1
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
3
|
Garcia-Gonzalez I, Rocha SF, Hamidi A, Garcia-Ortega L, Regano A, Sanchez-Muñoz M, Lytvyn M, Garcia-Cabero A, Roig-Soucase S, Schoofs H, Castro M, Sabata H, Potente M, Graupera M, Makinen T, Benedito R. iSuRe-HadCre is an essential tool for effective conditional genetics. Nucleic Acids Res 2024; 52:e56. [PMID: 38850155 PMCID: PMC11260470 DOI: 10.1093/nar/gkae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Methods for modifying gene function at high spatiotemporal resolution in mice have revolutionized biomedical research, with Cre-loxP being the most widely used technology. However, the Cre-loxP technology has several drawbacks, including weak activity, leakiness, toxicity, and low reliability of existing Cre-reporters. This is mainly because different genes flanked by loxP sites (floxed) vary widely in their sensitivity to Cre-mediated recombination. Here, we report the generation, validation, and utility of iSuRe-HadCre, a new dual Cre-reporter and deleter mouse line that avoids these drawbacks. iSuRe-HadCre achieves this through a novel inducible dual-recombinase genetic cascade that ensures that cells expressing a fluorescent reporter had only transient Cre activity, that is nonetheless sufficient to effectively delete floxed genes. iSuRe-HadCre worked reliably in all cell types and for the 13 floxed genes tested. This new tool will enable the precise, efficient, and trustworthy analysis of gene function in entire mouse tissues or in single cells.
Collapse
Affiliation(s)
- Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana F Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Anahita Hamidi
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lourdes Garcia-Ortega
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alvaro Regano
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Maria S Sanchez-Muñoz
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Aroa Garcia-Cabero
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergi Roig-Soucase
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hans Schoofs
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Marco Castro
- Angiogenesis & Metabolism Laboratory, Center of Vascular Biomedicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Helena Sabata
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Center of Vascular Biomedicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Taija Makinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
- Translational Cancer Medicine Program, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
4
|
Hosur V, Erhardt V, Hartig E, Lorenzo K, Megathlin H, Tarchini B. Large-Scale Genome-Wide Optimization and Prediction of the Cre Recombinase System for Precise Genome Manipulation in Mice. RESEARCH SQUARE 2024:rs.3.rs-4595968. [PMID: 39011108 PMCID: PMC11247941 DOI: 10.21203/rs.3.rs-4595968/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The Cre-Lox recombination system is a powerful tool in mouse genetics, offering spatial-temporal control over gene expression and facilitating the large-scale generation of conditional knockout mice. Its versatility also extends to other research models, such as rats, pigs, and zebrafish. However, the Cre-Lox technology presents a set of challenges that includes high costs, a time-intensive process, and the occurrence of unpredictable recombination events, which can lead to unexpected phenotypic outcomes. To better understand factors affecting recombination, we embarked on a systematic and genome-wide analysis of Cre-mediated recombination in mice. To ensure uniformity and reproducibility, we generated 11 novel strains with conditional alleles at the ROSA26 locus, utilizing a single inbred mouse strain background, C57BL/6J. We examined several factors influencing Cre-recombination, including the inter-loxP distance, mutant loxP sites, the zygosity of the conditional alleles, chromosomal location, and the age of the breeders. We discovered that the selection of the Cre-driver strain profoundly impacts recombination efficiency. We also found that successful and complete recombination is best achieved when loxP sites are spaced between 1 to 4 kb apart, with mutant loxP sites facilitating recombination at distances of 1 to 3 kb. Furthermore, we demonstrate that complete recombination does not occur at an inter-loxP distance of ≥ 15 kb with wildtype loxP sites, nor at a distance of ≥ 7 kb with mutant lox71/66 sites. Interestingly, the age of the Cre-driver mouse at the time of breeding emerged as a critical factor in recombination efficiency, with best results observed between 8 and 20 weeks old. Moreover, crossing heterozygous floxed alleles with the Cre-driver strain resulted in more efficient recombination than using homozygous floxed alleles. Lastly, maintaining an inter-loxP distance of 4 kb or less ensures efficient recombination of the conditional allele, regardless of the chromosomal location. While CRISPR/Cas has revolutionized genome editing in mice, Cre-Lox technology remains a cornerstone for the generation of sophisticated alleles and for precise control of gene expression in mice. The knowledge gained here will enable investigators to select a Cre-Lox approach that is most efficient for their desired outcome in the generation of both germline and non-germline mouse models of human disease, thereby reducing time and cost of Cre-Lox technology-mediated genome modification.
Collapse
Affiliation(s)
| | | | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics
| | | | | | | |
Collapse
|
5
|
Kojima L, Seiriki K, Rokujo H, Nakazawa T, Kasai A, Hashimoto H. Optimization of AAV vectors for transactivator-regulated enhanced gene expression within targeted neuronal populations. iScience 2024; 27:109878. [PMID: 38799556 PMCID: PMC11126825 DOI: 10.1016/j.isci.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations). We established this strategy in oxytocinergic neurons and showed that the TAREGET enabled sufficient gene expression to label long-projecting axons in wild-type mice. Its application to other cell types, including serotonergic and dopaminergic neurons, was also demonstrated. These results demonstrate that optimization of AAV expression cassettes can improve the specificity and efficiency of cell-type-specific gene expression and that TAREGET can renew previously established cell-type-specific promoters with improved performance.
Collapse
Affiliation(s)
- Leo Kojima
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Rokujo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kasai
- Systems Neuropharmacology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Erhardt V, Hartig E, Lorenzo K, Megathlin HR, Tarchini B, Hosur V. Large-Scale Genome-Wide Optimization and Prediction of the Cre Recombinase System for Precise Genome Manipulation in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599022. [PMID: 38948742 PMCID: PMC11212873 DOI: 10.1101/2024.06.14.599022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Cre-Lox recombination system is a powerful tool in mouse genetics, offering spatial-temporal control over gene expression and facilitating the large-scale generation of conditional knockout mice. Its versatility also extends to other research models, such as rats, pigs, and zebrafish. However, the Cre-Lox technology presents a set of challenges that includes high costs, a time-intensive process, and the occurrence of unpredictable recombination events, which can lead to unexpected phenotypic outcomes. To better understand factors affecting recombination, we embarked on a systematic and genome-wide analysis of Cre-mediated recombination in mice. To ensure uniformity and reproducibility, we generated 11 novel strains with conditional alleles at the ROSA26 locus, utilizing a single inbred mouse strain background, C57BL/6J. We examined several factors influencing Cre-recombination, including the inter-loxP distance, mutant loxP sites, the zygosity of the conditional alleles, chromosomal location, and the age of the breeders. We discovered that the selection of the Cre-driver strain profoundly impacts recombination efficiency. We also found that successful and complete recombination is best achieved when loxP sites are spaced between 1 to 4 kb apart, with mutant loxP sites facilitating recombination at distances of 1 to 3 kb. Furthermore, we demonstrate that complete recombination does not occur at an inter-loxP distance of ≥ 15 kb with wildtype loxP sites, nor at a distance of ≥ 7 kb with mutant lox71/66 sites. Interestingly, the age of the Cre-driver mouse at the time of breeding emerged as a critical factor in recombination efficiency, with best results observed between 8 and 20 weeks old. Moreover, crossing heterozygous floxed alleles with the Cre-driver strain resulted in more efficient recombination than using homozygous floxed alleles. Lastly, maintaining an inter-loxP distance of 4 kb or less ensures efficient recombination of the conditional allele, regardless of the chromosomal location. While CRISPR/Cas has revolutionized genome editing in mice, Cre-Lox technology remains a cornerstone for the generation of sophisticated alleles and for precise control of gene expression in mice. The knowledge gained here will enable investigators to select a Cre-Lox approach that is most efficient for their desired outcome in the generation of both germline and non-germline mouse models of human disease, thereby reducing time and cost of Cre-Lox technology-mediated genome modification.
