1
|
Shang C, Chen J, Nkoh JN, Wang J, Chen S, Hu Z, Hussain Q. Biochemical and multi-omics analyses of response mechanisms of rhizobacteria to long-term copper and salt stress: Effect on soil physicochemical properties and growth of Avicennia marina. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133601. [PMID: 38309159 DOI: 10.1016/j.jhazmat.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Mangroves are of important economic and environmental value and research suggests that their carbon sequestration and climate change mitigation potential is significantly larger than other forests. However, increasing salinity and heavy metal pollution significantly affect mangrove ecosystem function and productivity. This study investigates the tolerance mechanisms of rhizobacteria in the rhizosphere of Avicennia marina under salinity and copper (Cu) stress during a 4-y stress period. The results exhibited significant differences in antioxidant levels, transcripts, and secondary metabolites. Under salt stress, the differentially expressed metabolites consisted of 30% organic acids, 26.78% nucleotides, 16.67% organic heterocyclic compounds, and 10% organic oxides as opposed to 27.27% organic acids, 24.24% nucleotides, 15.15% organic heterocyclic compounds, and 12.12% phenyl propane and polyketides under Cu stress. This resulted in differential regulation of metabolic pathways, with phenylpropanoid biosynthesis being unique to Cu stress and alanine/aspartate/glutamate metabolism and α-linolenic acid metabolism being unique to salt stress. The regulation of metabolic pathways enhanced antioxidant defenses, nutrient recycling, accumulation of osmoprotectants, stability of plasma membrane, and chelation of Cu, thereby improving the stress tolerance of rhizobacteria and A. marina. Even though the abundance and community structure of rhizobacteria were significantly changed, all the samples were dominated by Proteobacteria, Chloroflexi, Actinobacteriota, and Firmicutes. Since the response mechanisms were unbalanced between treatments, this led to differential growth trends for A. marina. Our study provides valuable inside on variations in diversity and composition of bacterial community structure from mangrove rhizosphere subjected to long-term salt and Cu stress. It also clarifies rhizobacterial adaptive mechanisms to these stresses and how they are important for mitigating abiotic stress and promoting plant growth. Therefore, this study can serve as a reference for future research aimed at developing long-term management practices for mangrove forests.
Collapse
Affiliation(s)
- Chenjing Shang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China
| | - Jiawen Chen
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Junjie Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Si Chen
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Quaid Hussain
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
2
|
Beckett HAA, Bryant C, Neeman T, Mencuccini M, Ball MC. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. PLANT, CELL & ENVIRONMENT 2024; 47:854-870. [PMID: 37975319 DOI: 10.1111/pce.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australia
| | - Maurizio Mencuccini
- Ecological and Forestry Applications Research Centre (CREAF), Barcelona, Bellaterra, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Beckett HAA, Webb D, Turner M, Sheppard A, Ball MC. Bark water uptake through lenticels increases stem hydration and contributes to stem swelling. PLANT, CELL & ENVIRONMENT 2024; 47:72-90. [PMID: 37811590 DOI: 10.1111/pce.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface. Furthermore, using a fluorescent symplastic tracer dye we provide the first evidence that lenticels on the outer bark surface facilitate BWU, thus increasing stem water content by up to 3.7%. X-ray micro-computed tomography showed that BWU was sufficient to cause measurable swelling of stem tissue layers increasing whole stem cross-sectional area by 0.83 mm2 or 2.8%, implicating it as a contributor to the diel patterns of water storage recharge that buffer xylem water potential and maintain hydration of living tissue.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, Australia
| | - Michael Turner
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Adrian Sheppard
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
4
|
Dookie S, Jaikishun S, Ansari AA. Avicennia germinans leaf traits in degraded, restored, and natural mangrove ecosystems of Guyana. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:324-341. [PMID: 38089845 PMCID: PMC10711649 DOI: 10.1002/pei3.10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2024]
Abstract
Mangrove leaves have unique features that enable them to cope with shifting environmental conditions while preserving their general functionality and efficiency. We examined the morphological characteristics and chlorophyll content (spectroscopically) of 600 mature Avicennia germinans leaves selected from 30 trees located in one degraded, one restored, and one natural mangrove ecosystem along Guyana's coastline. Systematic sampling was carried out using the closest individual sampling method in the wet and dry seasons. We hypothesized that both habitat type and seasonality influence the leaf traits and chlorophyll content of A. germinans. Our findings showed that A. germinans leaves are mesophyllous, and traits such as leaf perimeter, area, length, width, dry mass, wet mass, turgid mass, leaf-specific area, and relative water content showed fluctuations in ecosystems (one-way ANOVA, p < .05) as well as seasonally (paired t-test, p < .05). Substantial, positive correlations (p < .05, R > .75) were also established for over 10 leaf parameters in both seasons while PCA and multiple regression analyses further confirmed the strong relationships between leaf morphological features and their respective locations. Changes in chlorophyll concentration were most noticeable in the degraded ecosystem while variations in leaf traits were more pronounced in the restored mangrove area. This may be due to the various disturbances found in each ecosystem coupled with fluctuations in the seasons. Our results demonstrate that mangroves, to some extent, alter their plant structures to cope with environmental stressors present in the various ecosystems they thrive in to maintain their survival.
