This study aims to explore the potential causal relationship between diabetes and the hippocampal nervous system. METHODS We utilized the two-sample Mendelian randomization (MR) analysis to investigate the potential causal connection between diabetes and the hippocampal nervous system. The summary statistics of Genome-wide association study (GWAS) for diabetes and hippocampus neuroimaging measurement were acquired from published GWASs, all of which were based on European ancestry. Several two-sample MR analyses were conducted in this study, utilizing inverse-variance weighted (IVW), MR Egger, and Weight-median methods. To ensure the reliability of the results and identify any horizontal pleiotropy, sensitivity analyses were undertaken using Cochran's Q test and the MR-PRESSO global test. RESULTS Causal associations were found between diabetes and the nervous system in the hippocampus. Type 1 and type 2 diabetes were both identified as having adverse causal connections with the right hippocampal nervous system. This was supported by specific ranges of IVW-OR values (P < 0.05). The consistency of the sensitivity analyses further reinforced the main findings, revealing no significant heterogeneity or presence of horizontal pleiotropy. CONCLUSIONS This study delved into the causal associations between diabetes and the hippocampal nervous system, revealing that both type 1 and type 2 diabetes have detrimental effects on the right hippocampal nervous system. Our findings have significant clinical implications as they indicate that diabetes may play a role in the decline of neurons in the right hippocampus among European populations, often resulting in cognitive decline.
Collapse
Affiliation(s)
- Qian Long
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Piao Huang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Yang Q, Luo Q, Xia W, Yao N, Wang F, Xie C, Zhang H, He Y. Study on the mechanism on Yi-guan-jian decoction alleviating cognitive dysfunction in type 2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119286. [PMID: 39725366 DOI: 10.1016/j.jep.2024.119286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-guan-jian decoction (YGJ) is a traditional Chinese medicine prescription commonly used for treating syndromes associated with Yin deficiency in the liver and kidney, as well as Qi-obstructed in liver. AIM OF THE STUDY YGJ has shown potential alleviating cognitive dysfunction in type 2 diabetes mellitus (T2DM). However, the precise mechanisms are not yet fully understood. This study aims to reveal the mechanism by which YGJ alleviates cognitive dysfunction in T2DM. MATERIALS AND METHODS Various doses of YGJ were administered to T2DM rats with cognitive dysfunction for 8 weeks. The positive control group received a combination of metformin and memantine. Cognitive function was assessed in T2DM rats using the Morris water maze test during treatment. Changes in gut microbiota and bile acids in the intestine were evaluated, and their interactions analyzed. Additionally, this study also evaluated the expressions of inflammatory markers (IL-1β,TNF-α, IL-16, IL-18 and CRP protein), Tau protein, neurotransmitter (5-HT and GABA), and bile acid receptor (FXR, PXR, VDR, and TGR5). RESULTS YGJ significantly alleviated insulin resistance and hyperlipidemia, reduce the levels of inflammatory factors in serum and hippocampus, and decreased mortality in T2DM rats. The Morris water maze test indicated that YGJ reduced the escape latency and increased platform crossing frequency, thereby improving cognitive function in T2DM rats. Furthermore, YGJ regulated the abundance of microorganisms associated with bile acid metabolism, including Romboutsia, Bacteroides, Turicibacter, Blautia, and Ruminococcus, thus regulating bile acid metabolism in T2DM rats. Additionally, YGJ also regulated bile acid metabolism by regulating intestinal FXR, PXR, VDR and TRG5 receptors. CONCLUSION YGJ can alleviate glucose homeostasis, insulin sensitivity, lipid metabolism, neuroinflammation, cognitive function, as well as remodel intestinal flora and BA composition in CDT2DM rats, which is a potential complementary and alternative therapy for the prevention and treatment of CDT2DM. These effects may be associated that YGJ regulates the structure of intestinal flora and BA metabolism, and inhibits intestinal BA receptors FXR, PXR, TGR5, and VDR.
Collapse
Affiliation(s)
- Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Qiwei Luo
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Nairong Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Fang Wang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Haiyan Zhang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
11
|
Shah HS, DeSalvo MN, Haidar A, Jangolla SVT, Yu MG, Roque RS, Hayes A, Gauthier J, Ziemniak N, Viebranz E, Wu IH, Park K, Fickweiler W, Chokshi TJ, Billah T, Ning L, Adam A, Sun JK, Aiello LP, Rathi Y, Feany MB, King GL. Characterization of cognitive decline in long-duration type 1 diabetes by cognitive, neuroimaging, and pathological examinations. JCI Insight 2025; 10:e180226. [PMID: 39883521 PMCID: PMC11949075 DOI: 10.1172/jci.insight.180226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUNDWe aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).METHODSJoslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched nondiabetic controls (n = 20) underwent neuro- and retinal imaging. Brain pathology (n = 26) was examined. Relationships among clinical, cognitive, and neuroimaging parameters were evaluated.RESULTSCompared with controls, Medalists had worse psychomotor function and recall, which associated with female sex, lower visual acuity, reduced physical activity, longer diabetes duration, and higher inflammatory cytokines. On neuroimaging, compared with controls, Medalists had significantly lower total and regional brain volumes, equivalent to 9 years of accelerated aging, but small vessel disease markers did not differ. Reduced brain volumes associated with female sex, reduced psychomotor function, worse visual acuity, longer diabetes duration, and higher inflammation, but not with glycemic control. Worse cognitive function, lower brain volumes, and diabetic retinopathy correlated with thinning of the outer retinal nuclear layer. Worse baseline visual acuity associated with declining psychomotor function in longitudinal analysis. Brain volume mediated the association between visual acuity and psychomotor function by 57%. Brain pathologies showed decreased volumes, but predominantly mild vascular or Alzheimer's-related pathology.CONCLUSION To our knowledge, this is the first comprehensive study of cognitive function, neuroimaging, and pathology in aging T1D individuals demonstrated that cognitive decline was related to parenchymal rather than neurovascular abnormalities, unlike type 2 diabetes, suggestive of accelerated aging in T1D. Improving visual acuity could perhaps be an important preventive measure against cognitive decline in people with T1D.FUNDINGThe Beatson Foundation, NIH/NIDDK grants 3P30DK036836-34S1 and P30DK036836-37, and Mary Iacocca fellowships.
Collapse
Affiliation(s)
- Hetal S. Shah
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anastasia Haidar
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Surya Vishva Teja Jangolla
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc Gregory Yu
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca S. Roque
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Amanda Hayes
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - John Gauthier
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Nolan Ziemniak
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Elizabeth Viebranz
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - I-Hsien Wu
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Kyoungmin Park
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ward Fickweiler
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanvi J. Chokshi
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lipeng Ning
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Atif Adam
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer K. Sun
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lloyd Paul Aiello
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Radiology, and
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - George L. King
- Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Song Q, Zhang K, Li S, Weng S. Trichosanthes kirilowii Maxim. Polysaccharide attenuates diabetes through the synergistic impact of lipid metabolism and modulating gut microbiota. Curr Res Food Sci 2025; 10:100977. [PMID: 39906503 PMCID: PMC11791362 DOI: 10.1016/j.crfs.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Polysaccharide, a chain of sugars bound by glycosidic bonds, have a wide range of physiological activities, including hypoglycemic activity. In present study, we established T2DM mice models to explore the effects and mechanism of Trichosanthes kirilowii Maxim polysaccharide (TMSP1) on high-fat diet/streptozotocin (HF-STZ) induced diabetes mice. The results showed that high-fat diet significantly increased the oral glucose tolerance test (OGTT), viscera index, oxidative stress, impaired glucose tolerance, decreased body weight, immune response and short-chain fatty acid (SCFAs) content, and disrupted the balance of intestinal flora structure. However, after 6 weeks of TMSP1 intervention decreased lipid accumulation, ameliorated gut microbiota dysbiosis by increasing SCFAs-producing bacteria and mitigated intestinal inflammation and oxidative stress. Moreover, TMSP1 significantly restored the integrity of the intestinal epithelial barrier and mucus barrier. The results of fecal microbiota transplantation confirmed that TMSP1 exerted hypoglycemic effect through regulating intestinal flora to a certain extent. Collectively, the findings revealed TMSP1 intervention inhibits hyperglycemia by improving gut microbiota disorder, lipid metabolism, and inflammation. Hence, TMSP1 may be an effective measure to ameliorate HF-STZ induced diabetes.
Collapse
Affiliation(s)
- Qiaoying Song
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Kunpeng Zhang
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shuyan Li
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shaoting Weng
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| |
Collapse
|
13
|
Dunk MM, Driscoll I, Espeland MA, Hayden KM, Liu S, Nassir R, Natale G, Shadyab AH, Manson JE. Relationships Between APOE, Type 2 Diabetes, and Cardiovascular Disease in Postmenopausal Women. J Gerontol A Biol Sci Med Sci 2025; 80:glae246. [PMID: 39364911 PMCID: PMC11775828 DOI: 10.1093/gerona/glae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) ε4 allele, type 2 diabetes mellitus (T2DM), and cardiovascular disease (CVD) are well-established risk factors for dementia. Relationships between APOE and incidence of T2DM and CVD are not fully understood but may shed light on the mechanisms underlying dementia pathogenesis. METHODS Postmenopausal women (N = 6 795) from the Women's Health Initiative hormone therapy clinical trial with APOE genotyping and no prior diagnosis of T2DM or CVD were included. We examined associations of APOE status (APOE2+ [ε2/ε2, ε2/ε3], APOE3 [ε3/ε3], and APOE4+ [ε4/ε4, ε3/ε4] carriers) with incidence of T2DM, coronary heart disease, stroke, and total CVD events using Cox regression. CVD outcomes were examined in baseline non-statin users and adjusted for statin initiation over follow-up to account for possible confounding by statins. RESULTS Among all participants (mean age 66.7 ± 6.5 years, 100% non-Hispanic White), 451 (6.6%) were using statins at baseline. Over the follow-up (mean 14.9 and 16.0 years for T2DM and CVD, respectively), 1 564 participants developed T2DM and 1 578 developed CVD. T2DM incidence did not differ significantly by APOE status (ps ≥ .09). Among non-statin users, APOE4+ had higher incidence of total CVD (hazard ratio [95% confidence interval] = 1.18 [1.02-1.38], p = .03) compared with APOE3 carriers, but risks for coronary heart disease (1.09 [0.87-1.36], p = .47) and stroke (1.14 [0.91-1.44], p = .27) were not significantly elevated when examined individually. CVD outcomes did not differ between APOE2+ and APOE3 carriers (ps ≥ 0.11). CONCLUSIONS T2DM risk did not differ by APOE status among postmenopausal women, but APOE4+ carriers not using statins had an increased risk of total CVD events.