Collapse
Affiliation(s)
- Valerie Erhardt
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Tufts University School of Medicine, Boston, MA
| | - Kristian Lorenzo
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- The Roux Institute at Northeastern University, Portland, ME
| | - Hannah R Megathlin
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Graduate School of Biomedical Sciences and Engineering, UMaine, Orono, ME
| | - Basile Tarchini
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Tufts University School of Medicine, Boston, MA
| | - Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| |
Collapse
|
7
|
Zierke L, John D, Gischke M, Tran QT, Sendler M, Weiss FU, Bornscheuer UT, Ritter C, Lerch MM, Aghdassi AA. Initiation of acute pancreatitis in mice is independent of fusion between lysosomes and zymogen granules. Cell Mol Life Sci 2024; 81:207. [PMID: 38709385 DOI: 10.1007/s00018-024-05247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.
Collapse
Affiliation(s)
- Lukas Zierke
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Daniel John
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Marcel Gischke
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Quang Trung Tran
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
- Department of Internal Medicine, Hue University, Hue, Vietnam
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Christoph Ritter
- Department of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany.
| |
Collapse
|
8
|
Stea SG, Grisel JE. β-Endorphin influences sedative and ataxic effects of alcohol. Alcohol 2024; 115:69-77. [PMID: 37741556 DOI: 10.1016/j.alcohol.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Beta-endorphin (β-E) is an opioid peptide linked to the behavioral effects of ethanol. For example, β-E provides negative feedback to inhibit the hypothalamic-pituitary-adrenal (HPA) stress axis, and neuroadaptation of this system to ethanol may facilitate sex differences in disordered drinking. Locomotor sensitivity to ethanol may also influence the risk for addiction; however, the role of β-E in psychomotor effects of ethanol is not fully understood. We examined the role of β-E and sex on locomotor effects of ethanol using adult male and female wild-type C57BL/6J and β-E deficient B6.129S2-Pomctm1Low/J mice in a parallel rod floor apparatus following 0.75 or 2.0 g/kg ethanol. Beginning 15 min after intraperitoneal injection, we recorded foot slips, distance traveled, slips per meter, first instance of immobility, and total time spent off-balance (lying on the floor) over 15 min, and collected blood for analysis of ethanol concentration 60 min after injection. Overall, β-E deficient mice were more sedated and ataxic following ethanol; at the lower dose they slipped more frequently and had a higher rate of slips per meter traveled. At the higher dose, β-E deficient mice were predominantly sedated, slipping less frequently, and traveling less, as well as spending more time off-balance and becoming immobile sooner. Genotype interacted with sex in that male β-E deficient mice slipped more frequently than their female counterparts, suggesting that β-E may elicit sex-dependent effects of ethanol-induced ataxia. Blood ethanol concentration did not differ between any group, suggesting that behavioral differences result from altered sensitivity to ethanol. Our data support the contention that β-E modulates the locomotor effects of ethanol and may influence ataxia in a sex-dependent manner. These findings help elucidate the role of β-E in diverging behavioral responses to ethanol and may aid the development of targeted treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Samuel G Stea
- Department of Psychology & Neuroscience Program, Bucknell University, Lewisburg, PA 17837, United States
| | - Judith E Grisel
- Department of Psychology & Neuroscience Program, Bucknell University, Lewisburg, PA 17837, United States.
| |
Collapse
|
9
|
Chiu YT, Deutch AY, Wang W, Schmitz GP, Huang KL, Kocak DD, Llorach P, Bowyer K, Liu B, Sciaky N, Hua K, Chen C, Mott SE, Niehaus J, DiBerto JF, English J, Walsh JJ, Scherrer G, Herman MA, Wu Z, Wetsel WC, Roth BL. A suite of engineered mice for interrogating psychedelic drug actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559347. [PMID: 37808655 PMCID: PMC10557740 DOI: 10.1101/2023.09.25.559347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.
Collapse
Affiliation(s)
- Yi-Ting Chiu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ariel Y. Deutch
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Wei Wang
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Karen Lu Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - D. Dewran Kocak
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Pierre Llorach
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kasey Bowyer
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kunjie Hua
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah E. Mott
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jesse Niehaus
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Justin English
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jessica J. Walsh
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- New York Stem Cell Foundation ‒ Robertson Investigator, Chapel Hill, NC 27599, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhuhao Wu
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Bohic M, Upadhyay A, Eisdorfer JT, Keating J, Simon RC, Briones BA, Azadegan C, Nacht HD, Oputa O, Martinez AM, Bethell BN, Gradwell MA, Romanienko P, Ramer MS, Stuber GD, Abraira VE. A new Hoxb8FlpO mouse line for intersectional approaches to dissect developmentally defined adult sensorimotor circuits. Front Mol Neurosci 2023; 16:1176823. [PMID: 37603775 PMCID: PMC10437123 DOI: 10.3389/fnmol.2023.1176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023] Open
Abstract
Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop. This study establishes a new workflow for intersectional mouse-viral strategies to dissect adult spinal function based on developmental lineages in a modular fashion. To restrict manipulations to the spinal cord, we generate a brain-sparing Hoxb8FlpO mouse line restricting Flp recombinase expression to caudal tissue. Recapitulating endogenous Hoxb8 gene expression, Flp-dependent reporter expression is present in the caudal embryo starting day 9.5. This expression restricts Flp activity in the adult to the caudal brainstem and below. Hoxb8FlpO heterozygous and homozygous mice do not develop any of the sensory or locomotor phenotypes evident in Hoxb8 heterozygous or mutant animals, suggesting normal developmental function of the Hoxb8 gene and protein in Hoxb8FlpO mice. Compared to the variability of brain recombination in available caudal Cre and Flp lines, Hoxb8FlpO activity is not present in the brain above the caudal brainstem, independent of mouse genetic background. Lastly, we combine the Hoxb8FlpO mouse line with dorsal horn developmental lineage Cre mouse lines to express GFP in developmentally determined dorsal horn populations. Using GFP-dependent Cre recombinase viruses and Cre recombinase-dependent inhibitory chemogenetics, we target developmentally defined lineages in the adult. We show how developmental knock-out versus transient adult silencing of the same ROR𝛃 lineage neurons affects adult sensorimotor behavior. In summary, this new mouse line and viral approach provides a blueprint to dissect adult somatosensory circuit function using Cre/Flp genetic tools to target spinal cord interneurons based on genetic lineage.