Collapse
Affiliation(s)
- Sabrina Dookie
- Department of BiologyUniversity of GuyanaGeorgetownGuyana
| | | | | |
Collapse
|
5
|
Chowdhury A, Naz A, Sharma SB, Dasgupta R. Changes in Salinity, Mangrove Community Ecology, and Organic Blue Carbon Stock in Response to Cyclones at Indian Sundarbans. Life (Basel) 2023; 13:1539. [PMID: 37511914 PMCID: PMC10381154 DOI: 10.3390/life13071539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Climate change-induced frequent cyclones are pumping saline seawater into the Sundarbans. Fani, Amphan, Bulbul, and Yaas were the major cyclones that hit the region during 2019-2021. This study represents the changes in the soil parameters, mangrove biodiversity and zonation due to the cyclone surges in the Indian Sundarbans between 2017 and 2021. Increasing tidal water salinity (parts per thousand) trends in both pre-monsoon (21 to 33) and post-monsoon (14 to 19) seasons have been observed between 2017 and 2021. A 46% reduction in the soil organic blue carbon pool is observed due to a 31% increase in soil salinity. Soil organic blue carbon has been calculated by both wet digestion and the elemental analyzer method, which are linearly correlated with each other. A reduction in the available nitrogen (30%) and available phosphorous (33%) in the mangrove soil has also been observed. Salinity-sensitive mangroves, such as Xylocarpus granatum, Xylocarpus moluccensis, Rhizophora mucronata, Bruguiera gymnorrhiza, and Bruguiera cylindrica, have seen local extinction in the sampled population. An increasing trend in relative density of salinity resilient, Avicennia marina, Suaeda maritima, Aegiceras corniculatum and a decreasing trend of true mangrove (Ceriops decandra) has been observed, in response to salinity rise in surface water as well as soil. As is evident from Hierarchical Cluster Analysis (HCA) and the Abundance/Frequency ratio (A/F), the mangrove zonation observed in response to tidal gradient has also changed, becoming more homogeneous with a dominance of A. marina. These findings indicate that cyclone, climate change-induced sea level rise can adversely impact Sustainable Development Goal 13 (climate action), by decreasing organic soil blue carbon sink and Sustainable Development Goal 14 (life below water), by local extinction of salinity sensitive mangroves.
Collapse
Affiliation(s)
- Abhiroop Chowdhury
- Jindal School of Environment and Sustainability, O.P. Jindal Global University, Sonipat 131001, India
| | - Aliya Naz
- Jindal School of Liberal Arts and Humanities, O.P. Jindal Global University, Sonipat 131001, India
| | - Seema B Sharma
- Department of Earth and Environmental Science, KSKV Kachchh University, Mundra Road, Bhuj 370001, India
| | - Rajarshi Dasgupta
- School of Public Policy, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
6
|
Song S, Ma D, Xu C, Guo Z, Li J, Song L, Wei M, Zhang L, Zhong YH, Zhang YC, Liu JW, Chi B, Wang J, Tang H, Zhu X, Zheng HL. In silico analysis of NAC gene family in the mangrove plant Avicennia marina provides clues for adaptation to intertidal habitats. PLANT MOLECULAR BIOLOGY 2023; 111:393-413. [PMID: 36645624 DOI: 10.1007/s11103-023-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.
Collapse
Affiliation(s)
- Shiwei Song
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zejun Guo
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lingyu Song
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Bingjie Chi
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jicheng Wang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hanchen Tang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
7
|
Li C, Mo Y, Wang N, Xing L, Qu Y, Chen Y, Yuan Z, Ali A, Qi J, Fernández V, Wang Y, Kopittke PM. The overlooked functions of trichomes: Water absorption and metal detoxication. PLANT, CELL & ENVIRONMENT 2023; 46:669-687. [PMID: 36581782 DOI: 10.1111/pce.14530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.
Collapse
Affiliation(s)
- Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yingying Mo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Nina Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Longyi Xing
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qu
- Baoji Academy of Agriculture Sciences, Baoji, China
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- College of Life Sciences, Hebei University, Hebei, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Victoria Fernández
- School of Forest Engineering, Technical University of Madrid, Madrid, Spain
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Aritsara ANA, Wang S, Li BN, Jiang X, Qie YD, Tan FS, Zhang QW, Cao KF. Divergent leaf and fine root "pressure-volume relationships" across habitats with varying water availability. PLANT PHYSIOLOGY 2022; 190:2246-2259. [PMID: 36047846 PMCID: PMC9706427 DOI: 10.1093/plphys/kiac403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Fine roots and leaves, the direct interfaces of plants with their external environment along the soil-plant-atmosphere continuum, are at the front line to ensure plant adaptation to their growing habitat. This study aimed to compare the vulnerability to water deficit of fine roots and leaves of woody species from karst and mangrove forests-two water-stressed habitats-against that of timber and ornamental woody species grown in a well-watered common garden. Thus, pressure-volume curves in both organs of 37 species (about 12 species from each habitat) were constructed. Fine roots wilted at a less negative water potential than leaves in 32 species and before branch xylem lost 50% of its hydraulic conductivity in the 17 species with available data on branch xylem embolism resistance. Thus, turgor loss in fine roots can act as a hydraulic fuse mechanism against water stress. Mangroves had higher leaf resistance against wilting and lower leaf-specific area than the karst and common garden plants. Their fine roots had high specific root lengths (SRL) and high capacitance to buffer water stress. Karst species had high leaf bulk modulus, low leaf capacitance, and delayed fine root wilting. This study showed the general contribution of fine roots to the protection of the whole plant against underground water stress. Our findings highlight the importance of water storage in the leaves and fine roots of mangrove species and high tolerance to water deficit in the leaves of mangrove species and the fine roots of some karst species.