Collapse
Affiliation(s)
- Michelle M Dunk
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
- Department of Neurobiology, Aging Research Center, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
- Alzheimer’s Disease Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mark A Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kathleen M Hayden
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Simin Liu
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, Rhode Island, USA
- Departments of Surgery and Medicine, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Ginny Natale
- Program in Public Health, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Aladdin H Shadyab
- Hebert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Yu X, He H, Wen J, Xu X, Ruan Z, Hu R, Wang F, Ju H. Diabetes-related cognitive impairment: Mechanisms, symptoms, and treatments. Open Med (Wars) 2025; 20:20241091. [PMID: 39822993 PMCID: PMC11737369 DOI: 10.1515/med-2024-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 01/19/2025] Open
Abstract
Background Diabetes-related cognitive impairment is increasingly recognized as a significant complication, profoundly impacting patients' quality of life. This review aims to examine the pathophysiological mechanisms, clinical manifestations, risk factors, assessment and diagnosis, management strategies, and future research directions of cognitive impairment in diabetes. Methodology A comprehensive literature search was conducted using PubMed, Medline, and other medical databases to identify, review, and evaluate published articles on cognitive impairment in diabetes. The search focused on studies examining pathophysiology, clinical presentations, risk factors, diagnostic approaches, and management strategies. Results The review of current literature revealed that chronic hyperglycemia, insulin resistance, and vascular factors are major contributing factors to cognitive deficits in diabetes. Clinical manifestations include impairments in attention, memory, executive function, visuospatial abilities, and language. Risk factors encompass disease duration, glycemic control, presence of complications, age, education level, and comorbidities. Assessment tools include cognitive screening instruments, neuropsychological testing, and neuroimaging techniques. Management strategies involve glycemic control optimization, lifestyle modifications, cognitive training, and pharmacological interventions. Conclusion This review highlights the significant prevalence and impact of cognitive impairment in diabetes, resulting from complex metabolic and vascular disturbances. Early detection and multifaceted interventions are crucial for preserving cognitive function and improving patient outcomes. Future research should focus on neuroprotective strategies, biomarker identification, and personalized approaches. Collaborative efforts between clinicians and researchers are essential to effectively address this growing healthcare challenge and enhance the quality of life for individuals with diabetes-related cognitive impairment.
Collapse
Affiliation(s)
- Xueting Yu
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Huimei He
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Jie Wen
- Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Xiuyuan Xu
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Zhaojuan Ruan
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Rui Hu
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, Yunnan, China
| | - Fang Wang
- Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Haibing Ju
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China
| |
Collapse
|
15
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Hwang JJ, Fan Z, Li L. Differences in brain spindle density during sleep between patients with and without type 2 diabetes. Comput Biol Med 2025; 184:109484. [PMID: 39622099 DOI: 10.1016/j.compbiomed.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Sleep spindles may be implicated in sensing and regulation of peripheral glucose. Whether spindle density in patients with type 2 diabetes mellitus (T2DM) differs from that of healthy subjects is unknown. METHODS Our retrospective analysis of polysomnography (PSG) studies identified 952 patients with T2DM and 952 sex-, age- and BMI-matched control subjects. We extracted spindles from PSG electroencephalograms and used rank-based statistical methods to test for differences between subjects with and without diabetes. We also explored potential modifiers of spindle density differences. We replicated our analysis on independent data from the Sleep Heart Health Study. RESULTS We found that patients with T2DM exhibited about half the spindle density during sleep as matched controls (P < 0.0001). The replication dataset showed similar trends. The patient-minus-control paired difference in spindle density for pairs where the patient had major complications were larger than corresponding paired differences in pairs where the patient lacked major complications, despite both patient groups having significantly lower spindle density compared to their respective control subjects. Patients with a prescription for a glucagon-like peptide 1 receptor agonist had significantly higher spindle density than those without one (P ≤ 0.03). Spindle density in patients with T2DM monotonically decreased as their highest recorded HbA1C level increased (P ≤ 0.003). CONCLUSIONS T2DM patients had significantly lower spindle density than control subjects; the size of that difference was correlated with markers of disease severity (complications and glycemic control). These findings expand our understanding of the relationships between sleep and glucose regulation.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janice J Hwang
- Division of Endocrinology and Metabolism and Department of Internal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng Fan
- Division of Sleep Medicine and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
16
|
Lu W, Chen Y, Cao Z, Sun Z, Qiu W, Ge L, Tan X, Liang Y, Qiu S. Cortical Gyrification and Cognitive Decline in the Human Brain With Type 2 Diabetes Mellitus. Brain Behav 2025; 15:e70214. [PMID: 39832138 PMCID: PMC11745154 DOI: 10.1002/brb3.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is linked to abnormal brain structure and cognitive dysfunction. However, there is a lack of studies conducted to assess the impact of diabetes on cortical gyrification and cognition. The aim of this cross-sectional study was to assess the potential negative effects of glucose metabolism levels on cognition and cortical gyrification in T2DM. METHODS The current study comprised 83 patients with T2DM and 60 individuals with normal glucose metabolism (NGM). The calculation of the local gyrification index (LGI) was performed utilizing the FreeSurfer software. Subsequently, between-group differences were examined through the utilization of analysis of covariance. Multivariable linear regression and mediation models were employed to investigate the relationships among LGI, glucose metabolism and cognition. RESULTS Our study found that the mean LGI of the entire brain in individuals with T2DM was lower than that of NGM, and these significant hypogyria were mainly located in the bilateral temporal lobes, including the left superior temporal cortex, left transverse temporal cortex, and bilateral temporal pole, with the greatest effect size in the left temporal pole (p = 5.7×10-7, Cohen's f2 = 0.169). In addition, the relationship between fasting blood glucose and working memory was mediated by the LGI in the right temporal pole. CONCLUSION Our experiment suggests that the decreased LGI in the right temporal pole explains poorer working memory performance in patients with T2DM.
Collapse
Affiliation(s)
- Weiye Lu
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zidong Cao
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhizhong Sun
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Wenbin Qiu
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Limin Ge
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xin Tan
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yi Liang
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shijun Qiu
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| |
Collapse
|
17
|
Feng Z, Liu W, Liu Y, Zhang W, Xiong N, Chen W, Yang J, Wu X, Dai W. Factors associated with cognitive impairment in patients with atrial fibrillation: A systematic review and meta-analysis. Arch Gerontol Geriatr 2025; 128:105619. [PMID: 39243535 DOI: 10.1016/j.archger.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/03/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with an increased risk of cognitive impairment. Therefore, exploring factors which may be associated with cognitive impairment is important. Correspondingly, this study aimed to systematically evaluate factors associated with cognitive impairment in AF patients by synthesizing relevant evidence. METHODS A database search of the PubMed, Embase, Cochrane Library, Web of Science, CBM, CNKI, Wanfang, and VIP databases was conducted from inception until December 21, 2023. The effect size was expressed as a combined odds ratio (OR) and 95 % confidence interval (95 % CI). The heterogeneity was qualitatively analyzed by Cochran's Q test and quantified by the I2 statistic. RESULTS A total of 7,128 studies were identified from the 8 databases, and 39 studies of 3,491,423 participants were included. A meta-analysis was performed on 19 influencing factors. Advanced age (OR=1.38, 95 % CI: 1.11-1.71), female sex (OR=2.19, 95 % CI: 1.18-4.06), smoking (OR=2.44, 95 % CI: 1.24-4.80), hypertension (OR=1.61, 95 % CI: 1.27-2.03), diabetes (OR=1.42, 95 % CI: 1.20-1.67), and hearing impairment (OR=1.37, 95 % CI: 1.05-1.81) were risk factors for cognitive impairment. A higher education level (OR=0.57, 95 % CI: 0.46-0.72), oral anticoagulants (OR=0.61, 95 % CI: 0.48-0.78), novel oral anticoagulants (OR=0.63, 95 % CI: 0.54-0.73), warfarin (OR=0.55, 95 % CI: 0.39-0.79), novel oral anticoagulants relative to warfarin (OR=0.88, 95 % CI: 0.81-0.97), catheter ablation (OR=0.74, 95 % CI: 0.58-0.94) and exercise (OR=0.66, 95 % CI: 0.61-0.72) were protective factors for cognitive impairment. CONCLUSIONS Age, sex, education level, smoking, exercise, hypertension, diabetes, hearing impairment, anticoagulation therapy, and catheter ablation were associated with cognitive impairment in AF patients.