Collapse
Affiliation(s)
- Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- Neuroscience PhD Program at Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Jaclyn T. Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- School of Medicine, Oregon Health and Science University, Portland, OR, United States
- M.D./PhD Program in Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Brandy A. Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Chloe Azadegan
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Hannah D. Nacht
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Olisemeka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Alana M. Martinez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Bridget N. Bethell
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Mark A. Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Victoria E. Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
11
|
Warthi G, Faulkner JL, Doja J, Ghanam AR, Gao P, Yang AC, Slivano OJ, Barris CT, Kress TC, Zawieja SD, Griffin SH, Xie X, Ashworth A, Christie CK, Bryant WB, Kumar A, Davis MJ, Long X, Gan L, de Chantemèle EJB, Lyu Q, Miano JM. Generation and Comparative Analysis of an Itga8-CreER T2 Mouse with Preferential Activity in Vascular Smooth Muscle Cells. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1084-1100. [PMID: 36424917 PMCID: PMC9681021 DOI: 10.1038/s44161-022-00162-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022]
Abstract
All current smooth muscle cell (SMC) Cre mice similarly recombine floxed alleles in vascular and visceral SMCs. Here, we present an Itga8-CreER T2 knock-in mouse and compare its activity with a Myh11-CreER T2 mouse. Both Cre drivers demonstrate equivalent recombination in vascular SMCs. However, Myh11-CreER T2 mice, but not Itga8-CreER T2 mice, display high activity in visceral SMC-containing tissues such as intestine, show early tamoxifen-independent activity, and produce high levels of CreERT2 protein. Whereas Myh11-CreER T2 -mediated knockout of serum response factor (Srf) causes a lethal intestinal phenotype precluding analysis of the vasculature, loss of Srf with Itga8-CreER T2 (Srf Itga8 ) yields viable mice with no evidence of intestinal pathology. Male and female Srf Itga8 mice exhibit vascular contractile incompetence, and angiotensin II causes elevated blood pressure in wild type, but not Srf Itga8 , male mice. These findings establish the Itga8-CreER T2 mouse as an alternative to existing SMC Cre mice for unfettered phenotyping of vascular SMCs following selective gene loss.
Collapse
Affiliation(s)
- Ganesh Warthi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jessica L. Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jaser Doja
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Amr R. Ghanam
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Pan Gao
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Allison C. Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Orazio J. Slivano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Candee T. Barris
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Scott D. Zawieja
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Susan H. Griffin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Xiaoling Xie
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158
| | - Christine K. Christie
- Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William B. Bryant
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Ajay Kumar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Michael J. Davis
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Xiaochun Long
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | | | - Qing Lyu
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Biomedical and Health Institute, Chongqing Institute of Green and Intelligence Technology, Chongqing, China 400714
- Chongqing General Hospital, Chongqing, China 401147
| | - Joseph M. Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| |
Collapse
|
12
|
Bauer US, Fiskum V, Nair RR, van de Wijdeven R, Kentros C, Sandvig I, Sandvig A. Validation of Functional Connectivity of Engineered Neuromuscular Junction With Recombinant Monosynaptic Pseudotyped ΔG-Rabies Virus Tracing. Front Integr Neurosci 2022; 16:855071. [PMID: 35669734 PMCID: PMC9163662 DOI: 10.3389/fnint.2022.855071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Current preclinical models of neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), can significantly benefit from in vitro neuroengineering approaches that enable the selective study and manipulation of neurons, networks, and functional units of interest. Custom-designed compartmentalized microfluidic culture systems enable the co-culture of different relevant cell types in interconnected but fluidically isolated microenvironments. Such systems can thus be applied for ALS disease modeling, as they enable the recapitulation and study of neuromuscular junctions (NMJ) through co-culturing of motor neurons and muscle cells in separate, but interconnected compartments. These in vitro systems are particularly relevant for investigations of mechanistic aspects of the ALS pathological cascade in engineered NMJ, as progressive loss of NMJ functionality may constitute one of the hallmarks of disease related pathology at early onset, in line with the dying back hypothesis. In such models, ability to test whether motor neuron degeneration in ALS starts at the nerve terminal or at the NMJ and retrogradely progresses to the motor neuron cell body largely relies on robust methods for verification of engineered NMJ functionality. In this study, we demonstrate the functionality of engineered NMJs within a microfluidic chip with a differentially perturbable microenvironment using a designer pseudotyped ΔG-rabies virus for retrograde monosynaptic tracing.
Collapse
Affiliation(s)
- Ulrich Stefan Bauer
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rajeevkumar Raveendran Nair
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- *Correspondence: Axel Sandvig,
| |
Collapse
|
13
|
Lesciotto KM, Tomlinson L, Leonard S, Richtsmeier JT. Embryonic and Early Postnatal Cranial Bone Volume and Tissue Mineral Density Values for C57BL/6J Laboratory Mice. Dev Dyn 2022; 251:1196-1208. [PMID: 35092111 PMCID: PMC9250594 DOI: 10.1002/dvdy.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high‐resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD). Results Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest‐derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7. Conclusions These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating “control” data from mice that are presented as “unaffected” littermates, particularly when carrying a single copy of a cre‐recombinase gene. Higher average volume and density of cranial neural crest‐derived and intramembranously‐forming bones during embryonic development. Higher average density in bones of the braincase floor during early postnatal development. Ontogenetic data on cranial bone volume and TMD serve as a reference standard for mice bred on a C57BL/6J genetic background.
Collapse
Affiliation(s)
- Kate M Lesciotto
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | | | - Steven Leonard
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Perry MN, Smith CM, Onda H, Ringwald M, Murray SA, Smith CL. Annotated expression and activity data for murine recombinase alleles and transgenes: the CrePortal resource. Mamm Genome 2021; 33:55-65. [PMID: 34482425 PMCID: PMC8913597 DOI: 10.1007/s00335-021-09909-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Recombinase alleles and transgenes can be used to facilitate spatio-temporal specificity of gene disruption or transgene expression. However, the versatility of this in vivo recombination system relies on having detailed and accurate characterization of recombinase expression and activity to enable selection of the appropriate allele or transgene. The CrePortal (http://www.informatics.jax.org/home/recombinase) leverages the informatics infrastructure of Mouse Genome Informatics to integrate data from the scientific literature, direct data submissions from the scientific community at-large, and from major projects developing new recombinase lines and characterizing recombinase expression and specificity patterns. Searching the CrePortal by recombinase activity or specific recombinase gene driver provides users with a recombinase alleles and transgenes activity tissue summary and matrix comparison of gene expression and recombinase activity with links to generation details, a recombinase activity grid, and associated phenotype annotations. Future improvements will add cell type-based activity annotations. The CrePortal provides a comprehensive presentation of recombinase allele and transgene data to assist researchers in selection of the recombinase allele or transgene based on where and when recombination is desired.