Collapse
Affiliation(s)
- Amy Ny Aina Aritsara
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuang Wang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bei-Ni Li
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Department of Ecology, State Key Laboratory of Biocontrol and School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Jiang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Office of Scientific Research and Development, Sichuan University, Chengdu 610065, China
| | - Ya-Dong Qie
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Feng-Sen Tan
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Qi-Wei Zhang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Krauss KW, Lovelock CE, Chen L, Berger U, Ball MC, Reef R, Peters R, Bowen H, Vovides AG, Ward EJ, Wimmler MC, Carr J, Bunting P, Duberstein JA. Mangroves provide blue carbon ecological value at a low freshwater cost. Sci Rep 2022; 12:17636. [PMID: 36271232 PMCID: PMC9586979 DOI: 10.1038/s41598-022-21514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
"Blue carbon" wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration ([Formula: see text]). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is as much as 2905 kL H2O ha-1 year-1 less than adjacent ecoregions with [Formula: see text]-to-[Formula: see text] ratios of 47-70%. Lower porewater salinity would, however, increase mangrove [Formula: see text]-to-[Formula: see text] ratios by affecting leaf-, tree-, and stand-level eco-physiological controls on transpiration. Restricted water use is also additive to other ecosystem services provided by mangroves, such as high carbon sequestration, coastal protection and support of biodiversity within estuarine and marine environments. Low freshwater demand enables mangroves to sustain ecological values of connected estuarine ecosystems with future reductions in freshwater while not competing with the freshwater needs of humans. Conservative water use may also be a characteristic of other emergent blue carbon wetlands.
Collapse
Affiliation(s)
- Ken W. Krauss
- grid.2865.90000000121546924U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506 USA
| | - Catherine E. Lovelock
- grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, Brisbane, 4072 Australia
| | - Luzhen Chen
- grid.12955.3a0000 0001 2264 7233Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102 Fujian China
| | - Uta Berger
- grid.4488.00000 0001 2111 7257Institute of Forest Growth and Forest Computer Sciences, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marilyn C. Ball
- grid.1001.00000 0001 2180 7477Research School of Biology, The Australian National University, Acton, ACT 2601 Australia
| | - Ruth Reef
- grid.1002.30000 0004 1936 7857School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800 Australia
| | - Ronny Peters
- grid.4488.00000 0001 2111 7257Institute of Forest Growth and Forest Computer Sciences, Technische Universität Dresden, 01062 Dresden, Germany
| | - Hannah Bowen
- grid.452507.10000 0004 1798 0367Instituto de Ecología AC, Carretera antigua a Coatepec 351, 91073 Xalapa, Veracruz Mexico
| | - Alejandra G. Vovides
- grid.8756.c0000 0001 2193 314XSchool of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Eric J. Ward
- grid.2865.90000000121546924U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506 USA
| | - Marie-Christin Wimmler
- grid.4488.00000 0001 2111 7257Institute of Forest Growth and Forest Computer Sciences, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joel Carr
- grid.2865.90000000121546924U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708 USA
| | - Pete Bunting
- grid.8186.70000 0001 2168 2483Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales UK
| | - Jamie A. Duberstein
- grid.26090.3d0000 0001 0665 0280Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC 29442 USA
| |
Collapse
|
10
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
11
|
Tredenick EC, Stuart-Williams H, Enge TG. Materials on Plant Leaf Surfaces Are Deliquescent in a Variety of Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:722710. [PMID: 35903227 PMCID: PMC9315345 DOI: 10.3389/fpls.2022.722710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Materials on plant leaf surfaces that attract water impact penetration of foliar-applied agrochemicals, foliar water uptake, gas exchange, and stomatal density. Few studies are available on the nature of these substances, and we quantify the hygroscopicity of these materials. Water vapor sorption experiments on twelve leaf washes of sample leaves were conducted and analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray diffraction. All leaf surface materials studied were hygroscopic. Oils were found on the surface of the Eucalyptus studied. For mangroves that excrete salt to the leaf surfaces, significant sorption occurred at high humidity of a total of 316 mg (~0.3 ml) over 6-10 leaves and fitted a Guggenheim, Anderson, and de Böer sorption isotherm. Materials on the plant leaf surface can deliquesce and form an aqueous solution in a variety of environments where plants grow, including glasshouses and by the ocean, which is an important factor when considering plant-atmosphere relations.
Collapse
Affiliation(s)
- E. C. Tredenick
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - H. Stuart-Williams
- Division of Plant Sciences, ARC Centre of Excellence in Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - T. G. Enge
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
12
|
Abstract
Foliar water uptake (FWU) is a mechanism that enables plants to acquire water from the atmosphere through their leaves. As mangroves live in a saline sediment water environment, the mechanism of FWU might be of vital importance to acquire freshwater and grow. The goal of this study was to assess the FWU capacity of six different mangrove species belonging to four genera using a series of submersion experiments in which the leaf mass increase was measured and expressed per unit leaf area. The foliar water uptake capacity differed between species with the highest and lowest average water uptake in Avicennia marina (Forssk.) Vierh. (1.52 ± 0.48 mg H2O cm−2) and Bruguiera gymnorhiza (L.) Lam. (0.13 ± 0.06 mg H2O cm−2), respectively. Salt-excreting species showed a higher FWU capacity than non-excreting species. Moreover, A. marina, a salt-excreting species, showed a distinct leaf anatomical trait, i.e., trichomes, which were not observed in the other species and might be involved in the water absorption process. The storage of leaves in moist Ziplock bags prior to measurement caused leaf water uptake to already occur during transport to the field station, which proportionately increased the leaf water potential (A. marina: −0.31 ± 0.13 MPa and B. gymnorhiza: −2.70 ± 0.27 MPa). This increase should be considered when performing best practice leaf water potential measurements but did not affect the quantification of FWU capacity because of the water potential gradient between a leaf and the surrounding water during submersion. Our results highlight the differences that exist in FWU capacity between species residing in the same area and growing under the same environmental conditions. This comparative study therefore enhances our understanding of mangrove species’ functioning.