Collapse
Affiliation(s)
- Ziling Feng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wenqi Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yamin Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wenyan Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ni Xiong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wenhang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xinyin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wenjie Dai
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Schwartz SS, Herman ME, Tun MTH, Barone E, Butterfield DA. The double life of glucose metabolism: brain health, glycemic homeostasis, and your patients with type 2 diabetes. BMC Med 2024; 22:582. [PMID: 39696300 DOI: 10.1186/s12916-024-03763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
The maintenance of cognitive function is essential for quality of life and health outcomes in later years. Cognitive impairment, however, remains an undervalued long-term complication of type 2 diabetes by patients and providers alike. The burden of sustained hyperglycemia includes not only cognitive deficits but also the onset and progression of dementia-related conditions, including Alzheimer's disease (AD). Recent research has shown that the brain maintains an independent glucose "microsystem"-evolved to ensure the availability of fuel for brain neurons without interruption by transient hypoglycemia. When this milieu is perturbed, brain hyperglycemia, brain glucotoxicity, and brain insulin resistance can ensue and interfere with insulin signaling, a key pathway to cognitive function and neuronal integrity. This newly understood brain homeostatic system operates semi-autonomously from the systemic glucoregulatory apparatus. Large-scale clinical studies have shown that systemic dysglycemia is also strongly associated with poorer cognitive outcomes, which can be mitigated through appropriate clinical management of plasma glucose levels. Moreover, these studies demonstrated that glucose-lowering agents are not equally effective at preventing cognitive dysfunction. Glucagon-like peptide-1 (GLP-1) receptor analogs and sodium glucose cotransporter 2 inhibitors (SGLT2is) appear to afford the greatest protection; metformin and dipeptidyl peptidase 4 inhibitors (DPP-4is) also significantly improved cognitive outcomes. Sulfonylureas (SUs) and exogenous insulin, on the other hand, do not provide the same protection and may actually worsen cognitive outcomes. In the creation of a treatment plan, comorbid cognitive conditions should be considered. These efficacious treatments create a new gold standard of managing hyperglycemia-one which is consistent with the "complication-centric prescribing" mandates issued in type 2 diabetes treatment guidelines. The increasing longevity enjoyed by our populace places the onus on clinical care to play the "long game" in using targeted treatments for glucose control in patients with, or at risk for, cognitive decline to maintain cognitive wellness later in life. This article reviews critical emerging data for scientists and trialists and translates new enhancements in patient care for practitioners.
Collapse
Affiliation(s)
- Stanley S Schwartz
- University of Pennsylvania School of Medicine, 771 County Line Road, Villanova, PA, 19085, USA
| | - Mary E Herman
- Social Alchemy: Building Physician Competency Across the Globe, 5 Ave Sur #36, Antigua, Sacatepéquez, Guatemala.
| | - May Thet Hmu Tun
- Maimonides Medical Center, 4802 10th Ave, Brooklyn, NY, 11219, USA
| | - Eugenio Barone
- Sapienza University of Rome, Via Degli Equi 42, Scala A, Int. 5, 00185, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center On Aging, Department of Chemistry, University of Kentucky, 249 Chemistry-Physics Building, Lexington, KY, 40506-0055, USA
| |
Collapse
|
19
|
Kaźmierczak-Barańska J, Karwowski BT. The Protective Role of Vitamin K in Aging and Age-Related Diseases. Nutrients 2024; 16:4341. [PMID: 39770962 PMCID: PMC11676630 DOI: 10.3390/nu16244341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Aging is an inevitable aspect of life, but age-related diseases are not an inseparable part of the aging process, and their risk can be reduced through a healthy lifestyle. Vitamin K has a broader impact than just blood clotting, and yet it remains overshadowed by other vitamins and underestimated by both doctors and consumers. Vitamin K (VK) is a multifunctional micronutrient with anti-inflammatory and antioxidant properties, whose deficiency may cause age-related diseases such as cardiovascular diseases, neurodegenerative diseases and osteoporosis. There is a growing body of evidence supporting the role of vitamin K as a protective nutrient in aging and inflammation. This review summarizes the current knowledge regarding the molecular aspects of the protective role of vitamin K in aging and age-related diseases and its clinical implications.
Collapse
Affiliation(s)
- Julia Kaźmierczak-Barańska
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | | |
Collapse
|
20
|
Salvi V, Tripodi B, Cerveri G, Migliarese G, Bertoni L, Nibbio G, Barlati S, Vita A, Mencacci C. Insulin-resistance as a modifiable pathway to cognitive dysfunction in schizophrenia: A systematic review. Schizophr Res 2024; 274:78-89. [PMID: 39265262 DOI: 10.1016/j.schres.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cognitive deficits are difficult to treat and negatively influence quality of life and functional outcomes of persons with schizophrenia. In the last twenty years, extensive literature demonstrated that persons with diabetes and insulin resistance (IR) also display cognitive deficits. Being type 2 diabetes (T2DM) and IR highly frequent in persons with schizophrenia, it is plausible to hypothesize that these conditions might play a role in determining dyscognition. If that is the case, acting on glucose dysmetabolism may eventually improve cognitive functioning. This review aims at: 1. evaluating the association between IR or T2DM and cognitive dysfunction in schizophrenia; 2. reviewing the evidence that pharmacological treatment of IR or T2DM may improve dyscognition in schizophrenia. METHODS Two systematic searches were conducted in PubMed, PsycInfo, and Scopus. We followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. RESULTS From the first search we included 17 studies, 8 on the effects of T2DM and 9 on the effects of IR-other prediabetes measures on cognition in persons with schizophrenia. From the second search we included 12 studies investigating the effect on cognition of glucose (4 studies), insulin (2 studies), metformin (2 studies), PPAR-γ agonists (2 studies), GLP-1 agonist (1 study), bromocriptine (1 study). CONCLUSIONS T2DM was associated with worse cognitive function in persons with schizophrenia, while IR was less strongly associated with cognitive dysfunction. Evidence regarding the efficacy of glucose-lowering medications on cognition in schizophrenia is inconclusive, yet methodological issues likely contribute to explain conflicting results.
Collapse
Affiliation(s)
- Virginio Salvi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy.
| | - Beniamino Tripodi
- Department of Mental Health and Addiction, ASST Crema, L.go Ugo Dossena 2, 26013 Crema, CR, Italy
| | - Giancarlo Cerveri
- Department of Mental Health and Addiction, ASST Lodi, Via Mosè Bianchi 26, 26900 Lodi, Italy
| | - Giovanni Migliarese
- Department of Mental Health and Addiction, ASST Pavia, C.so Milano 19, 27029 Vigevano, PV, Italy
| | - Lorenzo Bertoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Mencacci
- Director Emeritus, Department of Neurosciences-Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
21
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
22
|
Ji X, Wu Y, Gu Z, Zhong Z, Wang K, Ye S, Wan Y, Qiu P. Trajectories of cognitive function and frailty in older adults in China: a longitudinal study. Front Aging Neurosci 2024; 16:1465914. [PMID: 39610717 PMCID: PMC11602512 DOI: 10.3389/fnagi.2024.1465914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Background Cognitive impairment and frailty are common issues in older adults. Understanding the co-development trajectories of these conditions can provide valuable sights for early detection and intervention in high-risk individuals. Objectives This study aims to identify the co-development of cognitive function and frailty and explore the associated characteristics. Methods We analyzed data from 8,418 individuals aged 55 years and above who participated in the China Health and Retirement Longitudinal Survey between 2011 and 2018. Group-based dual trajectory modeling and logistic regression were used to identify trajectory groups and assess associations with risk factors. Results Two distinct dual trajectories were identified: "Consistently Robust" group (76.12%) and "Consistently Severe" group (23.88%). Factors such as being female, older age, lower levels of education, residing in rural areas, being unmarried, and having comorbidities such as hypertension, diabetes, complete tooth loss, vision impairment, or hearing impairment were associated with a higher likelihood of being assigned to the "Consistently Severe" group. Conclusion Our findings suggest a co-development pattern between cognitive function and frailty in Chinese older adults aged 55 years and above. While cognitive impairment may be irreversible, frailty is a condition that can be potentially reversed. Early detecting is crucial in preventing cognitive decline, considering the shared trajectory of these conditions.