Collapse
Affiliation(s)
| | | | - Hiroaki Onda
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | | |
Collapse
|
15
|
Sailer S, Coassin S, Lackner K, Fischer C, McNeill E, Streiter G, Kremser C, Maglione M, Green CM, Moralli D, Moschen AR, Keller MA, Golderer G, Werner-Felmayer G, Tegeder I, Channon KM, Davies B, Werner ER, Watschinger K. When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping. Cell Biosci 2021; 11:54. [PMID: 33726865 PMCID: PMC7962373 DOI: 10.1186/s13578-021-00566-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but also outside. Only the genomes of few engineered mouse strains have been sequenced. Since the role of the ether-lipid cleaving enzyme alkylglycerol monooxygenase (AGMO) in physiology and pathophysiology remains enigmatic, we created a knockout mouse model for AGMO using EUCOMM stem cells but unforeseen genotyping issues that did not agree with Mendelian distribution and enzyme activity data prompted an in-depth genomic validation of the mouse model. RESULTS We report a gene segment tandem duplication event that occurred during the generation of an Agmo knockout-first allele by homologous recombination. Only low homology was seen between the breakpoints. While a single copy of the recombinant 18 kb cassette was integrated correctly around exon 2 of the Agmo gene, whole genome nanopore sequencing revealed a 94 kb duplication in the Agmo locus that contains Agmo wild-type exons 1-3. The duplication fooled genotyping by routine PCR, but could be resolved using qPCR-based genotyping, targeted locus amplification sequencing and nanopore sequencing. Despite this event, this Agmo knockout mouse model lacks AGMO enzyme activity and can therefore be used to study its physiological role. CONCLUSIONS A duplication event occurred at the exact locus of the homologous recombination and was not detected by conventional quality control filters such as FISH or long-range PCR over the recombination sites. Nanopore sequencing provides a cost convenient method to detect such underrated off-target effects, suggesting its use for additional quality assessment of gene editing in mice and also other model organisms.
Collapse
Affiliation(s)
- Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Caroline Fischer
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany
| | - Eileen McNeill
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gertraud Streiter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Kremser
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Catherine M Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany
| | - Keith M Channon
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| |
Collapse
|
16
|
Miguel V, Tituaña J, Herrero JI, Herrero L, Serra D, Cuevas P, Barbas C, Puyol DR, Márquez-Expósito L, Ruiz-Ortega M, Castillo C, Sheng X, Susztak K, Ruiz-Canela M, Salas-Salvadó J, González MAM, Ortega S, Ramos R, Lamas S. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Invest 2021; 131:140695. [PMID: 33465052 DOI: 10.1172/jci140695] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) remains a major epidemiological, clinical, and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) present a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine whether gain of function in FAO (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1A (CPT1A) in TECs. Cpt1a-knockin (CPT1A-KI) mice subjected to 3 models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy [FAN], and adenine-induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted proinflammatory response, and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restored oxidative metabolism and mitochondrial number and enhanced bioenergetics, increasing palmitate oxidation and ATP levels, changes that were also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients showed decreased CPT1 levels and increased accumulation of short- and middle-chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Cuevas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, Spain
| | - Diego Rodríguez Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias," IRYCIS, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Laura Márquez-Expósito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory. Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory. Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Carolina Castillo
- University Hospital "Príncipe de Asturias", Alcalá de Henares, Madrid, Spain
| | - Xin Sheng
- Division of Nephrology, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miguel Ruiz-Canela
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), Pamplona, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
| | - Miguel A Martínez González
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Health Research Institute of Navarra), Pamplona, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sagrario Ortega
- Transgenics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| |
Collapse
|
17
|
Gunne S, Heinicke U, Parnham MJ, Laux V, Zacharowski K, von Knethen A. Nrf2-A Molecular Target for Sepsis Patients in Critical Care. Biomolecules 2020; 10:biom10121688. [PMID: 33348637 PMCID: PMC7766194 DOI: 10.3390/biom10121688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (Nrf2) is an established master regulator of the anti-oxidative and detoxifying cellular response. Thus, a role in inflammatory diseases associated with the generation of large amounts of reactive oxygen species (ROS) seems obvious. In line with this, data obtained in cell culture experiments and preclinical settings have shown that Nrf2 is important in regulating target genes that are necessary to ensure cellular redox balance. Additionally, Nrf2 is involved in the induction of phase II drug metabolizing enzymes, which are important both in degrading and converting drugs into active forms, and into putative carcinogens. Therefore, Nrf2 has also been implicated in tumorigenesis. This must be kept in mind when new therapy approaches are planned for the treatment of sepsis. Therefore, this review highlights the function of Nrf2 in sepsis with a special focus on the translation of rodent-based results into sepsis patients in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Sandra Gunne
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Andreas von Knethen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
- Correspondence: ; Tel.: +49-69-6301-87824
| |
Collapse
|
18
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Giraldo G, Janus C. Phenotypic evaluation of a childhood-onset parkinsonism-dystonia mouse model with inherent postural abnormalities. Brain Res Bull 2020; 166:54-63. [PMID: 33147520 DOI: 10.1016/j.brainresbull.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Mouse models that replicate facets of human neurological diseases are often used at the pre-clinical stage to better understand the underlying mechanisms of a disease and test the target engagement of potential therapeutic interventions. We recently characterized a mouse model of childhood-onset parkinsonism-dystonia, a disease caused by a homozygous loss-of-function mutation in the SLC39A14 gene. The disease manifests itself phenotypically by impairments in locomotor behaviour and postural abnormalities. Our initial characterization of the model revealed that the Slc39a14-/- mice showed altered Mn homeostasis and compromised locomotor performance in vertical pole-descending, horizontal beam-traversing, and rotarod tests (Jenkitkasemwong et al., 2018). However, some of the mice also displayed torticollis and Straub tail. In this study, we investigated whether these postural abnormalities affected the performance in the above motility tests and consequently, biased and compromised the external validity of reported abnormal locomotor profiles. Our analyses showed that the Slc39a14-/- mice displaying torticollis and/or Straub tail had tests scores comparable to scores of their counterparts that never displayed these postural abnormalities. The z-score general index of performance revealed that the Slc39a14-/- model presents a complex pathological motor phenotype relevant to the complexity of phenotypes identified in childhood-onset parkinsonism-dystonia.
Collapse
Affiliation(s)
- Genesys Giraldo
- Department of Neuroscience, and CTRND, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Christopher Janus
- Department of Neuroscience, and CTRND, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Joye DAM, Rohr KE, Keller D, Inda T, Telega A, Pancholi H, Carmona-Alcocer V, Evans JA. Reduced VIP Expression Affects Circadian Clock Function in VIP-IRES-CRE Mice (JAX 010908). J Biol Rhythms 2020; 35:340-352. [PMID: 32460660 DOI: 10.1177/0748730420925573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian rhythms are programmed by the suprachiasmatic nucleus (SCN), which relies on neuropeptide signaling to maintain daily timekeeping. Vasoactive intestinal polypeptide (VIP) is critical for SCN function, but the precise role of VIP neurons in SCN circuits is not fully established. To interrogate their contribution to SCN circuits, VIP neurons can be manipulated specifically using the DNA-editing enzyme Cre recombinase. Although the Cre transgene is assumed to be inert by itself, we find that VIP expression is reduced in both heterozygous and homozygous adult VIP-IRES-Cre mice (JAX 010908). Compared with wild-type mice, homozygous VIP-Cre mice display faster reentrainment and shorter free-running period but do not become arrhythmic in constant darkness. Consistent with this phenotype, homozygous VIP-Cre mice display intact SCN PER2::LUC rhythms, albeit with altered period and network organization. We present evidence that the ability to sustain molecular rhythms in the VIP-Cre SCN is not due to residual VIP signaling; rather, arginine vasopressin signaling helps to sustain SCN function at both intracellular and intercellular levels in this model. This work establishes that the VIP-IRES-Cre transgene interferes with VIP expression but that loss of VIP can be mitigated by other neuropeptide signals to help sustain SCN function. Our findings have implications for studies employing this transgenic model and provide novel insight into neuropeptide signals that sustain daily timekeeping in the master clock.