Collapse
|
13
|
Seedling Growth and Quality of Avicennia marina (Forssk.) Vierh. under Growth Media Composition and Controlled Salinity in an Ex Situ Nursery. FORESTS 2022. [DOI: 10.3390/f13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Avicennia marina (Forssk.) Vierh. is an important mangrove species that inhabits the outermost zone of mangrove forests, but it has been shown to have a poor ability to regenerate due to its low seedling quality. We conducted a study to evaluate the specific growth requirements of A. marina, i.e., medium and salinity level. Germinated seeds were transplanted to pots filled with media, i.e., silt loam (M1), loam (M2), sandy loam (M3), or sand (M4), with various salinity levels 5 (S1), 5–15 (S2), 15–25 (S3), or 25–35 ppt (S4). Survival rate, growth, biomass partition, and seedling quality were observed for 14 weeks after transplanting the seeds. The highest rate of seedling survival was found in the S2 condition, and higher concentrations of salinity lowered the survival rates. The S1 treatment promoted the initial 8 week growth of the seedlings. Growth medium had no significant effect, except on the survival rates grown in M4. Growth medium composition had no distinct effect on seedling growth. The S2 and S3 treatments induced better growth (in terms of shoot height and root length) and resulted in high-quality (i.e., Dickson quality index) seedlings in any type of medium. The S3 treatment increased the seedling quality in M1 and M4, whereas the S4 treatment only benefited seedlings in the M4 medium. According to the results, a specific range of salinity (5–15 ppt) with circulated water in any type of medium is recommended for the establishment of an ex situ nursery for the propagation of A. marina, in contrast to the general range of salinity (4–35 ppt) stated in previous references.
Collapse
|
14
|
Preisler Y, Hölttä T, Grünzweig JM, Oz I, Tatarinov F, Ruehr NK, Rotenberg E, Yakir D. The importance of tree internal water storage under drought conditions. TREE PHYSIOLOGY 2022; 42:771-783. [PMID: 34726242 DOI: 10.1093/treephys/tpab144] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Global warming and drying trends, as well as the increase in frequency and intensity of droughts, may have unprecedented impacts on various forest ecosystems. We assessed the role of internal water storage (WS) in drought resistance of mature pine trees in the semi-arid Yatir Forest. Transpiration (T), soil moisture and sap flow (SF) were measured continuously, accompanied by periodical measurements of leaf and branch water potential (Ψleaf) and water content (WC). The data were used to parameterize a tree hydraulics model to examine the impact of WS capacitance on the tree water relations. The results of the continuous measurements showed a 5-h time lag between T and SF in the dry season, which peaked in the early morning and early afternoon, respectively. A good fit between model results and observations was only obtained when the empirically estimated WS capacitance was included in the model. Without WS during the dry season, Ψleaf would drop below a threshold known to cause hydraulic failure and cessation of gas exchange in the studied tree species. Our results indicate that tree WS capacitance is a key drought resistance trait that could enhance tree survival in a drying climate, contributing up to 45% of the total daily transpiration during the dry season.
Collapse
Affiliation(s)
- Yakir Preisler
- Earth and Planetary Science, Weizmann Institute of Science, 234 Herzl St. Rehovot, Rehovot 7610001, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl Street POB 12, Rehovot 7610001, Israel
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 3 Yliopistonkatu st, 0001 Helsinki, Finland
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl Street POB 12, Rehovot 7610001, Israel
| | - Itay Oz
- Earth and Planetary Science, Weizmann Institute of Science, 234 Herzl St. Rehovot, Rehovot 7610001, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl Street POB 12, Rehovot 7610001, Israel
| | - Fedor Tatarinov
- Earth and Planetary Science, Weizmann Institute of Science, 234 Herzl St. Rehovot, Rehovot 7610001, Israel
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen 82467, Germany
| | - Eyal Rotenberg
- Earth and Planetary Science, Weizmann Institute of Science, 234 Herzl St. Rehovot, Rehovot 7610001, Israel
| | - Dan Yakir
- Earth and Planetary Science, Weizmann Institute of Science, 234 Herzl St. Rehovot, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
16
|
Zhang H, Li X, Wang W, Pivovaroff AL, Li W, Zhang P, Ward ND, Myers-Pigg A, Adams HD, Leff R, Wang A, Yuan F, Wu J, Yabusaki S, Waichler S, Bailey VL, Guan D, McDowell NG. Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. PLANT PHYSIOLOGY 2021; 187:873-885. [PMID: 34608959 PMCID: PMC8981213 DOI: 10.1093/plphys/kiab295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 05/29/2023]
Abstract
Sea-level rise is one of the most critical challenges facing coastal ecosystems under climate change. Observations of elevated tree mortality in global coastal forests are increasing, but important knowledge gaps persist concerning the mechanism of salinity stress-induced nonhalophytic tree mortality. We monitored progressive mortality and associated gas exchange and hydraulic shifts in Sitka-spruce (Picea sitchensis) trees located within a salinity gradient under an ecosystem-scale change of seawater exposure in Washington State, USA. Percentage of live foliated crown (PLFC) decreased and tree mortality increased with increasing soil salinity during the study period. A strong reduction in gas exchange and xylem hydraulic conductivity (Ks) occurred during tree death, with an increase in the percentage loss of conductivity (PLC) and turgor loss point (πtlp). Hydraulic and osmotic shifts reflected that hydraulic function declined from seawater exposure, and dying trees were unable to support osmotic adjustment. Constrained gas exchange was strongly related to hydraulic damage at both stem and leaf levels. Significant correlations between foliar sodium (Na+) concentration and gas exchange and key hydraulic parameters (Ks, PLC, and πtlp) suggest that cellular injury related to the toxic effects of ion accumulation impacted the physiology of these dying trees. This study provides evidence of toxic effects on the cellular function that manifests in all aspects of plant functioning, leading to unfavourable osmotic and hydraulic conditions.