Collapse
Affiliation(s)
- Xiaoyi Ji
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zijie Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhujun Zhong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kerui Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Suni Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Wan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peiyuan Qiu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
23
|
Li RQ, Zhu WW, Li C, Zhan KB, Zhang P, Xiao F, Jiang JM, Zou W. Hippocampal warburg effect mediates hydrogen sulfide-ameliorated diabetes-associated cognitive dysfunction: Involving promotion of hippocampal synaptic plasticity. Neurosci Res 2024; 208:15-28. [PMID: 39025266 DOI: 10.1016/j.neures.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Run-Qi Li
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Wen Zhu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Li
- The Affiliated Nanhua Hospital, Emergency department, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ke-Bin Zhan
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
24
|
Xu Q, Wang L, Song Q, Chen S, Du K, Teng X, Zou C. Distinct Hippocampal Expression Profiles of lncRNAs in Obese Type 2 Diabetes Mice Exhibiting Cognitive Impairment. Neuromolecular Med 2024; 26:42. [PMID: 39470862 DOI: 10.1007/s12017-024-08811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Cognitive dysfunction has been accepted as a possible complication of type 2 diabetes (T2D), but few studies revealed the potential roles of Long non‑coding RNAs (lncRNAs) in cognitive dysfunction in T2D. The current research aims to demonstrate the specific expression patterns of lncRNA-mRNA in the hippocampi of T2D db/db mice exhibiting cognitive impairment. In this study, the results from behavioral tests showed that T2D db/db mice displayed short-term and spatial working memory deficits compared to db/m mice. Furthermore, western blot analysis demonstrated that compared with db/m mice, p-GSK3β (ser9) protein levels were markedly elevated in T2D db/db mice (P < 0.01). In addition, though not statistically significant, the ratio of p-Tau (Ser396) to Tau 46, α-Synuclein expression, and p-GSK3α (ser21) expression were also relatively higher in T2D db/db mice than in db/m mice. The microarray profiling revealed that 75 lncRNAs and 26 mRNAs were dysregulated in T2D db/db mice (> 2.0 fold change, P < 0.05). GO analysis demonstrated that the differentially expressed mRNAs participated in immune response, extracellular membrane-bounded organelle, and extracellular region. KEGG analysis revealed that the differentially expressed mRNAs were mainly involved in one carbon pool by folate, glyoxylate and dicarboxylate metabolism, autophagy, glycine, serine and threonine metabolism, and B cell receptor signaling pathway. A lncRNA‑mRNA coexpression network containing 71 lncRNAs and 26 mRNAs was built to investigate the interaction between lncRNA and mRNA. Collectively, these results revealed the differential hippocampal expression profiles of lncRNAs in T2D mice with cognitive dysfunction, and the findings from this study provide new clues for exploring the potential roles of lncRNAs in the pathogenesis of cognitive dysfunction in T2D.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lihui Wang
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiong Song
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shuai Chen
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kechen Du
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiahong Teng
- School of International Education, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Chunlin Zou
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
25
|
Yuan T, Cheng M, Ma Y, Zou H, Kan H, Meng X, Guo Y, Peng Z, Xu Y, Lu L, Ling S, Dong Z, Wang Y, Yang Q, Xu W, Shi Y, Liu C, Lin S. PM 2.5 Exposure as a Risk Factor for Optic Nerve Health in Type 2 Diabetes Mellitus. TOXICS 2024; 12:767. [PMID: 39590947 PMCID: PMC11598183 DOI: 10.3390/toxics12110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
(1) Objective: This study investigated the relationship between long-term particulate matter (PM2.5) exposure and optic disc parameters-vertical cup-to-disc ratio (vCDR), vertical optic disc diameter (vDD), and vertical optic cup diameter (vCD)-in patients with type 2 diabetes mellitus (T2DM). (2) Methods: A cross-sectional analysis was conducted using data from 65,750 T2DM patients in the 2017-2018 Shanghai Cohort Study of Diabetic Eye Disease (SCODE). Optic disc parameters were extracted from fundus images, and PM2.5 exposure was estimated using a random forest model incorporating satellite and meteorological data. Multivariate linear regression models were applied, adjusting for confounders including age, gender, body mass index, blood pressure, glucose, time of T2DM duration, smoking, drinking, and physical exercise. (3) Results: A 10 μg/m3 increase in PM2.5 exposure was associated with significant reductions in vCDR (-0.008), vDD (-42.547 μm), and vCD (-30.517 μm) (all p-values < 0.001). These associations persisted after sensitivity analyses and adjustments for other pollutants like O3 and NO2. (4) Conclusions: Long-term PM2.5 exposure is associated with detrimental changes in optic disc parameters in patients with T2DM, suggesting possible optic nerve atrophy. Considering the close relationship between the optic nerve and the central nervous system, these findings may also reflect broader neurodegenerative processes.
Collapse
Affiliation(s)
- Tianyi Yuan
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, No. 85/86, Wujin Road, Shanghai 200080, China; (T.Y.); (Y.M.); (H.Z.)
- Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, No. 1440, Hongqiao Road, Shanghai 200041, China; (Y.X.); (L.L.)
| | - Minna Cheng
- Department of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Centers for Disease Control & Prevention, No. 1380, West Zhongshan Road, Shanghai 200336, China; (M.C.); (Y.W.); (Q.Y.); (W.X.); (Y.S.)
| | - Yingyan Ma
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, No. 85/86, Wujin Road, Shanghai 200080, China; (T.Y.); (Y.M.); (H.Z.)
- Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, No. 1440, Hongqiao Road, Shanghai 200041, China; (Y.X.); (L.L.)
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, No. 85/86, Wujin Road, Shanghai 200080, China; (T.Y.); (Y.M.); (H.Z.)
- Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, No. 1440, Hongqiao Road, Shanghai 200041, China; (Y.X.); (L.L.)
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No. 130, Dong’An Road, Shanghai 200032, China; (H.K.); (X.M.); (Y.G.); (Z.P.)
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No. 130, Dong’An Road, Shanghai 200032, China; (H.K.); (X.M.); (Y.G.); (Z.P.)
| | - Yi Guo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No. 130, Dong’An Road, Shanghai 200032, China; (H.K.); (X.M.); (Y.G.); (Z.P.)
| | - Ziwei Peng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No. 130, Dong’An Road, Shanghai 200032, China; (H.K.); (X.M.); (Y.G.); (Z.P.)
| | - Yi Xu
- Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, No. 1440, Hongqiao Road, Shanghai 200041, China; (Y.X.); (L.L.)
| | - Lina Lu
- Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, No. 1440, Hongqiao Road, Shanghai 200041, China; (Y.X.); (L.L.)
| | - Saiguang Ling
- EVision Technology (Beijing) Co., Ltd., Beijing 100085, China; (S.L.); (Z.D.)
| | - Zhou Dong
- EVision Technology (Beijing) Co., Ltd., Beijing 100085, China; (S.L.); (Z.D.)
| | - Yuheng Wang
- Department of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Centers for Disease Control & Prevention, No. 1380, West Zhongshan Road, Shanghai 200336, China; (M.C.); (Y.W.); (Q.Y.); (W.X.); (Y.S.)
| | - Qinping Yang
- Department of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Centers for Disease Control & Prevention, No. 1380, West Zhongshan Road, Shanghai 200336, China; (M.C.); (Y.W.); (Q.Y.); (W.X.); (Y.S.)
| | - Wenli Xu
- Department of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Centers for Disease Control & Prevention, No. 1380, West Zhongshan Road, Shanghai 200336, China; (M.C.); (Y.W.); (Q.Y.); (W.X.); (Y.S.)
| | - Yan Shi
- Department of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Centers for Disease Control & Prevention, No. 1380, West Zhongshan Road, Shanghai 200336, China; (M.C.); (Y.W.); (Q.Y.); (W.X.); (Y.S.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai 200031, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No. 130, Dong’An Road, Shanghai 200032, China; (H.K.); (X.M.); (Y.G.); (Z.P.)
| | - Senlin Lin
- Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, No. 1440, Hongqiao Road, Shanghai 200041, China; (Y.X.); (L.L.)
| |
Collapse
|
26
|
Brossaud J, Barat P, Moisan MP. Cognitive Disorders in Type 1 Diabetes: Role of Brain Glucose Variation, Insulin Activity, and Glucocorticoid Exposure. Neuroendocrinology 2024; 115:211-225. [PMID: 39401497 DOI: 10.1159/000541989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The number of patients with type 2 diabetes (T2D) and type 1 diabetes (T1D) is on the rise, partly due to a global increase in new T1D cases among children. Beyond the well-documented microvascular and macrovascular complications, there is now substantial evidence indicating that diabetes also impacts the brain, leading to neuropsychological impairments. The risk of developing neuropsychiatric symptoms is notably higher in childhood due to the ongoing maturation of the brain, which makes it more susceptible to damage. Despite this awareness, the specific effects of diabetes on cognitive function remain poorly understood. SUMMARY This review synthesizes literature on the impact of diabetes on cognition and its relationship with brain structural changes. It presents data and hypotheses to explain how T1D contributes to cognitive dysfunction, with a particular focus on children and adolescents. The emphasis on the pediatric population is intentional, as young diabetic patients typically have fewer comorbidities, reducing confounding factors and simplifying the investigation of cognitive alterations. KEY MESSAGE We examine the roles of hypo- and hyperglycemia, as well as the emerging role of glucocorticoids in the development of neuropsychological disorders. When specific mechanisms related to T1D are available, they are highlighted; otherwise, data and hypotheses applicable to both T1D and T2D are discussed.
Collapse
Affiliation(s)
- Julie Brossaud
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Pascal Barat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
| |
Collapse
|
27
|
Min JY, Kim JB, Jeon JP, Chung MY, Kim YH, Kim CJ. Assessing different brain oxygenation components in elderly patients under propofol or sevoflurane anesthesia: A randomized controlled study. J Clin Anesth 2024; 97:111519. [PMID: 38870700 DOI: 10.1016/j.jclinane.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
STUDY OBJECTIVE Elderly patients undergoing pathophysiological changes necessitate clinical tools for cerebral monitoring. This prospective randomized controlled study aimed to explore how cerebral monitoring using Δo2Hbi, ΔHHbi, and ΔcHbi manifests in elderly patients under either propofol or sevoflurane anesthesia. DESIGN Single-center, prospective, randomization. SETTING A single tertiary hospital (Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea). PATIENTS Enrolled 100 patients scheduled for urologic surgery under general anesthesia. Inclusion criteria were (a) age 70-80 years, (b) American Society of Anesthesiologists (ASA) physical status I-II. INTERVENTION Patients were double-blind randomized to receive propofol-based or sevoflurane anesthesia. Cerebral oximetry-related parameters were measured at 5, 10, 15, 20, and 30 min in a setting devoid of surgery-related factors. MEASUREMENTS The primary outcome focused on the Δo2Hbi pattern in the left and right sides within the propofol and sevoflurane groups. MAIN RESULTS We analyzed 100 patients, 50 patients in each group. In the propofol group, the left Δo2Hbi decreased from 1.4 (3.7) at 5 min to -0.1 (1.8) at 30 min (P < 0.0001), and the right Δo2Hbi decreased from 2.9 (4.2) at 5 min to -0.06 (2.3) at 30 min (P < 0.0001). In the sevoflurane group, the left Δo2Hbi decreased from 1.1 (3.4) at 5 min to -1.4 (4.4) at 30 min (P < 0.0001), and the right Δo2Hbi decreased from 2.0 (3.2) at 5 min to -1.2 (3.9) at 30 min (P < 0.0001). There were no significant differences between the two groups. ΔHHbi did not exhibit significant changes after an initial decrease at 5 min and showed no significant differences between the two groups. CONCLUSIONS In cerebral oximetry, Δo2Hbi and ΔHHbi could emerge as a valuable approach for discerning changes in the underlying baseline status of the brain in elderly patients during anesthesia.