Collapse
Affiliation(s)
- Deborah A M Joye
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Danielle Keller
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Thomas Inda
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Adam Telega
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Harshida Pancholi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Jennifer A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Nair RR, Blankvoort S, Lagartos MJ, Kentros C. Enhancer-Driven Gene Expression (EDGE) Enables the Generation of Viral Vectors Specific to Neuronal Subtypes. iScience 2020; 23:100888. [PMID: 32087575 PMCID: PMC7033522 DOI: 10.1016/j.isci.2020.100888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/03/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Although a variety of remarkable molecular tools for studying neural circuits have recently been developed, the ability to deploy them in particular neuronal subtypes is limited by the fact that native promoters are almost never specific enough. We recently showed that one can generate transgenic mice with anatomical specificity surpassing that of native promoters by combining enhancers uniquely active in particular brain regions with a heterologous minimal promoter, an approach we call EDGE (Enhancer-Driven Gene Expression). Here we extend this strategy to the generation of viral (rAAV) vectors, showing that some EDGE rAAVs can recapitulate the specificity of the corresponding transgenic lines in wild-type animals, even of another species. This approach thus holds the promise of enabling circuit-specific manipulations in wild-type animals, not only enhancing our understanding of brain function, but perhaps one day even providing novel therapeutic avenues to approach disorders of the brain. rAAVs with enhancers unique to a brain region specify cell types of that brain region This requires viral constructs optimized to express only with enhancers One rAAV distinguishes distinct subtypes of excitatory neurons in a cortical layer The same specificity is seen in wild-type animals of at least two species
Collapse
Affiliation(s)
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway
| | - Maria Jose Lagartos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway
| | - Cliff Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway; Institute of Neuroscience, University of Oregon, Eugene OR, USA.
| |
Collapse
|
22
|
Schubert R, Herzog S, Trenholm S, Roska B, Müller DJ. Magnetically guided virus stamping for the targeted infection of single cells or groups of cells. Nat Protoc 2019; 14:3205-3219. [DOI: 10.1038/s41596-019-0221-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/02/2019] [Indexed: 01/10/2023]
|
23
|
Mark MD, Wollenweber P, Gesk A, Kösters K, Batzke K, Janoschka C, Maejima T, Han J, Deneris ES, Herlitze S. RGS2 drives male aggression in mice via the serotonergic system. Commun Biol 2019; 2:373. [PMID: 31633064 PMCID: PMC6789038 DOI: 10.1038/s42003-019-0622-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022] Open
Abstract
Aggressive behavior in our modern, civilized society is often counterproductive and destructive. Identifying specific proteins involved in the disease can serve as therapeutic targets for treating aggression. Here, we found that overexpression of RGS2 in explicitly serotonergic neurons augments male aggression in control mice and rescues male aggression in Rgs2-/- mice, while anxiety is not affected. The aggressive behavior is directly correlated to the immediate early gene c-fos induction in the dorsal raphe nuclei and ventrolateral part of the ventromedial nucleus hypothalamus, to an increase in spontaneous firing in serotonergic neurons and to a reduction in the modulatory action of Gi/o and Gq/11 coupled 5HT and adrenergic receptors in serotonergic neurons of Rgs2-expressing mice. Collectively, these findings specifically identify that RGS2 expression in serotonergic neurons is sufficient to drive male aggression in mice and as a potential therapeutic target for treating aggression.
Collapse
Affiliation(s)
- Melanie D. Mark
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Patric Wollenweber
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Annika Gesk
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katja Kösters
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katharina Batzke
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Claudia Janoschka
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640 Japan
| | - Jing Han
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Evan S. Deneris
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH USA
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
24
|
Webster JD, Santagostino SF, Foreman O. Applications and considerations for the use of genetically engineered mouse models in drug development. Cell Tissue Res 2019; 380:325-340. [DOI: 10.1007/s00441-019-03101-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
25
|
Filice F, Blum W, Lauber E, Schwaller B. Inducible and reversible silencing of the Pvalb gene in mice: An in vitro and in vivo study. Eur J Neurosci 2019; 50:2694-2706. [PMID: 30883994 DOI: 10.1111/ejn.14404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Inducible and reversible regulation of gene expression is a powerful approach for unraveling gene functions. Here, we describe the generation of a system to efficiently downregulate in a reversible and inducible manner the Pvalb gene coding for the calcium-binding protein parvalbumin (PV) in mice. We made use of an IPTG-inducible short hairpin RNA to activate Pvalb transcript knockdown and subsequently downregulate PV. The downregulation was rapidly reversed after withdrawal of IPTG. In vitro and in vivo experiments revealed a decrease in PV expression of ≥50% in the presence of IPTG and full reversibility after IPTG removal. We foresee that the tightly regulated and reversible PV downregulation in mice in vivo will provide a new tool for the control of Pvalb transcript expression in a temporal manner. Because PV protein and PVALB transcript levels were found to be lower in the brain of patients with autism spectrum disorder and schizophrenia, the novel transgenic mouse line might serve as a model to investigate the putative role of PV in these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Federica Filice
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Walter Blum
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuel Lauber
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Fernández-Chacón M, Casquero-García V, Luo W, Francesca Lunella F, Ferreira Rocha S, Del Olmo-Cabrera S, Benedito R. iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications. Nat Commun 2019; 10:2262. [PMID: 31118412 PMCID: PMC6531465 DOI: 10.1038/s41467-019-10239-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
Most biomedical research aimed at understanding gene function uses the Cre-Lox system, which consists of the Cre recombinase-dependent deletion of genes containing LoxP sites. This system enables conditional genetic modifications because the expression and activity of the recombinase Cre/CreERT2 can be regulated in space by tissue-specific promoters and in time by the ligand tamoxifen. Since the precise Cre-Lox recombination event is invisible, methods were developed to report Cre activity and are widely used. However, numerous studies have shown that expression of a given Cre activity reporter cannot be assumed to indicate deletion of other LoxP-flanked genes of interest. Here, we report the generation of an inducible dual reporter-Cre mouse allele, iSuRe-Cre. By significantly increasing Cre activity in reporter-expressing cells, iSuRe-Cre provides certainty that these cells have completely recombined floxed alleles. This genetic tool increases the ease, efficiency, and reliability of conditional mutagenesis and gene function analysis.
Collapse
Affiliation(s)
- Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Verónica Casquero-García
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Wen Luo
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Federica Francesca Lunella
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Susana Ferreira Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Sergio Del Olmo-Cabrera
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain.
| |
Collapse
|
27
|
Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 2019; 316:F1026-F1040. [PMID: 30810063 DOI: 10.1152/ajprenal.00359.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5β2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.