Collapse
Affiliation(s)
- Hongxia Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Wenzhi Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute
of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu
610041, China
| | - Alexandria L. Pivovaroff
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Weibin Li
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,
College of Pastoral Agriculture Science and Technology, Lanzhou University,
Lanzhou 730020, China
| | - Peipei Zhang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Nicholas D. Ward
- Marine Sciences Laboratory, Pacific Northwest National
Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle,
Washington 98195, USA
| | - Allison Myers-Pigg
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,
College of Pastoral Agriculture Science and Technology, Lanzhou University,
Lanzhou 730020, China
| | - Henry D. Adams
- School of the Environment, Washington State University, Pullman,
Washington 99164-2812, USA
| | - Riley Leff
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory,
Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory,
Richland, Washington 99354, USA
| | - Vanessa L. Bailey
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Nate G. McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University,
Pullman, Washington 99164-4236, USA
| |
Collapse
|
17
|
Quadros AF, Helfer V, Nordhaus I, Reuter H, Zimmer M. Functional Traits of Terrestrial Plants in the Intertidal: A Review on Mangrove Trees. THE BIOLOGICAL BULLETIN 2021; 241:123-139. [PMID: 34706208 DOI: 10.1086/716510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractTrue mangroves are vascular plants (Tracheophyta) that evolved into inhabiting the mid and upper intertidal zone of tropical and subtropical soft-sediment coasts around the world. While several dozens of species are known from the Indo-West Pacific region, the Atlantic-East Pacific region is home to only a mere dozen of true mangrove species, most of which are rare. Mangrove trees can form dense monospecific or multispecies stands that provide numerous ecosystem services. Despite their eminent socioecological and socioeconomic relevance and the plethora of studies on mangroves, many details of the ecology of mangrove ecosystems remain unknown; and our knowledge about general ecological principles in mangrove ecosystems is scarce. For instance, the functional trait concept has hardly been applied to mangroves. Here we provide an inventory of 28 quantitative and 8 qualitative functional traits of true mangrove species and stipulate some insight into how these traits may drive ecosystem structure and processes. The differentiation between true mangroves and mangrove associates, which can dwell inside as well as outside mangrove forests, is reflected by a number of leaf traits. Thus, true mangroves exhibit lower specific leaf area, lower leaf N content, and lower K∶Na ratio, and higher leaf succulence, higher Na and Cl content, and higher osmolality than mangrove associates. True mangrove species that form pure stands produce larger leaves and exhibit higher N content per leaf area, higher leaf K and Ca content, greater maximum plant height, longer propagules, and lower root porosity than more sporadic species. The species-specific expression of most traits does not reflect the species' position along intertidal gradients, suggesting that adaptation to tidal inundation does not explain these traits. Rather, many of the traits studied herein exhibit strong phylogenetic signals in true mangroves. Thus, wood density is high in most species of the Rhizophoraceae, irrespective of their habitat or maximum height. On the other hand, species of the genus Sonneratia exhibit low wood density and do not grow taller than 20 m. Some leaf traits of true mangroves are more like those of plants from drier environments, reflecting the perception that a saline environment creates physiological drought stress. Along the same line, most true mangrove species exhibit sclerophyllous leaf traits. The few major mangrove tree species of the Atlantic-East Pacific are as distinct from each other, with regard to some traits, as are the many mangrove species of the Indo-West Pacific. We hypothesize that this phenomenon explains the similarly high biomass of mangrove forests in both the species-rich Indo-West Pacific and the species-poor Atlantic-East Pacific.
Collapse
|
18
|
Bryant C, Fuenzalida TI, Brothers N, Mencuccini M, Sack L, Binks O, Ball MC. Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. PLANT, CELL & ENVIRONMENT 2021; 44:2898-2911. [PMID: 33974303 DOI: 10.1111/pce.14080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/25/2023]
Abstract
Understanding how plants acclimate to drought is crucial for predicting future vulnerability, yet seasonal acclimation of traits that improve drought tolerance in trees remains poorly resolved. We hypothesized that dry season acclimation of leaf and stem traits influencing shoot water storage and hydraulic capacitance would mitigate the drought-associated risks of reduced gas exchange and hydraulic failure in the mangrove Sonneratia alba. By late dry season, availability of stored water had shifted within leaves and between leaves and stems. While whole shoot capacitance remained stable, the symplastic fraction of leaf water increased 86%, leaf capacitance increased 104% and stem capacitance declined 80%. Despite declining plant water potentials, leaf and whole plant hydraulic conductance remained unchanged, and midday assimilation rates increased. Further, the available leaf water between the minimum water potential observed and that corresponding to 50% loss of stem conductance increased 111%. Shifting availability of pools of water, within and between organs, maintained leaf water available to buffer periods of increased photosynthesis and losses in stem hydraulic conductivity, mitigating risks of carbon depletion and hydraulic failure during atmospheric drought. Seasonal changes in access to tissue and organ water may have an important role in drought acclimation and avoidance.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Maurizio Mencuccini
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Ecological and Forestry Applications Research Centre, Barcelona, Spain
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, California, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
19
|
Coopman RE, Nguyen HT, Mencuccini M, Oliveira RS, Sack L, Lovelock CE, Ball MC. Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. THE NEW PHYTOLOGIST 2021; 231:1401-1414. [PMID: 33983649 DOI: 10.1111/nph.17461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The mangrove Avicennia marina adjusts internal salt concentrations by foliar salt secretion. Deliquescence of accumulated salt causes leaf wetting that may provide a water source for salt-secreting plants in arid coastal wetlands where high nocturnal humidity can usually support deliquescence whereas rainfall events are rare. We tested the hypotheses that salt deliquescence on leaf surfaces can drive top-down rehydration, and that such absorption of moisture from unsaturated atmospheres makes a functional contribution to dry season shoot water balances. Sap flow and water relations were monitored to assess the uptake of atmospheric water by branches during shoot wetting events under natural and manipulated microclimatic conditions. Reverse sap flow rates increased with increasing relative humidity from 70% to 89%, consistent with function of salt deliquescence in harvesting moisture from unsaturated atmospheres. Top-down rehydration elevated branch water potentials above those possible from root water uptake, subsidising transpiration rates and reducing branch vulnerability to hydraulic failure in the subsequent photoperiod. Absorption of atmospheric moisture harvested through deliquescence of salt on leaf surfaces enhances water balances of Avicennia marina growing in hypersaline wetlands under arid climatic conditions. Top-down rehydration from these frequent, low intensity wetting events contributes to prevention of carbon starvation and hydraulic failure during drought.