Collapse
Affiliation(s)
- Ji Young Min
- Department of Anesthesiology and Pain Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea
| | - Joong Baek Kim
- Department of Anesthesiology and Pain Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea
| | - Joon Pyo Jeon
- Department of Anesthesiology and Pain Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea
| | - Mee Young Chung
- Department of Anesthesiology and Pain Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea
| | - Yoon Hee Kim
- Department of Anesthesiology and Pain Medicine, Chungnam National Hospital, College of Medicine, The Chungnam National University of Korea, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea.
| | - Chang Jae Kim
- Department of Anesthesiology and Pain Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea.
| |
Collapse
|
28
|
Al-hafidh SHA, Abdulwahid AA. Neurotoxic effects of type II-diabetes mellitus and the possible preventive effects of olive leaves supplement in male rats. Open Vet J 2024; 14:2651-2661. [PMID: 39545190 PMCID: PMC11560270 DOI: 10.5455/ovj.2024.v14.i10.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
Background Diabetes mellitus (DM) is a common metabolic disorder with well-known serious secondary complications. It is also associated with central nervous system damage. This damage is characterized by impairments in brain functions, with neurochemical and structural abnormalities. Aim The study was conducted to clarify the neuroprotective effects of olive leaf supplements on the brain and brain histological structure of diabetic adult rats. Methods Thirty adult male rats were allocated into three groups, the first group (CC), received an oral supplement containing olive leaves supplements (OLS) and served as a control; in the other group , DM was induced in these animals and left for 40 days; and the third group was DM+OL, which induced DM, then treated with oral OLS for 40 days. The investigation included serum glycemic index measurements, in addition to the level of malondialdehyde (MDA), glutathione (GSH), dopamine (DOP), acetylcholinesterase (AchE) in brain tissue, and histopathology of brain and pancreas. Results We demonstrated a significant increase in glycemic index measurements in diabetic groups (DM, DM+OL) at the beginning of a trial; however, the same parameters were significantly decreased after treatment with OLS in only the DM+OL group after 40 days. The study also showed differences in the levels of MDA, and GSH, in the diabetic groups, which returned to normal levels after being treated with OLS. Moreover, AchE and DOP exhibited a significant decline in diabetic rats. However, OLS induced a considerable rise in these neurotransmitters after treatment with it in the DM+OL group. The histopathological section of the pancreas and brain showed histopathological changes in DM groups; whereas, the tissue was shielded from chemical damage from DM by the OLS treatment in DM+OL animals. Conclusion Overall, diabetes impairs glucose hemostasis by affecting glucose concentration, insulin level, and insulin resistance. However, olive leaf supplements restored the glucose hemostasis close to normal in diabetic rats. Furthermore, diabetes affects neurotransmitters by increasing the level of oxidative stress in brain tissue, and brain cell damage. Nevertheless, olive leaf supplements can ameliorate DM harmful effects by retrieving the normal oxidative environment in the brain.
Collapse
Affiliation(s)
| | - Ammar Ahmed Abdulwahid
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
29
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
30
|
Chaves YC, Raymundi AM, Waltrick APF, de Souza Crippa JA, Stern CAJ, da Cunha JM, Zanoveli JM. Cannabidiol modulates contextual fear memory consolidation in animals with experimentally induced type-1 diabetes mellitus. Acta Neuropsychiatr 2024; 36:276-286. [PMID: 36805056 DOI: 10.1017/neu.2023.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVES In view of the neuroprotective characteristic of cannabidiol (CBD) and its beneficial action on aversive memory in non-diabetic animals, we aimed to investigate in animals with experimentally induced type-1 diabetes mellitus (T1DM) whether CBD treatment would be able to impair the contextual fear memory consolidation, its generalisation and whether the effect would be lasting. We also investigated the CBD effect on anxiety-like responses. METHODS After T1DM induction, animals received single or more prolonged treatment with CBD and were submitted to the contextual fear conditioning test. As expression of activity-regulated cytoskeletal-associated (Arc) protein is necessary for memory consolidation, we evaluated its expression in the dorsal hippocampus (DH). For evaluating anxiety-related responses, animals were submitted to the elevated plus maze test (EPMT), in which the time and number of entries in the open arms were used as anxiety index. RESULTS A single injection of CBD impaired the contextual fear memory consolidation and its generalisation, which was evaluated by exposing the animal in a neutral context. This single injection was able to reduce the elevated expression of Arc in the DH from these animals. Interestingly, more prolonged treatment with CBD also impaired the persistence of context-conditioned fear memory and induced an anxiolytic-like effect, as the treated group spent more time in the open arms of the EPMT. CONCLUSION CBD interferes with contextual fear memory and the dosage regimen of treatment seems to be important. Moreover, we cannot rule out the involvement of emotional aspects in these processes related to fear memory.
Collapse
Affiliation(s)
- Yane Costa Chaves
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ana Maria Raymundi
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ana Paula Farias Waltrick
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM-CNPq), Ribeirão Preto, São Paulo, Brazil
| | | | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
31
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
32
|
Cheng F, Lin HF, Liang XJ, Wu SY, Wu XF, Tu WF. Evaluation of Factors Influencing Postoperative Cognitive Dysfunction in Patients After Cranial Tumor Surgery. J Craniofac Surg 2024; 35:e677-e681. [PMID: 39194192 DOI: 10.1097/scs.0000000000010546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The authors retrospectively analyzed the perioperative data of 81 patients who underwent cranial tumor surgery to explore the factors influencing POCD in patients after the surgery. METHODS The authors evaluated preoperative cognitive dysfunction using the Mini-Mental State Examination (MMSE) score measured. For patients whose cognitive function was normal, the authors retrieved the MMSE score on the seventh day after surgery and compared it to determine whether the patients had POCD. The authors used a univariate logistic regression analysis to analyze the perioperative factors in patients, namely, age, gender, history of underlying diseases, tumor size, peritumoral edema, duration of surgery, blood loss, intraoperative fluid infusion, and type of anesthetic drugs. The authors then performed a multivariate logistic regression analysis for the statistically significant factors. RESULTS The authors found that 23 of 81 patients (28.4%) developed POCD. Univariate logistic analysis showed that a history of diabetes mellitus, peritumoral edema, intraoperative blood loss, and anesthetic drugs were the risk factors for patients developing POCD after cranial tumor surgery. Multivariate logistic regression analysis showed that a history of diabetes mellitus, peritumoral edema, and use of ciprofol as the anesthetic drug were independent risk factors for POCD after cranial tumor surgery. CONCLUSIONS A history of diabetes mellitus, the degree of brain tumor edema, and the choice of anesthetic drugs significantly influence the occurrence of POCD in patients after cranial tumor surgery.
Collapse
Affiliation(s)
- Fang Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou
- Department of Anesthesiology, Jiangmen Central Hospital, Jiangmen
| | - Hua-Fu Lin
- Department of Anesthesiology, Jiangmen Central Hospital, Jiangmen
| | - Xiao-Jie Liang
- Department of Anesthesiology, Jiangmen Central Hospital, Jiangmen
| | - Shu-Yun Wu
- Department of Anesthesiology, Jiangmen Central Hospital, Jiangmen
| | - Xu-Fang Wu
- Department of Anesthesiology, Jiangmen Central Hospital, Jiangmen
| | - Wei-Feng Tu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou
- The Center of Anesthesiology and Periopertive Medicine, Jingshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Radosinska D, Gaal Kovalcikova A, Gardlik R, Chomova M, Snurikova D, Radosinska J, Vrbjar N. Oxidative Stress Markers and Na,K-ATPase Enzyme Kinetics Are Altered in the Cerebellum of Zucker Diabetic Fatty fa/fa Rats: A Comparison with Lean fa/+ and Wistar Rats. BIOLOGY 2024; 13:759. [PMID: 39452068 PMCID: PMC11505095 DOI: 10.3390/biology13100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Type 2 diabetes mellitus has been referred to as being closely related to oxidative stress, which may affect brain functions and brain glucose metabolism due to its high metabolic activity and lipid-rich content. Na,K-ATPase is an essential enzyme maintaining intracellular homeostasis, with properties that can sensitively mirror various pathophysiological conditions such as diabetes. The goal of this study was to determine oxidative stress markers as well as Na,K-ATPase activities in the cerebellum of Zucker diabetic fatty (ZDF) rats depending on diabetes severity. The following groups of male rats were used: Wistar, ZDF Lean (fa/+), and ZDF (fa/fa) rats, arbitrarily divided according to glycemia into ZDF obese (ZO, less severe diabetes) and ZDF diabetic (ZOD, advanced diabetes) groups. In addition to basic biometry and biochemistry, oxidative stress markers were assessed in plasma and cerebellar tissues. The Na, K-ATPase enzyme activity was measured at varying ATP substrate concentrations. The results indicate significant differences in basic biometric and biochemical parameters within all the studied groups. Furthermore, oxidative damage was greater in the cerebellum of both ZDF (fa/fa) groups compared with the controls. Interestingly, Na,K-ATPase enzyme activity was highest to lowest in the following order: ZOD > ZO > Wistar > ZDF lean rats. In conclusion, an increase in systemic oxidative stress resulting from diabetic conditions has a significant impact on the cerebellar tissue independently of diabetes severity. The increased cerebellar Na,K-ATPase activity may reflect compensatory mechanisms in aged ZDF (fa/fa) animals, rather than indicating cerebellar neurodegeneration: a phenomenon that warrants further investigation.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Alexandra Gaal Kovalcikova
- Department of Pediatrics, National Institute of Children’s Diseases, Faculty of Medicine, Comenius University in Bratislava, 833 40 Bratislava, Slovakia;
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Maria Chomova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovakia;
| | - Denisa Snurikova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (D.S.); (N.V.)
| |
Collapse
|
34
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
35
|
Popiołek AK, Niznikiewicz MA, Borkowska A, Bieliński MK. Evaluation of Event-Related Potentials in Somatic Diseases - Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:331-346. [PMID: 38564137 DOI: 10.1007/s10484-024-09642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many somatic illnesses (e.g. hypertension, diabetes, pulmonary and cardiac diseases, hepatitis C, kidney and heart failure, HIV infection, Sjogren's disease) may impact central nervous system functions resulting in emotional, sensory, cognitive or even personality impairments. Event-related potential (ERP) methodology allows for monitoring neurocognitive processes and thus can provide a valuable window into these cognitive processes that are influenced, or brought about, by somatic disorders. The current review aims to present published studies on the relationships between somatic illness and brain function as assessed with ERP methodology, with the goal to discuss where this field of study is right now and suggest future directions.