Collapse
Affiliation(s)
- Rohan S Balkawade
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chao Chen
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - William L Clapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Caroline B Marshall
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
28
|
Zagore LL, Akesson CC, Licatalosi DD. Efficient GFP-labeling and analysis of spermatogenic cells using the IRG transgene and flow cytometry. Genesis 2019; 57:e23283. [PMID: 30663216 PMCID: PMC6519249 DOI: 10.1002/dvg.23283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/03/2022]
Abstract
Spermatogenesis is a highly ordered developmental program that produces haploid male germ cells. The study of male germ cell development in the mouse has provided unique perspectives into the molecular mechanisms that control cell development and differentiation in mammals, including tissue‐specific gene regulatory programs. An intrinsic challenge in spermatogenesis research is the heterogeneity of germ and somatic cell types present in the testis. Techniques to separate and isolate distinct mouse spermatogenic cell types have great potential to shed light on molecular mechanisms controlling mammalian cell development, while also providing new insights into cellular events important for human reproductive health. Here, we detail a versatile strategy that combines Cre‐lox technology to fluorescently label germ cells, with flow cytometry to discriminate and isolate germ cells in different stages of development for cellular and molecular analyses.
Collapse
Affiliation(s)
- Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio
| | - Cydni C Akesson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
29
|
Lesciotto KM, Richtsmeier JT. Craniofacial skeletal response to encephalization: How do we know what we think we know? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168 Suppl 67:27-46. [PMID: 30680710 PMCID: PMC6424107 DOI: 10.1002/ajpa.23766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull.
Collapse
Affiliation(s)
- Kate M Lesciotto
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
30
|
Barnett SC, Perry BAL, Dalrymple-Alford JC, Parr-Brownlie LC. Optogenetic stimulation: Understanding memory and treating deficits. Hippocampus 2018; 28:457-470. [DOI: 10.1002/hipo.22960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- S. C. Barnett
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - B. A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - J. C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| | - L. C. Parr-Brownlie
- Brain Research New Zealand; New Zealand
- Department of Anatomy, School of Biomedical Science; Brain Health Research Centre, University of Otago; Dunedin New Zealand
| |
Collapse
|
31
|
Alquier T, Poitout V. Considerations and guidelines for mouse metabolic phenotyping in diabetes research. Diabetologia 2018; 61:526-538. [PMID: 29143855 PMCID: PMC5805661 DOI: 10.1007/s00125-017-4495-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Mice are the most commonly used species in preclinical research on the pathophysiology of metabolic diseases. Although they are extremely useful for identifying pathways, mechanisms and genes regulating glucose and energy homeostasis, the specificities of the various mouse models and methodologies used to investigate a metabolic phenotype can have a profound impact on experimental results and their interpretation. This review aims to: (1) describe the most commonly used experimental tests to assess glucose and energy homeostasis in mice; (2) provide some guidelines regarding the design, analysis and interpretation of these tests, as well as for studies using genetic models; and (3) identify important caveats and confounding factors that must be taken into account in the interpretation of findings.
Collapse
Affiliation(s)
- Thierry Alquier
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Vincent Poitout
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
32
|
Xu S, Liu X, Gao L, Xu B, Li J, Gao C, Cui Y, Liu J. Development and identification of Set transgenic mice. Exp Ther Med 2017; 15:1982-1988. [PMID: 29434793 PMCID: PMC5776649 DOI: 10.3892/etm.2017.5612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
As a multifunctional protein involved in numerous biological processes, Set is expressed in several embryonic and adult organs. Furthermore, Set is overexpressed in numerous types of human cancers, including acute myeloid leukemia, breast cancer and pancreatic cancer. The expression of Set in germ cells is involved in gonad development, and the overexpression of Set has been observed in polycystic ovaries. In order to elucidate the physiological and pathological roles of Set, a Set transgenic mouse model was developed, in which the global overexpression of Set in adult tissues could be induced via the Cre/loxP system with the precise deletion of the Stop fragment in double-transgenic hybrids. This result was then confirmed by genotypical and protein analysis using polymerase chain reaction and bioluminescence imaging. In conclusion, the conditional Set transgenic mice carrying a reporter system were successfully generated. The transgenic mice open a new window for the further investigation of the function of Set using tissue-specific Cre mice and inducible Cre systems.
Collapse
Affiliation(s)
- Siliang Xu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoqiang Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lingling Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianmin Li
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
33
|
Spinelli V, Martin C, Dorchies E, Vallez E, Dehondt H, Trabelsi MS, Tailleux A, Caron S, Staels B. Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice. Transgenic Res 2015; 24:803-12. [DOI: 10.1007/s11248-015-9889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022]
|
34
|
Xu Y, Evaristo C, Alegre ML, Gurbuxani S, Kee BL. Analysis of GzmbCre as a Model System for Gene Deletion in the Natural Killer Cell Lineage. PLoS One 2015; 10:e0125211. [PMID: 25923440 PMCID: PMC4414598 DOI: 10.1371/journal.pone.0125211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
The analysis of gene function in mature and activated natural killer cells has been hampered by the lack of model systems for Cre-mediated recombination in these cells. Here we have investigated the utility of GzmbCre for recombination of loxp sequences in these cells predicated on the observation that Gzmb mRNA is highly expressed in mature and activated natural killer cells. Using two different reporter strains we determined that gene function could be investigated in mature natural killer cells after GzmbCre mediated recombination in vitro in conditions that lead to natural killer cell activation such as in the cytokine combination of interleukin 2 and interleukin 12. We demonstrated the utility of this model by creating GzmbCre;Rosa26IKKbca mice in which Cre-mediated recombination resulted in expression of constitutively active IKKβ, which results in activation of the NFκB transcription factor. In vivo and in vitro activation of IKKβ in natural killer cells revealed that constitutive activation of this pathway leads to natural killer cell hyper-activation and altered morphology. As a caveat to the use of GzmbCre we found that this transgene can lead to recombination in all hematopoietic cells the extent of which varies with the particular loxp flanked allele under investigation. We conclude that GzmbCre can be used under some conditions to investigate gene function in mature and activated natural killer cells.