Collapse
Affiliation(s)
- Rafael E Coopman
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Department of Botany, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 131000, Vietnam
| | - Maurizio Mencuccini
- CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles 08193, Barcelona, Spain
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
20
|
Hussain MS, Naeem MS, Tanvir MA, Nawaz MF, Abd-Elrahman A. Eco-physiological evaluation of multipurpose tree species to ameliorate saline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:969-981. [PMID: 33455421 DOI: 10.1080/15226514.2020.1871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.
Collapse
Affiliation(s)
- Muhammad Safdar Hussain
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amr Abd-Elrahman
- School of Forest Resources and Conservation Institute of Food and Agriculture, Gulf Coast Research and Education Center, University of Florida, Plant City, FL, USA
| |
Collapse
|
21
|
Aspinwall MJ, Faciane M, Harris K, O'Toole M, Neece A, Jerome V, Colón M, Chieppa J, Feller IC. Salinity has little effect on photosynthetic and respiratory responses to seasonal temperature changes in black mangrove (Avicennia germinans) seedlings. TREE PHYSIOLOGY 2021; 41:103-118. [PMID: 32803230 DOI: 10.1093/treephys/tpaa107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Temperature and salinity are important regulators of mangrove range limits and productivity, but the physiological responses of mangroves to the interactive effects of temperature and salinity remain uncertain. We tested the hypothesis that salinity alters photosynthetic responses to seasonal changes in temperature and vapor pressure deficit (D), as well as thermal acclimation _of leaf respiration in black mangrove (Avicennia germinans). To test this hypothesis, we grew seedlings of A. germinans in an outdoor experiment for ~ 12 months under four treatments spanning 0 to 55 ppt porewater salinity. We repeatedly measured seedling growth and in situ rates of leaf net photosynthesis (Asat) and stomatal conductance to water vapor (gs) at prevailing leaf temperatures, along with estimated rates of Rubisco carboxylation (Vcmax) and electron transport for RuBP regeneration (Jmax), and measured rates of leaf respiration at 25 °C (Rarea25). We developed empirical models describing the seasonal response of leaf gas exchange and photosynthetic capacity to leaf temperature and D, and the response of Rarea25 to changes in mean daily air temperature. We tested the effect of salinity on model parameters. Over time, salinity had weak or inconsistent effects on Asat, gs and Rarea25. Salinity also had little effect on the biochemical parameters of photosynthesis (Vcmax, Jmax) and individual measurements of Asat, gs, Vcmax and Jmax showed a similar response to seasonal changes in temperature and D across all salinity treatments. Individual measurements of Rarea25 showed a similar inverse relationship with mean daily air temperature across all salinity treatments. We conclude that photosynthetic responses to seasonal changes in temperature and D, as well as seasonal temperature acclimation of leaf R, are largely consistent across a range of salinities in A. germinans. These results might simplify predictions of photosynthetic and respiratory responses to temperature in young mangroves.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Martina Faciane
- Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Kylie Harris
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Madison O'Toole
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Amy Neece
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Vrinda Jerome
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Mateo Colón
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Jeff Chieppa
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Ilka C Feller
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| |
Collapse
|
22
|
Nualla-Ong A, Phongdara A, Buapet P. Copper and zinc differentially affect root glutathione accumulation and phytochelatin synthase gene expression of Rhizophora mucronata seedlings: Implications for mechanisms underlying trace metal tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111175. [PMID: 32836161 DOI: 10.1016/j.ecoenv.2020.111175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Mangroves are susceptible to contamination due to their proximity to shores and human activities. Exposure to excessive trace metals can disturb their physiological functions and may eventually lead to death. Rhizophora mucronata is a common species growing in the mangrove forests of Thailand. Previous studies have shown that seedlings of R. mucronata are tolerant of trace metal and that they accumulate a large metal content in their root tissue. However, knowledge of their tolerance mechanisms is still lacking. To elicit the role of metal detoxification and sequestration by phytochelatins (PC) in the roots of R. mucronata seedlings, the impacts of Cu and Zn exposure were assessed on 1) physiological characteristics 2) the concentration of glutathione (GSH), a precursor of PC and 3) the level of the transcripts encoding phytochelatin synthase (PCS), the key enzyme for PC biosynthesis. Seedlings of R. mucronata were exposed to Cu and Zn in a hydroponic experiment (200 mg Cu or Zn/L in 1/4× Hoagland solution containing 8‰ NaCl, single addition). We found that both trace metals were largely accumulated in the roots. Only Cu-treated seedlings showed a decrease in the photosynthetic efficiency, in line with observed toxicity symptoms (i.e. bent stems and slight wilting of leaves). Metal accumulation, however, did not induce oxidative stress in the roots as indicated by similar level of total reactive species and lipid peroxidation across treatments. The GSH content in the roots exposed to Cu was significantly reduced while no change was observed in Zn-exposed roots. Coordinated semi-quantitative PCR and RT-qPCR revealed pcs down-regulation in Cu-treated roots, whereas Zn-treated roots showed a down-regulation on day 1 and a subsequent recovery on day 5. Failure of detoxification and sequestration of excess Cu due to GSH limitation and down-regulation of pcs may lead to the phytotoxic effects observed in Cu-treated plants. Our results suggest that both GSH and PC play an important role in trace metal tolerance in R. mucronata seedlings.