Collapse
Affiliation(s)
- Alicja K Popiołek
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland.
| | - Margaret A Niznikiewicz
- Medical Center, Harvard Medical School and Boston VA Healthcare System, Psychiatry 116a C/O R. McCarly 940 Belmont St, Brockton, MA, 02301, USA
| | - Alina Borkowska
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland
| | - Maciej K Bieliński
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
36
|
Song JW, Huang XY, Huang M, Cui SH, Zhou YJ, Liu XZ, Yan ZH, Ye XJ, Liu K. Abnormalities in spontaneous brain activity and functional connectivity are associated with cognitive impairments in children with type 1 diabetes mellitus. J Neuroradiol 2024; 51:101209. [PMID: 38821316 DOI: 10.1016/j.neurad.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND It remains unclear whether alterations in brain function occur in the early stage of pediatric type 1 diabetes mellitus(T1DM). We aimed to examine changes in spontaneous brain activity and functional connectivity (FC) in children with T1DM using resting-state functional magnetic resonance imaging (rs-fMRI), and to pinpoint potential links between neural changes and cognitive performance. METHODS In this study, 22 T1DM children and 21 age-, sex-matched healthy controls underwent rs-fMRI. The amplitude of low frequency fluctuations (ALFF) and seed-based FC analysis were performed to examine changes in intrinsic brain activity and functional networks in T1DM children. Partial correlation analyses were utilized to explore the correlations between ALFF values and clinical parameters. RESULTS The ALFF values were significantly lower in the lingual gyrus (LG) and higher in the left medial superior frontal gyrus (MSFG) in T1DM children compared to controls. Subsequent FC analysis indicated that the LG had decreased FC with bilateral inferior occipital gyrus, and the left MSFG had decreased FC with right precentral gyrus, right inferior parietal gyrus and right postcentral gyrus in children with T1DM. The ALFF values of LG were positively correlated with full-scale intelligence quotient and age at disease onset in T1DM children, while the ALFF values of left MSFG were positively correlated with working memory scores. CONCLUSION Our findings revealed abnormal spontaneous activity and FC in brain regions related to visual, memory, default mode network, and sensorimotor network in the early stage of T1DM children, which may aid in further understanding the mechanisms underlying T1DM-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Jia-Wen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Xiao-Yan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Mei Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Shi-Han Cui
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Yong-Jin Zhou
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiao-Zheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Zhi-Han Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China
| | - Xin-Jian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China.
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou 325000, China.
| |
Collapse
|
37
|
Tan Z, Nie Y, Yan N. Association between the geriatric nutritional risk index and cognitive functions in older adults: a cross-sectional study from National Health and Nutrition Examination Survey. Front Nutr 2024; 11:1459638. [PMID: 39206308 PMCID: PMC11351282 DOI: 10.3389/fnut.2024.1459638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To investigate the associations between the geriatric nutritional risk index (GNRI) with cognitive functions among U.S. older adults. (Patients were classified into two nutrition risk groups based on the GNRI). Methods Our analysis utilized data from the cross-sectional National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2014. Cognitive function was measured using CERAD test, AFT and DSST. Composite z-scores were obtained by summing test-specific z-scores of the above three cognitive tests and were used to assess the global cognitive function. We employed weighted logistic regression models to evaluate the associations between GNRI and nutritional status (low and high GNRI) with cognitive function among older participants. The non-linear relationship was described using fitted smoothed curves and threshold effect analyses. Subgroup analysis and interaction tests were also conducted. Results This study included 2,592 older participants aged 60 years and older. After adjusting for confounding variables, the GNRI was positively associated with AFT (β = 0.05, 95% CI 0.005-0.096, p-value = 0.0285), DSST (β = 0.192, 95% CI 0.078-0.305, p-value = 0.0010) and the composite z-scores (β = 0.027, 95% CI 0.010-0.044, p-value = 0.0024). The results also showed that the high-GNRI group was significantly associated with AFT (β = 0.922, 95% CI 0.166-1.677, p-value = 0.0169), DSST (β = 2.791, 95% CI 0.884-4.698, p-value = 0.0042) and composite z-scores (β = 0.405, 95% CI 0.115-0.695, p-value = 0.0062) likewise had significant positive correlations, using the low-GNRI group as a reference. In addition, inflection points with CERAD and composite z-scores were found at GNRI of 108.016, and 105.371, respectively. Specifically, on the left side of the inflection point GNRI levels were positively correlated with CERAD and composite z-scores (CERAD β = 0.087, 95% CI 0.024-0.150, p-value = 0.0070; composite z-scores β = 0.065, 95% CI 0.040-0.091, p-value <0.0001), while on the right side of the inflection point were significantly negatively associated (CERAD β = -0.295, 95% CI -0.529 to -0.062, p-value = 0.0133, composite z-scores β = -0.050, 95% CI -0.091 to -0.008, p-value = 0.0184). Conclusion Lower GNRI was associated with poorer performance in several cognitive domains. Additionally, there was a non-linear positive association between GNRI and cognitive function in normal nutritional states, for excessive GNRI may cause cognitive decline.
Collapse
Affiliation(s)
| | | | - Ning Yan
- Neurology Department, The Affiliate University-Town Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Meng X, Li D, Kan R, Xiang Y, Pan L, Guo Y, Yu P, Luo P, Zou H, Huang L, Zhu Y, Mao B, He Y, Xie L, Xu J, Liu X, Li W, Chen Y, Zhu S, Yang Y, Yu X. Inhibition of ANGPTL8 protects against diabetes-associated cognitive dysfunction by reducing synaptic loss via the PirB signaling pathway. J Neuroinflammation 2024; 21:192. [PMID: 39095838 PMCID: PMC11297729 DOI: 10.1186/s12974-024-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Ranran Kan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yuxi Xiang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Limeng Pan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yaming Guo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Peng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Peiqiong Luo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Li Huang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yurong Zhu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Beibei Mao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yi He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Lei Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Jialu Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Xiaoyan Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Qin F, Yan Y, Yang N, Hao Y. Beneficial Effects of Echinacoside on Cognitive Impairment and Diabetes in Type 2 Diabetic db/db Mice. Exp Clin Endocrinol Diabetes 2024; 132:420-430. [PMID: 38569512 PMCID: PMC11324349 DOI: 10.1055/a-2298-4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Cognitive dysfunction is an important comorbidity of diabetes. Insulin resistance may play a critical role in diabetes-related cognitive impairment. Echinacoside (ECH), a natural phenylethanoid glycoside, is the active component of anti-diabetes prescriptions in traditional Chinese medicine. Its effect on modulating insulin resistance has been confirmed but modulating neurodegenerative disease remains unclear. METHODS Db/db mice, a spontaneous type 2 diabetes mode, were intragastrically administered ECH by 300 mg/kg or an equivalent volume of saline. Weight, blood glucose, and insulin resistance index were measured. Morris water maze test was performed to observe the compound effects on cognition. Hippocampal lesions were observed by histochemical analysis. RESULTS In db/db mice, ECH alleviated diabetes symptoms, memory loss, and hippocampal neuronal damage. Next, the expression of CD44 and phosphorylated tau was upregulated in diabetic mice. In addition, the insulin receptor substrate-1/phosphatidylinositol 3-kinase /protein kinase B signaling pathway was dysregulated in diabetic mice. All these dysregulations could be reversed by ECH. DISCUSSION This study provides theoretical support and experimental evidence for the future application of ECH in diabetic cognition dysfunction treatment, promoting the development of traditional medicines.
Collapse
Affiliation(s)
- Fanglin Qin
- Department of Geriatrics, Renmin Hospital of Wuhan University, 99 Zhang
Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060,
China
| | - Yiming Yan
- Department of Geriatrics, Renmin Hospital of Wuhan University, 99 Zhang
Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060,
China
| | - Ningxi Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, 99 Zhang
Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060,
China
| | - Yarong Hao
- Department of Geriatrics, Renmin Hospital of Wuhan University, 99 Zhang
Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060,
China
| |
Collapse
|
40
|
Sugimoto T, Saji N, Omura T, Tokuda H, Miura H, Kawashima S, Ando T, Nakamura A, Uchida K, Matsumoto N, Fujita K, Kuroda Y, Crane PK, Sakurai T. Cross-sectional association of continuous glucose monitoring-derived metrics with cerebral small vessel disease in older adults with type 2 diabetes. Diabetes Obes Metab 2024; 26:3318-3327. [PMID: 38764360 DOI: 10.1111/dom.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
AIM To examine cross-sectional associations between continuous glucose monitoring (CGM)-derived metrics and cerebral small vessel disease (SVD) in older adults with type 2 diabetes. MATERIALS AND METHODS In total, 80 patients with type 2 diabetes aged ≥70 years were analysed. Participants underwent CGM for 14 days. From the CGM data, we derived mean sensor glucose, percentage glucose coefficient of variation, mean amplitude of glucose excursion, time in range (TIR, 70-180 mg/dl), time above range (TAR) and time below range metrics, glycaemia risk index and high/low blood glucose index. The presence of cerebral SVD, including lacunes, microbleeds, enlarged perivascular spaces and white matter hyperintensities, was assessed, and the total number of these findings comprised the total cerebral SVD score (0-4). Ordinal logistic regression analyses were performed to examine the association of CGM-derived metrics with the total SVD score. RESULTS The median SVD score was 1 (interquartile range 0-2). Higher hyperglycaemic metrics, including mean sensor glucose, TAR >180 mg/dl, TAR >250 mg/dl, and high blood glucose index and glycaemia risk index, were associated with a higher total SVD score. In contrast, a higher TIR (per 10% increase) was associated with a lower total SVD score (odds ratio 0.73, 95% confidence interval 0.56-0.95). Glycated haemoglobin, percentage glucose coefficient of variation, mean amplitude of glucose excursions, time below range and low blood glucose index were not associated with total cerebral SVD scores. CONCLUSIONS The hyperglycaemia metrics and TIR, derived from CGM, were associated with cerebral SVD in older adults with type 2 diabetes.