Collapse
Affiliation(s)
- Yiying Xu
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cesar Evaristo
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rhuematology, University of Chicago, Chicago, Illinois, United States of America
| | - Maria-Luisa Alegre
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rhuematology, University of Chicago, Chicago, Illinois, United States of America
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara L. Kee
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Crotty S, Pipkin ME. In vivo RNAi screens: concepts and applications. Trends Immunol 2015; 36:315-22. [PMID: 25937561 DOI: 10.1016/j.it.2015.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022]
Abstract
Functional genomics approaches that leverage the RNAi pathway have been applied in vivo to examine the roles of hundreds or thousands of genes; mainly in the context of cancer. Here, we discuss principles guiding the design of RNAi screens, parameters that determine success and recent developments that have improved accuracy and expanded the applicability of these approaches to other in vivo settings, including the immune system. We review recent studies that have applied in vivo RNAi screens in T cells to examine genes that regulate T cell differentiation during viral infection, and that control their accumulation in tumors in a model of adoptive T cell therapy. In this context, we put forward an argument as to why RNAi approaches in vivo are likely to provide particularly salient insight into immunology.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Matthew E Pipkin
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
36
|
Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience 2015; 289:153-65. [PMID: 25595987 DOI: 10.1016/j.neuroscience.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
Abstract
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
Collapse
|
37
|
Mani BK, Walker AK, Lopez Soto EJ, Raingo J, Lee CE, Perelló M, Andrews ZB, Zigman JM. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. J Comp Neurol 2014; 522:3644-66. [PMID: 24825838 PMCID: PMC4142102 DOI: 10.1002/cne.23627] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Growth hormone secretagogue receptor (GHSR) 1a is the only molecularly identified receptor for ghrelin, mediating ghrelin-related effects on eating, body weight, and blood glucose control, among others. The expression pattern of GHSR within the brain has been assessed previously by several neuroanatomical techniques. However, inherent limitations to these techniques and the lack of reliable anti-GHSR antibodies and reporter rodent models that identify GHSR-containing neurons have prevented a more comprehensive functional characterization of ghrelin-responsive neurons. Here we have systematically characterized the brain expression of an enhanced green fluorescence protein (eGFP) transgene controlled by the Ghsr promoter in a recently reported GHSR reporter mouse. Expression of eGFP in coronal brain sections was compared with GHSR mRNA expression detected in the same sections by in situ hybridization histochemistry. eGFP immunoreactivity was detected in several areas, including the prefrontal cortex, insular cortex, olfactory bulb, amygdala, and hippocampus, which showed no or low GHSR mRNA expression. In contrast, eGFP expression was low in several midbrain regions and in several hypothalamic nuclei, particularly the arcuate nucleus, where robust GHSR mRNA expression has been well-characterized. eGFP expression in several brainstem nuclei showed high to moderate degrees of colocalization with GHSR mRNA labeling. Further quantitative PCR and electrophysiological analyses of eGFP-labeled hippocampal cells confirmed faithful expression of eGFP within GHSR-containing, ghrelin-responsive neurons. In summary, the GHSR-eGFP reporter mouse model may be a useful tool for studying GHSR function, particularly within the brainstem and hippocampus; however, it underrepresents GHSR expression in nuclei within the hypothalamus and midbrain.
Collapse
Affiliation(s)
- Bharath K. Mani
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Angela K. Walker
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eduardo J. Lopez Soto
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Charlotte E. Lee
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mario Perelló
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Zane B. Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
38
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
39
|
Findlay Q, Yap KK, Bergner AJ, Young HM, Stamp LA. Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon. Am J Physiol Gastrointest Liver Physiol 2014; 307:G741-8. [PMID: 25125684 DOI: 10.1152/ajpgi.00225.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.
Collapse
Affiliation(s)
- Quan Findlay
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Kiryu K Yap
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Morton SK, Chaston DJ, Baillie BK, Hill CE, Matthaei KI. Regulation of endothelial-specific transgene expression by the LacI repressor protein in vivo. PLoS One 2014; 9:e95980. [PMID: 24755679 PMCID: PMC3995964 DOI: 10.1371/journal.pone.0095980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/31/2014] [Indexed: 11/22/2022] Open
Abstract
Genetically modified mice have played an important part in elucidating gene function in vivo. However, conclusions from transgenic studies may be compromised by complications arising from the site of transgene integration into the genome and, in inducible systems, the non-innocuous nature of inducer molecules. The aim of the present study was to use the vascular system to validate a technique based on the bacterial lac operon system, in which transgene expression can be repressed and de-repressed by an innocuous lactose analogue, IPTG. We have modified an endothelium specific promoter (TIE2) with synthetic LacO sequences and made transgenic mouse lines with this modified promoter driving expression of mutant forms of connexin40 and an independently translated reporter, EGFP. We show that tissue specificity of this modified promoter is retained in the vasculature of transgenic mice in spite of the presence of LacO sequences, and that transgene expression is uniform throughout the endothelium of a range of adult systemic and cerebral arteries and arterioles. Moreover, transgene expression can be consistently down-regulated by crossing the transgenic mice with mice expressing an inhibitor protein LacI(R), and in one transgenic line, transgene expression could be de-repressed rapidly by the innocuous inducer, IPTG. We conclude that the modified bacterial lac operon system can be used successfully to validate transgenic phenotypes through a simple breeding schedule with mice homozygous for the LacI(R) protein.
Collapse
Affiliation(s)
- Susan K. Morton
- Blood Vessel Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Stem Cell & Gene Targeting Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel J. Chaston
- Blood Vessel Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Stem Cell & Gene Targeting Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Brett K. Baillie
- Blood Vessel Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Caryl E. Hill
- Blood Vessel Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Klaus I. Matthaei
- Stem Cell & Gene Targeting Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
41
|
Deussing JM. Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res 2013; 354:9-25. [PMID: 24078022 DOI: 10.1007/s00441-013-1708-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
In the 1980s, the basic principles of gene targeting were discovered and forged into sharp tools for efficient and precise engineering of the mouse genome. Since then, genetic mouse models have substantially contributed to our understanding of major neurobiological concepts and are of utmost importance for our comprehension of neuropsychiatric disorders. The "domestication" of site-specific recombinases and the continuous creative technological developments involving the implementation of previously identified biological principles such as transcriptional and posttranslational control now enable conditional mutagenesis with high spatial and temporal resolution. The initiation and successful accomplishment of large-scale efforts to annotate functionally the entire mouse genome and to build strategic resources for the research community have significantly accelerated the rapid proliferation and broad propagation of mouse genetic tools. Addressing neurobiological processes with the assistance of genetic mouse models is a routine procedure in psychiatric research and will be further extended in order to improve our understanding of disease mechanisms. In light of the highly complex nature of psychiatric disorders and the current lack of strong causal genetic variants, a major future challenge is to model of psychiatric disorders more appropriately. Humanized mice, and the recently developed toolbox of site-specific nucleases for more efficient and simplified tailoring of the genome, offer the perspective of significantly improved models. Ultimately, these tools will push the limits of gene targeting beyond the mouse to allow genome engineering in any model organism of interest.
Collapse
Affiliation(s)
- Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Kraepelinstrasse 2-10, 80804, Munich, Germany,
| |
Collapse
|
42
|
Abstract
Nestin-Cre mice have a significant metabolic phenotype that is hard to discern from current literature. Indeed, the Cre-lox system has numerous problems that can affect physiological parameters, and these are missed when the correct control strains are not used. Despite the increasing use of the Cre-lox system, these issues were not visible to the scientific community previously and may have affected published work. This makes it important to highlight the issues and raise awareness of the pitfalls of the Cre-lox system. Therefore, this perspective will discuss the impact of CNS and peripheral "off-target" Cre recombination on metabolic systems and describe the development of new approaches to obviate the difficulties.
Collapse
Affiliation(s)
- Erika Harno
- Neuroscience Research Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
43
|
Zarco N, Bautista E, Cuéllar M, Vergara P, Flores-Rodriguez P, Aguilar-Roblero R, Segovia J. Growth arrest specific 1 (GAS1) is abundantly expressed in the adult mouse central nervous system. J Histochem Cytochem 2013; 61:731-48. [PMID: 23813868 DOI: 10.1369/0022155413498088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS.