Collapse
Affiliation(s)
- Aekkaraj Nualla-Ong
- Faculty of Medical Technology, Prince of Songkla University, Thailand; Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Thailand
| | - Amornrat Phongdara
- Faculty of Medical Technology, Prince of Songkla University, Thailand; Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Thailand
| | - Pimchanok Buapet
- Plant Physiology Laboratory, Division of Biological Science, Faculty of Science, Prince of Songkla University, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Thailand.
| |
Collapse
|
23
|
Xiong D, Nadal M. Linking water relations and hydraulics with photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:800-815. [PMID: 31677190 DOI: 10.1111/tpj.14595] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 05/28/2023]
Abstract
For land plants, water is the principal governor of growth. Photosynthetic performance is highly dependent on the stable and suitable water status of leaves, which is balanced by the water transport capacity, the water loss rate as well as the water capacitance of the plant. This review discusses the links between leaf water status and photosynthesis, specifically focussing on the coordination of CO2 and water transport within leaves, and the potential role of leaf capacitance and elasticity on CO2 and water transport.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Institute of Agro-Environmental Research and Water Economy (INAGEA), Carretera de Valldemossa, 07122, Palma, Spain
| |
Collapse
|
24
|
Fuenzalida TI, Bryant CJ, Ovington LI, Yoon HJ, Oliveira RS, Sack L, Ball MC. Shoot surface water uptake enables leaf hydraulic recovery in Avicennia marina. THE NEW PHYTOLOGIST 2019; 224:1504-1511. [PMID: 31419324 DOI: 10.1111/nph.16126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/11/2019] [Indexed: 05/08/2023]
Abstract
The significance of shoot surface water uptake (SSWU) has been debated, and it would depend on the range of conditions under which it occurs. We hypothesized that the decline of leaf hydraulic conductance (Kleaf ) in response to dehydration may be recovered through SSWU, and that the hydraulic conductance to SSWU (Ksurf ) declines with dehydration. We quantified effects of leaf dehydration on Ksurf and effects of SSWU on recovery of Kleaf in dehydrated leaves of Avicennia marina. SSWU led to overnight recovery of Kleaf , with recovery retracing the same path as loss of Kleaf in response to dehydration. SSWU declined with dehydration. By contrast, Ksurf declined with rehydration time but not with dehydration. Our results showed a role of SSWU in the recovery of leaf hydraulic conductance and revealed that SSWU is sensitive to leaf hydration status. The prevalence of SSWU in vegetation suggests an important role for atmospheric water sources in maintenance of leaf hydraulic function, with implications for plant responses to changing environments.
Collapse
Affiliation(s)
- Tomás I Fuenzalida
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Callum J Bryant
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Leuwin I Ovington
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hwan-Jin Yoon
- Statistical Consulting Unit, The Australian National University, Acton, ACT, 2601, Australia
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP 6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
25
|
Schreel JDM, Van de Wal BAE, Hervé-Fernandez P, Boeckx P, Steppe K. Hydraulic redistribution of foliar absorbed water causes turgor-driven growth in mangrove seedlings. PLANT, CELL & ENVIRONMENT 2019; 42:2437-2447. [PMID: 30953380 DOI: 10.1111/pce.13556] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Although foliar water uptake (FWU) has been shown in mature Avicennia marina trees, the importance for its seedlings remains largely unknown. A series of experiments were therefore performed using artificial rainfall events in a greenhouse environment to assess the ecological implications of FWU in A. marina seedlings. One-hour artificial rainfall events resulted in an increased leaf water potential, a reversed sap flow, and a rapid diameter increment signifying a turgor-driven growth of up to 30.1 ± 5.4 μm. Furthermore, the application of an artificial rainfall event with deuterated water showed that the amount of water absorbed by the leaves and transported to the stem was directly and univocally correlated to the observed growth spurts. The observations in this process-based study show that FWU is an important water acquisition mechanism under certain circumstances and might be of ecological importance for the establishment of A. marina seedlings. Distribution of mangrove trees might hence be more significantly disturbed by climate change-driven changes in rainfall patterns than previously assumed.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bart A E Van de Wal
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Pedro Hervé-Fernandez
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
- Isotope Bioscience Laboratory (ISOFYS), Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
26
|
Hilty J, Pook C, Leuzinger S. Water relations determine short time leaf growth patterns in the mangrove Avicennia marina (Forssk.) Vierh. PLANT, CELL & ENVIRONMENT 2019; 42:527-535. [PMID: 30171613 DOI: 10.1111/pce.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
High-resolution leaf growth is rarely studied despite its importance as a metric for plant performance and resource use efficiency. This is in part due to methodological challenges. Here, we present a method for in situ leaf growth measurements in a natural environment. We measured instantaneous leaf growth on a mature Avicennia marina subsp. australasica tree over several weeks. We measured leaf expansion by taking time-lapse images and analysing them using marker tracking software. A custom-made instrument was designed to enable long-term field studies. We detected a distinct diel growth pattern with leaf area shrinkage in the morning and leaf expansion in the afternoon and at night. On average, the observed daily shrinkage was 37% of the net growth. Most of the net growth occurred at night. Diel leaf area shrinkage and recovery continued after growth cessation. The amount of daily growth was negatively correlated with shrinkage, and instantaneous leaf growth and shrinkage were correlated with changes in leaf turgor. We conclude that, at least in this tree species, instantaneous leaf growth patterns are very strongly linked to, and most likely driven by, leaf water relations, suggesting decoupling of short-term growth patterns from carbon assimilation.