Collapse
Affiliation(s)
- Taiki Sugimoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Naoki Saji
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takuya Omura
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Haruhiko Tokuda
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hisayuki Miura
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Home Care and Regional Liaison Promotion, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shuji Kawashima
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takafumi Ando
- Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akinori Nakamura
- Department of Biomarker Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazuaki Uchida
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Nanae Matsumoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kosuke Fujita
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yujiro Kuroda
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Takashi Sakurai
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
41
|
Smagula SF, Zhang G, Krafty RT, Ramos A, Sotres-Alvarez D, Rodakowski J, Gallo LC, Lamar M, Gujral S, Fischer D, Tarraf W, Mossavar-Rahmani Y, Redline S, Stone KL, Gonzalez HM, Patel SR. Sleep-wake behaviors associated with cognitive performance in middle-aged participants of the Hispanic Community Health Study/Study of Latinos. Sleep Health 2024; 10:500-507. [PMID: 38693044 PMCID: PMC11309910 DOI: 10.1016/j.sleh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Many sleep-wake behaviors have been associated with cognition. We examined a panel of sleep-wake/activity characteristics to determine which are most robustly related to having low cognitive performance in midlife. Secondarily, we evaluate the predictive utility of sleep-wake measures to screen for low cognitive performance. METHODS The outcome was low cognitive performance defined as being >1 standard deviation below average age/sex/education internally normalized composite cognitive performance levels assessed in the Hispanic Community Health Study/Study of Latinos. Analyses included 1006 individuals who had sufficient sleep-wake measurements about 2years later (mean age=54.9, standard deviation= 5.1; 68.82% female). We evaluated associations of 31 sleep-wake variables with low cognitive performance using separate logistic regressions. RESULTS In individual models, the strongest sleep-wake correlates of low cognitive performance were measures of weaker and unstable 24-hour rhythms; greater 24-hour fragmentation; longer time-in-bed; and lower rhythm amplitude. One standard deviation worse on these sleep-wake factors was associated with ∼20%-30% greater odds of having low cognitive performance. In an internally cross-validated prediction model, the independent correlates of low cognitive performance were: lower Sleep Regularity Index scores; lower pseudo-F statistics (modellability of 24-hour rhythms); lower activity rhythm amplitude; and greater time in bed. Area under the curve was low/moderate (64%) indicating poor predictive utility. CONCLUSION The strongest sleep-wake behavioral correlates of low cognitive performance were measures of longer time-in-bed and irregular/weak rhythms. These sleep-wake assessments were not useful to identify previous low cognitive performance. Given their potential modifiability, experimental trials could test if targeting midlife time-in-bed and/or irregular rhythms influences cognition.
Collapse
Affiliation(s)
- Stephen F Smagula
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Gehui Zhang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert T Krafty
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Alberto Ramos
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juleen Rodakowski
- Department of Occupational Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linda C Gallo
- Department of Psychology, University of California San Diego, San Diego, California, USA
| | - Melissa Lamar
- Institute of Minority Health Research, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Swathi Gujral
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dorothee Fischer
- Department of Sleep and Human Factors Research, Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Wassim Tarraf
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, California, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Hector M Gonzalez
- Department of Neurosciences and the Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, San Diego, California, USA
| | - Sanjay R Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Zhou X, Dai N, Yu D, Niu T, Wang S. Exploring galectin-3's role in predicting mild cognitive impairment in type 2 diabetes and its regulation by miRNAs. Front Med (Lausanne) 2024; 11:1443133. [PMID: 39144658 PMCID: PMC11322075 DOI: 10.3389/fmed.2024.1443133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Objective This study aimed to investigate the role of galectin-3 (Gal-3; coded by LGALS3 gene), as a biomarker for MCI in T2DM patients and to develop and validate a predictive nomogram integrating galectin-3 with clinical risk factors for MCI prediction. Additionally, microRNA regulation of LGALS3 was explored. Methods The study employed a cross-sectional design. A total of 329 hospitalized T2DM patients were recruited and randomly allocated into a training cohort (n = 231) and a validation cohort (n = 98) using 7:3 ratio. Demographic data and neuropsychological assessments were recorded for all participants. Plasma levels of galectin-3 were measured using ELISA assay. We employed Spearman's correlation and multivariable linear regression to analyze the relationship between galectin-3 levels and cognitive performance. Furthermore, univariate and multivariate logistic regression analyses were conducted to identify independent risk factors for MCI in T2DM patients. Based on these analyses, a predictive nomogram incorporating galectin-3 and clinical predictors was developed. The model's performance was evaluated in terms of discrimination, calibration, and clinical utility. Regulatory miRNAs were identified using bioinformatics and their interactions with LGALS3 were confirmed through qRT-PCR and luciferase reporter assays. Results Galectin-3 was identified as an independent risk factor for MCI, with significant correlations to cognitive decline in T2DM patients. The developed nomogram, incorporating Gal-3, age, and education levels, demonstrated excellent predictive performance with an AUC of 0.813 in the training cohort and 0.775 in the validation cohort. The model outperformed the baseline galectin-3 model and showed a higher net benefit in clinical decision-making. Hsa-miR-128-3p was significantly downregulated in MCI patients, correlating with increased Gal-3 levels, while Luciferase assays confirmed miR-128-3p's specific binding and influence on LGALS3. Conclusion Our findings emphasize the utility of Gal-3 as a viable biomarker for early detection of MCI in T2DM patients. The validated nomogram offers a practical tool for clinical decision-making, facilitating early interventions to potentially delay the progression of cognitive impairment. Additionally, further research on miRNA128's regulation of Gal-3 levels is essential to substantiate our results.
Collapse
Affiliation(s)
- Xueling Zhou
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ning Dai
- Department of ENT, Maanshan People’s Hospital, Maanshan, China
| | - Dandan Yu
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Tong Niu
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shaohua Wang
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
43
|
Ye S, Cheng Z, Zhuo D, Liu S. Different Types of Cell Death in Diabetic Neuropathy: A Focus on Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:8126. [PMID: 39125694 PMCID: PMC11311470 DOI: 10.3390/ijms25158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes, affecting over 50% of patients, leading to significant pain and a burden. Currently, there are no effective treatments available. Cell death is considered a key factor in promoting the progression of DN. This article reviews how cell death is initiated in DN, emphasizing the critical roles of oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and autophagy. Additionally, we thoroughly summarize the mechanisms of cell death that may be involved in the pathogenesis of DN, including apoptosis, autophagy, pyroptosis, and ferroptosis, among others, as well as potential therapeutic targets offered by these death mechanisms. This provides potential pathways for the prevention and treatment of diabetic neuropathy in the future.
Collapse
Affiliation(s)
- Shang Ye
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Zilin Cheng
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Dongye Zhuo
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Shuangmei Liu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
44
|
Chekol Tassew W, Ferede YA, Zeleke AM. Cognitive impairment and associated factors among patients with diabetes mellitus in Africa: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1386600. [PMID: 39086905 PMCID: PMC11288936 DOI: 10.3389/fendo.2024.1386600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Background Inappropriate management of blood sugar in patients with diabetes mellitus leads to micro-vascular and macro-vascular complications, subsequently leading to high morbidity and mortality rates. In addition, diabetes independently increases the occurrence of cognitive impairment complicated by dementia. Scientific evidence on the magnitude of cognitive impairment will provide a sound basis for the determination of healthcare needs and the planning of effective healthcare services. Despite this, there are no comprehensive data on the prevalence and associated factors of cognitive impairment among patients with diabetes in Africa. Methods To identify relevant articles for this review, we searched PubMed, Cochrane Library, Science Direct, African Journals Online, and Google Scholar. After extraction, the data were imported into Stata software version 11 (Stata Corp., TX, USA) for further analysis. The random-effects model, specifically the DerSimonian and Laird (D+L) pooled estimation method, was used due to the high heterogeneity between the included articles. Begg's and Egger's regression tests were used to determine the evidence of publication bias. Sub-group analyses and sensitivity analyses were also conducted to handle heterogeneity. Results The pooled prevalence of cognitive impairment among patients with diabetes in Africa is found to be 43.99% (95% CI: 30.15-57.83, p < 0.001). According to our analysis, primary level of education [pooled odds ratio (POR) = 6.08, 95% CI: 3.57-10.36, I 2 = 40.7%], poorly controlled diabetes mellitus (POR = 5.85, 95% CI: 1.64-20.92, I 2 = 87.8%), age above 60 years old (POR = 3.83, 95% 95% CI: 1.36-10.79, I 2 = 63.7%), and diabetes duration greater than 10 years (POR = 1.13; 95% CI: 1.07-1.19, I 2 = 0.0%) were factors associated with cognitive impairment among patients with diabetes. Conclusion Based on our systematic review, individuals with diabetes mellitus exhibit a substantial prevalence rate (43.99%) of cognitive impairment. Cognitive impairment was found to be associated with factors such as primary level of education, poorly controlled diabetes mellitus, age above 60 years, and diabetes duration greater than 10 years. Developing suitable risk assessment tools is crucial to address uncontrolled hyperglycemia effectively. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42024561484.