Collapse
Affiliation(s)
- Natanael Zarco
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN (NZ,EB,PV,PF-R,JS)
| | | | | | | | | | | | | |
Collapse
|
44
|
Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun 2013; 3:1218. [PMID: 23169059 PMCID: PMC3514490 DOI: 10.1038/ncomms2186] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022] Open
Abstract
Full realization of the value of the loxP-flanked alleles generated by the International Knockout Mouse Consortium will require a large set of well-characterized cre-driver lines. However, many cre driver lines display excision activity beyond the intended tissue or cell type, and these data are frequently unavailable to the potential user. Here we describe a high-throughput pipeline to extend characterization of cre driver lines to document excision activity in a wide range of tissues at multiple time points and disseminate these data to the scientific community. Our results show that the majority of cre strains exhibit some degree of unreported recombinase activity. In addition, we observe frequent mosaicism, inconsistent activity and parent-of-origin effects. Together, these results highlight the importance of deep characterization of cre strains, and provide the scientific community with a critical resource for cre strain information. The cre-loxP system is widely used for the generation of conditional gene knockouts. Here Heffner et al. systematically characterize cre recombinase activity in tissues of embryonic and adult cre-driver mouse strains and provide an online resource for scientists.
Collapse
|
45
|
Wong MH, Johnson MD. Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One 2013; 8:e55545. [PMID: 23383221 PMCID: PMC3561226 DOI: 10.1371/journal.pone.0055545] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/30/2012] [Indexed: 12/31/2022] Open
Abstract
The alveolar epithelium serves as a barrier between organism and environment and functions as the first line of protection against potential respiratory pathogens. Alveolar type II (TII) cells have traditionally been considered the immune cells of the alveolar epithelium, as they possess immunomodulatory functions; however, the precise role of alveolar type I (TI) cells, which comprise ∼95% of the alveolar epithelial surface area, in lung immunity is not clear. We sought to determine if there was a difference in the response of TI and TII cells to lung injury and if TI cells could actively participate in the alveolar immune response. TI cells isolated via fluorescence activated cell sorting (FACS) from LPS-injured rats demonstrated greater fold-induction of multiple inflammatory mediators than TII cells isolated in the same manner from the same animals. Levels of the cytokines TNF-α, IL-6 and IL-1β from cultured primary rat TI cells after LPS stimulation were significantly increased compared to similarly studied primary rat TII cells. We found that contrary to published reports, cultured TII cells produce relatively small amounts of TNF-α, IL-6 and IL-1β after LPS treatment; the higher levels of cytokine expression from cultured TII cells reported in the literature were likely from macrophage contamination due to traditional non-FACS TII cell isolation methods. Co-culture of TII cells with macrophages prior to LPS stimulation increased TNF-α and IL-6 production to levels reported by other investigators for TII cells, however, co-culture of TI cells and macrophages prior to LPS treatment resulted in marked increases in TNF-α and IL-6 production. Finally, exogenous surfactant blunted the IL-6 response to LPS in cultured TI cells. Taken together, these findings advocate a role for TI cells in the innate immune response and suggest that both TI and TII cells are active players in host defense mechanisms in the lung.
Collapse
Affiliation(s)
- Mandi H. Wong
- San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Meshell D. Johnson
- San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- Northern California Institute for Research and Education, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Calaminus SDJ, Guitart A, Sinclair A, Schachtner H, Watson SP, Holyoake TL, Kranc KR, Machesky LM. Lineage tracing of Pf4-Cre marks hematopoietic stem cells and their progeny. PLoS One 2012; 7:e51361. [PMID: 23300543 PMCID: PMC3531453 DOI: 10.1371/journal.pone.0051361] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/07/2012] [Indexed: 11/19/2022] Open
Abstract
The development of a megakaryocyte lineage specific Cre deleter, using the Pf4 (CXCL4) promoter (Pf4-Cre), was a significant step forward in the specific analysis of platelet and megakaryocyte cell biology. However, in the present study we have employed a sensitive reporter-based approach to demonstrate that Pf4-Cre also recombines in a significant proportion of both fetal liver and bone marrow hematopoietic stem cells (HSCs), including the most primitive fraction containing the long-term repopulating HSCs. Consequently, we demonstrate that Pf4-Cre activity is not megakaryocyte lineage-specific but extends to other myeloid and lymphoid lineages at significant levels between 15-60%. Finally, we show for the first time that Pf4 transcripts are present in adult HSCs and primitive hematopoietic progenitor cells. These results have fundamental implications for the use of the Pf4-Cre mouse model and for our understanding of a possible role for Pf4 in the development of the hematopoietic lineage.
Collapse
Affiliation(s)
- Simon D. J. Calaminus
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Amelie Guitart
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amy Sinclair
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hannah Schachtner
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Tessa L. Holyoake
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kamil R. Kranc
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Machesky
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
47
|
Affiliation(s)
- Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Murray SA, Eppig JT, Smedley D, Simpson EM, Rosenthal N. Beyond knockouts: cre resources for conditional mutagenesis. Mamm Genome 2012; 23:587-99. [PMID: 22926223 PMCID: PMC3655717 DOI: 10.1007/s00335-012-9430-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
With the effort of the International Phenotyping Consortium to produce thousands of strains with conditional potential gathering steam, there is growing recognition that it must be supported by a rich toolbox of cre driver strains. The approaches to build cre strains have evolved in both sophistication and reliability, replacing first-generation strains with tools that can target individual cell populations with incredible precision and specificity. The modest set of cre drivers generated by individual labs over the past 15+ years is now growing rapidly, thanks to a number of large-scale projects to produce new cre strains for the community. The power of this growing resource, however, depends upon the proper deep characterization of strain function, as even the best designed strain can display a variety of undesirable features that must be considered in experimental design. This must be coupled with the parallel development of informatics tools to provide functional data to the user and facilitated access to the strains through public repositories. We discuss the current progress on all of these fronts and the challenges that remain to ensure the scientific community can capitalize on the tremendous number of mouse resources at their disposal.
Collapse
Affiliation(s)
- Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | | | |
Collapse
|
49
|
Gangoda L, Doerflinger M, Lee YY, Rahimi A, Etemadi N, Chau D, Milla L, O'Connor L, Puthalakath H. Cre transgene results in global attenuation of the cAMP/PKA pathway. Cell Death Dis 2012; 3:e365. [PMID: 22875002 PMCID: PMC3434654 DOI: 10.1038/cddis.2012.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Use of the cre transgene in in vivo mouse models to delete a specific 'floxed' allele is a well-accepted method for studying the effects of spatially or temporarily regulated genes. During the course of our investigation into the effect of cyclic adenosine 3',5'-monophosphate-dependent protein kinase A (PKA) expression on cell death, we found that cre expression either in cultured cell lines or in transgenic mice results in global changes in PKA target phosphorylation. This consequently alters gene expression profile and changes in cytokine secretion such as IL-6. These effects are dependent on its recombinase activity and can be attributed to the upregulation of specific inhibitors of PKA (PKI). These results may explain the cytotoxicity often associated with cre expression in many transgenic animals and may also explain many of the phenotypes observed in the context of Cre-mediated gene deletion. Our results may therefore influence the interpretation of data generated using the conventional cre transgenic system.
Collapse
Affiliation(s)
- L Gangoda
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria, Australia 3086
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abu-Elheiga L, Wu H, Gu Z, Wakil SJ. Reply to Hoehn et al.: Phenotypic Discrepancies in Acetyl-CoA Carboxylase 2-deficient Mice. J Biol Chem 2012. [DOI: 10.1074/jbc.o112.362939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|