Collapse
Affiliation(s)
- Jonas Hilty
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Chris Pook
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
27
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
28
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
29
|
Liang J, Wright JS, Cui X, Sternberg L, Gan W, Lin G. Leaf anatomical traits determine the 18 O enrichment of leaf water in coastal halophytes. PLANT, CELL & ENVIRONMENT 2018; 41:2744-2757. [PMID: 29996176 DOI: 10.1111/pce.13398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Anatomical adaptations to high-salinity environments in mangrove leaves may be recorded in leaf water isotopes. Recent studies observed lower 18 O enrichment (ΔL ) of leaf water with respect to source water in three mangrove species relative to adjacent freshwater trees, but the factors that govern this phenomenon remain unclear. To resolve this issue, we investigated leaf traits and ΔL in 15 species of true mangrove plants, 14 species of adjacent freshwater trees, and 4 species of semi-mangrove plants at five study sites along south-eastern coast of China. Our results confirm that ΔL was generally 3-4‰ lower for mangrove species than for adjacent freshwater or semi-mangrove species. We hypothesized that higher leaf water content (LWC) and lower leaf stomatal density (LS) both played important roles in reducing ΔL in mangroves relative to nearby freshwater plants. Both differences acted to elongate effective leaf mixing length (L) in mangroves by about 200% and lower stomatal conductance by about 30%. Péclet models based on both LWC and LS could accurately predict ΔL . Our findings highlight the potential species-specific anatomical determinants of ΔL (or L), which has important implications for the interpretation of environmental information from metabolites produced by leaf water isotopes in palaeoclimate research.
Collapse
Affiliation(s)
- Jie Liang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Joint Center for Global Change Studies, Beijing, China
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jonathan S Wright
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Joint Center for Global Change Studies, Beijing, China
| | - Xiaowei Cui
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Joint Center for Global Change Studies, Beijing, China
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Leonel Sternberg
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Weixiu Gan
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Joint Center for Global Change Studies, Beijing, China
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Guanghui Lin
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Joint Center for Global Change Studies, Beijing, China
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
30
|
Osland MJ, Gabler CA, Grace JB, Day RH, McCoy ML, McLeod JL, From AS, Enwright NM, Feher LC, Stagg CL, Hartley SB. Climate and plant controls on soil organic matter in coastal wetlands. GLOBAL CHANGE BIOLOGY 2018; 24:5361-5379. [PMID: 29957880 DOI: 10.1111/gcb.14376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate-plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services.
Collapse
Affiliation(s)
- Michael J Osland
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Christopher A Gabler
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Brownsville, Texas
| | - James B Grace
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Richard H Day
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Meagan L McCoy
- University of Louisiana at Lafayette, Lafayette, Louisiana
| | | | - Andrew S From
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Nicholas M Enwright
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Laura C Feher
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Camille L Stagg
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| | - Stephen B Hartley
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana
| |
Collapse
|
31
|
Hmidi D, Abdelly C, Athar HUR, Ashraf M, Messedi D. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1017-1033. [PMID: 30425420 PMCID: PMC6214428 DOI: 10.1007/s12298-018-0601-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 05/08/2023]
Abstract
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | | | - Dorsaf Messedi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
32
|
Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. TREE PHYSIOLOGY 2018; 38:1605-1622. [PMID: 29917117 DOI: 10.1093/treephys/tpy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 05/25/2023]
Affiliation(s)
- Zhi-jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, PR China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Gui-feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Mei-rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Zan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Xue-yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Hai-lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
33
|
Feher LC, Osland MJ, Griffith KT, Grace JB, Howard RJ, Stagg CL, Enwright NM, Krauss KW, Gabler CA, Day RH, Rogers K. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 2017. [DOI: 10.1002/ecs2.1956] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Laura C. Feher
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Michael J. Osland
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Kereen T. Griffith
- Griffith Consulting Services at U.S. Geological Survey; Lafayette Louisiana 70506 USA
| | - James B. Grace
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Rebecca J. Howard
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Camille L. Stagg
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Nicholas M. Enwright
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Ken W. Krauss
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Christopher A. Gabler
- School of Earth, Environmental, and Marine Sciences; University of Texas Rio Grande Valley; Brownsville Texas 78520 USA
| | - Richard H. Day
- U.S. Geological Survey; Wetland and Aquatic Research Center; Lafayette Louisiana 70506 USA
| | - Kerrylee Rogers
- School of Earth and Environmental Sciences; University of Wollongong; Wollongong New South Wales 2522 Australia
| |
Collapse
|