Collapse
Affiliation(s)
- Worku Chekol Tassew
- Department of Medical Nursing, Teda Health Science College, Gondar, Ethiopia
| | - Yeshiwas Ayal Ferede
- Department of Reproductive Health, Teda Health Science College, Gondar, Ethiopia
| | | |
Collapse
|
45
|
Zare Z, Tehrani M, Zarbakhsh S, Mohammadi M. Protective effects of treadmill exercise on apoptotic neuronal damage and astrocyte activation in ovariectomized and/or diabetic rat prefrontal cortex: molecular and histological aspects. Int J Neurosci 2024; 134:754-762. [PMID: 36377197 DOI: 10.1080/00207454.2022.2148529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Both estrogen deprivation and diabetes mellitus are known as risk factors for neuronal damage. Using an animal model of ovariectomized and/or streptozotocin (STZ)-induced diabetes mellitus, we examined expression of apoptosis-related proteins, neuronal damage, and astrocyte activation in prefrontal cortex of rats with/without treadmill exercise. METHODS Adult female Wistar rats were divided into control, ovariectomized (Ovx, bilateral ovariectomy), diabetic (Dia, STZ 60 mg/kg; i.p.), and ovariectomized diabetic (Ovx + Dia) groups. Next, animals in each group were randomly subdivided into non-exercise and exercise subgroups. Animals in the exercise groups underwent moderate treadmill running for 4 weeks (5 days/week). Thereafter, expression of Bax, Bcl-2, and caspase-3, as apoptosis-related proteins, number of neurons, and number of glial fibrillary acidic protein (GFAP)-positive cells in prefrontal cortex were measured using immunoblotting, cresyl violet staining, and immunohistochemistry, respectively. RESULTS In both Dia and Ovx + Dia groups, Bax and caspase-3 protein levels and number of GFAP-positive cells were higher than those in the control group, while Bcl-2 protein level and number of neurons compared were lower than the control group. Beneficial effects of exercise to prevent apoptosis-mediated neuronal damage and astrocyte activation were also observed in the Dia group. CONCLUSION Based on our results, physical exercise could be beneficial to attenuate diabetes-induced neuronal damage in the prefrontal cortex via inhibition of apoptosis.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
46
|
Cochar-Soares N, de Oliveira DC, Luiz MM, Aliberti MJR, Suemoto CK, Steptoe A, de Oliveira C, Alexandre T. Sex Differences in the Trajectories of Cognitive Decline and Affected Cognitive Domains Among Older Adults With Controlled and Uncontrolled Glycemia. J Gerontol A Biol Sci Med Sci 2024; 79:glae136. [PMID: 38775400 PMCID: PMC11181940 DOI: 10.1093/gerona/glae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND We aimed to analyze the trajectories of cognitive decline as a function of the presence of type 2 diabetes and glycemic control in analyzes stratified by sex in an 8-year follow-up period. METHODS A total of 1 752 men and 2 232 women aged ≥50 years who participated in the English Longitudinal Study of Ageing (ELSA), conducted from 2004 to 2012, were analyzed. The outcomes of interest were performance on the cognitive domains of memory, executive function, and temporal orientation as well as the global cognition score. Cognitive performance was standardized in z-scores in strata based on schooling and age. The participants were classified as without diabetes, with controlled glycemia, and with uncontrolled glycemia, according to medical diagnosis, glucose-lowering medications use and HbA1c levels. Generalized linear mixed models controlled by sociodemographic, behavioral, and health-related characteristics were used for the trajectory analyses. RESULTS No differences in z-scores were found for global cognition or cognitive domains based on diabetes classification in men and women at baseline. More than 8 years of follow up, women with uncontrolled glycemia had a greater decline in z-scores for global cognition (-0.037 SD/year [95% CI: -0.073; -0.001]) and executive function (-0.049 SD/year [95% CI: -0.092; -0.007]) compared with those without diabetes. No significant difference in trajectories of global cognition or any cognitive domain was found in men as a function of diabetes classification. CONCLUSIONS Women with uncontrolled glycemia are at greater risk of a decline in global cognition and executive function than those without diabetes.
Collapse
Affiliation(s)
| | - Dayane C de Oliveira
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Mariane M Luiz
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Márlon J R Aliberti
- Laboratory of Medical Research in Aging (LIM-66), Servico de Geriatria, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Claudia K Suemoto
- Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Andrew Steptoe
- Department of Behavioral Science and Health, University College London, London, UK
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Cesar de Oliveira
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Tiago S Alexandre
- Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil
- Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
47
|
Şen GA, Tanrıkulu S, Beşer B, Akçakalem Ş, Çakır S, Dinççağ N. Effects of prediabetes and type 2 diabetes on cognitive functions. Endocrine 2024; 85:190-195. [PMID: 38358557 DOI: 10.1007/s12020-024-03720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of glycemic impairment in prediabetes on cognitive impairment and the impact of glycemic control on cognitive function in patients with diabetes. MATERIALS AND METHODS This age- and sex-matched case-control study included a total of 80 individuals: 20 patients with prediabetes, 20 patients with well-controlled type 2 diabetes mellitus (T2DM) (HbA1C < %7.5), 20 patients with poorly controlled T2DM (HbA1C >% 7.5), and 20 healthy controls. RESULTS The poorly controlled T2DM patients performed significantly worse than controls and patients with prediabetes in the verbal memory process test (p = 0.041). In Trail Making Test B, the well-controlled and poorly-controlled groups with diabetes performed significantly worse (p = 0.015) than patients with prediabetes and controls, and in the Wisconsin Card Sorting Test (WCST), all three patient groups performed significantly worse (p = 0.007) than controls. CONCLUSION T2DM causes early brain aging and declines cognitive functions since the prediabetic stage. Poor glycemic control in T2DM patients contributes to cognitive impairments, especially in learning.
Collapse
Affiliation(s)
- Gülin Alkan Şen
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey.
- Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Seher Tanrıkulu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Acibadem Atasehir Hospital, Istanbul, Turkey
| | - Birsu Beşer
- Department of Neurology, Istanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Şükriye Akçakalem
- Department of Neurology, Istanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Sibel Çakır
- Department of Psychiatry, Istanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Nevin Dinççağ
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
48
|
Chang PS. Qigong in the care of breast cancer survivors with diabetes. Asia Pac J Oncol Nurs 2024; 11:100501. [PMID: 39081549 PMCID: PMC11287077 DOI: 10.1016/j.apjon.2024.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Pei-Shiun Chang
- Indiana University School of Nursing, Bloomington, IN, United States
| |
Collapse
|
49
|
Augustine-Wofford K, Connaughton VP, McCarthy E. Are Hyperglycemia-Induced Changes in the Retina Associated with Diabetes-Correlated Changes in the Brain? A Review from Zebrafish and Rodent Type 2 Diabetes Models. BIOLOGY 2024; 13:477. [PMID: 39056672 PMCID: PMC11273949 DOI: 10.3390/biology13070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes is prevalent worldwide, with >90% of the cases identified as Type 2 diabetes. High blood sugar (hyperglycemia) is the hallmark symptom of diabetes, with prolonged and uncontrolled levels contributing to subsequent complications. Animal models have been used to study these complications, which include retinopathy, nephropathy, and peripheral neuropathy. More recent studies have focused on cognitive behaviors due to the increased risk of dementia/cognitive deficits that are reported to occur in older Type 2 diabetic patients. In this review, we collate the data reported from specific animal models (i.e., mouse, rat, zebrafish) that have been examined for changes in both retina/vision (retinopathy) and brain/cognition, including db/db mice, Goto-Kakizaki rats, Zucker Diabetic Fatty rats, high-fat diet-fed rodents and zebrafish, and hyperglycemic zebrafish induced by glucose immersion. These models were selected because rodents are widely recognized as established models for studying diabetic complications, while zebrafish represent a newer model in this field. Our goal is to (1) summarize the published findings relevant to these models, (2) identify similarities in cellular mechanisms underlying the disease progression that occur in both tissues, and (3) address the hypothesis that hyperglycemic-induced changes in retina precede or predict later complications in brain.
Collapse
Affiliation(s)
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| | - Elizabeth McCarthy
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
50
|
Motaghi M, Potvin O, Duchesne S. A systematic review of the impact of type 2 diabetes on brain cortical thickness. FRONTIERS IN DEMENTIA 2024; 3:1418037. [PMID: 39081608 PMCID: PMC11285553 DOI: 10.3389/frdem.2024.1418037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 08/02/2024]
Abstract
Introduction Type 2 diabetes (T2D) has been linked to cognitive impairment and dementia, but its impact on brain cortical structures in individuals prior to or without cognitive impairment remains unclear. Methods We conducted a systematic review of 2,331 entries investigating cerebral cortical thickness changes in T2D individuals without cognitive impairment, 55 of which met our inclusion criteria. Results Most studies (45/55) reported cortical brain atrophy and reduced thickness in the anterior cingulate, temporal, and frontal lobes between T2D and otherwise cognitively healthy controls. However, the balance of studies (10/55) reported no significant differences in either cortical or total brain volumes. A few reports also noticed changes in the occipital cortex and its gyri. As part of the reports, less than half of studies (18/55) described a correlation between T2D and hippocampal atrophy. Variability in sample characteristics, imaging methods, and software could affect findings on T2D and cortical atrophy. Discussion In conclusion, T2D appears linked to reduced cortical thickness, possibly impacting cognition and dementia risk. Microvascular disease and inflammation in T2D may also contribute to this risk. Further research is needed to understand the underlying mechanisms and brain health implications.
Collapse
Affiliation(s)
- Mahboubeh Motaghi
- Faculté de Médecine, Université Laval, Québec City, QC, Canada
- MEDICS Laboratory, Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec City, QC, Canada
| | - Olivier Potvin
- MEDICS Laboratory, Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec City, QC, Canada
| | - Simon Duchesne
- MEDICS Laboratory, Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec City, QC, Canada
- Département de Radiologie et Médecine Nucléaire, Université Laval, Québec City, QC, Canada
| |
Collapse
|